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FOREWORD

This is a progress report on the research project "Numerical Solutions

of Three-Dimensional Navier-St

period of performance on this

1984.	 The work is supported

Cooperative Agreement NCC1-68,

the Analysis and Computation

Branch), NASA/Langley, MS/125.

okes Equations for Closed-Bluff Bodies." 	 The

research was January 1 through December 31,

by the NASA/Langley Research Center through

and monitored by Dr Robert E. Smith, Jr., of

Division (Computer Science and Application
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NUMERICAL SOLUTIONS OF THREE-DIMENSIONAL
NAVIER-STOKES EQUATIONS FOR CLOSED-BLUFF BODIES

By

J. S. Abolhassani l and S. N. Tiwari2

SUMMARY

With the present facilities at NASA/Langley Research Center, it is

economically feasible to compute the three-dimensional flow about a complex

configuration such as closed-bluff bodies (e.g., circular a,id elliptical

cylinders) on a flate plate.	 If the body is sufficiently bluffed, there

will exist a three-dimensional region close to and about the junction of the

body with the surface.

In the present study, the Navier-Stokes equations are solved numerical-

ly.	 These equations are unsteady, compressible, viscous, and three-dimen-

sional without neglecting any terms. 	 The time dependency of the governing

equations allows the solution to progress naturally for an arbitrary initial

guess to an asymptotic steady state, if one exists. 	 The equations are

transformed from physical coordinates to the computational coordinates,

allowing the solution of the governing equations in a rectangular parallel-

epiped domain.	 The equations are solved by the M(icCormack time-split tech-

nique which is vectorized and p r ogranmed to run on the CDC VPS 32 computer.

The -odes are written in 32-bit (half word) FORTRAN, which provides an ap-

proximate factor of two decreasing in computational time and doubles the

memory size compared to the 64-bit word size.

r

I Graduate Research Assistant,	 r rn nt	 f	 i- Engineer ing 	 nr

	

	 cDepartme nto	 o	 Mechan ica l Engineer g a d
Mechanics, Old Dominion University, Norfolk, Virginia 23508.

:	 2Eminent Professor, Departr,ient of Mechanical Engineering and Mechanics, Old
Dominion University, Norfolk, Virginia 23508.

t^



`D)

.	 INTRODUCTION
The comprehension and analysis of three-dimensional tIuid ben av1or

around bluff bodies is of considerable importance for flight applications.

The primary motivation to solve such problems is to understaA the basic

phenomenon of separated flows and to determine the associated forces on the

object.	 The static and dynamic features of the unsteady flow field around

` -	 the bluff-bodies are of interest to the designers as well. 	 These flows are

three-dimensional in the most realistic cases, and can be described by a set

of Navier-Stokes equations.	 These equations can be solved numerically if

proper grid distributions can be generated. 	 This step (grid generation) is

the essential first step in solving Navier-Stokes equations for complex

configurations.	 T;iere are presently only a few three-dimensional solutions

of the Navier-Stokes equations documented, and the obvious reason for this

is the complexity of the grid arrangements, numerical coding, and lack of

suff"i;.ient numerical resolution (i.e., memory) to generate credible results.

Most of the available solutions are for simple three-dimensional flow (e.g.,

three-dimensional corner, spherical dome, conical bodies, and spike-nosed

bodies) which requirz simple grid arrangements. 	 For many complex geome-

tries, the constraints imposed by digital computers are less restrictive for

two-dimensional computation than for three-diinensional ones.	 One major

difference between numerical simulation of three-dimensional and two-dimen-

sional flow is the overwhelming discrepancy in the data base.	 For a mesh

with 100 points on a side, a two-dimensional problem requires a memory of

about 80,000 words (counting 8 dependent variables at each mesh point in a

typical solution of a compressible flow with arbitrary geometry), while a

three-dimensional problem requires a memory of about 14,000,000 (14 vari-

ables) words.	 The former can be processed easily by any modern scientific

2	
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computer, however, this is certainly not possible for the la*,.zr case.

In order to study three-dimensional flows, the Navier-Stokes equations

are being solved numerically. 	 These equations are unsteady, compressible,

viscous, and three-dimensional without neglecting any terms. 	 The time de-

pendency of governing equations allows the solution to progress naturally

from an arbitrary initial guess to an asymptotic steady state, if one

exists.	 The equations are transformed from physical coordinates to the

i	 computational coordinates, allowing the solution of the governing equations

in a rectangular parallelepiped domain. 	 The equations are solved by the

MacCormack time-split technique which is vectorized and programmed to run on

the CDC VPS 32 computer.	 The codes were written in 32-bit (half-word)

FORTRAN, which provides an approximate factor of two decrease in computer

i	 time and doubles the memory compared to the 64-bit word size.	 Solutions

will be obtained for an infinite right circular cylinder on a flat plate at

high Mach and Reynolds numbers.	 In this study, the computational planes are

perpendicular to the axis of the cylinder rather than the flow direction.

Therefore, updating the boundary and initial conditions become mo r e complex.

The algebraic method is used to generate the grids and they are dis-

tributed exponentially in the vertical direction (parallel to the axis of

the cylinder).	 Grids are concentrated near solid boundaries and in the

vicinity of the cylinder-plate junction. 	 The circular cylinder geometry

would require about 200,000-3-10,000 grid points and this will occupy 3-4.5

million 32-bit words of primary memory. 	 Ic would take about 4-7 seconds to

complete a time step of explicit MacCormack method. Also, it would take 3-

4.5 seconds to transfer the restart file from primary memory to secondary

memory.	 In

3
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2. GOVERNING EQUATIONS

The governiny equations for a thermal fluid system are the conservation

of mass, momentum, and energy. 	 These equations are dLveloped for an arbi-

trary region assuming the system is in continuum. 	 Equations of motion for

viscous, compressible, unsteady, heat conducting flow can be written as:

e

Continuity	 ap + v	 (p u) = 0,	 (2.1)
a^

Momentum:	
a(	

+ v	 ( p uu - T) = 0,	 (?.2)

Energy:	
a(E)	

+ v	 (Eu +	 - u • T) = 0.	 (2.3)

at

y 2
where E

	

	 is the total energy per unit volume given by E = p (e + — +

L

potential energy +	 )	 and	 e	 is the internal energy per unit volume.

For Newtonian fluid, stress tensor can be related to the pressure and ve-

locity components as:

	a U 
i
	 aU.	

2	 3 U kT ip	 - P d id + v [ ( — +	 ) - — d id	 ]	 (2.4)

	

3 X	 aX i	 3	 aXk

This equation is valid under negligible bulk v i scosity.	 For an isotropic

system, the heat flux in Eq. (2.3) can be expressed in terms of temperature

gradient (Fourier's law of heat conduction) as:

	

q = - K v T	 (2.5)

where K is a coefficient of thermal conductivity. A common approximation

4
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used for visr.osity is based on the kinetic theory of gases using an ideal-

ized intermolecular-;orces potential, the relation is:

W
	 = (T 3i2 T

)	 r + S 0	 (2.6)

W 	 Tr	 T + S0

where	 S = 198.6° R
0

u r = 0. 1.716 np

coefficients of thermal conductivity 	 K	 cai be determined from Prandtl

number

YuCu

K = --
Pr

where Cu	is the specific heat at constant volume and Y is the ratio of

specific heats.

It is necessary to have a supplementary relation to close the system of

equations (Eq. (2.1) - (2.3)).	 By neglecting intermolecular forces (a ther-

mally perfect system), thermodynamic properties can be related as:

P = PRT	 (2.8)

where	 R	 is the gas constant. 	 Thermally perfect gas assumption allows

expression of the internal energy (e) as a function of T only [e : e(T)].

In addition, assumption of calorically perfect gas [e(0) = 0] a l lows the

following relation:

(2.1)

5
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e = C 
v 
T	 (2.9)

A combination of Eqs. (2.8) and (2.9) results in

P = Pe h-1)	 (2.10)

These equations (Eqs. (^.1) - (2.3)) are in conservative form. 	 For sim-

plicity, these equations can be expressed into a compact vector form as:

I i

!I

aU	 aF	 aG	 aH
	

(2.11)
W_ i
	 at	 ax	 ay	 az

where

PP 

P 	 PUU - T
XX 

+ P

U=	 Ov	 F=	 CI UV - Txy

P 	 PUW - T
XZ

E j	 IEui qx -fix+PU
L

nv	 P 

PUU - T xy	 PUW - TXZ

G =	 Pvv - T	 + P	 H =	 Pvw - T
yy	 yz

Pvw - 
T Xz	 PWW - Tzz + P

Ev +Qy-^y+Pv	 Ew+Qz -mz +Pw

For the sake of generality, we can transform these equations from a physical

domain to a computational domain as

6
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T1

x xaU aF aG aF	 3 	 3Hl

at	 + F=^ ( a^ '	 a^

aH)

'	 a^ I	 + ny an 	 ' an	 ' an J
E z nz

^x

+
a

(
 aG aH

= n^ y
a{ a^ a^

z

(2.12)

CU

The transformation coefficients can be computed from a functional re-

lation between the computational coordinates and the physical coordinates.

x = x(^ r., ),	 y = y(^ ji c ),	 ind	 z = z(^ n,C) .	 (2.13)

^ = ^(x,y,z),	 n = n(x,y,z),	 and	 ^ = ^(x,y,z).	 ([.14)

If Eq. (2.14) is known, the transformation coefficients car) be computed by

airect differentiation.	 If the former relation is not known, after some

algebraic manipulation, the transformation coefficients can b2 computed by:

ax ay az

an an an

ax ay az

ac ac a;

ax ay azJ

ax ax ax

ay ay ay
_	 =

a^ an a{

az az az

(2.15)

i

I
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where

i. (ay az	 _ ay az ) ax 3z ax 3z ) (ax ay - ax y)

' an a n an a^ a^ an an a^ a{ an

1
K	 J = ---	 -(—

ay az
— -

ay ?z
— —)

ax
( —

3z
— -

ax
--

az
—)

ax
-(—

ay
—

ax
- —

ay.
—)	 (2. 16)

J -1
a& 3c 3^	 a& a& a{ a; a& a^ ac a{ a&

3 az ay az pax az 3 x az
-)

ax
(--

ay ax ay
—)(

_

an
--)
an	 a&

4—
a&

— -
an

-
an a& of 3n

- -_
a-: a^

3x ax a 

a  an a^

J_1 I	
=	

ay a y ay

3z Z az

a^ an a{

=	 ax ( ay a 	 _ ay	 az ) ax ( ay az _ ay
az)

a^ an a^ a{	 an an a^ an a^ a^

ax ( ay az ay	 az)

a{ a^ an an	 a^

In the present case, the planes of grid are parallel to x-direction thus

allowing us to write:

x = x(^)	 (2.17)

y = Ar,C)	 (2.18)

z = z(n „)	 (2.19)

This reduces the metric coefficient from n i ne to five non-zero elements.

3. METHOD OF SOLUTION

A time marching method is used to compute the solution. This allows us

to capture the possible transient feature. 	 This method is an explicit

8	 ''
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second-order accurate time-split predictor-corrector algorithm [3]. 	 The

governing equations (Eq. (2.12)) are discretized in compotationzl direc-

tions.	 In a compact form, they can be expressed as

	

U +1 , k	 I
Ln	

[L^
(Atn) 	

{(etC 	 (Atr	 L^(At^)1 [Ln(6tn)] 
Un,j,k(3.1)
J^ L	 JJ

where

At _ At = 1 At-
2

and	 L& ,	 L  ,	 and	 L C	 are the operators in ^, n,	 --nd c direct ions,

respectively.	 A time step is completed in this algoritrim with the appli-

I

cation of each operator applied symmetrically about the middle operator.

For example, operator L^ can be defined as

L^(At^) = UOut ,k	
(3.2)

where

Predictor step:

in	 AtF

Ui,j,k. = Ui,j,k	 o	 C(F'	
Fi-1) 

ax i 
+ (Gi - G i - 1 ) 	

i

y

az	 j,k

1

i
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Corrector step:

Uout	 = 1	 U 
i n	 + U
	 _ At' r(F.	 - F) â  i

i ,i, k 	 2	 i,,l,k	 i,J,k	 a^	 L	 +l	 i	 ax

^

+ (Gi+1 - Gi) 
aE 

i + (Hi+1 - Hi)
	

1j , k)ay	 az 

This method has a time step stability limit, but there is no rigorous Sta-

bility analysis aviilable for this. A conservative time step that is com-

monly used is

	

At ^ min	 ^ + ^^ + 	 .+ c	 1 + 	 +(3.3)

1
4

1

	

x	 4y	 4 z	 ^x2	 Ay2	 Az2J

where c is the local speed of sound.

In the supersonic .region, there exists a large gradient which requires

a very fine mesh to resolve it.	 If they are not resolved, they produce a

large oscillation which e ,,entualiy blows up the solution.	 These oscil-

lations of "low frequency" can be suppressed by adding a fourth order damp-

ening.	 A common dampening used is the pressure dampening. 	 This can be

expressed in physical coordinates as

a	 ^v.e^ + c
	 92P	

aU
-n^At^63 —	 —R	 = 1,2,3	 (3.4)

aa R 	 4P 326  
I a6R

where d 1 = ^ ,	 6 2 = n .	 and 6 3 = ^ .

IM

10
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4. INITIAL AND BOUNDARY CONDITIONS

In computational fluid dynamics the initial conditions usually corre-

spond to a real initial situation for a transient problem, or a rough guess

for a steady state problem. 	 In practice, initial conditions a re obtained

from experiments, empirical relations, approximation theor i es, or previous

computational results.	 An inappropriate initial guess illay result in gener-

ating unphysically strung transient waves which propagate through the compu-

tational region dome., ating the flow field and eventually lead to a solution

failure. 	 In general, there are two important requirements that should be

considered in the choice of initial conditions.	 First, they should be com-

patible with the fixed upstream boundary conditions. 	 Secondly, the initial

conditions should be as physically close as possible to the actual nature of

the f l ow field in the region under study. 	 The former will minimize the

number of iterations required for convergence. An attractive approach is to

initialize the entire flow field (including the upstream boundary and the

body surface) with a crude and simple guess (e.g., free stream condition).

Then, during the course of the computation, both body and upstream boundary

conditions are changed in a gradual manner to their final values over a

prescribed number of iterations. The former approach is applied in only one

step which is equivalent to impulsive initial conditions.

It is equally important to implement a realistic, accurate, and stable

method to determine boundary conditions.	 The application of certain condi-

tions may cause numerical instability even though the flow is physically

stable.	 There are neither mathematical nor physical justifications to im-

plement a realistic houndary condition. 	 Most of the boundary conditions

currently implemented are drawn mainly upon intuition, wind tunnel experi-

ence, and computational experimentation.	 There are three general types of

'1	 ^



boundary conditions. 	 They are Dirichlet conditions (specified function

value), Neumann conditions (specificed normal gradient), and Robin condi-

tions (a combination of both). 	 Four important factors should be considered

f	 in the selection of bundary conditions.	 They are	 onvergence, stability,

computer time, and above all the physical justification.

For this problem there are five different boundary conditi o ns.	 They

are upstream, downstream, lateral, top, and solid boundary. 	 The upstream

	

boundary conditions are the undisturbed free stream cond i tions and are lo-	 41

sated at a grid space away from the leading edge, i.e.,

U = U.	 (4.1)

upstream

A zero gradient in y-direction (parallel to the primary direction of flow)

is assumed for the downstream boundary, i.e.,

aU	 =0
	

(4.2)

ay	
downstream

The lateral boundaries are located far enough to avoid any influence on the

interaction. region.	 A boundary-layer profile can be prescribed on the lat-

eral boundaries. 	 These profiles can be obtained from their corresponding

points of a flow over a flat pate.	 Presently, a zero gradient in z-direc-

tion is assumed for these boundaries, i.e.,

aU = 0	
(4.3)

az	
lateral

12
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The cylinder is assumed infinite in height, therefore, the flow at the top

of the cylinder would be two-dimensional.	 Consequently, a zero-gradient

boundary condition is imposed in x-direction for the top boundaries, i.e.,

dU	
= 0	 (4.4)

aX Top

The wall is assumed impermeable and no slip boundary conditions are

applied, therefore, all velocity components are assumed to be zero. 	 The

wall is also assumed to have a constant temperature 	 Tw.	 A zero normal

pressure gradient is assumed for the solid surface, i.e.,

aP I = 0	
(4.5)

an	
solid

This evaluation may appear to be based on the boundary-layer approximation

(zero normal pressure yradient). 	 In fact, it is a much milder approxima-

tion, since constant pressure is not applied through the boundary layer but

over one grid line in the boundary layer. 	 This approxima t ion has yielded

stable computations for both nor.-separated and separated boundary layers

[2].

5. POST PROCESSING OF DATA AND DATA DISPLAY

The solution of a three-dimensional flow can produce upto 1,000,000

data. This vast amount of data needs to be analyzed and necessary informa-

tion extracted. Storage and manipulation of the huge amount of data becomes

a sarious problF,!.	 Color computer graphics provide adequate solutions to

13



the problem. Data which sometimes is over 1,000 pages of computer print-out

can be compacted and displayed as a digital image on color monitors. Color

computer graphics offer several advantages for tec`inical presentations,

documentations, and easy and rapid analysis.	 A digital image of a flow

field variable (e.g. density) can be created by transforming node points

from the computational grids into the object space to the image plane and

fill the void between the image node point with a color that varies accord-

ing to the magnitude of the variables.

I	 6. PRESENT ACCOMPLISHMENTS

The equations of motion are transformed from the physical coordinates

to the computational coordinates allowing the solution of the governing

equations in a rectangular parallelepiped domain. 	 The equations are being
I

solved by the MacCormack time-split technique which is vectorized and pro-

grammed to run on the CDC VPS 32 computer. The codes are written in 32-bit

(h alfword) FORTRAN, which has provided an approximate factor of two decrease

in computer time and doubles the memory size compared to the 64-bit word

size.

The algebraic method is used to generate a 0-type grid around the cyl-

inder under study, and they are distributed exponentially in the vertical

direction (parallel to the axis of the cylinder). 	 Grids are concentrated

near solid boundaries and in the vicinity of the cylinder plate junction.

Further accomplishments will be reported in a subsequent progress report.

14
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