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1 INTRODUCTION

Current NASAmissions in aeroacoustics at Langley Research Center (LaRC)

• emphasizeresearch in rotorcraftand advancedpropellors. Performanceof

this researchrequiresa wind-tunnelfacilitycapableof supportinglarge

" scale model tests of poweredrotors and propellors.Based on the presentstate-

of-the-artin the understandingof rotor noise generationmechanismsand

associatedscalingprocedures,it appearsto be generallyheld that a model

test of the order of one-sixthof full size is the smallestscale from which

accuratefull scale data may be inferred.

Needlessto say, one-sixthscale rotor testingimpliesthe use of a very large

wind-tunnel. Large wind-tunnelssuitablefor acoustictests, however,are a

resourcewhich is presentlynon-existenteven on a national level in the

United States. Constructionof a new acousticwind-tunnelfor large-scale

poweredtests is a multi-yeareffort representingseveraltens of millions

of dollars.

The obviousalternativeto new constructionis modificationof an existing

facility,preferablyone locatedat NASA-LangleyResearchCenter.

The 4 x 7 meter (V/STOL)tunnel (Figurel) is an existingfacilityat LaRC

which has, and is presentlybeing used for acousticmeasurementsof rotorcraft

scale models. This tunnel is also large enough to supportthe desiredone-

sixth scale testing. However,since this facilitywas not originallyintended

for acousticresearch,substantialstudy has been requiredto assess its

capability,even with extensivemodification,to act as a comprehensiveaero-

acoustictest facility.

The principalpart of this study has been performedby Bolt, Berarekand

Newman (BBN). Their activity is documentedin ReferenceI and supplements

• three other studiesalso performedby them, on the same facilityover the
(2-4)

past thirteenyears.

Augmentingthe BBN studies in this regard are measurementsof acousticalcharac-

teristicsof the tunnel and rotorcraftnoise data which haye been made over

the years (forexample see References5 through7) byinvestigators performing

model studies in the facility.



Figure I, Aerial View of 4 x 7 Meter Wind Tunnel
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The presentreportpresentsa briefcritiqueof thework performedunder

a NASA contractby BBN in theirmostrecentstudy(1)andevaluatesthe

variousacoustictreatmentoptionsfor the 4 x 7 m tunnelproposedthere.

As a resultof thiscritique,a key assumptionmade by BBN is questionedand

supporting analyses are given to validate this point of view.



2 EVALUATIONOF PROPOSEDACOUSTIC

TREATMENTSFORTHE 4 x 7 M TUNNEL

2.1 Summaryof BBNRecommendations
o

In Reference I, BBN present three approaches* to background noise reduction

in the 4 x 7 m tunnel. These approaches are summarized in Table I, and

representthe distillationof a substantialmeasurementand analysiseffort.

The three approachesrepresenttwo separatephilosophiesfor achievingthe

NASA noise reductiongoal:

o Attenuatethe noise from acousticsourcesas it propagatesaround

the tunnel circuitto the test sectionby varioussound absorbing

devices (Approachl), or,

o Reduce the noise of the (principal)source by rebuilding or replacing

the wind tunnel fan (Approach2).

The third approach is simplya combinationof the two philosophies. Obviously

in this case, fewer sound absorbingdevices in the tunnel circuitwould be

needed to achievethe goal.

Since BBN reachedthe conclusionthat rebuildingor replacingthe fan would

not by itselfproducesufficientnoise reductionto achievethe goal, only

approachesl and 3 were consideredappropriatefor meeting the NASA goal.

These approachesare summarizedschematicallyin Figure2.

Approach l containsthe followingdetailedfeatures:

o anechoic treatmentin test section

o absorptionadded to collectorsurfaces

o long-chordtreated turningvanes in the first corner

o fan inlet treatmentconsistingof a lined wall, a long treated

nose cone, and a streamlined-treatedsplitterring ,

o fan exhausttreatmentconsistingof the same elementsas the

inlet treatment

*In an addendum to Reference4, BBN also presenta fourth option. This option
is not discussedhere since considerableuncertaintyexists abouts its effect
on the aerodynamicperformanceof the wind tunnel.
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IMPACT0NFACILITY CAPABILITIESAND OPERATIONS

= _=,_ z <z=_. -t,M {/3 LM°=,._ =<=_ - _.= 0==__< ° < ,,,_

APPROACH* _. _J ""

O Can Possible
MaintainCurrent Minor May Periodic Substantial • ModelTests
Fan;AddAcoustic Meet Degradation Reduceby High Increase Cleaning (to Be • Design

Treatmentto or (or Minor 8-10% o( Aq/qo ol Certain Determined) • Procurement
Exceed Treatment

Circuit Improvement

O Probably • ModelTestsCan'tMeet Below Probably Substantial • FullScaleFlow
Rebuild WithoutSome Could Could Low Current Below (to Be Measurements

Fan Treatment Improve Increase Costs C.rrent Determined) • Design
in Circuit Levels • ModelTest

• Procurement

Q Could High FAN:
RebuildFanand Exceed to Below LessThan Substantial

AddAcoustic Goalsby Could Could Highest Current Current O . Q
Treatment Large Improve Increase Costs • TREATMENT:Periodic
to Circuit Margin Cleaning

• All choicesassumethatsuitableanechoictreatmentwillbe installedin testsection.

Table 1 Summaryof Approachesto BackgroundNoise
Reductionand Impactsof Each (Table 14
of Referencel)
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Option 1 (no fan redesign)

Option 2 (significantfan redesign)

Figure 2 Two "Optimized"Approachesto AcousticTreatment
of the 4 x 7 m Tunnel Circuit (Figure4 of
Addendum to Referencel)



o a lined settlingchamber ("secondcrossleg")

o treatedairfoil-shapedfourth cornervanes

Approach2 illustratesthe treatmentrequiredfor the case where the fan has

been redesignedto operate unstalledat approximately50% of its presenttip

• speed. The fan redesignrequiresnew blading (largerchord, and pitch

settingstailoredto local inflow),and the additionof a nose cone. The

additionalabsorptiveelementsrequired include:

o anechoictreatmentin test section

o absorptionadded to the collectorsurfaces

o treatedfirst corner vanes

o treated (elongatedairfoil-shaped)second corner vanes

o lined settlingchambersurfaces

2.2 GeneralCommentson Fan Noise Reduction

The first phase of the BBN activitydescribedin Referencel was source iden-

tificationand source-pathdefinition. This was based on the resultsof a

series of exhaustivelyplannedand s_isfactorilyexecutedtests. Analy_s of the

test data identifiedthe fan and fan inflownon-uniformityas a major problem

area. The importantpoint being that the fan is not only the principal

noise source but that it is also noisierthan it needs to be.

This conclusionis readily understandableand may indeedbe anticipatedfrom

a knowledgeof the fan design and from tunnel circuitflow measurements8'9.

The fan design is representativeof old propellortechnologywith regard

both to noise and propulsiveefficiency. The presentdesign (Figure3) has

low solidityand short chord blades. A modern high soliditydesign with

long chord swept bladeswould possessnot only greateraerodynamicefficiency

but would also turn at a lower speed and generate less noise.

, An associatedproblemwith the 4 x 7 m tunnel fan noise is a non-axially-

symmetricfan inflowprofilewith the flow being skewed towardsthe outer

" wall. This problemhas been substantiallyimprovedby the additionof a

set of trailing-edgeflaps attachedto the five flow-controlvanes down-

streamof the first corner9. However,the problem is still presentas

shown in Figure 4, and certainlyaccountsfor a substantialportionof the

presentexcess fan noise.
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Figure 3
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BBN presentan estimateof potentialnoise reduction(Figure5) from fan

redesignand inflow improvementof approximately25dB from 40 to 4,000 Hz,

for a 50% tip speed reduction. Their estimatefor a 25% tip speed reduction

is 15dB.
g

The opinionof this author is that actual realizationof these noise reductions

should be attainable,but differingdegreesof difficultyand confidenceare

associatedwith each step:

o Fin Tip Speed Reduction- At a test sectionvelocityof Mach .25

the fan inflowvelocityis approximatelyonly Mach .06 while the

fan tip speed is approximatelyMach .55. Thus clearly, it may be

observedwith a high levelof confidencethat a reductionof tip

speed by a factor of ½ would yield a noise reductionof the order

of 15dB (usinga V5 scalinglaw).

o Fan Stall Elimination- Fan stall eliminationshould be possible

with fan redesign,in a tunnelwhere the inflowto the fan is

reasonablysymmetricabout the tunnel centerline. Significanteffort

has alreadybeen spent on flow symmetrizationin the 4 x 7 m Wind

Tunnel. However,the problemstill exists,and will hamper efforts

at stall elimination. Unsymmetricflow is a problemcommon to most

recirculatorywind tunnelsand its rectificationmay not be achiev-

able without substantialeffort and cost.

The level of confidenceof achievinga symmetricalflow and associatednoise

reductionbenefits is much lower than in the former case.

2.3 Comments on Source-PathTreatmentOptions

AlthoughReferencel performsa satisfactoryjob of definingacoustic sources

and paths in the 4 x 7 m Tunnel,and adequatelydefinesthe noise attenuation

goals for each source,significantgaps exist in the predictedperformance

of recommendedacoustictreatments. Part of the reason for this deficiency

is that the effect of the recommendedacoustictreatmentsis difficultto

estimatereliablyby traditionalrule-of-thumbacousticalengineeringmethods.

Another reason is that a detailedstudy of each componenttreatmentwas

probablybeyond the scope of Reference1 activity.
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Unfortunately,the result of this situationis that a high level of uncer-

tainty existsabout the performanceof sourcepath treatmentconcepts

schematicallypresentedin Figure 2, and detailedcalculationsfor various

local designoptions are still requiredfor the followingcomponents:
J

o Acousticallytreatedturningvanes

o Large area duct wall treatment

o Fan nose-cone,splittersand duct treatment

However,one notableomissionappearsto have been made by BBN. This omission

calls into questionthe validityof the basic conclusionsof their study

(summarizedhere in Table I and Figure l). This omissionarises from a mis-

understandingof the way in which sound propagatingaround the circuitof a

wind tunnel,radiatesinto an anechoicallytreatedtest section.

From measurementstaken in the presentuntreatedtest sectionof the 4 x 7 m

tunnel,BBN found that the differencebetweencenterlineand sidelineback-

ground noise levelswas approximately5dB. A further 5dB was allowedfor the

estimateddecrease in sidelinebackgroundnoise due to anechoictreatmentof

the test section.

The analysisdescribedin the followingsectionshowsa differencebetween

centerlineand sidelinebackgroundnoiselevelsof the orderof 25 to 30dB.

Thesecalculationsare supportedby measurementsin the DNW acousticwind

tunnel,whichare also describedin the followingsection.

If sidelinemeasurementsare the only acousticmeasurementsrequired in the

4 x 7 m tunnel,then this unexpectedlylargebenefitfrom an anechoically

treatedtest section,reducesthe need for additionalacousticallyabsorbant
circuittreatment.
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3 RADIATIONINTO AN OPENTEST SECTION

3.1 Measurements in the DNWTunnel

Somewords of introduction are helpful in understanding the relevance of

" acoustic measurements in the DNWTunnel with respect to the NASALangley
4 x 7 meter tunnel.

The concept of a wind tunnel specially designed for acoustic measurements is

relatively new. Over the past fifteen years, numerous acoustic measurements

have been made in existing wind tunnels which have been partially (and

usually inadequately) adapted for that purpose. The first large scale

facility, however, which reflects a genuine attempt to design for aero-

acoustic capability is the Duits-Nederlandse Wind tunnel (DNW)recently

completed at Noordoostpolder in Holland. The acoustic capabilities of this

tunnel are described in Reference lO, and are also contrasted with the 4 x 7 m

tunnel in Reference I.

The existence of the DNWtunnel, coming particularly at a time when the need

for such a facility in the United States is becoming increasingly apparent,

is acting as a stimulus for action in the development of an equivalent facility.

In comparing the physical layout (Figures 6 and 7) and operational character-

istics (Table 2) of the NASALangley 4 x 7 meter tunnel with the DNWtunnel,

it may be seen that the two facilities are broadly similar.

In general, the DNWtunnel is larger with a slightly greater maximumtest

section velocity in the open jet mode. However, planned improvements

to the collector of the LaRC4 x 7 m tunnel are expected to increase maximum

velocity to a level comparable with DNW. Also, planned flow quality improve-

ments (see Figure 6) are expected to decrease the turbulence level in the
4 x 7 m tunnel.

" In presenting their comparison of 4 x 7 m tunnel and DNWtunnel noise data in

Reference I, BBNomitted DNWin-flow noise measurements. The reason given

° for this omission was that these measurements were clearly in error due to

their relatively high level when compared with out-of-flow data, probably

due to their contamination with microphone or microphone support self-noise.

13



Figure 6 Layout o f  NASA LaRc 4 x 7 Meter Tunnel 
Including Planned Flow Qua1 i ty  Improvements 
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TABLE 2
P

Comparisonof the OperationalCharacteristicsof the

NASALaRC4 x 7 MeterTunnelwiththe DNW Tunnel

LaRC
Characteristic 4 x 7m DNW

Dimensionsof Test Section 4 x 7m 6 x 8m

OverallCircuitDimensions 97 x 20m 128m x 31m

Maximum Velocity (Open Test) 62m/sec.* 85m/sec.

MaximumFan Tip Mach Number M.5 M.5

MaximumDistancefrom Model Center-

line to Test SectionWall 14m 15.5m

TurbulenceLevel (long.,fat.) .3%, 1.3% .2%, .1%

Fan Tip Diameter 12.5m 12.3m

RPM (at 85 m/s Test Vel.) 275 225

Tip Speed (at 85 m/s Test Vel) 180 m/sec 145 m/sec

* Will be increasedwith installationof new collector

16



Interestingly,however,when these DNW in-flowmeasurementsare compared

with a 4 x 7 m tunnel in-flowdata (Figure8), it may be seen that they are

comparable. Accordingto fan tip speed comparisonsalone (Table2)

. one would expect DNW to be 5dB quieterthan the 4 x 7 m tunnel. However,

the flow velocity into 4 x 7 m fan is only 60% of the flow velocity into

• the DNW fan and althoughthe fans are the same size, the DNW fan moves

almost twice the volume of air.

Taking these differencesinto account,it would not be too surprisingto find

that both fans generateabout the same noise level. Followingthis line of

reasoningone would expectthat the in-flownoise levels in the two test

sectionswould be similarprovidedthat the transmissionpaths were also

similar. From Figures6 and 7, it may be seen that this is indeedthe case

with one major difference. In the DNW tunnelthe first and third sets of

turningvanes are acousticallytreated.

Thus, if we make the assumptionthat BBN did not, namely,that the DNW in-

flow noise measurementsare correct,then this leads to the conclusionthat

the treatedturningvanes in the DNW tunnel are only marginallyeffectivein

attenuatingnoise propagatingaround the tunnelcircuit.

Proceedingfurtheron this assumption,it is still necessaryto explain

the 25 to 30dB differencebetween in-flowand side-linenoise measurements

in the DNW tunnel test section (as shown in Figure8). This task was

approachedtheoreticallyand is describedin the followingsection.

3.2 TheoreticalCalculationsof Noise Radiationintoan Open Test Section

Calculationof near field acousticradiationintoa semi-reverberantspace

in the presenceof flow is best performednumerically. The tool used for

this task was the ADAM System(ll). This is a generalpurpose2-D or axi-

symmetricfinite elementaeroacousticmodeling system.
q

Calculationswere based on the geometryof the 4 x 7 m tunnel,with a new

° acousticallytreatedcollecto_and controlroom removed. Figure 9 shows sound

radiatinginto this geometryfrom a plane wave acousticvelocitysource

locatedsix meters down the first diffuserleg from the collector/diffuser

junction. Figure 9(a) shows the pressuredistributionover the 2-D space

from a sourceat 30Hz. Figures9(b) through9(d) show the same form of

resultfor sourcesat 60, lO0 and 160Hzrespectively.

17
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The colorscaleis the samefor all fourfiguresand is basedon a sound

pressurelevelof OdB at a referencepointon the ductcenterlinehalfway

betweenthe frontedgeof the collectorand the nozzle. (Thisreference

pointis approximatelycoincidentwiththe positionof a testrotorhub).

In all cases,a hardwall acousticboundaryconditionexistson the diffuser

wallwith a "pc"impedanceon thecollectorand all otherradiationbound-

aries. (A "pc"impedanceis a lowreflectionboundaryconditionapproximating

to a radiationconditionfor a planeacousticwave).

Differencesin soundpressurelevelbetweenthe centerlineand a sideline

coincidentwith the opentest sectionwall,takenfromFigure9, are listed

in Table3. It may be seenthatthisdifferenceincreaseswithfrequency

from (-lOto -15dB)at 30Hzto (-25to -35dB)at 160Hz.

It is interestingto observethe structureof the radiationpatternsin

Figure9 and how theychangewith frequency.At both30 and 60Hzonlythe

primaryradiationlobeis evident.At lOOHza secondarylobemakesits

appearancewhilethe widthof the primarylobeshrinks.At 160Hz,secondary

and tertiarylobesare seenwiththe primarylobenarrowedstillfurther.

This is representativeof classicalradiationbehavior.

In FigurelO,two effectsare shown:

(1) The resultof replacingthe anechoicallytreatedtestsection

and collectorby hardwalls(FigureslO(a)and lO(b)).This

situationapproximatesto the presentenvironmentand is

includedto showa baselineconditionat sourcefrequenciesof

80 and lOOHz.

(2) The effectson the radiationlobestructureat lOOHz,of placing

an acousticliningon an II meterlongsectionof the diffuser

adjacentto the collector(FigureslO(c)and lO(d)).

It may be seenfromFigureslO(a)and lO(b)thata standingwave pattern

• existswhencollectorand testsectionwallsare set to a hard-wallacoustic

boundarycondition.Two frequenciesspacedapproxi_latelyone-thirdoctave

" apart(80and lOOHz)are shownto illustratehowthe maximaand minimaof

the standingwave patternmovewithfrequency.Sincean actualone-third

octaveband levelwouldrepresentan integrationoversucha frequencyband,
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TABLE3

TheoreticalDifferencesBetweenCenterlineReferencePoint and Wall
Sound PressureLevel in the 4 x 7 m Tunnel Open Test Section.

Figure Frequency Flow ImpedanceBoundaryCondition SPL Difference
Number (Hz) Diffuser Collector Radiation Nozzle from Centerline

Boundary Ref. to Wall (dB)

9(a) 30 No Hard pc pc pc -lO to -15

9(b) 60 No Hard pc pc pc -17 to -30

9(c) lO0 No Hard pc pc pc -19 to -35

9(d) 160 No Hard pc pc pc -25 to -35

lO(a) 80 No Hard Hard Hard pc CombinedAvg.
= -5 (Approx.)lO(b) lO0 No Hard Hard Hard pc

lO(c) lO0 No Hard pc pc pc -19 to -35

lO(d) lO0 No pc pc pc pc -20to -35

II lO0 Yes* Hard pc pc pc -25to -35

*Flow = hlach0.2 with a simpleconstantmeasuredprofilefrom Reference9
(Figure4, this report Station2).
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(a) Hardwall on Test Section, Collector,Diffuser (b) Hardwall on Test Section, Collector, Diffuse
-I_ (lOOHz)

C
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-35 (c) pc" on Test Section and Collector, Hardwall (d) "oc"on Test Section, Collector, Diffuser
on Diffuser (lOOHz) (IOOHz)

Figure I0. Theoretical Acoustic Radiation Patterns about lOOHz Showing the Effect of Various Wall Boundary Conditions
for >_oise PrGpagating into the Test Section of the 4 x 7 M Tunnel.

• Reference Point (OdB)





these two resultsare averagedto give the sound pressure level difference

from the centerlinereferencepoint to the wall. This combinedaverage

differenceis approximately-SdB (Table3).

On observingthe presenceof higher order lobes at higher frequencies,the

questionarose whetherthese could be "damped-out"by liningthe diffuser

. wallwith acousticallyabsorbantmaterial. Figure lO(d) shows a lengthened

diffusersectionwith II meters of "pc" wall impedanceat a source frequency

of lOOHz. By comparingthis case with the hardwalldiffusercase (Figure9(c),

also reproducedas Figure lO(c) for convenientcomparison)it may be seen that

the second order lobe is indeedremoved. However,the primarylobe has also

been broadened,so that the net effect on centerlineto wall SPL difference

is negligible.

Figure II shows the same case as presentedin Figures9(c) and lO(c) of

sound propagationalong a hardwalldiffuserat lOOHz intoan anechoictest

sectionwith treatedcollector. The differenceis that flow at a free-

stream velocityof Mach 0.2 has been added. A constantvelocityprofiletaken

from measured data9 (Figure4, Station2 this report)was used. Althoughthis

constantflow profile is somewhatunrealistic,it neverthelessserves to show

some interestingresults.

For sound propagatingupstream (the principalpath for fan noise identified

in Referencel), the effect of flow is to remove the higher order radiation

lobe and to refractsound towardsthe duct centerline,substantiallynarrowing

even the primaryradiationlobe. The effect of flow on upstreamsound propa-

gation is thus to increasethe differencebetweensound pressure levelson

the duct centerlineand test sectionwall to a -25 to -35dB range.

Variouschecks on other acousticvariables(e.g. Phase, AcousticFlux) were

performedto verify the integrityof the analysis. Examplesof these para-

meters are shown in the Appendix.

Becauseof rapidlyescalatingcomputationalcost for numericalsolutionsof

. aeroacousticpartialdifferentialequationsat higher frequenciesin large

spaces,the upper frequencyused for this analysiswas 160Hz. At higher

frequenciesthe establishedtrends are expectedto continuefor an anechoically

treatedtest section. That is, the differencesbetweencenterlineand side-

line sound pressure levelwill tend to increasewith increasingfrequency.
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4 CONCLUSION

The BBNreport I on "Sources, Paths and Concepts for Reduction of Noise in

the Test Section of the NASALangley 4 x 7 m Wind Tunnel" has correctly

• identified the 4 x 7 m tunnel fan and non-axisymmetric inflow to the fan

as a major problem area. The basic conclusion is that the fan is at least

• 15dB noisier than it needs to be, and that a reduction of up to 25dB might

be attainable from fan redesign and symmetrization of the inflow.

However, one notable omission appears to have been made by BBN. This omis-

sion arises from a misunderstanding of the way in which sound propagating

around the wind tunnel circuit, radiates into an anechoically test section.

The present study has shown both by calculation and by reference to measure-

ments in the DNWtunnel in Holland, that large differences (25 - 30dB) may

exist between sound pressure levels measured on a test section centerline,

and those measured close to the wall in a large anechoic open test section.

Thus, if only sideline measurements are required in a NASAacoustic wind tunnel,

then the conclusions of Reference I, regarding the need for tunnel circuit

treatment in the LaRC4 x 7 m tunnel are invalidated.

Further, interesting points have been raised by the analyses and comparisons

presented in this report. Uncertainty still exists in regard to the per-

formance of the DNWAcoustic Wind Tunnel, however, if the in-flow noise

measurements presented in Reference I0 are correct, then this implies that

the performance of the acoustically treated turning vanes installed in this

tunnel may be poor. Further study of acoustically treated turning vanes is
recommended.
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APPENDIX

AdditionalParametersCalculatedby the "ADAM"Analyses.

As verificationof the "ADAM"analysesand to providefurther insightinto

• the radiationof noise propagatingaround the wind tunnel circuit into the

test sectionof the 4 x 7 m Tunnel,additionalparametersare plotted in

, this appendix.

The only parameterneedingexplanationis acousticflux. This parameter

representsan integrationof acousticintensityover a line normalto the
tunnel centerline.

In most instances,relativelylittleacousticenergy is absorbedby the side

walls and acousticflux is almostconstantacross successivesectionsnormal

to the test sectioncenterline.
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