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The Modeling and Simulation of Feedback Control Systems

The purpose of this appendix is to explain the
basic vocabulary and principles of model develop-
ment so that the reader may better grasp the
description of the simulation models. Examples
which describe the steps leading to a computer
algorithm of a model subsystem are provided, and
the simulation techniques used to assess model
behavior and accuracy are discussed.

DEFINITIONS OF TERMS
AND CONCEPTS

Parameters and Variables

Two general types of quantities are used in
mathematical models: parameters and variables.
The value of a parameter is generally constant with
respect to time, whereas the value of a variable
changes with time (i.e., is rime-v-arying). Biological
parameters often vary slowly with time but may be
assumed to be constant in the mathematical model.

Parameters may be considered independent of
system actions. Variables may also be considered
independent if they influence the system from the
outside. Parameters and independent variables are
also called input functions, or forcing .functions. More
often, variables are dependent (also called output
functions), since they vary according to the rela-
tionships within the system. The objective of a
systems analysis is to specify the state of the
system; that is, to specify the values of all depend-
ent variables at every instant of time.

Classification of Mathematical Model
Systems

Mathematical models are classified according to
the types of equations they employ (ref. A-1).

Distributed- and lumped parameter system.—In
distributed-parameter systems, the values of varia-
bles depend on time as well as space coordinates,
and the system must be analyzed by solving partial
differential equations. In a lumped parameter system,
each element is treated as if it were concentrated

("lumped") at one particular point, which is called
a node or a compartment. The use of lumped
parameters greatly simplifies the analysis because
ordinar y differential equations are used to describe
the changes with time. To account for spatial
changes that occur in such a system (e.g.. the value
of blood pressure is different in arteries, capillaries,
and veins), compartments are added for each major
space location until one reaches the level of com-
partmentalization (lumping) commensurate with
the basic purpose of the model being designed.

Generally, as subdivisions are included in a
model, the fidelity and accuracy of the model's
response increases. For example, in this project,
two circulatory models were emp;oyed, one com-
posed of 7 compartments and the other of 28 com-
partments. The 7-compartment model could simu-
late mean blood pressures in arteries and veins,
whereas the 28-compartment model could simulate
pulsatile flow and provide systolic and diastolic
pressure for all anatomical portions of the
vasculature (i.e., aorta, arteries, arterioles, capil-
laries, venules, veins, and vena rava).

All models described in this publication are
lumped-parameter systems. Whether the lumping
of components and the simplifying of input-output
relationships are appropriate depends entirely on
the intended purpose of the model. Lumped, com-
partmental modeling is in keeping with a basic
facet of the systems approach: to simplify the prob-
lem and define the essentials of its solution.

Linear and nonlinear systems—In modeling,
systems are generally taken to consist of compo-
nents with a known (or assumed) relationship. In a
broad sense, a component of a system may be
thought of as transforming certain inputs into cer-
tain outputs. Such relationships are often (loosely)
termed transfer functions (although transfer func-
tion has a rigorous meaning only in terms of
Laplace transforms).

Mathematically, the components of a system
may be represented by several operators, which
transform one function into another. If all the
operators for the system are linear, in the loose
sense that their operation on two independent
functions produces two independent results, then
the system itself is said to be linear. Otherwise, the



system is said to be nonlinear. Mathematically,
much more is known about the behavior of linear
systems.

Unfortunately, most biological systems—with
their threshold and saturation behavior, sigmoidal
dose-response relationship, and dead time-,are
nonlinear; analysis of such systems revolves
around numerical -ethods and the use of large com-
puters. Obtaining rapid, accurate, numerical solu-
tions of nonlinear system equations is absolutely
essential in biological modeling and often repre-
sents a separate challenge.

Other classifications—Models can be developed
for either predictive or descriptive purposes. A pre-
dictive model must only produce accurate predic-
tions of the output variables in the system. For ex-
ample, a singie equation may be used to predict the
fractional saturation of hemoglobin with oxygen at
different levels of oxygen partial pressure. In the
latter case, the modeler is not concerned with exact
replication in the model of the interactions between
the variables in the system. The relationships
employed in the predictive model to generate the
predicted output need not conform ;o the mecha-
nisms in the real system which lead to the same
outputs. In contrast, descriptive modeo not only
must generate predictions in agreement with real
system output but also must employ intermediate
relationships that are realistic representations of
the true processes which generate the observed out-
puts.

The vast majority of biological systems are con-
tinuous systems, in which values are always chang-
ing with time, and they are best described by
differential equations. These equations are typically
solved with numerical procedures on digital com-
puters by transforming them into finite-diffeerence
equations. In this process, the variables actually ap-
pear to be constant for the duration of the integra-
tion step sire and, therefore, more properly belong
to a discrete system. This approximation of con-
tinuous biological systems by discrete numerical
systems can produce inaccuracies and instabilities
in the solution, unless appropriate care is taken and
the system is carefully verified.

The models described in t his section can also be
said to be deterministic, since the input-output rela-
tionships for each component are based on simple
physical laws (i.e., flow-pressure, diffusion, mass
action) and are therefore fixed, predictable, and
reproducible. In reality, most biological systems are
stochastic, in the sense they are subject to random

noise, and their responses can be described by
statistical laws and in terms of probabilities and ex-
pected values.

Riggs (ref. A-1) makes the observation that "all
naturally-occurring systems are, in the final
analysis, time-varying distributed-parameter, quan-
tized, stochastic, nonlinear systems. That we can
sometimes obtain useful information by treating
these wayward creatures as if they were fixes;
lumped-parameter, continuous, deterministic,
linear systems is little short of miraculous."

Biological Control Systems

It is difficult to conceive of any biological quan-
tity which is not controlled or influence: by one or
more factors. For example, blood pressure in-
fluences and controls the rate of baroreceptor
neural firing. In this situation, baroreceptor neural
firing is controlled, or regulated, within narrow
limits at the expense of the other system quantities,
the limits of which may vary widely. The relation-
ship between blood pressure and baroreceptor
neural firing would be ronstrued as an open-loop
system for controlling baroreceptor neural tiring.
Further examination of the process shows that the
baroreceptor afferent signal is processed by the
central nervous system (CNS) and n suits in an
efferent neural signal that controls peripheral
resistance. This relationship between baroreceptor
firing and peripheral resistance is an open-loop
system for controlling peripheral resistance.
However, it is known that peripheral resistance
directly regulates blood pressure. Once this control

added to the system, the complete loop of physi-
cal changes (blood pressure, peripheral resistance)
and information transmission (afferent and
efferent signals) forms a closed-loop control system.
The difference between the closed-loop and open-
loop systems is obviously the presence of the rela-
tionship of peripheral resistance to blood pressure.
Blood pressure in the closed-loop system is called
the feedback variable.

A feedback control system, as described pre-
viously, is composed of two major elements, or
components: the controlled system and the con-
trolling system or controller. Figure A-I is a diagram
illustrating the relationships of these elements. The
purpose of the controlled system is to transform in-
puts from the outside (load inputs, disturbances, or
stress stimuli) and inputs from the controller (con-
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FIGURE A - I.—A generalized feedback control system. Most
biological homeostatic systems can be reduced to these basic
components.

troliing signals) into responses (outputs). The
reference input of figur A-I is also referred to as a
see point, and it represents a normal or desired val e
of a feedback variable. Differences between the set-
point and the actual feedback variable result in cor-
rective action by the controller; this correction per-
mits the output to revert toward normal values in
the face of the disturbance. Consequently, the pres-
ence of feedback control in biological systems allows
important quantities to fluctuate within limits
necessary for maintaining life in the face of many
metabolic and environmental disturbances encoun-
tered by the organism.

In manmade lachnological control systems, the
set-point is a physical quantity that can be varied at
will (e.g., a thermostat setting for a home heating
system). Biological systems, however, often have
neither a reference input nor an error detector. The
establishment of a set-point, or an operating point, in
mathematical models of biological systems is often
included for convenience, only because the real
system behaves as if it were controlled by such a
reference value. (See refs. A-1 and A-2 for further
information.)

In terms of the example described previously,
blood pressure is the controlled feedback variable
and peripheral resistance can be considered the
controlling variable. The controlled system consists
of components that transform changes in blood
pressure rto changes in peripheral resistance (i.e.,
barorecep-,or afferent signals, CNS processing,
efferent signals, effect of autonomies on
vasculature resistance). A typical blood pressure
load disturbance might be an infusion of blood into
'he circulatory system (which implies that a
description of the volume-pressure relationships of
the circulation must be included in the controlled

system) or the introduction of an upright tilt
disturbance (which implies that a description of
gravity effects on blood volume distribution must
be included in the controlled system).

FORMULATION OF A
COMPUTER MODEL

It would be instructive to review the steps that
lead from conceptualization of a model to digital
computer implementation.

Model systems can be represented by some com-
bination of boxes which represent the elements of
the system. Such combinations of boxes are called
block diagrams, which include logic diagrams,
schematics, flow diagrams, and system diagrams.
The first step in constructing a model of any
system is to draw a block diagram representing
these interconnections. This type of diagram, or
series of block diagrams, becomes a "roadmap" or a
"key" for taking a system apart and putting it back
together. Some of the most common basic symbols
used in a special form of block diagram, called an
analog diagram, are shown in figure A-2. The
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analog diagram is an adaptation of the diagram-
matic method so useful with linear systems. The
mathematical operations are self-explanatory. As
an example of the loosely termed " transfer func-
tion," the graphical transfer function in the figure
might represent the relationship between cardiac
output x and right atrial pressure y. This transfer
function can then represent a measured cardiac
function curve.

As a specific example of the programing process,
the subsystem of the circulatory, fluid, and
electrolyte model that deals with angiotensin for-
mation has been ch o sen. Figure A-3(a) can be con-
strued as a hypothesis diagram for the open-loop
control of renin -angiotensin. This diagram indi-
cates the major fa„tors which control angiotensin
formation and the man ) , effects of angiotensin on
other subsystems. It is generally agreed that two Lf
the major influences on renin release (a precursor
to angiotensin formation) from the juxtaglomeru-
lar cells of the kidneys are renal perfusion pressure

and the load of sodium filtered through the tubules
(i.e., glomerular filtration times plasma sodium
concentration). Renin enters the circulation and
forms angiotensin, which has a slight negative feed-
back effect on renin formation. (See dashed line in
fig. A-3(a).) The final effect of angiotensin is con-
sidered to be widespread, affecting vascular resist-
ance, renal resistance, aldosterone secretion rate,
thirst and drinking, and the rate of tubular fluid
reabsorption.

To progress to a computer model of this system,
each of the pathways connecting any two variables
must be described in as much detail as is possible,
or as much as is commensurate with the objectives
of the model design. Therefore, the next level of
detail is shown in the block diagram of figure
A-3(b), in which the re !ationships between varia-
bles are qualitatively organized. Functional rela-
tionships are identified wherever data describing
hormonal secretion rates or hormonal effects are
available. This diagram was developed from some

f
Vascular resistance

Renal arterial
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filo ation r	
Renin ^ f	 concentration  

II	
f	

secrete
filtrios rateation	 secretn rate

[Na +] Plasma	 r	 H f
	 Thirst and drinking

Tubular fluid
reabsorption rate

(a)

FIGURE A-3 —Formulation of a control system algorithm. (a) Hypothesis diagram showing factors which influence renin-anglolen-
sin production and the Quantities which they affect. These represent the assumptions for one of the hormonal subsystems In the
Guy-ton model. (b) A more detailed block diagram of the hypothesis diagram of figure A-3(a) showing the mathematical operators
relating each Quantity. (c) An analog computer diagram of the renin-angiotensin system. This diagram contains sufficient informa-
tion !o wire s patch panel for programing an analog computer. (d) A Fortran algorithm for the renin -angiotensin control system as It
appears in the Guytca model. The symbols can be Interpreted from the preceding diagrams.
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very p neral algebraic relationships, and the mathe-
matical operations of summation, division,
multiplication, and integration are indicated.

Figure A-3(c) is the same diagram, reorganized
to reflect the computer program names for each
variable and the quantitative transfer functions for
each element. It was common at one time to simt,
late models on analog computers, and figure A-3(L)
is known as an analog diagram because it represents
a circuit diagram for programing this segment of
the model on an analog computer. However, a
digital computer requires a different language, and
figure A-3(d) is the Fortran version of the renin-
angiotensin subsys. ,m. Note that the first state-
ment represents a function relating renal pressure
and renin secretion. In the analog computer, this
function would be represented by a function
generator; in the digital computer, it is represented
by a table of x-y values (not shown) from which the
desired operating points are interpolated. The expo-
nential functions (e.g., EXP( — I/RNK)) in figure
A-3(d) are numerical approximations for integra-
tion, in which " I" is the integration step size.

It can be appreciated that the discipline of

translating an ordinary physiological hypothesis

diagram into a quantitative computer representa-
tion can lead to a better understanding of the
biological system. Available data from diverse
rrources are integrated into a common framework;
other data are excluded as being nonessential for
the given level of detail (i.e., importance of data can
be ranked), arad missing information, which sug-
gests the need for new experiments, is quickly iden-
tified.

SIMULATION TECHNIOUES

Once a model is implemented on a computer
and verification procedures ensure that it is operat-
ing appropriately, the model is ready to be tested
for accuracy. A model that is deemed credible can
also be used to describe the behavior of the system
in terms familiar to control engineers and can be
used to predict system responses in terms that can
be tested by biological experimentation. Some of
the more important techniques used to produce
model cret'ibility and to predict system behavior
are discussed in the following paragraphs.

Renal Ne.sure
Renin effect ouannul

enm
Presslte

secret10n

Effects of
PAR

Nab
o::	 stn

tulw tar Re nin
on:

110. slip- destruction PO S"o Va scll l ar

Plasma press "t late vo1wre 1 resistant(

[Na + ] Renin effect on Renal 'yrote"s Annlo effect
ren,n s[cr tile" plawla colic

Renal
secretion	 ♦^ rate ^ — —

resntlnu
Total

_

Gbmerular GFR + Na • Imtl11 p la 11na A.,9, cone
e1,

1. ltrali pn plasma I	 Ilal	
,m^'otxlxnl

secle,
secre!lon

rate rent" f piasn4l	 f

Total allylotellsm Thirst and
plasma R en l" do nk Iny
Ienln

p4v snci
7_1PI111na

colic
Tubular f6d

vo h,lme Auyloiens'n	 — reabsorptlon
Renin colic

secretion

rate

Anlylolellsl
destnluloa

rate

Negative
feedback

effect of

anglolerlsm AIly^otelsm

Time Lenten Ual ion "1111", coat

del,y

fill Mglo Co.

FIGURE A-3.—•Conttnued.

^ i fir`	 -- -



(C )	 142	 0.15	 360	 0.15

FIGURE A-3—Contiowd.

i

Dynamic Similation

In the context of this study, obtaining the solu-
tion to a model means introducing some type of
load disturbance (i.e., a parameter perturbation)
and solving the model's differential equations
iteratively, using numerical techniques. This proc-
ess, known as dynamic simulation, is accomplished
using high-speed digital computers and results in
time-varying values of the dependent variables.
These responses are examined in qualitative terms
for their reasonableness by analysts who are
familiar with the physiological system or, more
often, they are compared quantitatively with ex-
perimental data. In this project, simulation
responses were available from digital computers in
tabular and graphical form and could be compared
with previously stored data.

.-^.—.-

CALL FUNCTN(PAR, RNS, FUN8)

RSR = 300.*REK*RNS*(1.-ANGS-V(GFR*CNA-17.75))

IF (RSR.LT.0.)) RSR = 0.0

RT = RT * (RSR- QRA*RT)*(1.-EXP(-I/RRC))

RC = RT/VP

AN1 = F<8IV+1 A *RC

AN2 = AN2+(AN1-CAA*AN2)*(1 .-EXP(-I/AA))

ANC = AN2/VP/ANCN

ANM = ANMM -AU—EXP(-ANC/ANT )

IF (ANM. LT.0.5) ANM = 0.5

ANSS = 6*(ANC-1 .)

ANGS = ANGS+tANSS-ANGS)*I/ANGT

ANK = ANM

IF (ANK. LT. 1 .;ANK = 1.

ANU = ANM

IF (ANU.LT.0.6) ANU = 0.6
(d)

FIGURE A-3.-concluded.
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$ensltivity Analysis

Sensitivity analysis is a rnethod for studying
system responses due to ,ariation in parameters
(ref. A-3). The conceptual basis of sensitivity
analysis is simple; small variations are made in the
values of the system parameters of a model, and
the effects of these changes are observed in-
dividually in 'i_e solution. (See app. E.) Sensitivity
functions which describe the observed effects may
be computed, and these are interpreted to extract
information about the dynamic system that could
not be obtained from simply finding solutions with
a particular set of input conditions (refs. A4 and
A-5). Sensitivity analysis provides the following.

1. A quantitative means of comparing the rela-
tive importance of individual parameters on any
system variable

2. A means of determining interactive effects of
two or more parameters on model behavior

3. A tool to help assess the validity of a particu-
lar model without the need to collect and use exten-
sive measurements from the real system

4. Information in a form that can be easily in-
terpreted by those familiar with the subjec, matter
of the model but not necessarily knowledgeable of
simulation tecFniques

5. A means of assigning relative importance to
all parameters, a process that can be valuable both
to the simulater in performing parameter estima-
tion or stability analysis and to the experimenter in
allocating resources for data collection

6. A practical method of analyzing and compar-
ing two different models designed to represent the
sarne physical system

A sensitivity analysis is very useful when per-
formed early in model development, before model
validation. This analysis is parricuiarly important
to the experimenter, who can help evaluate the
model based on the relative sensitivities of the
parameters without realty knowing much about the
model. The technique also is useful for involving
the experimenter early in the modeling ptccess,
another important factor for event ial model ac-
ceptance (ref. A-6). The -estdts of the sensitivity
analysis must be evaluated in the light of other
known information about the real system. The fact
that a parameter has a very significant effect on a
particular variable of the model is of little impor-
tancL if it is known that the parameter in the real

system is relatively constant or !sat changes in
other parameters are capable of canceling the origi-
nal effects.

Although sensitivity analysis can be considered
to be a special case of dynamic simulation, there are
several important differences between these two
procedures.

1. Sensitivity analyses are characterized by com-
paratively smf.11 perturbations.

2 Sensitivity analyses often are performed by
varying one parameter at a time.

3. Sensitivity analyses often are performed to
obtain sensitivity functions rather than solutions of
the dependent variable

4. Sensitivity analyses usually entail com-
parisons between twc, or more simulation runs
rath :r than between model results and experimen-
tal data.
Examples of sensitivity analysis are provided in the
description.: of the erythropoietic model and of the
thermoregulatt.ry model. (See app. E.)

Variation of Parameters

Once a parameter has been identified as particu-
larly influential, either by sensitivity analysis or
from direct knowledge of the real system, it is often
desirable to determine its effect on different
parameter values. For example, the volume of
blood is known to he important in the blood
flow/pressure response to upright tilt from the
supine position. It is reasonable to ask, "How does
the response change as more and more blood is
removed?" Another way to pose this question is,
"What is the effect of hemorrhage on standing?"
Documenting this effect with a simulation model
of circulatory control is relatively straightforward;
the parameter representing blood volume is
assigned a series of values (i.e., a percentage of the
control or normal value) and, at each level, a
dynamic simulation is performed. The resulting
time-varving responses (of, for example, heart rate,
cardiac output, or blood pressure) can be plotted as
overlays on the same graph. if steady-state
responses are desired, the graph often is con-
structed with blood volume on the absc`;sa and the
response variable on the ordinate. vee Sec. V,
"Cardiovascular Subsystem.")



Error Analysis

Parameter values are never known with 100 per-
cent accuracy. If the standard deviation (SD)
around the mean value can be estimated for each
parameter, it is possib l e to place statistical confi-
dence limits on a model's behavior. For the exam-
ple discussed previously, assume an experiment is
performed in which blood volume reduction is
measured as — 10 percent ± 1.5 percent (SD).
Dynamic simulations can be performed for three
values of blood volume: — 8.5 percent, — 10 per-
cent, and — 11 . 5 percent, corresponding to the
mean minus SD, the mean, and the mean plus SD,
respectively. The response, for example, for heart
rate could also be expressed in terms of a mean and
a deviation. This expression would represent a pre-
diction of the minimum error interval in the
response variable, because of the inherent design of
the system and the uncertainty in measuring bloc:d
volume, but would not includz- any experimental
errors that could occur in measuring the response
variables. Conversely, if a decrease in the confi-
dence interval of a response variable to a given
width was desired, it would be possible, using these
techniques, to determine the minimum experimen-
ta', accuracy required in measuring the independent
parameter.

Error analysis becomes especially desirable in
large -scale systems containing many parameters
that promulgate errors through the simulation, and
in certain nonlinear systems in which the interac-
tive effects of different parameters lead to
amplification of individual errors. Unfortunately,
even though the tahniques to accomplish this
analysis are rather straightforward, there are few
examples in the literature of physiological systems.

A related problem that has application to error
and sensitivity analysis is the effect of noise on :he
behavior of the system. Noise can be described as a
statistical disturbance of a particular variable, and it
is characterized by statistical properties such as
mean value, probability distribution, or spectral
density. Model output variation which resu'ts from
noise can be found by including a distribution func-
tion for each parameter or variable that exhibits
noisy behavior. This problem becomes extremely
relevant in parameter estimation analysis when
model output is compared to data having a signifi-
cant noise level (ref. A-7).

Stability Analysis

It is appropriate to mention stability analysis of
dynamic systems because of the inverse relation-
ship between sensitivity and stability in negative
feedback systems. In general, sensitivity to Disturb-
ing factors can be jeduced by an increase in feed-
back gain (in technological systems at least)
However, instability occurs as a consequence of
this gain increase. Thus, systems with high gain
may have low sensitivity to external perturbations
but may also be operating on the borderline of in-
stability. Most biological systems ere normally sta-
ble, and they do exhibit low sensitivity. Whether
they are working somewhere near the stability limit
by way of high gain factors is not kno vn but should
be studied on a case-by-case basis (ref. A-8). An
analysis of stability can become an iri,portant
measure of the competence of a model, in that if
both model and actual system can be thrown into
instability by the same parametric changes, there is
reason for having greater confidence in the mathe-
matical representation.

Little practical work has been done on stability
analysis of complex physiological systems. Formal
techniques for investigating stability in linear
systems and in simple nonlinear systems have been
reported (refs. A-7 and A-9); but, for the most part,
studying large-scale nonlinear models is a trial-and-
error experience. Systems that exhibit oscillatory or
periodic behavior in normal operation (e.g., eye
movement, respiration) can often be made unsta-
ble more easily than systems that behave
monotonically. Inherent instability is dependent on
the properties of the system and is normally not a
function of the specific disturbance. if the system is
inherently stable, all transients will ultimately dis-
appear regardless of the disturbance causing them.
Conversely, any disturbance to an unstable system
will initiate oscillations that increase in amplitude
with time.

Stability can arise from either inherent features
of the real system or from structural features of t;ie
mathematical model (such as long integration in-
terval). The techniques of sensitivity analysis can
reveal both types, although it is not always possible
to distinguish between the two. Like sensitivity,
stability is a function of the operating point;
therefore, all possible operating points must be
tested for stability. A careful, systematic sensitivity
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analysis may ofter, reveal not only points of in-
stability out their causes as weil.

model variable, and r is time. The error criterion E
is a function of e, usually I e  or e,, integrated over a
specified time interval; e.g.,

Paramteter Estimation

The object of parameter estimation (or iden-
tification) analysis is to determine the value of nne
or more parameters in a model. The parameters
selected for estimation are usually impossible or
difficult to measure directly in the real system In
practice, the technique involves repetitive adjust-
ment of the parameter values until some objective
judgment of acceptable correlation between model
output and corresponding measurements in the
system prototype has been satisfied (See fig. A4.)
Because the automatic optimization of parameters
has been the object of considerable attention (ref.
A-10), there is a large body of literature on
parameter estimation in physiological systems and
algorithms.

The error criterion -aced in parameter estimation
is usually a difference function of the form

eft) = y(r) - y'(r)

where y' is a dependent variable that has been
measured in the real system, y is the corresponding

'r
E-

J 
I e I dr

0

Since y is dependent on the system parameters q,, e
can be expressed as e(f) — e(r, q l , qZ , ..., q,) The
criterion for the best fit between data and model is
achieved when E reaches a minimum value.

A more powerful use of sensitivity analysis, but
used infrequently, is the determination of
parameters that could be t stimated most accurately
by means of the curve-fitting procedure discussed
previously. Parameter estimation is used most
effectively on parameters exerting a strong in-
fluence on a particular model variable which can be
easily measured in the real system. If sensitivity
analysis is used before parameter estimation, it is
possible to select those parameters with the highest
sensitivity coefficients as the best candidates for
parameter estimation analysis. When the
parameter sensitivity is low, then that parameter
value -annot be estimated with certainty using that
criterion. Tate low-sensitivity parameter should be
set at a reasonable constant value determined from
other sources.

Adjust values of
system parameters

Model of

biological	 Dependent variable

Control system

Comparison:	
"Best fit" solutionexperimental data vs

sim,ilation response

Initial	 It

conditions	 imulation
re. ponce I L. 0 0 * 0 0

1	 ti

Experimental
response

FIGURE A4 —Simulation Procedure for parameter estimation. 7LIs metDad or fitting model output to experimental results can pro-

duct values for system parameters that are dimrull to measure directly.
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If the problem of sensitivity analysis is ex-
pressed as determining the behavior of a model
given all the parameter variations, then the inverse
problem would be to determine (or identify) the
parameter variations capable of p—ducing a given
behavior of the real system. Unlike sensitivity
analysis, variation of parameters, error analysis,
and stability analysis, parameter estimation, re-
quires data measurements from the real system.
This inverse problem may not have a unique solu-
tion. Nevertheless, it would be valuable to know
the various solutions possible, since this knowledge
would be a great aid in hypothesis testing. If several
different parameter perturbations could produce
similar model results, it might be possible to accept
the most reasonable, based on physiological
plausibility, alternatively, this information could
provide the basis for further experimental testing.

MODEL VALIDATION

The validation process is primarily concerned
with demonstrating the accuracy and the capability
of simulation modeis. Two general criteria must be
,net before model credibility can be established.
First, a quantitative variable or parameter validity
criterion must be met, and, second, a qualitative
"plausibility" criterion must be met. The first con-
dition refers to tests in which model output is com-
pared directly to experimental data, whereas the
second condition includes all other tests in which
only the general behavior of the model is examined
on a more subjective basis In the first case, a high
degree of fidelity in model response is expected,
whereas in the second, the model responses need
only be "reasonable." No validation procedure is
appropriate for all models Rather, validation de-
pends on the nature of the model and the goals and
ob;ectives of the modeling study.

Quantitative Tests

An important aspect of validation involves com-
paring the behavior of the model's dependent varia-
bles with that of their expel imental counterparts
for the same stress. Differences between model
behavior and experimental data can often he cor-
rected or minimized either by introducing new, pre-
viously omitted elements into the model's structure
or Dy modifying the existing structure (i.e., adjust-

ing the value of parameters that are not well
known).

The t:xtent to which the validation process can
be carried is often limited by data availability.
Thus, if only steady-state data are available, valida-
tion in the dynamic, or trans i ent, mode cannot be
performed, even thwigh the model has that
capability. Similarly, if only a relatively small num-
ber of experimental variables have been measured
during a particular stress, then it is possible to vali-
date ► t-%; model for the responses of only those
measured variables; simulated %, slues of all other
variables c kn be obtainer) but should be considered
as predictions requiring experimental verification.
The response of the body to a given stress is almost
always related to the level or intensity of that
stress, and, more often than not, this relationship is
nonlinear. Therefore, to validate the model
properly, it is desirable to obtain data not merely
for a given stress but for a rang!: of intensities of
that stress. If it is important to simulate more than
one type of stress, the validation process will result
in a more accurate model if the experimental
response of the same variables is known for each of
the desired stresses. Thus, an idealized set of ex-
perimental data suitable for complete validation of
a complex model should include the following.

1. Steady-state data
2. Transient data
3. Data for a wide range of stress intensities
4. Data for all major dependent variables of in-

terest or importance
5. Data for a variety of stresses

In addition, since experim^ntal protocol, measure-
ment techniques, and number and type of subjects
may vary widely from one investigation to another,
ever, when studying the same stress, it is desirable
to obtain many of these da!a from the same experi-
mental study.

The data used to validate the model should meet
several conditions.

1. The data used in the verification process (i.e.,
establishing the correctness of cc - , ter coding
and ensuring that the model runs as , tended) are
the same as those used in the development of the
model. However, to ascertain model validity, data
that were not originally included in the model's for-
mulation must b- used The model must be capable
of predicting beyond the data from which the
model was generated.

2. The data must be of sufficient precision to
make the test meaningful The data should cover

10
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the range of interest and should have a minimum
level of noise The latter condition is best assured
by including data representing a large subject
population.

3. The objectives of the modeling studies should
be kept in perspective Not all data are appropriate
for use in validation The assumptions about the
biological 5vstem being studied are often reflected
in the experimental protocol used to gather the
data, and these - re often not the same assumptions
used in the mm(',:i.

Obtaining good agreemen , between a simulation
response and data is especiall y important when try-
ing to simulate a diverse number of variables hav-
ing constantly changing values. Agreement be-
tween simulation response and data is often
improved by adjusting parameter values. This pro-
cedure is the same as that described under
parameter estimation techniques. More than = e
combination of parameter values may lead to 9

good "Fit." In these casts, it is important that all
changes be reasonable and consistent with known
physiological processes.

Qualltstive Tests

I he purpose of modeling and simulation, in the
context of the current study is not necessarily to
produce an optimal fit betv.ren experimental data
and model output, although this result would net
be undesirable. Rather, the objectives are to help
understand the behavior and interactions of the
system and its components and to assist in new ex-
perimental approaches Model credibi:ity, in this
case, can also be established by perforating fewer
quantitative tests.

Often, the model analyst i's content to verify in-
itially :hat the "shape" of the data and model out-
put agree. This situation would occur if the :modeler
were primarily interested in the validation of
model dynamics as contrasted to the exact fit of
model output and data In this case, it is not con-
sidered c:itical !hat the absolute magnitude of the
response is in error; this type of discrepancy can
often be remedied by the adiustment of a system
parameter.

An important criterion for indicating whether a
model is good enough to be used for forming con-
clusions about the real system is that a one-tine
correspondence and similarity of form must exist
between model and real system So-called "black-

box models" (i.e., models which represent overall
behavior of systems without representing their un-
derlying mechanisms) are not good models for
making predictions regarding general system
behavior, at best, they may be used as descriptions
of data. Thus, there is always some -lode[ that can
fit a particular set of experimental data (usually by
adjusting one cr more parameters), but only the
biological plausibility of a particular model justifies
preferring it to all others. Therefore, the inclusion
of a greater number of adjustable parameters in a
model, although perhaps pro v iding a better agree-
ment wit[ the data, does not necessarily add insight
into the physiological mechanisms.

The techniques Rio.- cribed earlier in this appen-
dix---sensitivity analysis, error analysis, stability
analysis, and variation of parameters—do not re-
quire extensive data sets. They can be very useful
in establishing the plausibility of a model without
necessitating excessive analysis of the mathematics
of the model and all the explicit and implicit
assumptions. Sens i tivity analysis, in particular, can
be important in this regard by quickly and
systematically analyzing these component relation-
ships witi;out the need of actua l subject data. This
capability is particularly usJul in comparing two
different models.

For a model tO contribute to a particular in-
vestigative field, it must ultimately be judged 5v
scientists farnili::r wi g ' Jim area. When T hese sJen-
Lists are not the people who developed and vali-
dated the model, it is important that lines of cotn-
mimication between them be estab l ished as earl y in
the modeiirg process as possthle. Model validation,
ideally, should be an interdisciplinary process Dur-
ing this project, the experience has been that
general simulation-,s, sensitivity analyses, or
parameter variation studies performed without
comparison to good ex; erimental data appear to
make less of an impact on experimenters no!
familial with systems analysis than the same work
supplemented with at leest a single simulation
showing reasonably good agreement with experi-
mental data
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