
NASA Technical Memorandum 86354

NASA-TM-86354 19850017882

Efficient Implementation of
Real-Time Programs Under the
VAX/VMS Operating System

Sally C. Johnson

.^Y,9,,, LIBRARYCOPY

lANGLEY RESEARCH CENTER

LIBRARY,NASA

HAM_PTO_N,VIRGINIA

BI/ A

NASA Technical Memorandum 86354

Efficient Implementation of

Real-Time Programs Under the

VAX/VMS Operating System

Sally C. Johnson

Langley Research Center

Hampton, Virginia

NI A
National Aeronautics
and Space Administration

Scientific and Technical
InformationBranch

1985

Summary swapped out of memory to make room for a currently
executable process. Memory may be conserved by

This paper is a user's guide for efficiently imple- not copying all of a program into memory until it
menting real-time programs under the VAX/VMS 1 is accessed. All these features optimize the handling
operating system. The techniques presented are for of competing processes in a multi-user environment;
minimizing response times for a single real-time pro- however, they are unneeded and should be disabled
gram executing on a dedicated VAX computer. A to optimize for a single, dedicated real-time process.
description of the basic operations needed to achieve Instructions for disabling these unnecessary features
real-time execution and techniques for optimizing ef- are included.

ficiency are presented. A technique for decreasing A real-time application requiring extensive corn-
the response time for accessing devices by mapping
to the input/output (I/O) space and accessing de- munication with physical devices, such as clocks andcommunication links, will experience serious process-
vice registers directly is discussed, and the result- ing delays if these devices are not used efficiently. A
ing increase in performance is demonstrated by ap- highly efficient technique of mapping to the I/O space
plying the technique to three of the devices avail- and accessing the device registers directly is there-
able in the Langley Avionics Integration Research fore described. To illustrate the application of the
Lab (AIRLAB): the KWll-K dual programmable technique, examples are included of different uses of
real-time clock, the Parallel Communications Link the technique on three devices in the Langley Avion-
(PCLll-B) communication system, and the Data- ics Integration Research Lab (AIRLAB) for real-
corn Synchronization Network. Each device is de- time applications: the KWll-K dual programmable
scribed, and methods for decreasing the access time
for each device are then discussed. The examples real-time clock, the Parallel Communications Link
show the use of the technique in three very different (PCLll-B) communication system, and the Data-

com Synchronization Network. The use of the tech-
ways. These should provide sufficient background nique on each device is discussed, and examples are
for applying the technique to other typical physical given in the appendixes. The examples were chosen
devices. The timing data included can be used to es- from a system for synchronizing four VAX comput-
timate the potential performance increase to be ex- ers by clock-value exchange in software, an applica-
pected from applying the technique to other physical
devices. The examples are presented in the PASCAL tion requiring short response times. The examplesillustrate three different uses of the technique, which
programming language; however, the technique can may be extended to other physical devices in a sire-
also be applied in other languages, ilar manner. Timing data are also included to show

the performance increase realized from various uses
Introduction of the technique. In addition, an extended-capability

A real-time process must execute as efficiently as device driver available in AIRLAB for the KWll-K
possible and avoid unnecessary delays in processing, clock is discussed, and the parameters necessary for
usually because it is event or interrupt driven and using this device driver are presented. Although the
time critical. This requires a dedicated computer technique described is applicable regardless of pro-
and the required privileges to retain control of the gramming language, all examples are presented in
system during real-time execution. The key to opti- PASCAL.
mizing real-time performance lies in recognizing and Mapping to the I/O space to access physical
avoiding conditions that can lead to processing delays device registers directly is a dangerous technique
and in accessing the resources available as efficiently because an error could cause data stored on disk to be
as possible, destroyed. Therefore, the use of this technique is not

The VAX/VMS operating system contains many recommended unless the performance improvement
features designed to optimize processing and resource is required for an application. To help the system
management for a wide range of competing interac- designer make this choice, timing data are included
tive and batch processes. These features are unnec- to compare the performance improvement obtained
essary and can even be detrimental to a single, ded, from various uses of the technique with the same
icated real-time process. System control is divided functions performed without use of the technique.
between processes via a complex priority scheme. Other techniques for using devices more efficiently
When the process currently executing must wait for are also recommended.
an event such as input/output (I/O), it may be The first section describes how to perform real-

time processing under the VAX/VMS operating sys-
1 VAX and VMS are trademarks of Digital Equipment tem. Methods for using devices for real-time process-

Corporation. ing are discussed in the second section. The third

section shows the response times required for VMS WRITELN(ERRMSG);
to handle some typical real-time requests. The fourth END;
section describes a method for mapping to the I/O
space to access device registers directly. The benefits Before a PASCAL program can call a subroutine,
as well as the dangers of this method are discussed even a system service routine, the complete specifi-
in this section. The last three sections describe the cation of the routine parameters must be identified.

use of the technique on three devices commonly used To facilitate this, an environment file called STARLET
for real-time processing, namely, the KWll-K dual containing the procedure specifications for all system

service calls and system symbolic definitions, such asprogrammable real-time clock, the PCLll-B commu-
nication system, and the Synchronization Network. status codes and function codes, is available for PAS-
Each device is described, and examples are given for CAL versions 2.0 and above. The environment must
accessing each device more efficiently, be "inherited" by including the following on the first

line of a PASCAL program:

Real-Time Processing Under VAX/VMS [INHERIT('SYSSLIBRARY:STARLET')]PROGRAMx;
A real-time program executes in three stages. Ex-

ecution begins at a low-priority level. The executing The use of this feature is described fully in the
program must instruct the operating system to dis- VAX-11 PASCAL User's Guide (ref. 2). The system

service routines are specified in the STARLETenviron-able operating system functions that would unneces-
sarily interrupt program execution and to raise the ment without the SYSprefix; for example, the system
priority to a real-time level. The program is then service SYS$GETMSGwould be called SGETMSG.

Many of the system service routines may only beexecuting in real time, and the time-critical process-
ing may begin. After processing has completed, the used by processes with appropriate privileges. The
program must instruct the operating system to lower privileges that each process has are established by

the system manager. Real-time users need morethe process priority to below a real-time level and to
resume normal operating system functions, privileges than the average time-sharing user because

The program communicates with the operating of the functions they must perform which are specific
system via system service routines. These routines to real-time processing.
are explained fully in the VAX/VMS System Services

Before Real-Time ExecutionReference Manual (ref. 1). Each of the system ser-

vice routines is a function returning a status code Before real-time processing may begin, the oper-
that indicates the success or failure of the operation ating system must be instructed to disable functions
requested. If the status code returned is odd, the that would cause unnecessary delays during program
operation was completed successfully. The following execution and are unneeded by the program. All
is an example of how to use the status code returned pages needed by the process should be locked in
from a call to the SSETRWMsystem service to verify memory, and process swapping should be disabled
the success or to obtain a meaningful error message before execution is raised to real-time priority. Many
using the SGETMSGsystem service: initialization procedures, such as starting clocks and
STATUS:= $SETRWM(0) ; establishing communication links, should be done be-

(* The system service is called as a fore real-time processing begins.
functionand returnsa statuscode. *)

IF NOT0DD(STATUS)THENBARF(STATUS); Locking pages in the working set. The entire
(* An odd status code indicates program should be paged into the working set and
success. *) locked-in before real-time execution begins to avoid

PROCEDUREBARF(STATUS: INTEGER); paging delays during real-time processing. The be-
VAR ginning and ending addresses of the program to be

ERRMSG:PACKEDARRAY[1..80] OF CHAR; locked-in are listed in the link map of the program,
MSGLEN:WORD; which may be obtained by linking the program with
I: INTEGER; the qualifiers LINK/MAP/BRIEF.

BEGIN The virtual-address space on the VAX computer
FOR I := 1 TO80 DOERRMSG[I] := ' ' ; is divided into two regions: the program region (vir-
$GETMSG(STATUS,MSGLEN,ERRMSG); tual addresses 0 through 3FFFFFFFle) and the con-

(* The $GETMSGservice interprets the trol region (virtual addresses 4000000016 through
statuscode and returnsa system error 7FFFFFFFIe).The programregioncontainsthepro-
message.*) gram imagecurrentlyexecuting,whereasthecontrol

2

region contains the user stack and information main- timer be set to execute a routine that halts the pro-
tained by the system on behalf of the process. Only gram after a specified amount of time has passed.
pages in the program region may be locked-in. The routine may also include output of error rues-

The pages are locked into the working set using sages or other processing, but it need only include
the SLKWSETsystem service with the beginning and the following:

ending addresses specified. For example, the system [ASYNCHRONOUS]PROCEDURETOOLONG;
service request to lock in a program that starts at BEGIN
address 20018 and ends at address 7FF16 is

(* Systemservicecallsto restoredis-
abled operatingsystemfunctionsand

INADR[1]:= _.X'0200'; lowerprocessprioritylevel shouldgo
INADR[2]:=7.X'O7FF'; here. *)
$LKWSET(INADR,,); HALT;

END;

The SLKWSETsystem service requires no privileges. The code for setting up a timer to execute this
routine after 5 minutes is

Disabling swapping. Pages that are locked into
the working set can still be swapped out if the TYPE
process is idly waiting for some event. To avoid QUk0 = [QUAD,UNSAFE]RECORD
possible delays from waiting for the process to be L0:UNSIGNED;LI:INTEGER; END;
copied back into memory, process swapping should VAR
be disabled. Swapping is disabled using the SSETSWM TIbIADR: OUAD;
system service as follows: BEGIN

SBINTIM('O 0:5:0' ,TIMADR);
$SETSWM(1); (*The SBINTIMroutineencodes

the time value into systemtime
The $SETSWM system servicerequiresthe PSWAPM format.*)
privilege. $SETIMR(,TIMADR,T00LONG);

(*The $SETIMRroutinesetsup the
Disabling the resource-wait mode. If the routine T00LONGto execute when the

resource-wait mode is enabled (the default), then any specified time has elapsed. *)
process requesting an unavailable system resource is END;
suspended until the resource becomes available. This

can be disastrous for a real-time process. The re- Raising priority to real time. Any process at
source may become available after a lengthy delay in priority 16 or higher is executing at real-time priority

processing. Even worse, since the real-time process and will not be preempted by any non-real-time
is the only one executing, the resource may never be- processes. Priority is set with the $SETPRI system
come available and processing is suspended forever, service as follows:
Since the process has complete control of the sys-
tem, no other processes may execute, and the only $SETPRI(,, 16,);
way to regain control of the "stuck" computer may be
to shut it down and reboot. Therefore, the resource- The $SETPRI system service requires the ALTPRI
wait mode should be disabled using the SSETR_ sys- privilege.
tern service as follows: Even after all these precautions, there are still

occurrences that may delay processing. If the com-
$SETRWM(1); puter is connected to a DECnet 2 network, traffic over

DECnet will not be able to pass the machine during
The SSETRWMsystem service requires no privileges, real-time priority processing, but a short interruption

will occur whenever the DECnet interface receives

Creating a time-out routine. A program executing a communication. In AIRLAB, the computer may
in real-time priority has total control of the system, be disconnected from the DECnet network by a by-
Therefore, if the program gets into a mode of looping pass switch located on the front of each computer. A
endlessly or waiting forever for an event that never brief hardware interrupt will occur every time a user
occurs, there is no way to regain control from the
program without shutting down the computer and 2 DECnet is a trademark of Digital Equipment
rebooting it. Therefore, it is recommended that a Corporation.

3

presses the ENTERkey on any terminal connected to Using Devices for Real-Time Processing
the computer. The operating system will still inter-
rupt the process briefly every 30 msec to perform Programs executing under the VAX/VMS operat-
housekeeping functions. None of these interruptions ing system typically communicate with device drivers
cause serious delays; however, critical timing must through system service routines to manipulate phys-

ical devices. Before a process can access a deviceallow for these brief delays. After the unnecessary
operating system functions have been disabled and driver, a communication link must be established be-
priority has been raised to a real-time level, time- tween the process and the device. The $ASSIGNsys-
critical processing may begin, tern service does this by assigning an I/O channel and

returning the channel number by which the process
must refer to the device. The process may then access

Real-Time Execution the device driver using the $qI0 or $QI0Wsystem ser-
Many of the following features of the operat- vices, both of which have the following parameters:

ing system may cause lengthy delays in processing, EFN (optional) number of an event flag to
and their use is not recommended for efficient time- be set when the specified operation
critical processing. Suspension or hibernation of a has been performed
process surrenders control of the system, and lower
priority processes may execute. When the real-time CHAN I/O channel number assigned to the
process becomes executable, a delay occurs while device
control is returned from the other process. Any sub-

FUNC code specifying the operation to beroutines to be executed during real-time execution
should have local variables declared "static" so that performed

critical processing time is not wasted during the al- IOSB (optional) address for return of a
location of storage. PASCAL I/O is slow and should status quadword indicating final
be deferred until after time-critical processing has completion status of the operation
completed if possible. Also, the current version of
PASCAL on the VAX computers in AIRLAB has ASTADR (optional) address of the entry mask
a problem such that if interrupts or asynchronous of an asynchronous system trap
processing should occur while PASCAL I/O is being (AST) routine to be executed upon
processed, then unpredictable fatal execution errors completion of the specified operation

may result. ASTPRM (optional) parameter to be passed to
the AST routine

After Real-Time Execution
P1-P6 (optional) device- and function-specific

After time-critical processing has completed, the parameters
process should restore the operating system functions
to their original states and lower priority to below The SqI0 and SQI0Wsystem services perform the
real time before terminating. The system functions same function; the only difference is in the return of
disabled may be restored with the following system control to the user process. The SQI0 service returns
service requests: control to the user process immediately upon setting

up the device driver routine to execute. The $QI0W
$SETPRI (,, 4,) ; service retains system control until after the device

(* Lowers priority to previous level. *) driver has completed the requested operation.
$SETRWM(0); The status code returned by the $qI0 and $QIOW

(*Enablesresourcewait mode. *) systemservicesindicatesthe successof settingup
$SETSWM(O); thedevicedriverto performthedesiredoperation.

(*Enablesswapping.*) Thisstatuscodeisavailablewhen controlisreturned
$ULWSET(INADR,,); to theuserprocess.The devicedrivermay notify

(*Unlockspages in workingset. *) theprocessofcompletionoftheoperationperformed
by settingthespecifiedeventflagor by executing

When possible,theoutputofdiagnosticdatashould a specifiedAST routine.The executingprogram,
be delayeduntilafterreal-timeprocessinghascorn- when requestingcertainsystemservices,may specify
pletedto avoiddelaysin time-criticalprocessing one ofitssubroutinesto be executedwhen there-
and to avoidpossiblefatalexecutionerrorsifasyn- questedoperationiscompleted.The AST routine
chronousprocessingshouldoccurduringPASCAL must be declared[ASYNCHRONOUS]and may mod-
I/O. ifyany globalprogram variablesthataredeclared

4

[VOLATILE]. (See ref. 3.) The device driver returns initiation of an AST routine of the process is ap-
its own status code after the desired operation has proximately 1.4 msec. After a minimal AST routine
been performed. (one PASCAL assignment statement) executes, con-

Before execution is raised to real-time level, ini- trol is returned to the main executing process approx-
tializing functions should be performed, such as as- imately 1.5 msec after the clock interrupt, as shown
signing an I/O channel to each device, starting the in figure 2. If no AST routine executes, a process
clock, and establishing communication links. Each waiting for an event flag to be set upon a clock in-
system service call to access a physical device in- terrupt resumes execution approximately 1.4 msec
troduees a delay of several milliseconds, which can after the clock interrupt, as shown in figure 3. These
significantly slow time-critical processing. Although figures demonstrate that the VMS operating system
this delay is acceptable for most real-time applica- requires approximately 1.5 msec to return control to
tions, the following section describes a technique for an application program after a clock interrupt and
bypassing the system service call and device driver that there is very little difference in timing between
processing by directly writing to and reading from using an event flag and using an AST routine. The
the device registers, response time for the operating system to initiate

execution of an AST routine upon clock interrupt is
approximately the same; however, this response time

VAX/VMS Response Time has a considerably lower standard deviation.

Many real-time applications require crucial tim- The VMS operating system adds considerable
ing during execution, and the system designers of overhead to real-time processing. The real-time
such applications should be aware of the response applications designer must be aware of this over-
time of the VAX/VMS operating system. The VMS head and take steps to avoid unnecessary delays in
response time for a typical request is a few millisec- processing.
onds. For illustration, the response times of various
methods for VMS to notify a process that a clock in- Mapping to the I/O Space
terrupt has occurred are compared. These times are A delay of several milliseconds is introduced
for a VAX-ll/750 computer. Figure 1 shows that when a process communicates with a physical de-
the elapsed time between a clock interrupt and the vice through a system service routine. However, since

I0000

9000

Mean = 1.376

8000 Standard Deviation = 0.069

Maximum Value = 2.525

7000o

h 6000

o 5000

0
4000

3000

2000

1000

0 ' _ i

0 1 2 3 4 5
Delay After Interrupt, msee

Figure 1. Histogram of elapsed time between clock interrupt and execution of AST routine to signal the interrupt.

10000

9000

Mean = !.507

8000 Standard Deviation = 0.167

Maximum Value = 3.934

7000o

6000

,a 5000o

4000

,a
s

3000

2000

1000 i0 _ L B:_,:,_x,,_ ,,_i i

0 1 2 3 4 5

Delay After Interrupt, msec

Figure 2. Histogram of elapsed time between clock interrupt and return of control to main program after short (one PASCAL
statement) AST routine executes.

I0000

90OO

Mean = 1.411

8000 Standard Deviation = 0.160

Maximum Value = 5.629

7000
o

.4

6000

5000o

o
4000

3000

2000

1000

i i

°O 1 2 3 4 5 6

Delay After Interrupt, msec

Figure 3. Histogram of elapsed time between clock interrupt and return of control to process waiting for event flag to be set
upon clock interrupt.

6

the VAX has memory-mapped I/O, even a program FFFIISle

written in a high-level language, such as PASCAL, = 111111111111000100011000Binary
can gain access to the device registers directly. This
is accomplished by mapping a page of the program 7TF816=VBN 11816=Byte offset within the page
memory to the address of the page of I/O space con-
taining the registers for a physical device. Storing Because the array that will be indexed to access the
a value in this mapped memory location by an as- physical register is an array of words, the word offset
signment statement in the program is equivalent to within the page must be calculated from the byte
loading a value into the physical device register. The offset:
registers can also be read by assignment statements.

Thus, the program can use the device without us- Byte offset = 1 0001 1000
ing the device driver or system service routines. By Shift right one bit --* 1000 1i00
avoiding system service routines and device driver 8C18 --Word offset
processing, this technique dramatically reduces the within

delay involved in accessing a device from a few mil- the page
liseconds to a few microseconds. For a more detailed
discussion of this technique, see reference 4.

The register addresses for the PCLll-B commu- A page of a PASCAL program memory may be
nication system may be found in reference 5, and mapped to this address by the following method. An
the register addresses for the KWll-K clock and the array of words with a range of 0 to 255 is defined
Synchronization Network devices are listed in refer- to be aligned on a page boundary. This array must
ence 6. These devices may be located at different have the [VOLATILE]attribute. The virtual address

of this page is then mapped to the correct address ofaddresses on other systems. The addresses given in
the manuals for each device are the addresses of the the I/O space by using the $CRMPSCsystem service.
device registers on the UNIBUS. 3 The address of the The array must not be locked in the working set.
UNIBUS adapter must be added to these addresses Examples of mapping to the I/O space of each of

the three devices may be found in appendixes A, B,to obtain the physical device register addresses. All
and C. The register addresses for each device may behardware devices are on the first UNIBUS adapter

on the VAX-ll/750 computers. The hardware ad- found in table I.
dresses are different on the VAX-ll/780; however,
only the VAX-ll/750 addresses are discussed herein.

Of a physical address, bits 9 to 23 are the virtual Dangers of Mapping to the I/O Space

block number of the page and bits 0 to 8 are the Mapping to the I/O space is a dangerous tech-
byte offset within the page. Although the VAX nique and should only be attempted if the increase

•computer is byte addressable, the device registers in performance warrants the risk. If the array is
are words, so an array of words will be mapped to mapped to the wrong location in the I/O space or
the I/O space. Therefore, the word offset within the an incorrect word offset is used, other UNIBUS de-
page must be determined from the byte offset. The vices may be accessed by mistake causing unpre-
following is an example calculation for the address of dictable results. The possible risks include destroying
the KWll-K clock counter register from its UNIBUS data stored on disk. For this reason, the technique
address found in reference 6: requires the privileges SH___ and either PRMGBLor

The address of the KWll-K clock counter register SYSGBL,and the technique is not recommended un-
is listed as 7704308. This UNIBUS address must less high efficiency is needed for an application.
be added to the first address on the first UNIBUS Another technique for accessing a physical device

adapter to obtain the physical address of the register: more efficiently is to modify the device driver to make
it more efficient for a specific application. Although

7704308 = 3Fl18 (hexadecimal) this method is not as efficient as mapping to the
+FC0000 (first UNIBUS address) I/O space because a system service request is still
FFFl1818 required, the inputs will be automatically checked

by the system for validity when the device driver
Of the physical address, bits 9 to 23 are the virtual is called to avoid the risks inherent in uncontrolled
block number (VBN) of the page and bits 0 to 8 are writing to device registers.
the byte offset within the page: For applications requiring faster response to de-

vice interrupts, the real-time program can also be
3 UNIBUS is a trademark of Digital Equipment Corporation. connected to receive device interrupts directly. This

TABLE I. REGISTER ADDRESSESON VAX-ll/750 nipulated are the KWll-K dual programmable real-
FOR COMMONLYUSEDDEVICES IN AIRLAB time clock, the PCLll-B communication system, and

the Synchronization Network. Although the use of
Word this technique is only described for these three de-

Device VBN offset Register vices, other physical devices may be manipulated in
KWll-K clock A 7FF8 8A Status Register a similar manner to achieve comparable performance

8B Preset/Buffer increases.
8C ClockCounter The first example shows that even a simple device

driver function requires a significant delay that can

Synchronization 7FF1 61 Control Status Register be avoided by accessing the device registers directly.
Network 62 Status Register The delay for reading the KWll-K clock can be re-

63 CommandRegister duced from a few milliseconds to a few microseconds.
Reading the clock is a simple function in the device

PCLll-B bus 7FF4 40 Transmitter Command driver. A variable is checked to ensure that the clock
Register (TCR) is running, and then the clock counter register is read.

41 Transmitter Status Most of the time required for this function is the over-
Register (TSR) head for executing the $qI0 system service routine,

42 Transmitter Source setting up the device driver to execute, and return-
Data Buffer (TSDB) ing control to the application program. By reading

43 Transmitter Source the clock counter register directly from a single as-
Byte Count (TSBC) signment statement in the application program, all

44 Transmitter Source this overhead is avoided. This shows that a simpleByte Address
(TSBA) function like reading the clock can be done very eas-

45 Transmitter Mas- ily from within the application program, providing
ter/Maintenance a dramatic increase in efficiency. The ability to de-
(TMMR) crease the overhead for reading the clock is especially

46 TransmitterSource important because the accuracy to which a clock can
Cyclic Redundancy be used for timing is dependent on the accuracy with
Character (TSCRC) which it can be read.

48 Receiver Command

Register (RCR) The second example shows a considerable de-
49 Receiver Status Regis- crease in overhead when the technique is used to

ter (RSR) perform a more complex task. In this example, a
4A Receiver Destination one-word message is sent over the PCLll-B commu-

Data Buffer (RDDB) nication system without using the device driver at
4B ReceiverDestination the sending or receiving computers. In this exam-

Byte Count (RDBC) ple, the application programs must perform consid-
4C ReceiverDestination erably more complicated tasks than a simple assign-

Bus Address (RDBA) merit statement. However, the increase in efficiency
4D ReceiverDestination for the function is still considerable. It should be

CRC (RDCRC) noted that the communication delay measured is for
sending a one-word message. The communication de-
lay does not increase proportionally for longer mes-

technique also avoids the dangers of accessing the de- sages, because the overhead for setting up to send a
vice registers directly. The technique of connecting to one-word message is approximately the same as for a
interrupts is explained in the VAX/VMS Real-Time longer message. Only the actual transmission delay
User's Guide (ref. 4). and the delay for data retrieval are increased. Thus,

the percentage of the communication delay that is

Benefits of Mapping to the I/O Space operating system overhead is less for long messages
than for short ones, so the performance increase of

In the following sections, the application of this the technique would seem much less dramatic for long
technique to three devices is described in detail. Tim- messages.
ing data are included to demonstrate the timing im- The third example shows a partial use of the tech-
provements realized. The examples come from a sys- nique. A pulse is sent over the Synchronization Net-
tem for synchronizing four VAX computers through work without using the device driver, but the receiver
clock-value exchange in software. The devices ma- uses the device driver in the usual manner. As ex-

pected, the performance increase realized is much less for the device driver to read the clock, so a clock
than for the other examples. However, the technique read is only accurate to within a few milliseconds.
still provides a noticeable increase in performance This inaccuracy is unacceptable for many real-time
over complete dependence upon the device driver, applications. The following paragraph describes a

These examples show the use of the technique in method for reducing the delay required to read the
three very different ways. These should provide suffi- clock.
cient background for applying the technique to most Mapping to the I/O space and reading the clock
other typical physical devices. These examples also counter register directly considerably reduces the de-
illustrate the performance increases to be expected lay required to read the KWll-K clock. As shown
from similar applications of the technique to other in figure 5, a clock read in this manner takes ap-
devices, proximately 4 _usecand is accurate to within a few

microseconds, a value _vhich is much more acceptable
The KWll-K Real-Time Clock than the several milliseconds required to read the

clock using the device driver. These data were col-Accurate timing for real-time programs is pro-
vided by clock A of the KWll-K dual programmable lected by repeatedly reading the clock directly 10000
clock. (See ref. 7.) This clock operates as a 16-bit times and then determining the time between clock
up-counter. A negative value is loaded into the clock reads. Because the interval number is only accessi-
register from the Preset/Buffer. This value is in- ble through the device driver, only the current clock
cremented at a specified frequency, from 100 Hz to counter value may be read in this manner. All other
1 MHz, until the register overflows (becomes equal clock functions, such as starting and stopping the
to zero), signalling the end of an interval. The clock clock, can be performed using the device driver since
register is then reloaded from the Preset/Buffer and the timing of these operations is not so critical. Ap-
operation continues, pendix A contains the PASCAL code necessary for

Included in the device-dependent parameters of mapping to the I/O space containing the KWll-K
the $qI0 service for the KWll-K device driver are clock registers and for reading the clock counter reg-

optional parameters for specifying an AST routine, ister directly.

a parameter to be passed to that routine, and an The PCLll-B Communication Systemaccess mode for that routine to execute. Unlike the
usual SqI0 AST routine, which signals the user on Although the DECnet interface is useful for initi-
completion of the task, this AST routine signals the ating simultaneous execution of processes on multi-
user when the end of the next clock interval occurs, ple VAX computers in AIRLAB, rapid interprocess

A device driver written for AIRLAB by Datacom, communication is provided by the PCLll-B commu-
Inc., and described in Custom Software Documenta- nication system, a 16-bit parallel, time-division mul-
tion (ref. 6) provides limited access to the following tiplexed bus. The PCL11-B Driver User's Guide
capabilities of the clock: (XPDRIVER) (ref. 8) describes how to establish

communication links and send messages using the
• starting the clock device driver. Each processor initializes itself and
• reading the current clock value establishes a communication link with every other
• stopping the clock

processor. A processor expecting to receive a mes-
• causing an interrupt after a specified interval sage from another processor issues a SqI0 request to

To support real-time simulation in AIRLAB, the de- its PCLll-B device driver identifying the expected
vice driver was modified to enable use of the following receiver's address and an AST routine to be executed
features: upon receipt of the message. To send a message, a

processor issues a $qI0 request specifying the rues-
• generating repeated interval interrupts sage to be sent and the receiving node. If the receiv-
e speeding up or slowing down the clock a specified ing node has a read request pending, its AST routineamount for one interval without stopping the

clock or interrupting its operation executes and the message is delivered. Otherwise, the
• reading the current interval number message is rejected by the receiving node.

Processing of the SqI0 system service request
These functions of the modified device driver and and the device driver protocols adds a considerable
how to use them are described in appendix D. delay to message transmission over the PCLll-B

When the clock is operating at a 1-MHz rate, the communication system. A histogram of one-word
clock value is incremented once every 1 psec; thus, message delay times in figure 6 shows this delay to

the clock is accurate to 0.001 msec. However, as be from 5 to 11 msec. The vast majority of the delay i
shown in figure 4, there is a delay of 1.1 to 5.1 msec results from the SqI0 system service request and the

g

10000

9000

Mean = 1.153

8000 Standard Deviation = 0.09

Maximum Value = 5.139

7000
0

6000

5000o

o
4000

3000

2000

lOOO

0 T I _ _ i t
0 I 2 3 4 5 6

Clock Read Delay, msee

Figure 4. Histogram of delay _r device driver to read KW11-K clock.

I0000

9000

Mean = 4.008

8000 Standard Deviation = 0.127

Maximum Value = 7.0

7000
0

.4

6000

o 5000

o
4000

3000

2000

1000

0
0 I 2 3 4 5 6 7 8 9 I0

Clock Read Delay, psee

Figure 5. Histo_arn of delay _r direct reading of KW11-K clock register.

I0

I0000

9000

Mean = 6.061

8000 Standard Deviation = 0.263

_aximum Value = 10.65

7000
O
°_

6000

5000o

4OOO

= 8000

_000

I000

0 i i i i i
0 I 2 3 4 5 6 7 8 9 I0 Ii 12

Communication Delay, msec

Figure 6. Histogram of delay _r device driver to send on.word message over PCLll-B communication system.

10000

9000
Mean = 0.856

8000 Standard Deviation = 0.068
Maximum Value = 2.565

7000
o

6000

m

50000

4000

8000

2000

I0o0

0
0 l 2 8 4

Communication Delay, msec

Figure 7. Histogram of delay _r sending on.word PCLll-B message directlD

U

10000

9000

_ean = 1.659

6000 Standard Deviation = 0.122

_aximum Value = 5.553

7000o

> 6000

o 5000

4000

= 8000
z

2000

100o

i

0 1 2 8 4 5 6
Pulse Delay, msec

Figure 8. Histogram of delay for sending Synchronization Network pulse using device driver.

10000

9000
Mean = 0.592

8000 Standard Deviation = 0.061

_aximum Value = 4.04

7000o
.4

> 6000

o 5000

o
4000

= 8000

2000

lOO0

O0 1 2 3 4 6

Pulse Delay, msec

Figure 9. Histogram of delay for sending Synchronization Network pulse directly.

12

inefficient device driver code being designed to allow As shown in figure 8, the delay for sending a syn-
maximum generality of the device. For applications chronization pulse is approximately 1.5 msec. Syn-
requiring shorter and less variable communication chronization pulses may be sent by mapping to the
times, each process should map to the I/O space and I/O space and writing to the device registers directly.
messages should be exchanged by directly writing to Appendix C contains an explanation of how to send
and reading from the device registers. The sending synchronization pulses without the device driver and
node writes the message directly into the Transmitter gives an example of this technique. As shown in
Source Data Buffer register and then sets the bits figure 9, this technique reduces the pulse delay to
to send the message to the receiver. The receiver 0.6 msec with considerably less variation than with
must poll the device Receiver Status Register bits the device driver.
for the hardware interrupt to signal receipt of a
message. The device driver may still be used to
establish communication links, and then messages Concluding Remarks
may be sent and received by accessing the device
registers directly. A description of techniques for writing efficient

A method for mapping to the I/O space contain- real-time programs under the VAX/VMS operating
ing the PCLll-B device registers and for using the system was presented. Instructions for disabling
PCL without the device driver is illustrated by the unnecessary operating system functions that would
example PASCAL routines in appendix B and is ex- cause needless processing delays and for raising the
plained more fully in reference 5. As shown in fig- priority to a real-time level were included. Tech-
ure 7, this technique reduces the communication de- niques to be avoided were also pointed out. To aid in
lay to approximately 1 msec. The communication planning time-critical programs, the response time of
delay variance is also significantly reduced, the VMS operating system was discussed.

A technique was presented for accessing physi-
The Synchronization Network cal devices more efficiently by mapping to the in-

The Synchronization Network is a network for put/output space and accessing the physical-device
sending synchronization pulses between VAX corn- registers directly. The dangers as well as the ad-
puters and was developed for AIRLAB by Datacom, vantages of this technique were discussed. To illus-
Inc. (See ref. 6.) With this system, a single pulse trate the application of the technique, examples were
may be transmitted simultaneously to all the VAX included for using the technique on three different
computers in AIRLAB. The pulse may be sent by physical devices in the Langley Avionics Integration
pressing the Manual Synchronization button or by Research Lab. Each device was described, and sug-
issuing a $qlOwrite request to the Synchronization gestions for using each device efficiently were pre-

sented. The appendixes contain example PASCALNetwork device driver from a program executing on
routines for using each of the devices in an efficientone of the VAX computers. If an executing program
manner to illustrate most of the suggestions in the

requires notification upon receipt of a pulse from a
specified sender or senders, then the program issues a paper.
read request to the Synchronization Network device
driver. With this request, an AST routine may be
specified to be executed upon receipt of the pulse. If NASA Langley Research Center
no read requests are pending, then a pulse is ignored Hampton, VA 23665
by the device driver. February I, 1985

13

Appendix A PROCEDURECLOCK_INIT;
VAR

Reading the KWll-K Clock Register FLAGS:[UNSAFE]INTEGER;
Directly VBN: INTEGER;

BEGIN

ThefollowingPASCAL routinesmap totheI/O KWINADR[i]:=ADDRESS(KWIOPAGE[0]);
page containing the clock registers and read the clock KWINADR[2] := KWINADR[1] ;
counter directly: VBN:= ZX'7FF8' ;
TYPE FLAGS:= SEC$M__PFNMAP;

WORD = [WORD]-32768..32767; STATUS:= $ULWSET(KWINADR,KWRETADR,);
CONST IF NOT ODD(STATUS)THENBARF(STATUS);

KWCLOCK= 7.X'8C'; STATUS:= $CRMPSC(KWINADR,KWRETADR,,
VAR FLAGS.....1,VBN,,);

KWIOPAGE: [ALIGNED(9),VOLATILE] IF NOT ODD(STATUS)THEN BARF(STATUS);
ARRAY[0..255]OF [VOLATILE]WORD; END;

(* ALIGNED(9)specifies page The clock may now be directly read with the
alignment*) following:

KWINADR,KWRETADR:ARRAY[I..2] OF
[UNSAFE]UNSIGNED; MYTIME := KWIOPAGE[KWCLOCK];

MYTIME:WORD;
STATUS:INTEGER;

14

Appendix B The PCL_INITroutine maps the array PCLIOPAGEto
the I/O space containing the PCL11-B device regis-

Routines for Sending PCL11-B Messages ter addresses. The CONTROLLER_STARTroutinestarts
Directly the controllerforthis node. The NODE_CONNECTrou-

tine is then called to start every node in the system.
The routines necessary for establishingcommuni- Since a node may not be started until its controller

cation links between two nodes and sending a rues- is started, the attempts to start other nodes will fail
sage directly are given below. The constants and until they start their controllers. After each node is
variablesused are started, messages may be sent and received, identi-

CONST fying each node by its assigned channel number.
NMA$C__PCLI_PRO----7,X'00000458'; PROCEDUREPCL_INIT;
NMA$C_LINPR__MAS= 7,X'00000001'; VAR
NMA$C_LINPR_SEC= Y,X'00000002'; FLAGS: [UNSAFE]INTEGER;
NMA$C_LINPR_NEU----7,X'00000002'; VBN:INTEGER;
NMA$C_PCCI_TRI= _,X'00000474'; BEGIN
EFPCL= 2; _ PCLINADR[1]:--ADDRESS(PCLIOPAGE[0]);
TEF= 3; PCLINADR[2]:=PCLINADR[I];
PCLTCR= _X'40'; VBN:=7,X'7FF4';
PCLTSR= _X'41'; FLAGS:=UOR(SEC$M__PFNMAP,SECSM_WRT);
PCLTSDB= Y,X'42'; STATUS:=$ULWSET(PCLINADR,PCLRETADR.);
PCLTSBC= Y,X'43'; IFNOTODD(STATUS)THENBARF(STATUS);
PCLTSBA= _X'44'; STATUS:=$CRMPSC(PCLINADR,PCLRETADR,,

FLAGS.....I,VBN,,);
PCLTMMR= 7,X'45'; IFNOTODD(STATUS)THENBARF(STATUS);
PCLTSCR= Y,X'46'; END;(*PCL_INIT*)
PCLRCR= _X'48';
PCLRSR= 7,X'49'; PROCEDURECONTROLLER_START(THISNODE:
PCLRDDB= _X'4A'; INTEGER);
PCLRDBA= _,X'4B'; VAR
PCLRDCRC= Y,X'4D'; CHARBUF:ARRAY[I..i]OFCBUF;
MAXWAIT= 10000; qIO_FUNCT: [UNSAFE]INTEGER;

TYPE IOSB:IOSBTYPE;
WORD= [WORD]--32768..32767; NODENUM:INTEGER;
qUA])= [QUAD,UNSAFE]RECORD BEGIN

LO:UNSIGNED;L1:INTEGER;END; STATUS:=SASSIGN('_J[PAO:',CTRLCRAN);
IOSBTYPE= ARRAY[I..4]OFWORD; IFNOTODD(STATUS)THENBARF(STATUS);
CBUF = RECORD CHARBUF[1]. LO := NMA$C_PCLI_PRO;

LO:WORD; IF (THISNODE = 8) THENCHARBUF[1] .L1
L1 : INTEGER; := NMA$C__LINPR__MAS

ELSE IF (THISNODE = 6) THEN
END; CHARBUF[1]. L1 := NMA$C__LINPR_SEC

VAR ELSECHARBUF[I].LI:=NMA$C_LINPR_NEU;|
MESSAGE:WORD;
NDCHAN:[VOLATILE]ARRAY[1..10]OFWORD; (.Onenodeshouldbe chosenasmaster,
CTRLCHAN:WORD; oneforsecondarymaster,andallthe
GOODREAD: [VOLATILE]APd%AY[1..10]OF othernodesmustbeneutral.*)

[VOLATILE]BOOLEAN; QIO_FUNCT:=UOR(IO$__SETMODE,UOR
BUFIN: [VOLATILE]ARRAY[1..10]OF (IOM_CTRL,IOM_STARTUP));
[VOLATILE]WORD; STATUS:=$QIOW(,CTRLCHAN,QIO_FUNCT,Y,REF

IOSBR:[VOLATILE]IOSBTYPE; IOSB....7,DESCRCHARBUF);
PCLIOPAGE:[ALIGNED(9).VOLATILE] IFNOTODD(STATUS)THENBARF(STATUS);
ARRAY[0..255]OF [VOLATILE]WORD; END;(*CONTROLLER_START*)

PCLTEMP:[UNSAFE]WORD;
PCLINADR,PCLRETADR:ARRAY[1..2]OF PROCEDURENODE_CONNECT(NODENUM:INTEGER);
[UNSAFE]UNSIGNED; VAR

15

CHARBUF: ARRAY [1..1] OF CBUF; PROCEDURE READWAIT (NODENUM,MAXCOUNT:

qIO_FUNCT: [UNSAFE] INTEGER; INTEGER) :BOOLEAN;
IOSB: IOSBTYPE; VAR

TRIES,FLAG:INTEGER; ICOUNT:[STATIC]INTEGER;
CONNECTED: BOOLEAN; IRCV: [STATIC] INTEGER;
TIMADR: QUAD; BEGIN

BEGIN ICOUNT := O;

STATUS:=$ASSIGN('_XPAO:'.NDCHAN PCLIOPAGE[PCLRCR]:=Y,X'0002';
[NODENUM]]); PCLIOPAGE[PCLRCR]:=Y,X'2000';

IFNOTODD(STATUS)THENBARF(STATUS); REAl)WAIT:=FALSE;
CHARBUF[1].LO:=NMA$C_PCCI_TRI; IRCV:=O;
CHARBUF[1].L1:=NODENUM; REPEAT
QIO_FUNCT:=UOR(IO$_SETMODE. ICOUNT:=ICOUNT+ I;
IO$M_STARTUP); PCLTEMP:=PCLIOPAGE[PCLRSR];

FLAG:=O; IF(UAND(PCLTEMP.Y,X'0100')
TRIES:=O; = _X'OIO0')THENIRCV:=1
CONNECTED:=FALSE; ELSEIF (UAND(PCLTEbIP.Y,X'0080')
WHILE(TRIES<= 100)ANDNOTCONNECTED = Y,X'O080')THENIRCV= 1;
DO UNTIL((IRCV> O)OR (ICOUNT
BEGINTRIES:=TRIES+ 1; > MAXCOUNT));
STATUS:=$QIOW(.NDCHAN[NODENUM]0 IF(IRCV> O)THENP_:2U)WAIT:=TRUE;
QIOFUNCT.Y,REFIOSB...._DESCR BUFIN[NODENUM]:=PCLIOPAGE[PCLRDDB];
CHARBUF.FLAG); END;(*READWAIT,)

IFNOTODD(STATUS)THENBARF(STATUS); The sendingnodemay writea one-wordmessage
STATUS:= SBINTIM('O0:0:3' ,TIMADR); directly into the Transmitter Source Data Buffer
IF NOT ODD(STATUS) THEN BARF(STATUS) ; register and set the bits to transmit the message
STATUS:= $SETIMR(TEF,TIMADR); to the specified receiver as follows:
IFNOTODD(STATUS)THENBARF(STATUS);
IFODD(IOSB[I])THENCONNECTED:=TRUE PROCEDUREWRITEPCL(NODENUM:INTEGER;BUF:
ELSE$WAITFR(TEF); WORD);

END; BEGIN
IFNOTCONNECTEDTHEN PCLIOPAGE[PCLTCR]:=_X'O002';

BEGIN PCLIOPAGE[PCLTSBC]:=_X'FFFE';
WRITELN('NODE'.NODENUM:i.'NOT PCLTEbIP:=PCLIOPAGE[PCLTCR];
STARTEDINI00TRIES'); IF(NODENUM= 6)THENPCLTEMP:=UOR

HALT; (PCLTEMP.Y,X'0600')
END; ELSEIF (NODENUM= 8)THENPCLTEMP

END;(*NODE_CONNECT,) :=UOR(PCLTEMP.Y,X'0800');
PCLIOPAGE[PCLTCR]:=PCLTEMP;

Once the communication links are established by PCLIOPAGE[PCLTSDB]:= BUF;
theCONTROLLFA_STARTandNODE_CONNECTroutines PCLTEHP:=PCLIOPAGE[PCLTCR];
and a pageofprogrammemory ismappedtothe PCLTEMP:=UOR(PCLTEMP._X'2000');
I/O space containing the PCLll device registers by PCLIOPAGE[PCLTCR] := PCLTEbIP;
thePCL_INITroutine,thenmessagesmay be sent PCLTEbIP:=PCLIOPAGE[PCLTSR];
by writing directly to the device registers using the PCLTEMP:= UAND(PCLTEMP,ZX'FF7F') ;
following method: PCLIOPAGE [PCLTSR] := PCLTEMP;

The receiver must execute the READWAITroutine PCLTEMP:= PCLIOPAGE[PCLTCR];
to poll the Receiver Status Register to recognize PCLTF_I_P:= UDR(PCLTEMP0Y,X'O001');
receipt of a messagesent without the device driver PCLIOPAGE[PCLTCR]:= PCLTEMP;
as follows: END; (* WRITEPCL*)

16

Appendix C SYNCASTroutine will be executed when the first pulse
is received.

Routines for Sending Synchronization Pulses [ASYNCHRONOUS]PROCEDURESYNCAST;
Directly BEGIN

The routinesnecessaryforsettingup a node to SYNCFLAG:: TRUE;
receivea synchronizationpulseand forsendinga END;
pulseby writingdirectlytothedeviceregistersuse
thefollowingconstantsand variables: PROCEDURERECVSYNC;

VAR

CONST MODEMASK:WORD;
SYNCNET_CSR= 7,X'61'; MODE:INTEGER;
SYNCNET_COMMAND= 7,X'63'; BEGIN
COMMAND----_,X'40'; MODEMASK:----_X'O3FF';(*Masktoreceive

TYPE fromanyotherprocess*)
WORD= [WORD]--32768..32767; MODE:=1;

VAR STATUS:=SQIOW(,SYNCCHAN,IO$_SETMODE,
NSIOPAGE:[ALIGNED(9)]ARRAY[O..255]OF P1:=MODEMASK,P2:=MODE);
[VOLATILE]WORD, IFNOTODD(STATUS)THENBARF(STATUS);

NSADR,NSRETADR:ARRAY[1..2]OF[UNSAFE] SYNCFLAG:=FALSE;
UNSIGNED; STATUS:=SQIO(,SYNCCHAN,IO$__READVBLK,

SYNCFLAG:[VOLATILE]BOOLEAN; Pl:=7,IMMEDSYNCAST);
NSTEMP: [VOLATILE,UNSAFE]WORD; IFNOTODD(STATUS)THENBARF(STATUS);
SYNCCHAN:WORD; IF(SYNCFLAG)THEN

Eachnodemustmap anarraytothepageofI/O BEGIN
spacecontainingtheSynchronizationNetwork device (* The Synchronization Network

registeraddressedasfollows: is set up such that if an unex"
pectedsynchronizationpulseis

PROCEDURESN_INIT; received,itisrememberedand
VAR thenextreadrequestwillimme-

FLAGS:[UNSAFE]INTEGER; diatelybesuccessful;however,
VBN:INTEGER; formanyapplicationsthiswould

BEGIN beincorrect,andthischeck
NSINADR[1]:=ADDRESS(NSIOPAGE[0]); shouldbeincluded.*)
NSINADR[2]:=NSINADR[1]; SYNCFLAG:=FALSE;
VBN:=7,X'7FFI'; STATUS:=SQIO(,SYNCCHAN.IO$_READVBLK,
FLAGS:=UOR(SECSM_PFNMAP,SECSM_WRT); Pl:=7,IMMEDSYNCAST);
STATUS:=SULWSET(NSINADR,NSRETADR,).; IFNOTODD(STATUS)THENBARF(STATUS);
IFNOTODD(STATUS)THENBARF(STATUS); END;
STATUS:=$CRMPSC(NSINADR,NSRETADR,, END;

FLAGS1.VBN..);

IF NOT ODD (STATUS) THENBARF (STATUS) ; The routineSENDSYNC,forsendinga synchronization
pulseto everycomputerby writingdirectlyto theSTATUS := SASSIGN(DEVNAM := '_SYAO: '.

CHAN := SYNCCHAN); synchronizationdeviceregisters,issimple,asfollows:

IF NOT ODD (STATUS) THEN BARF (STATUS) ; PROCEDURE SENDSYNC;
END ; BEGIN

The RECVSYNCroutinesetsup thenode toreceivea NSTEMP:= UOR(NSIOPAGE[SYNCNET__CSR],
synchronizationpulse,which may be sentby another COMMAND) ;

processwritingto the deviceregistersdirectlyor NSIOPAGE[SYNCNET_CSR]:= NSTEMP;
issuinga write$qIO to the deviceor by pressing NSIOPAGE[SYNCNET_COtS{AND]:= ZX'O000';
theManualSynchronizationbuttoninAIRLAB. The END;

17

Appendix D Starting the Clock

The KWll-K clock may be started by a WRITE
An Extended-Capability Device Driver for function with the following device-specific param-
the KWll-K Clock eters:

The KWll-K device driver written by Datacom, P1 optional address of AST to be deliv-
Inc., was modified to extend its capabilities for real- ered at interval end
time processing. The added functions of this device
driver and the parameters for using them are dis- P2 optional AST parameter

cussed in this appendix. P3 optional AST access mode
Status codes are returned from the device driver

in the IOSB parameter to the $QI0 system service. P4 clock Control Status Register (CSR)
The following status codes may be returned in the (see ref. 7)

first longword of the IOSB: P5 positive integer, equals number of

SS$_ILLSEQOP an attempt was made to read clock ticks to be in each interval

the clock before it was started The KW11-K Dual Programmable Real Time Clock

SS$_IVTIME an invalid value was specified User Manual (ref. 7) should be consulted for the
for the Preset/Buffer format of the clock CSR parameter and for further

information about the operation of the KWll-K
SS$_.ASTFLT an erroroccurredinqueuing clock.The clockstartfunctionmay be used to

up theAST routine generatean interruptattheend ofthefirstinterval
by settingthecorrectbitintheclockCSR. An AST

SS$_CANCEL successfulcompletionofa toexecuteupon thatinterruptmay be specifiedin
requesttostoptheclock parameterPI, and a parameterto be passedto it

SS$_NORRAL successfulcompletionofany may be specifiedinP2.
Otherfunction

Queuing an AST or Event Flag fortheNext
The secondlongwordof the IOSB isused by the Interrupt
clockreadfunctiontoreturntheclockcountervalue

and intervalnumber and isnot used by theother Without disturbingthe operationof the clock,
functions, thisWRITE functionmay be usedtosignalthenext

The modifiedKW11-K clockdevicedriveraccepts clockinterruptby executingan AST routineor by
onlyREAD and WRITE functioncodes.The operation settingan eventflag.The device-specificparameters
for reading the clock counter is the only READfunc- are as follows:

tion and may be specified by the SqI0 function code P1 optional address of AST to be deliv-
parameter I0$__READVBLK.All the remaining opera- ered at interval end
tions are WRITE functions and may be specified by
the I0$_WRITEVBLKfunction code. P2 optional AST parameter

The WRITEfunction is used to perform four dif- P3 optional AST access modeferent functions in the modified device driver. The
four functions are differentiated as follows: P4 positive integer

P4 = 0, P5 ----0 stop the clock P5 zero

P4 -- 0, P5 _ 0 change Preset/Buffer only This function may be used to generate repeated
interval interrupts in the following manner. A SQI0

P4 _ 0, P5 = 0 set up for interrupt only request is made to the clock device driver as before

P4 _ 0, P5 _ 0 Start the clock to start the clock operating, with the clock CSR set
for repeated interval mode operation with interrupts

The parameters for each of the functions of the enabled and with an AST routine specified to execute
modified KWll-K clock device driver are given be- at the end ofthefirst interval. After the AST routine
low. Example routines for using each of these func- executes, a SQI0 request is issued to the device driver
tions may be found in appendix E. Further informa- with this function to queue an AST to execute at the
tion on the modified clock driver is available on the end of the next interval without interrupting clock
AIRLAB Data Management System (ADAMS). operation.

18

By using this function at the beginning of every Note that control is returned to the calling program
subsequent interval, the AST routine will execute at when the value has been successfully written to the
the end of every interval. Preset/Buffer, so another call to this function dur-

ing the same interval could overwrite the value and

Changing the Clock Preset/Buffer cancel out the effect of the first call.

The WRITEfunction for changing the value in the Stopping the Clock
clock Preset/Buffer without disturbing the current
operation of the clock requires the following device- The function for stopping the clock is a WRITE
specific parameters: function with parameters P4 and P5 both equal to

zero. The device-specific parameters are thus as
P1 optional address of AST to be deliv- follows:

ered at interval end
P1 zero

P2 optional AST parameter P2 zero
P3 optional AST access mode

P3 zero
P4 zero

P4 zero
P5 positive integer, equals new interval

length P5 zero

This function changes the value in the Preset/ Reading the Clock
Buffer without stopping or disturbing the operation
of the clock. If the clock is running in repeated in- The function for reading the clock counter is a
terval mode, the current interval length will remain READfunction with no device-specific parameters.
unchanged, but all subsequent intervals will be the The value in the clock counter and the interval hum-
length specified in P5. In a multiprocessor system, ber since clock operation was started are returned
this function may be used to speed up a lagging clock in the IOSB. Word three of the IOSB contains the
to synchronize with other processors' clocks by the counter value, and word four contains the interval
following method. A $QI0 call is made to the device number. Calculation of an absolute time value from
driver to change the value in the Preset/Buffer to a the interval number and the counter value is shown in
slightly larger (less negative) value. At the end of the appendix E. The interval number is accessible only
current interval, this value is automatically loaded through a SQI0 or $QIOWcall to the device driver.
into the clock register. This causes the next interval Since the value is returned in the IOSB by the de-
end to occur slightly earlier, so the end of this in- vice driver, it cannot be read until the device driver
terval will coincide with the other processors' clocks, has completed processing (i.e., when the SQIOWre-
During the shortened interval, this function may be turns or the $QIO sets an event flag or delivers an
called with the original interval length to restore the AST routine). An attempt to read the clock when

Preset/Buffer. The clock resumes normal operation it is not operating will fail and will return a device
but is synchronized with the other processors' clocks, status code of SS$_ILLSEQOP in the IOSB.

19

Appendix E IF NOTODD(STATUS)THENBARF(STATUS);
END;

Routines for Using the Extended Capability
KWll-K Device Driver PROCEDURESETUP_INT;

BEGIN

The following are example routines for each of the INTFLAG:= FALSE;
functions available for the extended-capability device STATUS:= $QIO(, KWACHAN,I0$_WRITEVBLK,driver for the KWll-K clock. The variables used are

CLOCKIOSB,,, ZIMMEDINTAST,,,
TYPE _X'0143' ,0) ;

WORD: [WORD]--32768..32767; END;
qUA!):[quA/),UNSAFE]RECORD

L0: UNSIGNED; The CLOCK_CHANGEroutinemay be usedtochange
LI: INTEGER; theclockPreset/Bufferwithoutdisturbingtheoper-
END; ationoftheclock.The valueNEWDELAYwillbeloaded

intotheclockcounterattheend ofthecurrentinter-
TIMEQUAD:RECORDCASE INTEGEROF

O:(Q:QUAD); val.To changethelengthofonlyone interval,this
I:(W:ARRAY[1..4]OF WORD; routinemust be calledagainwiththeoriginalcount

valuesome timeduringthenextinterval.
END;

VAR PROCEDURECLOCK_CHANGE(NEWDELAY:INTEGER);
READKWA:TIMEQUAD; BEGIN
STATUS: INTEGER; STATUS:----$QIO(,KWACHAN,IO$__WRITEVBLK,
CLOCKIOSB:QUAD; CLOCKIOSB......O,NEWDELAY);
KWACHAN:WORD; IF NOT ODD(STATUS)THEN BARF(STATUS);
INTFLAG: [VOLATILE]BOOLEAN; END;
TIME: INTEGER;

The clockoperationmay be stoppedby thefollowing
The followingroutinesmay be usedto generatere- routine:
peatedintervalinterrupts.The CL0CK__STARTrou-
tinestartstheclockinrepeatedintervalmode with PROCEDURECLOCK_STOP;
intervalsof30 msec and queuestheINTASTroutine BEGIN
to be executedupon the firstinterrupt.The flag STATUS:= SqI0(,KWACHAN,10$_WRITEVBLK,
INTFLAGmay be usedlikean eventflag,butitmay CLOCKIOSB......O,O);
be readwithouta time-consumingsystemservicere- IF NOT ODD(STATUS)THENBARF(STATUS);
quest.When INTFLAGbecomestrue,thefirstinterval END;
hasended.The routineSETUP_INTshouldbe called

to queuetheINTAST routinesome timeduringthe The clockcountermay be read directlyby the
secondintervaland duringeachsubsequentinterval, method describedinappendixA, or the following

method may be usedtodeterminefromtheinterval
[ASYNCHRONOUS]PROCEDUREINTAST; number and currentintervalsizean absolutetime
BEGIN fromthetimetheclockwas started.

INTFLAG:= TRI/E;
END; PROCEDURECLOCK__READ;

BEGIN
PROCEDURECLOCK_START; STATUS:= SQIOW(,KWACHAN,IO$_.READVBLK,
BEGIN READKWA.Q);

INTFLAG:= FALSE; IF NOT ODD(STATUS)THEN BARF(STATUS);
STATUS := SqIO(,KWACHAN,IO$__WRITEVBLK, TIME := (KWACOUNT* READKWA.W[4])
CLOCKIOSB,,,_.IMMEDINTAST,,,_.X'0143', + (KWACOUNT+ READKWA.W [3]);
30000); END;

2O

References 5. PCLll-B Parallel Communication Link Differential TDM
Bus. Doe. No. YC-A20TC-00, Rev. B, Digital Equip-

I. VAX/VMS System Services Reference Manual. Order ment Corp., e.1982.
No. AA-D018C-TE, Digital Equipment Corp., May 1982. 6. Custom Software Documentation, Volume 1. Datacom,

2. VAX-11 PASCAL User's Guide. Order No. AA-H485C- Inc.
TE, Digital Equipment Corp., Oct. 1982. 7. KWll-K Dual Programmable Real Time Clock User Man-

3. VAX-11 PASCAL Language Reference Manual. Order ual. EK-KWll-K-OP-001, Digital Equipment Corp.,
No. AA-H484C-TE, Digital Equipment Corp., Oct. 1982. e.1976.

4. VAX/VMS Real-Time User's Guide. Order No. AA- 8. PGLll-B Driver User's Guide (XPDRIVER). Digital
H784B-TE, Digital Equipment Corp., May 1982. Equipment Corp., Jan. 1983.

21

1.NAsARep°rtNO.TM_86354 2. Government Accession No. 3. Recipient's Catalog No.
4. Title and Subtitle 5. Report Date

Efficient Implementation of Real-Time Programs May 1985
Under the VAX/VMS Operating System

6. Performing Organization Code

7. Author(s) 505-34-13-32
Sally C. Johnson 8. PerformingOrganizationReportNo.

L-15900

9. Performing Organization Name and Address 10. Work Unit No.
NASA Langley Research Center

Hampton, VA 23665 11. Contract or Grant No.

12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered

National Aeronautics and Space Administration Technical Memorandum

Washington, DC 20546 14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

Techniques for writing efficient real-time programs under the VAX/VMS operating system are presented.
Basic operations are presented for executing at real-time priority and for avoiding needless processing
delays. A highly efficient technique for accessing physical devices by mapping to the input/output space
and accessing the device registers directly is described. To illlustrate the application of the technique,
examples are included of different uses of the technique on three devices in the Langley Avionics Integration
Research Lab (AIRLAB): the KWll-K dual programmable real-time clock, the Parallel Communications
Link (PCLll-B) communication system, and the Datacom Synchronization Network. Timing data are
included to demonstrate the performance improvements realized with these applications of the technique.

17. Key Words (Suggested by Authors(s)) 18. Distribution Statement

Real time Unclassified--Unlimited
VAX/VMS operating system

Programming techniques Subject Category 61

19SecurityOl si ofthisreport,20SecurityOl sif ofthispage,21Noof agos22Price
Unclassified [Unclassified 22 [A02

For sale by the National Technical Information Service, Springfield, Virginia 22161

NASA-Langleyj 1985

National Aeronautics and THIRD-CLASS BULK RATE Postageand Fees Paid

Space Administration National Aeronautics and r_! ,_
Space Administration

Washington, D.C. NASA-451
20546

Official Business

Penalty for Private Use, $300

POSTMASTER: If Undeliverable (Section I S8
Postal Manual) Do Not Return

