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Introduction

The purpose of this interim report is to outline the methods being employed

to meet the objectives of NASA Grant NAG-1-394 "Fundamental Studies of

Structure Borne Noise for Advanced Turboprop Applications." The problem

considered is the transmission of sound generated by wing mounted advanced

turboprop engines into the cabin interior via structural paths and the

comparison of the interior noise level due to the airborne and structure borne

components. The goal is the assessment of the relative importance of the two

sources of interior noise.

The structural model employed is a beam representation of the wing box

carried into the fuselage via a representative frame type of carry through

structure. The structure for the cabin cavity is a stiffened shell of

rectangular or cylindrical geometry. The structure is modelled using a finite

element formulation and the acoustic cavity is modelled using an analytical

representation appropriate for the geometry. The structural and acoustic

models are coupled by the use of hard wall cavity modes for the interior and

vacuum structural modes for the shell. The coupling method is similar to that

employed by Craggs and Lau [1] and Dowell, Gorman, and Smith [2]. In the

present study the coupling is accomplished using a combination of analytical

and finite element models. The advantage is the substantial reduction in

dimensionality achieved by modelling the interior analytically.

Mathematical Model

The mathematical model for the interior noise problem is readily

demonstrated here with a simple plate/cavity system which has all of the

features of the fuselage interior noise problem. The final model will replace

the structural representation with 3 stiffened shell and wing. The final model

for the cavity is no more detailed than described here, except that a

cylindrical geometry can be used.

A. Cavity Model

The cavity is here modelled as rectangular , with dimensions a, b, c. The

face a,b is the plate, as shown in Figure 1. The acoustic environment within

the cavity is governed by the field eyuaLiOns and 'boundary conditions

o 2p c02 p tt	 (1)

ap 
= 0 on C	 (2)

T6

-Powtt on S	
(3)

r
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where p is the acoustic pressure, n is the outward normal at the cavity walls,

Pb and co are the ambient density and speed of sound in the air within the

cavity, C is the portion of the cavity boundary which is rigid and S is the

boundary of the cavity which is structural (th y plate in the present case). w

is the displacement of the structure at the fluid/structure interface, positive

when directed outward. It is seen that the cavity acoustic pressure is driven

by the acceleration of the structural walls.

A weak formulation of the acoustic problem is written as

f
W j c[02D - 12 ptt]di{ -	 Wi[3D + POwtt]dA

iF
	 CO2

 S

-
J 3 

Wi 
an 

dA = 0	 (4)

CC

where the sum of the volume weighted residual of the field equation for a trial

solution p from the class of continuous functions and the surface-weighted

boundary residuals vanish for all weighting functions W-, from the class of

continuous functions. If the weighting functions are constructed from the

complete orthogonal set defined by solutions of

2

v 2W + 0	 W = 0	 (5)
c02

t

VW - n = 0 on C and S

then the weak formulation can be written, after two applications of the

divergence theorem, as

fffWi ^Ptt + ^2 P] dV + ff pO c 0 2 W i w ttdA = 0	 (6)

-̂ L 	 S

Next, the trial solution is constructed from the same complete orthogonal

set defined by equation (5)

P =	 A i W i( x , y , Z ) = [41(x,y,Z)] (A) 	 (7)

where rb^(x,y,z)] is a ro ,.r vector of acoustic hardwall mode shapes. Equation

(6) now becomes

fJ ([WITEW, [Att} +	 S12 ]LW]TLW]tA})dV-

V
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+ pOcO2 ff[W]TwttdA = 0	 (8)

S

By virtue of the orthogonality properties of the acoustic hardwall mode shapes

defined by equation (5) it is found that

Af[w]T[W]AL	 Nnn	 (9)
V-

where [ Nnn IJ is a diagonal matrix of "acoustic generalized masses." Equation (8)

becomes

Nnn`](Att) + ^ Q2 ']C Nnn-](A) = - pO c O 2 ff [W]TwttdA	 (10)

S
Equation (10) yields the unknown amplitude coefficients in the acoustic

pressure representation of equation (7) for specified structural wall

acceleration w tt . For the rectangular cavity discussed here the acoustic

hardwall modes are

	

W i = Wkmn = 
coskTr 

a 
cosm7r 

b 
cosm 7r z
	

(11)

B. Structural Model

The structural model discussed here is a simple uniform plate of dimension

a,b. The dynamics of the plate are described by the familiar result

D o a w + ph wtt = -(Pa - P)
	

(12)

where

D =

	

	 Eh3
12(1-v2)

E = Young's modulus

h = plate thickness

v = Poisson's Ratio

p = plate mass density

[	 The applied pressure lcadingis p a and the pressure loading due to the cavity

is p. The sign convention is set up so that the positive plate displacement is

out of the cavity, consistent with the cavity model. Boundary conditions on

the plate can be specified a; desired. For fuselage modelling the plate or

shell model would h,jve built in edges. For the present discussion,wher p -IL is

a ! p ► 	 sM5
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convenient to speak in terms of an analytical representation of the mode shapes,

it is simpler to use a simply supported condition.

A weighted residuals formulation for the plate can be written

k
i [ D V4 w+ ph w t t+ Pa -  p] d A= 0	 (13)

S

This becomes a classical Galerkin formulation if we choose the weighting

functions ^i to be solutions of

D V 4 ^ i - ph"21pi = 0	 (14)

with the same boundary conditions as the plate and also expand the solution w

in terms of these functions

w ( x , y ) = EgnVn( x , y ) = [V][ q ]	 (15)

where [^] is a row matrix of eigenfunctions.

If a finite element formulation is used the expansion is given by

w ( x , y ) = [ N ]['Y] i q }
	

(16)

where [N] is a global shape function matrix (interpolation matrix) and [Y] is

the model matrix (matrix with eigenvectors as columns) determined from a finite

element solution of equation (14). The interpolation matrix is not explicitly

defined globally, but consistent with finite element methods is defined on

subdomains (elements). In the case of the plate the shape functions have

continuous first derivatives. Equation (13) is written in terms of the unknown

modal amplitudes as

ff ph ([Yl T [T]( g tt) + L'w 2 ^1[w] T [T q})dA

S	
f

= 
f
f [T] TpdA - ff [TI T p a dA	 (17)

The plate modes are orthogonal according to

ff ph[Y] T [T]dA = [` M nn']	 (18)
S

11
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Equation (17) now becomes

[` M nn' ] {q tt ) + [' w -1[ M nn ]{q) = ff [Y]TpdA - ff [T] T pa dA	 (19)

When finite element methods are used to obtain the mode shapes, equation

(19) is written

[` Mnn-]{gtt) + [ W '][ M nn ,] { q ) = [Y]T J f [N] T pdA - [Y] T ff [N] T pa dA	 (20)

The coupled plate and cavity equations are now (10) and (20)

[ N nn .]{q tt } + [ w 2 _][ Mnn ,]{q) - [T ]T ff [N] TpdA = [Y] T
 fj [N]TpadA

(21)

N nn-]{ A tt) + [ Q2 ,][Nnn.] {A} + p O c 0 2 ff [ W ] Twtt dA = 0

S

The integrals [Y] T ff[N] Tpdi and pOcO2 K [W] TwttdA are coupling matrices

which can be rewritten using equations (7) and (16)

[Y] T f [N] TpdA = [Y] T fj [N]T[W]dA{A}	 (22)

p0002 ff [W]TwttdA = 
p O c O2 ff [ W ] T [ N ] dA [Y]{ g tt)	 (23)

S	 S
If we introduce the definition

[e] = [Y] T ff [N]T[W]dA
S

then equations (21) can be written

[` M nn `]{ q tt } + [` w2 -11- M nn .]{q} - [g]{A) = [F]{p)
	

(24)

N nn']{Att ) + [` w2,][1- N nn.]{ A } + p0002[6]T {gtt) = 0
	

(25)

where we have interpolated pa according to

Pa = [N]{pa)

with (pa ) being nodal values of pa (and derivatives if required) and

i

^+ F W



Wa- a	 --

[ F ] = [`O]T ff [N]T[N]dA
	

(26)

S

Equations (22) and (23) show that the coupling matrices are related to

transposes of one another. The ititegrals in equations (22) and (23) and the

integral defining [F] in equation (26) can be evaluated by usual finite element

techniques of integration over subdomains (elements) using shape functions

which are explicitly defined on the subdomain.

In the ,ise of the plate, the shape functions are Hermitian polynomials

which in the rectangular plate geometry load to conforming elements with

complete slope continuity at element boundaries. In a completely consistent

formulation of the integrals in equations (22), (23), and (26) the shape

functions implied by the global shape matrix [N] should be Hermitian as

required by i.he finite element analysis of equation (14) which leads to the

modal expansion of equation (16). The finite element analysis of equation (14)

to obtain the modal matrix [T] certainly requi, •es slope continuity in the shape

functions. The coupling matrix [A] does not require this much continuity and an

interpolation based on only the nodal values of the weighting functions and the

pressure or plate displacements is satisfactory. Hence, the most versatile

procedure would evaluate the coupling matrix [A] and input generalized force

distribution matrix [F] with the element shape matrices representing quadratic

interpolation on 8 or 9 noded isoparametric elements. The modal matrix [T] is

compressed to include only the displacement degrees of freedom. This procedure

results in no detectable compromise in accuracy and allows experimentation with

element types for the plate (or shell) model without requiring a reformulation

of the coupling matrix computation.

Equations (24) and (25) represent a set of coupled second order ordinary

differential equations with generalized coordinates representing the plate

modal amplitudes and the acoustic cavity modal amplitudes. Dissipation is not

explicitly included in these equations but can easily be included as structural

damping 'n the plate generalized stiffness matrix or as an equivalent viscous

damping. Dissipative walls in the cavity can also be modelled.

Equations (24) and (25) can be written in the form of a general dynamic

system

[M](xI + [C]{x) + [K] {xI = (QI	 (27)

where the generalized coordinates {x) are the vectors (q) and (AI and the

matrices [M] and [K] can be constructed from equations (24) and (25). The

viscous damping matrix can be constructed from equivalent damping for the

0
r



structure or for dissipative walls. The generalized force vector IQ) is also

easily identifiable in equations (24) and (25).

The model for a stiffened fuselage structure is more complicated only in

the structural modelling. All steps taken here will apply, however the finite

element model for the structural mode shapes will be mo-e complicated.

Solution Methods

It is presumed that the acoustic input to the structure is given in terms

of its Fourier spectrum. That is

Q 	 _ f ^Q(t) e -1wt dt	 (28)

- cc

where Q(w) is the Fourier spectrum in

Q( t ) = 2-,T	
^Q(w) eiwtdw
	

(29)

Fourier Transform methods lead to the solution for the Fourier Spectra of the

output generalized coordinates

IX(w)) = [D(w)]-IIQ(w)) 	 (30)

where [D(w)] is defined by

	

[D(w)] = [K] - w2 [M] + iw[C]	 (31)

The acoustic pressure at any point within the cavity can be obtained from

the acoustical modal amplitudes contained in IX(w)). Write

[A(w)) = [Ta(w)]IQ(w))	 (32)

where [T a (w)] is the acoustic transfer function which is obtained by deleting

rows from [D(w)] -I corresponding to the plate degrees of freedom. The acoustic

pressure is obtained from

	

P ( X , y , z , w) = [W(x,y,z)][A(w))
	

1

= [W(X,y,z)]FTa(w)]IQ(w))	 (33)



The energy density spectrum for the acoustic response at a po;nt in the cavity

.s determined from the definition of the autocorrelatiun

$( T ) = f P(t)p(t + T)dT

_00

and its Fourier Transform

^P ( w ) = f ^(T)e -
iWTd, =
 

p ((, ) 12

_W

The inverse relationship

	

^(T)	 ZTT f I 

P(w) I2eiwTdw

_w

leads to the conclusion

^(0) = f ^p 2 (t)dt = 
1- 
f mIp(W)12dw  = f OOIp(f)12df`

	

CO_ 	 -00	 _m

This identifies the energy density spectrum Ip(f)12 as a measure of the system
CO

response since the "total energy" fm p 2 (t)dt is given by an integral over all

frequencies of the energy density. From equation (33)

I p (w)I 2 
= {Q*(w)}T[Ta*(w)]T[W]T[W][Ta(w)]{Q(w)}

where the star represents the complex conjugate. The volume average of this is

p-) 
	 = 

IQ(

	

11 	 N nn ][Ta(w)]{Q(w)}

where [ N nn ] is defined by equation (9). Hence we write

( p (w)I 2 = {A*(w)} T [ Nnn ]{A(w))

=	 N nn IAn(w) 12	 (34)

A suitable measu-e of the cavity response is thus the weighted ^,um of Lhe

absolute values squared of the acoustic modal amplitudes. A suitable

normalization of the cavity modes could be used to make the weighting factors

Nnn unity.
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Results

The major effort to date has been expended in verification of the computer

implementation. The following tasks have been indertaken:

(1) Evaluation of plate elements with emphasis on convergence to exact

free vibration mode shapes. This has established the Hermitian

element as superior.

(2) Evaluation of shell elements, again with emphasis on`-ee vibration

convergence. The 32 degrees of freedom extension of the

Bogner-Schmidt plate element produces the best results in the present

case.

(3) D^tailed comparisons of fully analytic and combination finite

element/analytic modes for the rectangular cavity - plate systew.

These comparisons were performed to verify the essential features of

the coding relating to the coupling of the plate and cavity. Figure 2

shows a response spectrum for a plate-cavity system generated from a

finite Element plate model a-id analytic cavity model. Comparison witti

computations of Craggs and Lau is good. Comparison with a fully

analytic modal representation for both plate and cavity is excellent.

The results for the fully analytic model is shown on a different scale

in Figure 3.

(4) Substantial progress has been made in the finite element modelling of

stiffened plates and shells. These will be coupled with the analytic

cavity models in the near future.

Effort will be started to couple the wing to the plate and shell models and

to synthesize a reasonable model for propeller interaction with the wing as a

noise source model. An available propeller noise prediction program will be

used to derive an equivalent airborne noise field for the purposes of comparing

the airborne and structure borne interior noise.

t"
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Figure 1. Plate Cavity System.
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