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ABSTRACT

We prove results concerning certain projection operators on the space of

all polynomials of degree less than or equal to N with respect to a class of

one-dimensional weighted Sobolev spaces. These results are useful in the

theory of the approximation of partial differential equations with spectral

methods.

Research was supported in part by the National Aeronautics and Space
Administration under NASA Contract No. NASI-17070 while the author was in

residence at the Institute for Computer Applications in Science and

Engineering, NASA Langley Research Center, Hampton, VA 23665.

i





I. INTRODUCTION

This paper presents an investigation of a class of projection operators

that arises in the analysis of the approximation of differential equations by

spectral methods using Chebyshev decomposition.

Some similar operators have been studied before by Canuto-Quarteroni [i]

and Maday-Quarteroni [i], but the existing results are not adequate in many

applications. In fact they forbid analysis for the error of the approximation

by spectral methods of fourth-order problems and, in several instances,

second-order problems (see Canuto-Quarteroni [2]).

We first present some background tools required for our analysis. They

consist of Sobolev spaces relative to the weight m(x) = (I - x2) -I_ (this

weight arises in the relations of orthogonality of Chebyshev polynomials). We

recall and complete results proved by Grisvard [I], [2] concerning

interpolation theory between these spaces.

Then we present an analysis of projection operators from these spaces

into the set of all polynomials of degree lower than N.

Finally we give an application of the results herein proved to a simple

test problem.

We shall give other applications in Maday [I] and shall in a future work

extend these results to multidimensional domains. Our aim is to apply such

results to the analysis of the approximation of Navier-Stokes equations by

spectral methods (see Maday-Metivet [i], [2]).

For some different notions about projection operatoes that arise in

spectal methods, see Tadmor [i].
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IIo PRELIMINARIES: SOME FUNCTION SPACES

Notations and Basic Properties

Let J be an open interval ]a,b[ of _ (a<b); we consider a weight

function p(x), continuous over J, satisfying p(x) _ O0 > 0 for any

x E J.

Let us set:

(2.1) L2(j) = {i : J + _ I _ is measurable and (_'i)P < +=}O

equipped with the inner product (_,_) = ] !(x)_(x)p(x)dx. For any integer
O j

s > 0 we set:

HS(j) = {i E L_(J) I ll_lls, < =}P P '

where:

(2.2) ll!lls,p= ((_'_))s,p'

this space being equipped with the inner product:

= _ ( dk_
(2.3) ((_'_))s,p k=0 dx ' dxkJp

Clearly, one has the equality:

For any real s > 0, noninteger, H_(J) is defined by interpolation between
P

the space HS(j) and HS+l(J), where _ represents the integral part of s.
P P
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The method of interpolation can be the complex one, the operator's domain one

or the trace one (see Lions-Magenes [i] for more details). Besides we define

Hs
0,p(J) as being the closure of _(J) in HS(j).p When p = 1 these spaces

are the usual Sobolev spaces denoted by HS(j) and H_(J) respectively. For

the application to spectral methods we are mostly interested in those spaces

1
when J = I _ ]-i,+i[ and p(x) = m(x) _ . Let us recall some

_i - x2

results proved in Grisvard [i], [2] valuable for J = I, p = _ and for

1
J = ]0,I[, O = -- •

THEOREM 2.1 (Grisvard [I]):

i) For any real s > 0, s _ _+ I_ we have:

(2.4) Hs (J) = [H_,p(J) HS+l(J)] .
0,0 ' 0,0 Is-7]

ii) For any integral n we have:

Hn+ 1/4
(2.4") [Ho,O(J) Hn+l(J)] C (J).' 0,0 1/4 0,0

iii) For any real s > 0, s 4 _+ i/2:

Hs(J)C cm(7),
P

the space of continuous mapping defined over J whose derivative of order

-- 1

< m are continuous over J, with m = s - [ .

The trace application defined from C_(7) into _n:
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u _ (u(-l), d,-_-I ,. n
' dxn ' ' dxn

can be extended to a continuous mapping from Hn+10_+_(1)/1 onto O_yn for any
P

_>0.

s (j) coincide with the subspace of
iv) For any real i/4< s < 5/4, H0, p

HS(j) of functions vanishing at the real boundaries of J.
P

v) For any real s > i/2, MS(j) is an algebra.
p

THEOREM 2.2 (Grisvard [2]):

For any 0 < q < s < p, HS(j) satisfies the following double topological
-- 0

imbedding :

S m

with e =------_ and the notation holds for the real interpolation (see Lions
q - p

and Peetre [i]).

The two following results can be found in Canuto-Quarteroni [2] and

Maday-Quarteroni [i].

THEOREM 2.3:

i) For any real s > 1/4 Hs(1) C Hs- 1/4(I).
-- ' 10

ii) For any 0 <__r < s, the imbedding HS(1)C Mr(l) is compact.
iD

In the next section we shall generalize the results (2.4) and (2.4").
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Some New Results About Interpolation Between Hp (I)
0_w

This section is devoted to the proof of the following:

THEOREM 2.4: For any 0 < q < s < p not in _+i/4 we have:

1:

This theorem is a consequence of the two following lemma:

LEMMA 2.1: For any integer p < n, we have:

n (I) _ dPu E L2
4(n_p)+l(1)°

u E HO, m dxp

PROOF: It is an easy matter to check that this result is a consequence of

(2.6) u E Hn (0,i) _ _dPu E L2

0, __I dxp C_!)4(n-p)+l(°'l)'

(we shift the difficulties at _i onto 0). So let u be in Hn i(0,i);
0_

from Theorem 2.1 (point iv) we have, for any 0 < p < n:

d--_0) : 0,
dx p

hence

x dP+l
f u(t)dt - dPu(x).
0 dxp+I dxp
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Besides, from Lemma 6.2.1 of he'as [i] we have, for any _ < 1 and any v
1

such that S v2(x)x a dx <
a

0

1 x 1

(2.7) f If Iv(x)l)2 xa-2 dx < (ii_-_)f Iv(x)l2 xa dx,
0 0 0

I dP+lu

taking then _ = 2 2(n - (p+l)) and v = we obtain:
dxp+I

1 (dPu 2 i 2f _ -1/2 - 2(n-p) dx < C S (dP+lu_ -1/2- 2(n-(p+l)) dx,
0 dxp x -- 0 _dxP+-----_x

and (2.6) holds by induction over p.

LEMMA 2.2: For any integer n > 0, the mapping u _ u_ I/2 is an

homeomorphism from H_,_(1) onto H_(1).

1
PROOF: Here again we prove the result for the weight -- _ say:

(2.8) u b----+ux-I/4 is an homeomorphism from Hn (0,I) onto H_(0,1).0, 1

Let _ € D(0,1), then, for 0 _ m _ n :

aTM _ m
_x 1/4) -- _ Cp d_ dm-p(x- 1/4)

dxm p=0 m dxp dxm-P

m

= I cP Dp dp _ x I/4-(m-P),
p=0 m m dxp

DP = [-1/4- (m--p+I)_DPTI-_m and Dm = I. From Lemma 2.1 we then get:with
m m
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m

fl_--_(_x-1/4)It0,I <__Cll_ilm,i/_x <__CU¢IIn,I/_-_ ;dx

summing up these estimates for 0 < m < n we derive:

(2.9) ll_x-I/4il
n,l <---Cli!lln,i/J-x"

Inversely, let us prove that, for any _ E D (I):

(2.10) ll¢xl/41t
n,I/vr_J Cfl_Rn,I"

From Hardy's inequality (Lemma 2.5.1 of Ne_as [I]) we derive by induction

that, for any 0 J p _ m J n:

(2.11) fldP_iI0,x_2(m_p) <
CII_llm,1,dxp

besides :

dm(_xl/_4) = _ cp dp _ dm-_p (x 1/4)
dxm p=0 m dxp dxm-P

m dp 1/4-(m-p)
= I cP D'P----_ x

p=0 m m dxp

with:

D"p =[ i/4- (m - p + I)]DmP+I and D"m = I..m m

Then using (2.11) we get:
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dm(@x 1/4)
E L2 (0,I),

dxm i/_-x

and (2.10) is derived by summing up these results for 0 < m < n. We can now

achieve (2.8) as a consequence of (2.9) and (2.10).

We can now prove the main result of this section.

PROOF OF THEOREM 2.4: From (2.4) and Lemma 2.2 we deduce that the

s H_(1) for anymapping u _ um I/2 is an homeomorphism from H0,m(1) onto

s >__0 not in _ +i/4_ + I_ (see Lions-Magenes [I] for more details about

the properties of spaces of interpolation).

Let us recall that, for any q < s < p not in IN + 1/2 we have (see Lions-

Magenes [I]):

p-q

From the previous homeomorphism we deduce that, for any q < s < p not in

{ +V2}u{

' O, _ •

p-q

Let us remark now that the values of p, q, s in _ + I_ have only been

excluded due to (2.12), these values can now be recovered thanks to the

reiteration theorem (Theorem 1.6.1 of Lions-Magenes [i]).
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III. APPROXIMATION RESULTS OF PROJECTION OPERATOR IN WEIGBTED SOBOLEV SPACES

Hr (I) a new scalar
The previous theorem leads us to define over 0,_

product Indeed, for p not in _+I_u_+ 1/8, Hp (I) can be seen as the
" 0,_

interpolate I/2between L2(1) and H_p (I) and for p in IN+ 1/8, Hp (I)O,_ O,

can be seen as the interpolate 1/3 betweefl L2(1) and H_ p (I).
U,_

If we consider the domain operator interpolation, this find expression in

the existence of a selfadjoint operator A such that:
r

* if r E _ + 1/8, the domain D(A_) of the operator A3r in

L2(1) is H_r (I) if r _ IN+ I/8, the domain of D(A_) of

the operator Amr in Lm(1)m is H_rm(1).

in L2(1) is Hr m(1) if* The domain D(A r) of the operator Ar _ 0,

r € _+1/4 and is included in Hr
0,m(1) if r E IN+ I_ .

Moreover:

(ArU ArV) m,(3.1) (u,v) _ (((u,v)))r,m ,

is a scalar product whose associated norm is equivalent to the one defined in

(2.2) if r _ _+I_.

Let us define now Pr,N as the projection operator from Hr0,(I) over SNr

with respect to the previous scalar product with:

r = H_,(1),SN SN('_

SN = {@ defined over II @ is a polynomial of degree _< N}.
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LF_ 3.1: Let 0 < _ < r < o with o _ IN+l/4 we have, for any

E H_(1) _-_Mr0,_(I):

(3.2) U_ - Pr,N _II ,m--<CN_-_ 11_Ho,m.

REMARK 3.1: The case _ = r = 0 has been studied in Canuto-Quarteroni

[I], the case 0 J _ J r = 1 has been looked at in Maday-Quarteroni [i] (note

that the dependence of the constant is then C(o) = C.(o!)). Moreover it is

proved that no optimal bound was possible for H_ (I) norms with _ > r.

Indeed, for example:

(3.4) II_- P0,N _II ,m < CN2_-° _N , •

It is often necessary (see Canuto-Quarteroni [2], Maday-Metivet [2], Maday

[1], and (4.14)) to obtain optimal results in higher norms.

PROOF: We shall only consider the case r € _ + I/8 for simplicity.

The proof is divided in two stages

i) We first prove (3.2) by induction over r in _ . So, let us

r

assume that (3.2) is true for s < r in _ ; let _ € H0,m(1) ; then

_-_ ,N_I(_x) r-i Moreover if _(-i) = _(I) = 0 we_x E H (I) and Pr-1 E SN_ I.

have:

i I

- f Pr-I N-l(_x)(t)dt = f [Pr-l,N-l(Ix) - _x](t)dt"-I ' -I

From the Cauchy-Schwarz inequality we derive:
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1 I

I_I <_ If (Pr_l,N-l(_x) - _x)2(t)_(t)dt) 1/21f (_(t))-i dt) 1/2-I -I

_< C_Pr_I,N_I(¢ x) - _xllO,_o;

hence, from the induction hypothesis:

(3.5) lal < CN I-O TI_xM_i, m.

Finally we have:

xI rxlRN(X ) = r_l,N_l(ix)(t) _ a(l - dt E SN.- i

f (i - x2) r-I d
-I

Due to the Poincar_-like inequality, the polynomial satisfies the following:

H_ - RNnr,0j< ii(_- RN)xllr_l,_,

the induction hypothesis, and (3.5) gives us:

_ - RNU < C(N(r-I)-(°-I)+ N(I-o)) nCxno_l, _r,m --

CNr-o _Ino, .

and the identity:
and lll.lllr,m,From the equivalence of the norms H _r,m

= inf r illl - INll[r,m,
lli_ - Pr,N _lllr,_ _N € SN
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we obtain for any _ in H_(1)_Ho,_(1):

(3.6) III_ - Pr,N @l[Ir,m --<CNr-° "i"c,m"

Besides, since the operator A is selfadjoint, we have:r

(_ - p 9,€)mr,N

H% - Pr,N %HO,_ = inf
HgEIO,m

€ E L_(1)

(Ar(_ - Pr,N _)' A_ 1 _)m= inf

From (3.1) we then get:

(((_ - P _ AS 2 _)))r,_= inf r ,N '
(3.7) I1_ - Pr,N _NO,_ U_II0 "

By definition of Pr,N we have for any _ in L2(1):

(((_ - Pr,N _' Pr,N(Ar 2 _))))r,_ = O;

hence

(((_ - p _ (At2- _) - Pr,N(Ar2-_ ¢))))r,m= inf r,N '

11_ll0
t1_ Pr,N _0,m L2(I ) ,_

I[I(A_2 €)- Pr,N(A7 2 ¢)lllr,
inf

< ill+ - er,N +l[]r,m _ € L2(1) H_H0,_
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Due to (3.6) we then derive:

-2
,A ,11

< CNr-° llill N-r inf r
II_- Pr,N !"O,m- o _ 2 ll,HO,m2r,m

E

-a IIA2(Ar2r _)"0,m
< CN __II inf

-- 0 m 2 II_"O,_€n (I)

< CN-° II_ll .
-- 0,_0

Now, from the two estimates, valuable for any _ E H_(1)(-_H_, (I):

Uqb- P _ll < CNr-o fl#N
r,N r,m- o m

fl@- Pr,N _110,_ < CN-O flln

we derive that for any 0 € ]0,i[:

- < CN 0r-° II_N .

r (I)] 0 -- a,m_ Pr,N _fl[L2(i),Ho,

Due to (2.4) and (2.4") we deduce that, for any 0 < _ < r:

(3.8) It_ Pr,N @fl,m < CNg-O- " v -- fliflo,_"

ii) Let us now prove (3.3) for nonintegral values of r. Let

E 9(1), from step (i) we know that, for any o _ r + 1 , a 4 _+i_
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inf II#- _NII _<CNr+l-_ II_II_,
_r+l r+l

_N E _N

inf n# #NIl_ < CNr-o- _ n_no, _

_N € S_+I r,m

(see (3.8) with _ = r + 1 and 9 = r respectively)• These two estimates

are equivalent to the following one:

,$_ __ < CNr+l-_ il_ ,m,

Hr+I(1)/SNr+l0,_

_$n < CNr-_I_+n
^r+l _'_

H0,_(1)/b N

Due to the interpolation of quotient spaces (see Lions-Magenes [i] Lemma

1.13.2) we have, for any 8 € ]0,I[:

,,$, <CNr+e-°n+n,.
[Ho,_(1) _-i r+l,H0,_(I) ]o/SN

From (2.4), (2•4") we deduce (we take O = r - _):

_I$1_ < CNr-_ hen
r r+l _'_'

H0,_(1)/SN
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so that, for any o > r + 1 o 4 _+1/4:

< CNr-O H#fl •
(3.9) N_ - Pr,N i"r,m o

By definition we know that, for any r € _+ i_ .

11_- P II < Cfl@nr,m;r,N r,m-

hence, (3.9) holds for any o _ r, o _ _ + i_ and any r € _+*. The

estimates in lower order norms are obtained following the same lines as in i).

We are now interested in the approximation of the spaces H_(I/-_Hg,_(1) for

s € _ , 0 < s < r by polynomials therein contained.

For simplicity of expositure we shall consider the case s = 0. From

point iii) of Theorem 2.4 we can easily exhibit for any _ E H_(1)
a

polynomial _0 of degree _< 2r - I such that: _ - _0 E Hr0,m(1) and for any

real p:

(3.i0) flOOllp,m! Cll@llr,m"

Due to the previous lemma, we have, for any 0 ! 9 ! r J _ _ _+IA :

ll(_- €0) - (Pr,N(@- ¢O))llv,__ CNv-O fl_- _O_o _,

and (3.10) then implies:

- < CNg-° fl@floII@- (_0 + Pr,N (@ _0))I19,_-- m"
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For N large enough (more precisely N _ 2r - i) we then get the existence of

an operator _ from Hr(I) onto SN such that:

II_- P(_)II ,m_< CN_-_ I1_11 , ,

This estimate provides an answer to our question in the case s = 0. The same

proof can be done to build an operator from Hr(1)m H0,m(s I) onto SNS

satisfying analogous bounds. This leads us to state the main theorem of this

paper:

THEOREM 3.1: Let (u,r,_)E I_, _ 4 IN+I/4, s E _q, 0 < s < r,

0 < 9 < r < _. There exists an operator ns'0 from H_(I)_H_ _(I)
onto

-- -- -- r,N ,

o ;SN such that, for any _ E H (1)(-_H (I) we have:

Es,0 < CN_-_ H_N .
"_ - r,N ¢_11,__ o,m

IV. AN APPLICATION

Definition of the Problem

In order to explain how the previous results can be applied, we shall

study an approximation of the very simple problem:

Find _ defined over I such that:
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rd4 _ = f over I,
dx4

(4.1)

= d@ = 0 at ±I.dx

(This problem provides a first step for the analysis of Stokes and Navier-

Stokes problems in the _-formulation; see Maday-Metivet [1], [2].) Let us

define H-2(1) as follows:
W

H-2(1) {f E P'(1)[]g E L_(1): f =--d2g[
dx2_ "

We now want to prove the following:

THEOREM 4.1: Let f E H-2(1); then there exists one and only one
W

2 (I).
solution _ to the problem (4.1) in the space H0, m

This theorem is a very simple consequence of Lax Milgram lemma and the two

following lemmas.

LEMMA 4.1: There exist two positive constants 61 and _2 such that,

2 (I):
for any , in H0, m

d,2 5 < 62 f Cdd_ )2fl,29< t { dx -- I

This lemma is a corollary of Lemma 2.1.
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LBIe_A4.2: There exist 3 positive constants a,B y such that for any

(_,_) E H2(1)xH_ (I):,tO

(4.2) (_xx,(_m)xx) > a;l_fl2-- _tO'

(4.3) fl_;12,_o< Bfl_xx;lO

(4.4) (@xx,(¢m)xx) m < yfl_xxflO,m IlCxxllo,_o.

PROOF:

i) We first note that (4.3) is an easy consequence of the previous

lemma, and is an equivalent to the Poincar_ inequality.

ii) Next, we get the following equalities, for any @ E D(1):

f Cxx(¢m)xx dx = f @L mdx + 2f Cxx Cx mx dx + f @xx Cmxx dx
I I I I

= f _2xxwax+ f 1,2x)x_x dx . f (_x)x _xx dx
I I I

2 dx - f Cx(¢_xx)x dx= f ¢_x mdx - f Cx mxx
I I I

= f ¢2xx mdx - 2f _2x mxx dx +I/2f 2 mxxxx dx
I I I
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let us note that:

m = (I + 2x2)m 5,
xx

m = (9 + 72x 2 + 24x4)m9;
XXXX

hence:

(4.5)

f _xx(_)xx dx = f _2xx dx- 2f _2x(l + 2x2)_ 5 dx +1/2f _2(9 + 72x 2 + 24x4)_ 9 dx.
I I I I

Besides, let us set:

P _ f I_xx _ + 2X_x + (2x2 + m-ldx;
I

P is _ 0 and, an easy calculation gives:

5 9
p - f _xx(_)xx - 2.10-2 f _2x _ - f (5,78x 2 + 0,4839)_ 2 m ,

I I I

so that

2 5f *x i 50f
I I

from which we derive:

f _2x(l + 2x2)m 5 < 150f _xx(_m)xx.
I I

Using that inequality in (4.5) we obtain _ > 0 such that:
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J _xx(_)xx__>aB_ _2xxm'I I

and (4.2) is an consequence of (4.3).

iii) Finally, let us note that for any (_,_) in H2(1)xH2,m(1)
we have:

(4.6) (¢xx,(@m)xx)l = (@xx,@xx)m + 2f ¢xx _x m + _ Cxx _xx"I x

The following inequality is simple:

(4.7) l(_xx'_xx)m I --<N@xxHO,t0 H_xx"O,m"

Let us examine the second term:

2 z -iI/2
If +xx*x_xl= IJ _xxI*__ _-_)ml< IJ .2xx_1½ If ,_ _ _ I ;
I I x -- I I x

since 2 -I = x2 m5, we derive from Lemma 4.1 that:
X

(4.8) If +_ *x_xl!Cl+xxlo,_,I*xxlo,_-I

We obtain, in a similar way:

(4.9) If +xx*_xxl< cl.xxlo,_I*x_lo,_,I

so that (4.4) is a consequence of (4.6)-(4.9).
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PROOF OF THEOREM 4o1: Let f = gxx be in H-2(1). Problem (4.1) is

equivalent to the following:

9

Find _ in V = H_,_(1) such that, for any i in V:

(4.10)

= fI

The bilinear form a defined by: For any (X,_) in V2:

(4.11) a(i,X ) = f _xx(X_)xx,
I

is continuous and elliptic over V (see Lemma 4.2), and Lax-Milgram lemma

gives the existence and uniqueness of a solution of (4.10) hence of (4.1).

Approximation of Problem 4.1

We are interested in approximating the solution of (4.1) by a polynomial

of degree J N. We use a Galerkin method approach known as Spectral Method

(see Gottlieb-Orszag [i] for more details); hence from (4.10) we derive an

approximate problem:

2

_Find _N in VN = SN such that, for any _ in VN:

(4.12) i_ _Nxx(_)xx = If g(_)xx"
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From Lemma 4.2 we know that problem (4.12) is wellposed in the sense that

there exists one and only one solution. Moreover, we derive from (4.10) and

(4.12):

a(_ - _N,i) = 0 for any i in VN,

2,0

SO that (remind E2,N @ € VN):

_2,0 4)"(4.13) a(_ - _N, _ - _N ) = a(_ - _N, i - I[2,N

Due to Theorem 3.1 and Lemma 4.2, we then obtain the following

THEOREM 4.2: There exists one and only one solution _N to problem

(4.12); moreover it verifies, as soon as _ € H:(1)_-_H_
(i):

(4.14) _ - _N 2,_--< CN2-O _ _,_"

REMARK 4.1: The previous estimate is an optimal one in the sense that no

2 is asymptotically nearer from the solution _ than thepolynomial of SN

solution of the approximate problem.

REMARK 4.2: The previous theorem will be extended in a future paper

where we shall consider a pseudospectral method (much more efficient from a

computational point of view) for approximating a one-dimensional fourth order

equation.
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