DESIGN OF A VARIABLE-FOCAL-LENGTH OPTICAL SYSTEM

FINAL REPORT

by

Douglas Ricks and
Robert R. Shannon

September 15, 1984

Contract 955678, Work Order 20

Optical Sciences Center
University of Arizona
Tucson, Arizona 85721

This work was performed for the Jet Propulsion Laboratory, California Institute of Technology sponsored by the National Aeronautics and Space Administration under Contract 955678.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Computer Study</td>
<td>6</td>
</tr>
<tr>
<td>Patents</td>
<td>11</td>
</tr>
<tr>
<td>Correspondence</td>
<td>12</td>
</tr>
<tr>
<td>Conclusions and Recommendations</td>
<td>15</td>
</tr>
<tr>
<td>Literature</td>
<td>17</td>
</tr>
<tr>
<td>Appendix A: Optical System Patents</td>
<td>21</td>
</tr>
<tr>
<td>Appendix B: Ray Fan Plots</td>
<td>39</td>
</tr>
<tr>
<td>Appendix C: Company Information</td>
<td>44</td>
</tr>
<tr>
<td>Appendix D: Preliminary Refractive Design</td>
<td>58</td>
</tr>
<tr>
<td>Appendix E: Preliminary Catadioptric Design</td>
<td>70</td>
</tr>
</tbody>
</table>
INTRODUCTION

The purpose of this study was to examine the possibility of designing a zoom lens appropriate for use on a comet explorer. The system requirements were as follows:

- **Variable focal length**: 200 to 2000 mm
- **Image size**: 18.6 x 18.6 mm
- **Resolution MTF**: 50% at 28 line pairs/mm
- **Spectral range**: 500 to 1000 nm
- **Volume**: 30 x 30 x 70 cm
- **Back focal distance**: 90 mm
- **Object focal distance**: 10 mm to infinity

The general requirements were to design a system with a variable focal length ranging from 20 to 200 cm with an overall length somewhat less than 100 cm. The requirement to place the entire system within a length less than the maximum focal length placed severe restrictions upon the design. The requirement of a wavelength range of 0.4 to 1.0 μm produced an even greater limitation upon the possibilities for a design that included a catadioptric front end followed by a zooming refractive portion.

There were other requirements relating to the range of focal distances needed and the weight and specific package within which the lens would fit. These requirements were considered of secondary importance to the major question of whether a lens could be designed to fit within the length constraints.
To examine the possibility of such an optical system, some potential designs were examined by Mr. Douglas Ricks. He began the project as a class exercise and continued it through the summer period, but had to stop work and return to his employer in mid summer. Therefore, a successful design meeting all of the space and wavelength requirements was not completed. Some of the designs investigated have the potential of being carried on toward a final design, but meeting the space, wavelength, and zoom range requirements does not seem to be possible. It may be necessary to make some compromises in the specifications or the operational approach in order to obtain a useful system.

A survey was carried out of presently available zoom systems. One approach showed the possibility of meeting the requirements and should be followed up.

The requirement for the wide wavelength range necessitates the use of a catadioptric front end for the system. As a consequence, there are some limitations on what can be accomplished. To estimate the effect of the wavelength range on the design, some simple examples were considered. For a refractive system, the amount of aberration blur in the paraxial focal plane resulting from secondary residual color is given by about $d/2400$, where d is the diameter of the aperture of the lens, for a wavelength range of 0.48 to 0.66 μm, or a spectral width of about 0.2 μm. The requirement for this lens is a spectral width of about 0.6 μm. Since the amount of the blur is related to the square of the wavelength range, this leads to a blur of about $d/400$. Refocusing
should lead to a reduction of the blur by about a factor of 2, leading to a factor of \(\frac{d}{1000} \) as reasonable for an estimate. Table 1 shows the estimated effect of this aberration on the system at various focal lengths for a relative aperture of f/8.

Table 1. Approximate Effect of Secondary Chromatic Aberration on an f/8 Refractive Lens System.

<table>
<thead>
<tr>
<th>Focal length (mm)</th>
<th>Aperture diameter (mm)</th>
<th>Color blur (mm)</th>
<th>lp/mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>25</td>
<td>0.025</td>
<td>40.000</td>
</tr>
<tr>
<td>400</td>
<td>50</td>
<td>0.050</td>
<td>20.000</td>
</tr>
<tr>
<td>800</td>
<td>100</td>
<td>0.100</td>
<td>10.000</td>
</tr>
<tr>
<td>1200</td>
<td>150</td>
<td>0.150</td>
<td>6.667</td>
</tr>
<tr>
<td>1800</td>
<td>225</td>
<td>0.225</td>
<td>4.444</td>
</tr>
<tr>
<td>2000</td>
<td>250</td>
<td>0.250</td>
<td>4.000</td>
</tr>
</tbody>
</table>

This table indicates that, if no other aberrations are present, the spectral width limits the resolution as shown. Since the likely detector will have a sample distance of about 0.02 mm, a required level of resolution at this stage is 1.04 or 25 lines per millimeter. This system would be acceptable only at short focal lengths.

If a reflective front end were to be used, the size of the blur would be reduced in direct proportion to the demagnification of the aperture entering the refractive zoom system. If a reduction of 3 times
is used, then the effective multiplier in the determination of the residual color blur becomes \(d/3000 \). Table 2 shows some values for this case.

Table 2. Approximate Effect of Secondary Color on a Catadioptric.

<table>
<thead>
<tr>
<th>Focal length (mm)</th>
<th>Aperture diameter (mm)</th>
<th>Color blur (mm)</th>
<th>lp/mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>25</td>
<td>0.008</td>
<td>20.000</td>
</tr>
<tr>
<td>400</td>
<td>50</td>
<td>0.017</td>
<td>60.000</td>
</tr>
<tr>
<td>800</td>
<td>100</td>
<td>0.033</td>
<td>30.000</td>
</tr>
<tr>
<td>1200</td>
<td>150</td>
<td>0.050</td>
<td>20.000</td>
</tr>
<tr>
<td>1800</td>
<td>225</td>
<td>0.075</td>
<td>13.333</td>
</tr>
<tr>
<td>2000</td>
<td>250</td>
<td>0.083</td>
<td>12.000</td>
</tr>
</tbody>
</table>

The limiting resolution for this case can now be used as a starting point. Therefore, we can see that the color requirements lead to a catadioptric system.

There is another problem to be considered. The requirement for a central obstruction means that there will be an obstruction of variable size in the system, with a proportionately larger obstruction for the shorter focal lengths. This needs to be worked out as a compromise in the final design, and might be inappropriate for this set of requirements. In addition, if an object is at a finite distance, the
centrally obscured aperture will produce a normally undesirable "donut" effect from out-of-focus glints.

The above discussion is only an initial one. The use of special glasses and clever trading of space versus number of elements change the results somewhat. However, these do represent material limits upon image quality and will influence the design.

In the following sections, Mr. Ricks discusses his design work on the refractive and catadioptric system. A brief survey of the state of the art follows, at least as far as could be ascertained during the time available.

The final conclusion is to look at the possible modification of an existing design before proceeding to the full design of a new type of system.
COMPUTER STUDY

The investigation of zoom lenses began with a three-lens system based on design formulas from Modern Optical Engineering. These formulas can be expressed as:

\[R = \sqrt{M}, \]

where \(M \) is the zoom ratio,

\[\phi_A = \frac{(R-1)/R}{L-(3R-1)(R+1)/4\phi R}; \]

is the power of the first lens,

\[\phi_B = -\phi_A(R+1); \]

is the power of the second lens,

\[\phi_C = [\phi_A(R+1) + \phi(4/R+1)]R/(3R-1) \]

is the power of the third lens, and \(L \) is the length from the first lens to the image plane.

It can be seen that for a zoom ratio of 10, the power of the second lens is more than four times the power of the first lens. When the length \(L \) is small, the denominator of the expression for the power of lens \(A \) is near zero, hence the power of lens \(A \) is large. A short zoom
lens with large zoom ratio causes the powers of all the lens elements to be large. Large powers mean large aberrations that usually require splitting each lens into a number of lenses so that the power per lens is reduced. Furthermore, higher refractive indices are necessary so that higher powers can be achieved for the same surface curvature.

The three-lens system required too much power per element and was difficult to make continuous. Therefore a four-lens system was decided upon.

The function of the first lens, when positive, is to collect the light and begin to focus it. If the second lens is negative, it can create a telephoto effect. When the second lens is close to the first lens, the focal length is at a minimum. Increasing the separation of the lenses increases the focal length.

The third lens moves to keep the image plane stationary. The fourth lens balances the powers and provides control of the aberrations. In Zoom Lenses by A. D. Clark, various types of zoom lenses are categorized according to whether the image plane is held stationary by a nonlinear movement of a lens (the mechanically compensated type) or allowed to vary slightly (as in the optically compensated type). Clark lists five types of mechanically compensated zoom lenses and three types of optically compensated lenses. When the first and fourth lenses are held fixed, the second lens is negative and the third lens is positive we have a Type-2 lens; if the third lens is negative, we have a Type-3 lens.

The Type-2 design was used with the variation of having the fourth lens negative instead of positive. Later, as the lens was optimized, the
last lens became positive. In the Type-4 lens there are three moving lenses between stationary lenses, though the second and fourth lenses usually move together. The Type-5 lens has negative lenses in place of the positive lenses of Type 4 and vice versa. Types 4 and 5 combine the virtues of optically and mechanically compensated lenses, but appear to be more difficult to design. Mechanically, they are also more complicated.

After finding a solution for the powers and positions of each lens to provide a 10:1 zoom ratio of focal lengths from 200 mm to 2000 mm in a space less than 70 cm, an attempt to reduce the extremely large aberrations was made by making each lens into three elements. Each positive lens was split into two positive elements and a negative element, each negative lens into two negative elements and a positive element. The purpose of adding a negative element to a positive lens group is to better control aberrations. It is also necessary to make the positive and negative elements of different glass types. The positive elements are crown glasses with low dispersion, the negative elements are flint glasses of high dispersion.

While the addition of a negative lens of high dispersion will help to control aberrations, it does require that the positive lens have even greater lens power. An increase in lens surfaces and glass types as variables creates a gain, but the stronger curvatures cause a loss. To increase the correction available during computer optimization, one surface in each lens group was made an aspheric surface.
This lens design was faced with too many problems to promise a good solution. The chromatic aberrations were very large and troublesome. The large apertures and high curvatures meant aberration control could be achieved only by balancing high-order aberrations such that a little change somewhere immediately made everything worse. Of course it is impossible to know for certain, but it began to look like the design would require more than 20 lens elements and would be very slow to correct. When the paraxial aberrations do not provide good approximations (as when the apertures are large and powers are high as in this case) real rays must be traced. When there are a lot of surfaces and several zoom configurations, the optimization becomes extremely slow. Furthermore, it becomes important to choose carefully which variables to use in the optimization and how much weight should be placed on them. Improvements do not snap into place.

The catadioptric system offers several attractive advantages. There are no chromatic aberrations in a mirror. The aberrations are generally reduced because a mirror can provide greater lens power for a given curvature than a glass element can. Furthermore, a mirror system will fold a system that would be much longer if realized with glass optics alone. On the other hand, there are difficulties with providing an iris for relative aperture control.

When the catadioptric system was designed to keep the size of the lens elements reasonable, an intermediate focal plane was needed. A lens was placed in this focal plane to "relay" the image. The mirror surfaces were aspheric and a corrector plate was placed in front.
Basically the mirror system concept seems to work well. The mirrors do most of the light collection and focusing without introducing a lot of aberrations. With the relay lens the glass elements can be kept small, so the entire system should be rather lightweight.

In the mirror system the wide angles of the shorter focal lengths becomes a problem. It was decided to concentrate on the focal range of 360 mm to 2000 mm. The extreme wavelength range made it difficult to obtain good aberration correction, so the range was reduced to 0.435 μm to 0.70 μm. This was a great improvement.

In the catadioptric design selected, the zooming is accomplished by moving glass elements after the mirror elements. The room available here is not great (about 40 cm) and the lens powers were still high. A zoom system of all positive lenses significantly reduces the powers necessary. It also presents other problems, i.e., it was necessary to add a "field flattener" just before the focal plane to reduce the field curvature.

Because of the central obscuration (from the secondary mirror) the clear aperture necessary to obtain a constant light intensity on the image plane throughout the zoom range is more complicated. At the shorter focal lengths only a small ring of aperture is available, thus reducing the MTF values.
PATENTS

Three zoom lens patents were received from the U. S. Patent Office (see Appendix A). The patent numbers were found in the book *Zoom Lenses* by A. D. Clark. The most recent of these patents is, unfortunately, more than 20 years old. A great deal of progress has been made in zoom lenses since then. These patents describe useful general design considerations. Two of the patents give refractive index and Abbé numbers for a representative system.

The ACCOSV zoom system described by Takeno's patent was put on. The system has 32 independent glass surfaces, and uses 13 different types of glasses—many of them exotic. Since only the refractive index and Abbé number were given, the exact glasses used were not known. Although described as compact, when scaled up to the 200- to 2000-mm focal length requirements, the system became extremely long (2878 mm). Furthermore, the correction at 0.4 μm and 1.0 μm was terrible, although this may be due to an error made in glass selection. Ray fan plots are shown in Appendix B. The lens was rescaled to conform to the length requirements, but the aberrations were tremendous with the increased element powers to achieve the desired focal lengths. No doubt further computer optimization could reduce aberrations and maintain physical length and focal lengths.
Letters were sent to seven companies that manufacture zoom lenses. The names and addresses are given in Appendix C. Of these companies, replies were received from three: Celestron, Angenieux, and Zoomar. In fact, Angenieux sent two replies from separate branch offices.

The first from Angenieux said that their zoom 10x18-T2 lens might work, although the back focal length was only 50 mm. To reach a longer back focal length, the zoom 10 x 40-T1 was needed. These lenses have a maximum focal length of only 180 mm and 400 mm. The f/number varies with the focal length.

The second reply from Angenieux was from a different office that had received the inquiry via Arriflex. They claimed to be able to meet the requirements with one of their 42x zoom lenses. Table 3 lists the requirements and how well the various commercial products meet those requirements. Further information is provided in Appendix C.

Celestron did not have what was required. They do sell telescopes of the appropriate focal length and zoom oculars, but these zoom oculars would allow a zoom ratio of only about 2x and are for visual and not camera or photographic use.

The Zoomar Universal Tracker combination is a system that can be adapted to various cameras, vidicons, or other instruments. The basic unit has a maximum focal length of 900 mm, but Zoomar can provide a 2x extender to increase this to 1800 mm. Frequently Zoomar modifies their products to meet customer requirements. The Universal Tracker comes with a 4-post filter wheel and has little room otherwise between lens and image plane.
Table 3. Comparison of Some Commercial Zoom Lenses.

<table>
<thead>
<tr>
<th></th>
<th>Angenieux 10x18-T2</th>
<th>Angenieux 10x40-T1</th>
<th>Angenieux 42x24</th>
<th>Angenieux 42x32</th>
<th>Zoomar with 2X extender universal tracking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focal length (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>18</td>
<td>40</td>
<td>24</td>
<td>32</td>
<td>180</td>
</tr>
<tr>
<td>Maximum</td>
<td>180</td>
<td>400</td>
<td>1000</td>
<td>1350</td>
<td>1800</td>
</tr>
<tr>
<td>Relative aperture</td>
<td>f/2.5</td>
<td>f/1.5</td>
<td>f/1.7-</td>
<td>f/2.3-</td>
<td>f/11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>f/5.7</td>
<td>f/7.6</td>
<td></td>
</tr>
<tr>
<td>Image size diam. (mm)</td>
<td>16</td>
<td>21.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum object distance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 m</td>
<td>4 m</td>
<td></td>
<td></td>
<td>800 ft</td>
</tr>
<tr>
<td>Size</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height (mm)</td>
<td>190</td>
<td>190</td>
<td></td>
<td></td>
<td>300</td>
</tr>
<tr>
<td>Width (mm)</td>
<td>220</td>
<td>220</td>
<td></td>
<td></td>
<td>200</td>
</tr>
<tr>
<td>Length (mm)</td>
<td>~700</td>
<td>~700</td>
<td></td>
<td></td>
<td>700-800</td>
</tr>
<tr>
<td>Weight (lb)</td>
<td>~75</td>
<td>~75</td>
<td></td>
<td></td>
<td>60-90</td>
</tr>
<tr>
<td>Resolution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50% MTF at center (l/mm)</td>
<td>~15</td>
<td>~15</td>
<td></td>
<td></td>
<td>~25</td>
</tr>
<tr>
<td>25% MTF at corner (l/mm)</td>
<td>~15</td>
<td>~15</td>
<td></td>
<td></td>
<td>~25</td>
</tr>
</tbody>
</table>
One requirement not specifically addressed by the commercial suppliers of zoom lenses is the performance of the lens at wavelengths other than the primary design wavelength. Angenieux shows that the transmission drops off to about 15% and 25% at 0.4 μm and 1.0 μm respectively. Neither Angenieux nor Zoomar shows how the MTF depends on wavelength.
CONCLUSIONS AND RECOMMENDATIONS

The refractive-optics zoom lens design created for this project must be improved before the aberrations can be reduced sufficiently for the required resolution. While improvements could be made with further computer optimization, an additional six or more elements would probably be required. Several of these would be large and utilize expensive, exotic glasses. Probably several aspheric components would also be necessary. It is possible that no reasonable amount of effort nor addition of lens elements would improve the lens performance sufficiently. The basic problems include too much variation of focal length, too large a focal length, too wide a spectral range, and too compact a space requirement. The present preliminary design is given in Appendix D.

A catadioptric system, that is, a system with both mirror and glass components, was also investigated. The degree of aberration control is much greater in this system. To some extent this is because more time was spent optimizing this system than was spent optimizing the refractive optics system. The catadioptric system started out with lower aberrations. Furthermore, the spectral width and the zoom ratio were reduced so further progress could easily be made. Further optimization would certainly be possible, but meeting the resolution and spectral range requirements would very likely require several more components. The catadioptric system has good chromatic aberration control and low light loss, but stray light control and relative aperture control are not as good. Details of this preliminary design are
found in Appendix E.

In conclusion, the refractive optics design would be heavy, require numerous elements, be difficult and time consuming to perfect, and may be unsuitable for near-ultraviolet and near-infrared wavelengths. The catadioptric system would also require more optimization, possibly a few more elements, and would have a restricted zoom range of about 360 to 2000 mm. Of the two designs, the catadioptric system probably has the best chance of success, as long as the shortest focal lengths are not really needed.

Zoomar Corporation has an existing catadioptric with zoom that begins to approach the requirements. A suggested approach is to determine if Zoomar can modify their present lens to fit the space and weight requirements. The extent to which this can be done can be estimated from the current design work.
LITERATURE

The following is a list of some interesting sources of information on zoom lenses. A brief description of some useful ideas in each reference is included.

An excellent source of information on zoom lenses. The small book includes a brief history, descriptions of mechanically and optically compensated zoom lenses, design formulas, information on focusing, and mechanical factors. There are a couple of dozen patent numbers given, drawings, and information on usage of various types of zoom lenses.

There are descriptions of five types of mechanically compensated lenses (our refractive lens design is Type 2) and three types of optically compensated lenses. Curvatures and glass types are not given.

This book contains a good introduction to zoom lenses and some helpful ideas for mirror lens systems. There are descriptions of
four types of mechanically compensated zoom lenses. There are three pages of tables listing zoom lenses and 38 drawings. The longest focal length given is 40 inches. Specific lens curvatures or glass types are not given.

There is a wealth of useful information on the mechanical aspects of zoom lenses in this book (the details of cam movements and so forth). Several of the systems described have zoom ratios of 10:1 or more. The zoom lenses illustrated have between 14 and 31 elements. Again, no specific design information for optical design.

The book also points out some of the advantages and disadvantages of mirror or catadioptric systems: freedom from chromatic aberration, low-light absorption, wide range of wavelengths, support of optical surfaces from the back. It mentions that adjustments to relative aperture are "impossible."

In many mirror systems there are glass elements that optically come after the secondary mirror but physically come between the
two mirrors. Apparently with the proper baffles, you can get away with this. It might help to provide room for the movement of the glass zoom components thus reducing element powers and improving aberration control.

Another interesting point was that the last lens group frequently contains six or more elements to reduce system aberrations. Distortion is always a problem in a zoom lens.

There is a rather good discussion on methods of design for close focusing. There are about 20 pages of a table listing zoom lenses. There are a few 10:1 zoom ratio lenses, one made by Fujinon goes from 80 to 800 mm for a TV format.

Some help for the design of mirror lenses and for first-order zoom lenses.

This article describes some ways to achieve close focusing. Basically, one uses a positive and a negative lens of equal but opposite power. Moving them apart affects the distance the object must be from the lens to be in focus. There is a description of a zoom lens which is somewhat between an optically compensated and a mechanically compensated lens.

It was found that special glasses were not necessary for use in space. The design did avoid cemented doublets to make sure outgassing would not be a problem.

Contains a good discussion of catadioptric systems. There are also some useful formulas for the design of a Type-1 (Clark's categories) zoom lens.
APPENDIX A

OPTICAL SYSTEM PATENTS
Fig. 3.

Fig. 4.

\[a_1 + a_2 \]

\[d_1 \]

\[10 \ 20 \ 30 \ 40 \ 50 \ 60 \ 70 \ 80 \ 90 \]

INVENTOR
H. H. Hopkins

By W. G. Brimble
Attorneys
VARIABLE MAGNIFICATION OPTICAL SYSTEMS

Application October 5, 1954. Serial No. 456,361
Claims priority, application Great Britain October 9, 1953
13 Claims. (Cl. 78—57)

The invention relates to variable magnification optical systems of the kind (previously referred to as the kind described) which may be used alone or in conjunction with a further optical system (e.g. the lens system of a camera) to produce an image of continuously variable size of an object at a fixed distance from the system. Such a system may be used, for example in or with a stationary cine camera or television transmitting camera in order continuously to increase or decrease the size of the image on the film or other image receiving device, of objects in the scene towards which the camera is directed and thereby to give the impression when the film is processed, or the television receiver is viewed, that the viewpoint approaches or recedes from objects in the scene.

It is an object of the invention to provide an improved variable magnification optical system of the kind described.

The invention provides a variable magnification optical system comprising two positive (convergent) lenses and a negative (divergent) lens, all arranged on a common optical axis with the two positive lenses spaced apart and the negative lens between the two positive lenses and spaced from at least one of them, the lenses being movable relatively and the positive lenses being constrained to maintain a constant axial distance between them during their movement, and in combination with the lenses, magnification varying means for continuously and simultaneously moving the two positive lenses and the negative lens along the optical axis relative to a stationary base or line support according to a law such that the distance from the fixed point on the base at which the image of an object from the said fixed point is on the base is accurately focussed remains constant while the size of the said image is continuously varied during the operation of the magnification varying means, the distance between the image position for the rear one of the said positive lenses being finite and not greater numerically than a small multiple of (e.g. 10 times, or more preferably 7 times) the focal length of either of the said movable lenses. This list mentioned condition ensure that the optical distance for the front movable lens and the image distance for the rear movable positive lenses are both finite, and continuous linear magnifications produced by each of the said positive lenses change as the positions of these lenses are changed by the operation of the magnification varying means.

It is to be appreciated that when the system includes one or more lenses interposed between the rear one of the said positive lenses and the final image position for the system, the said image position for that rear one of the said positive lenses will be the position of the intermediate real or virtual image formed by that rear positive lens, otherwise it will be the position of the final image for the system. Similarly, when the system includes one or more lenses interposed between the other (front) one of the said positive lenses and the final object position the said conjugate object position for the front one of the said positive lenses will be the intermediate real or virtual image which acts as the effective object for that front positive lens, otherwise it will be the actual object position for the system.

Furthermore the system is preferably designed and used so that the magnifications of the two movable positive lenses are of like sign, preferably such that each movable positive lens produces an inverted image of the effective object for that lens. This preferred condition is satisfied if the object distance for the front movable positive lens is negative in sign and numerically greater than the focal length of the said front movable positive lens, and the image distance for the rear movable positive lens is negative in sign and numerically greater than the focal length of the said rear movable positive lens, as object distance being represented as the said object position or image in front of or at the rear of the lens to which it refers. When the magnifications of the two movable positive lenses are so arranged to be of like sign in any given position of the said movable positive lenses, the said magnifications change in such a manner that the lenses are designed as described above, that they both increase together or decrease together in numerical value, succeeding as the said distance of the movable positive lens is in one direction or the other, and hence both act in the same sense as their direct increasing or decreasing the size of the fixed final image is concerned. When the said movable positive lenses are displaced relative to the base by the operation of the magnification varying means, the movable negative lens is simultaneously displaced by the said magnification varying means by a amount such that the distance from the object in a fixed position relative to the base to the image of that object produced by the action of the two movable positive lenses and the movable negative lens taken together remains constant.

There will be, in general, two positions of the movable negative lens for which this condition is satisfied and to distinguish between these positions the movement of the movable negative lens relative to that of the movable positive lenses is preferably arranged such that the magnification of the movable negative lens increases or decreases numerically according as the magnifications of the movable positive lenses increase or decrease in numerical value. The individual magnifications of the three movable lenses then simultaneously and continuously increase or decrease in numerical value, the magnifications of the said three movable lenses are simultaneously and continuously varied by the operation of the magnification varying means, and this constitutes a valuable preferred feature of the invention.

The ranges of movement of the lenses are preferably such that the maximum and minimum magnifications of the system are reciprocals of one another. This is advantageous in converting the aberrations of the system.

The two movable positive lenses preferably have equal focal lengths and the movements of the three movable lenses are preferably such that during their range of movement the positions of the negative lens remain constant and the two positive lenses change from near one of the positive lenses to give one limit value of magnification) to near the other of the positive lenses (to give another limit value of magnification, which limit value is the re-
3

circular of the other limit value). The focal lengths of the lenses of the system are preferably such as to give approximately equal amounts of positive and negative power to the system. The maximum distance through which it is necessary for the movable lenses to be moved has been found to depend upon the value of the said constant axial distance between the two positive lenses. It has been found that the necessary displacement of the negative lens, relative to a fixed point on the base, is in one sense for small values of the constant axial distance between the two positive lenses and in the opposite sense for smaller larger values of that constant distance. To simplify the mechanical design of the magnification varying means the value of the constant axial distance between the two positive lenses may be chosen so that the distance through which the negative lens has to be moved is at a minimum or at least small. To satisfy other conditions, however, e.g., correction of aberrations it may be desirable to employ a different constant axial distance between the positive lenses and consequently to move the negative lens through a larger distance. It has been found that an increase in the value of the constant axial distance between the two positive lenses results in it being necessary to move those lenses through a smaller distance relative to the base to achieve any given range of magnification and that, alternatively, movement of the positive lens through the same distance provides a greater range of magnification.

In conclusion, with any given focal length for the negative lens, the positive lenses may have any of a range of focal lengths. An increase in the value of the focal lengths of the positive lenses enables a greater range of magnification to be achieved.

In the system of the present invention the individual magnifications of all of the movable lenses change in one and the same direction when the magnification varying means are operated to change the magnification of the complete system. Consequently the three lenses all contribute in the same sense to the desired change in magnification.

The invention enables very large variations of magnification to be obtained without the overall length of the system being excessive. The system may include two fixed or stationary lenses positioned on the optical axis, respectively optically before and after the three movable lenses. The stationary lenses may be both of the same sign and are preferably both positive lenses. They are preferably of equal focal length and symmetrically positioned about the midposition of the three movable lenses. The inclusion of such a pair of fixed positive lenses increases the overall length of the system but facilitates the correction of aberrations. The effect of the fixed lenses is to increase the angle of rays of the axial pencil, thereby affording the possibility of an increased relative aperture (lower f number) with the same linear lens diameters. In this case by arranging that the power of the rear fixed positive lens is greater than that of the front fixed positive lens the equivalent focal length of the system is reduced by a factor which is greater than the reduction of the overall length and, in consequence, as stated above the advantage of great reduction of overall length is lost. It remains, however, that when a large range of magnification is contemplated that the negative lens is obtainable and this is of considerable advantage to the designer.

The ranges of movement of the movable lenses are preferably such that at one or each limit of their movement the movable negative lens lies very close to one of the movable positive lenses; the criterion of closeeness being that the lenses are in contact. In this position negative lens and the adjacent movable positive lens shall have a separation which is very small in comparison with their focal lengths. A fixed or normally stationary lens, preferably a negative lens, may be positioned optically in the front of the movable lenses and may be adjustable along the axis to focus the system for objects at various distances from the base. The normally stationary negative lens may be of such focal length that when it is focused for an infinite object distance the normally stationary negative lens is such that it just covers the full range of movement of the movable positive lenses, with a clearance determined only by practical considerations. A diaphragm stop for the system may be placed in contact with the movable negative lens and when the whole system is working in its wide angle position is separable between the normally stationary negative lens and the front of the movable positive lenses may be of the order of the focal length of the normally stationary positive lens. If the movable negative lens is in contact with the positive lens nearest to the normally stationary negative lens, then the stop position so determined constitutes the exit pupil for the normally stationary negative lens and, in consequence, the distance of the entrance pupil for this lens will be at some distance inwards of it of the order of half its focal length, and this means that the incidence lengths for the principal rays are small for a lens of this kind and hence permit the use of a large angle field. This is of importance in correcting the aberrations.

A specific example of a system embodying the invention will now be described by way of example and with reference to the accompanying drawings, in which:

Figure 1 is a diagrammatic longitudinal section showing the optical arrangement of the system:

Figure 2 is a longitudinal sectional view of the system, taken on the line 2-2 of Figure 3.

Figure 3 is a sectional view taken on the line 3-3 of Figure 2.

Figure 4 is a graph showing the movement of the movable negative lens relative to the base.

Figure 5 shows ray paths through the system, and

Figure 6 shows a modified system including two positive lenses respectively optically before and after the three movable lenses.

In this example the system comprises a normally stationary negative lens 11, two movable positive lenses 12, 13 and a movable negative lens 14. An image receiver, e.g., a film, is placed at 15. The positive lenses 12, 13 are rigidly mounted on a carriage 16, which maintains them at a constant axial distance.

The lenses are housed in a casing 17 having a base 18. The carriage 16 has wheels 19 which run on rails 21 secured to the casing 17, and the carriage is propelled along the rails by a rear driving wire 22 which has its ends attached to the carriage at 23, 24. The wire 22 passes over a drive pulley 25 several times around a drum 26. The drum may be rotated by an electric motor by a control knob 27, thereby to drive the carriage along the rails and so move usually the two positive lenses 12, 13.

A block 31 secured rigidly to the base 15 provides a stationary bearing for a wheel 32 carrying for rotation together with it a gear wheel 33 and a drum 34.

The rear wheels 33 meshes with a rack 35 carried by the carriage 16 and rigidly suspended beneath it by brackets 36. Thus as the carriage moves along the rails its engagement between the rear wheel 33 and the rack 35 causes the case 34 to rotate, its angular position at any instant being determined by the position of the carriage along the length of the rails.

The movable negative lens 14 is carried by a slide 39 which is guided for movement parallel to the axial direction of the lens by suitable shaped parts 38 formed at the upper end of the block 11. The slide 37 has a dovetail grooving 39 and engages with the periphery of the cam 34, the slide 37 being urged by a spring (not shown) to maintain the pin 39 in contact with the cam. As the cam rotates the slide 37, and consequently the negative lens 14, is moved axially in ac...
5

In accordance with the required law. Thus manual rotation of the control knob 27 moves the three lenses 12, 13, 14 in the required manner.

The law of movement of the movable lenses in this example as indicated in the following table which shows the variation in the axial distances d1, d2, d3 and d4:

<table>
<thead>
<tr>
<th>F</th>
<th>d1</th>
<th>d2</th>
<th>d3</th>
<th>d4</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.75</td>
<td>1.719</td>
<td>3.5</td>
<td>5.4</td>
<td>10.2</td>
</tr>
</tbody>
</table>

The lenses have the following focal lengths (F):

<table>
<thead>
<tr>
<th>Lens</th>
<th>Focal Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.5</td>
<td>5.0</td>
</tr>
<tr>
<td>15.75</td>
<td>7.0</td>
</tr>
<tr>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>4.5</td>
<td>15.0</td>
</tr>
</tbody>
</table>

The above dimensions are expressed in inches.

The firm table given above includes the value of the focal length (F) of the system, expressed in inches, for each of the listed positions in the movements of movable lenses. It will be seen that the ratio of the maximum to the minimum focal length (and consequently the ratio of the maximum to the minimum magnification) is about 50:1. The overall length of the system is only the order of one third of the maximum focal length thereof.

It may be seen from the above table that in this example the movement of the movable negative lens relative to a fixed point on the base, which movement is determined by the numerical sum of the distances d1 and d2, is small. The variation of the sum (d1+d2) with the distance d, is shown in the above first table and is also shown graphically in Figure 4. That data defines the shape of the cam 34.

Figure 5 shows the paths of rays 41 which reach the system parallel to the axis, from the object which is the ground line at infinity. I.e. a very large distance away, and a ray 42 from the object, which ray reaches the system at an angle of about 5 degrees to the axis.

The lens 12 forms a virtual image at its focus 13 and that virtual image serves as the effective object for the fixed positive lens 12. The axial distance between the pseudo image of the image receiver 13 is 34.67 inches, i.e. just under seven times the focal length of each of the positive lenses 12, 13.

The lenses are shown merely diagrammatically in the drawings and the distances given in the above first table are calculated from the simplified theory of thin lenses. The lenses are each individually corrected for chromatic aberration and each of them may comprise two or more component lenses cemented together or spaced apart by a fixed distance or having a combination of cementing and fixed spacing.

The field curvature may be readily made small as the algebraic powers of the lenses have an algebraic sum which is small. As the changes in magnification of the complete system are contributed to substantially equally by the three movable lenses, respectively the correction of the other aberrations is facilitated.

The system of this example may be employed in conjunction with a television transmitting camera, a cine camera or the like but it may alternatively be employed, for example, as a variable focal length projection lens for a film projector.

The invention is not restricted to the details of the foregoing example. For instance the three movable lenses may be employed alone, or with a pair of stationary positive or negative lenses optically before and after them, to provide a symmetrical system of variable power working about a mean magnification of minus 1, which system is suitable for lenses of the kind known as process lenses.

10 I claim:

1. A variable magnification optical system comprising:

(a) positive (convergent) lenses and a negative (divergent) lens, all arranged on a common optical axis with the two positive lenses spaced apart, and the negative lens between the two positive lenses and spaced from at least one of them, the said lenses all being movable axially and the positive lenses being constrained to maintain a constant axial distance between them during their axial movement, and, in combination with the lenses, magnification varying means for continuously and simultaneously moving the two positive lenses and the negative lens along the optical axis relative to a stationary support according to a law such that the distance from a fixed point on the support at which the image of an object at a fixed distance from the said fixed point on the support is accurately focused remains constant while the size of the said image is continuously varied during the operation of the magnification varying means, the distance between the image position for the rear one of the said positive lenses and the said conjugate object position for the other of the said positive lenses being finite and not greater numerically than a small multiple of the focal length of one of the said positive lenses.

2. A variable magnification optical system as claimed in claim 1, in which the object distance for the front one of the said positive lenses is negative in sign and numerically greater than the focal length of that front positive lens, and the image distance for the rear one of the said positive lenses is positive in sign and numerically greater than the focal length of that rear positive lens.

3. A variable magnification optical system as claimed in claim 2, in which the movement of the said negative lens relative to that of the said positive lenses is such that the magnification of the said negative lens increases and decreases numerically according as the magnifications of the said positive lenses increase and decrease in numerical value.

4. A variable magnification optical system as claimed in claim 3, in which the range of movement of the said three lenses are such that the maximum and minimum magnification of the system are reproducible one of the other.

5. A variable magnification optical system as claimed in claim 4, in which the said two positive lenses have equal focal lengths.

6. A variable magnification optical system as claimed in claim 5 in which the movements of the said three lenses are such that during their range of movements the positions of the negative lens relative to the two positive lenses changes from time to time of the positive lenses, at one limit value of magnification, near the other of the positive lenses, at another limit value of magnification, which limit value is the reciprocal of the other limit.

7. A variable magnification optical system as claimed in claim 6, in which the range of movement of the movable lenses are such that at one, or more, limit of their movements the said negative lens lies very close to one of the said positive lenses; the creation of closeness being that the principal planes of the said negative lens and the adjacent positive lens have a separation which is very small in comparison with their focal lengths.

8. A variable magnification optical system comprising
two positive lenses and a negative lens, all arranged on a common optical axis with the two positive lenses spaced apart, and the negative lens between the two positive lenses and spaced from at least one of them, the said lenses all being movable axially and the positive lenses being constrained to maintain a constant axial distance between them during their axial movement, magnification varying means, in combination with said lenses, for continuously and simultaneously moving the two positive lenses and the negative lens along the optical axis relative to a stationary support according to a law such that the distance from a fixed point on the support at which the image of an object at a fixed distance from the said fixed point on the support is accurately focused remains constant while the size of the said image is continuously varied during the operation of the magnification varying means, the distance between the image position for the rear one of the said positive lenses and the corresponding conjugate object position for the other of the said positive lenses being finite and not greater numerically than a small multiple of the focal length of one of the said positive lenses, and a stationary lens positioned optically in front of the said three movable lenses.

8. A variable magnification optical system as claimed in claim 10, in which the said stationary lens is a negative lens.

9. A variable magnification optical system as claimed in claim 8, in which the stationary lenses are both positive lenses, are of equal focal length and are symmetrically positioned about the mid-position of the three movable lenses.

10. A variable magnification optical system comprising two positive lenses and a negative lens, all arranged on a common optical axis with the two positive lenses spaced apart, and the negative lens between the two positive lenses and spaced from at least one of them, the said lenses all being movable axially and the positive lenses being constrained to maintain a constant axial distance between them during their axial movement, magnification varying means, in combination with said lenses, for continuously and simultaneously moving the two positive lenses and the negative lens along the optical axis relative to a stationary support according to a law such that the distance from a fixed point on the support at which the image of an object at a fixed distance from the said fixed point on the support is accurately focused remains constant while the size of the said image is continuously varied during the operation of the magnification varying means, the distance between the image position for the rear one of the said positive lenses and the corresponding conjugate object position for the other of the said positive lenses being finite and not greater numerically than a small multiple of the focal length of one of the said positive lenses, and a stationary lens positioned optically in front of the said three movable lenses.

11. A variable magnification optical system as claimed in claim 10, in which the said stationary lens is a negative lens.

12. A variable magnification optical system as claimed in claim 11, in which the said stationary lens is adjustable along the axis to focus the system for objects at various distances from the support.

13. A variable magnification optical system as claimed in claim 12, in which the said stationary lens is of such focal length that when it is focused for an infinite object distance said stationary lens is positioned to just permit the full range of movement of the movable positive lenses.

References Cited in the file of this patent

UNITED STATES PATENTS

2,165,341 Capstaff et al. July 11, 1973
2,179,886 Glancy Nov. 14, 1973
2,501,219 Hopkins et al. Mar. 21, 1950
2,514,229 Hopkins July 4, 1950
2,537,561 Wall Jan. 9, 1951
2,566,455 Cuvilier Sept. 4, 1951
2,566,839 Hopkins Sept. 4, 1951
2,578,574 Miles Dec. 11, 1951
2,647,025 Cook Aug. 19, 1953
2,665,253 Hopkins Dec. 22, 1953

ORIGINAL PAGE IS OF POOR QUALITY
FIG. 1

ZOOM SYSTEM MAGNIFICATION RANGE = 12:1

<table>
<thead>
<tr>
<th>LENSI</th>
<th>RADIUS</th>
<th>THICKNESS</th>
<th>SPACINGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>L₁</td>
<td>R₁ = -177.01</td>
<td>T₁ = 2.5</td>
<td>S₁ = 63.395 at 1.2X</td>
</tr>
<tr>
<td></td>
<td>R₂ = 37.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L₂</td>
<td>R₁ = -177.01</td>
<td>T₁ = 7.8</td>
<td>S₁ = 46.901 at 14.4X</td>
</tr>
<tr>
<td></td>
<td>R₂ = 37.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L₃</td>
<td>R₁ = 53.45</td>
<td>T₁ = 4.5</td>
<td>S₁ = 0.3</td>
</tr>
<tr>
<td></td>
<td>R₂ = 65.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L₄</td>
<td>R₁ = -50.53</td>
<td>T₁ = 2.6</td>
<td>S₁ = 16.635 at 1.2X</td>
</tr>
<tr>
<td></td>
<td>R₂ = 16.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L₅</td>
<td>R₁ = 27.04</td>
<td>T₁ = 3.2</td>
<td>S₁ = 160.731 at 14.4X</td>
</tr>
<tr>
<td></td>
<td>R₂ = 65.46</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIG. 2

FIG. 3
UNITED STATES PATENT OFFICE
CERTIFICATE OF CORRECTION

Patent No. 3,170,984
February 23, 1965

Harold E. Rosenberger et al.

It is hereby certified that error appears in the above numbered patent requiring correction and that the said Letters Patent should read as corrected below.

Column 5, line 19, for ".32F₁<+R₂<.39F₁" read
-- .32F₁<+R₂<.39F₁ --.

Signed and sealed this 17th day of August 1965.

(SEAL)
Attest:

ERNEST W. SWIDER
Attesting Officer

EDWARD J. BRENNER
Commissioner of Patents
The present invention relates to optical systems and more particularly relates to improvements in zoom type panoptic optical systems.

In recent years, lens designers have developed a number of zoom type of panoptic optical systems for use on various kinds of optical apparatus and generally these systems are very complex in structure and high in cost. For many purposes, the magnification range is found to be too limited, particularly when superior imagery is demanded along with a high magnification range.

It is an object of the present invention to provide a novel zoom type of panoptic optical system which produces a virtual image of an object at a stationary position, said system being corrected in a superior manner for all chromatic and monochromatic image aberrations as well as distortion and flatness of field.

Another object of this invention is to provide such a zoom type of panoptic system having utmost structural and optical simplicity, consistent with superior optical performance and low cost.

Further objects and advantages of this invention will be found in the form and arrangement and in the details of structure of the parts thereof as shown in the accompanying drawings in which:

FIG. 1 is an optical diagram showing a preferred form of the present invention.

FIG. 2 is a table of constructional data which is related to the optical system in FIG. 1.

FIG. 3 is a chart which is explanatory of certain features of this invention.

FIG. 4 is an optical diagram of this invention showing other optional positions thereof.

FIGS. 5 and 6 are further optical diagrams showing other operational positions thereof.

An optical system generally indicated by numeral 10 is shown in FIG. 1 of the drawing, according to a preferred form of the present invention.

According to this invention, said system 10 comprises a front lens member 11 of positive power and a rear lens member 12, of negative power which cooperatively produce a virtual image 1 of an object O, said image being formed in the space S, at a stationary position with respect to the object 0 and the lens member 11. Mechanical means, not shown, are provided for moving members 11 and 12, for axial motion, and for moving said members differentially and simultaneously as shown in FIG. 3 with respect to any fixed point on their optical axis so that the virtual image 1 may be continuously varied in size at said stationary position throughout a range of magnifications of 12:1 or more.

The optical construction of the lens system 10 is especially designed for an extended range of magnification beyond 12:1 and desired and this property of the system is achieved along with other high grade features such as a superior correction for all chromatic and monochromatic image aberrations as well as coma, astigmatism, distortion and flatness of field. The front lens member 11 has a positive focal length F1 and the rear lens member 12 has a negative focal length F2 per se which is numerically expressed by the inequality:

\[0.15F1 < F2 < 0.30F1 \]

The variable space S between the member 11 and the object changes throughout the zoom range and at the terminal ends of its travel it has the values given herebelow.

\[1.25F1 < S < 1.55F1 \]

\[(at 1.2X) \]

\[0.90F1 < S < 1.20F1 \]

(14.3X)

Likewise, the space S between the lens member 11 and member 12 changes throughout the zooming action, varying as shown diagrammatically in FIG. 3.

In the preferred form of the invention as shown in FIG. 1, the front lens member 11 comprises a compound meniscus lens consisting of a double convex element L1 and a double convex element L2 located in contact with its rear convex surface. The positive focal length of the meniscus lens (L1, L2) has a value between 3.0F1 and 6.0F1. Further comprised in said front lens member 11 is a double convex simple lens L3, located rearwardly of said meniscus lens and having a positive focal length which is between 1.2F1 and 1.4F1. Lens L3 is spaced a fixed distance S1 rearwardly of the meniscus lens (L1, L2) having a value between 0.04F1 and 0.11F1.

The aforesaid rear lens member 12 is preferably composed of a double convex lens element L4 having contact rearwardly with a meniscus element L5, the interface B thereof being convex toward the front. Regarding the compound front lens (L1, L2), the radius of the first lens surface R1 should have a value between 2.0X and 2.7X the sum of the radii of the two next lenses R3 and R4. Furthermore, the sum of the radii of the front and back lens surfaces R5 and R6 respectively of lens L3 should be between 1.54X and 1.62X the sum of the radii of R3 and R4. With regard to the rear lens member 12, the first surface R7 thereof should have a radius equal to between 1.5X and 2.0X the radius of the rear surface R8.

A more complete statement of constructional data for the optical system which satisfies the requirements of the present invention is given in the table herebelow, wherein R1 to R8 are the radii of the successive lens surfaces, t1 to t4 are the axial thicknesses of the successive lens elements L1 to L4, S1 to S4 are the spaces between the lenses and r and s are respectively the refractive index and the Abbe number respectively of the glasses in said elements.
It should be emphasized at this point that the zoom optical system 10 as above described is not limited to a zoom range of 12:1 as mentioned in connection with one form of this invention, but the range may be extended considerably without structural changes in the optical parts and without sacrificing any of the superior optical performance stated in the objects of this invention.

Although only a preferred form of this invention has been shown and described in detail, changes may be made in the details of construction and form of the parts and substitutions may be made therein without departing from the spirit of the invention as claimed in the appended claims.

We claim:

1. A zoom type of panoramic optical system corrected for chromatic and monochromatic image aberrations and having a substantially flat field, said system comprising a front lens member which consists of a compound meniscus lens which is concave on the object side and has a positive focal length between 5.0F₁ and 6.0F₁, where F₁ is the focal length of the front member and is composed of a front double concave element having its surface of strongest curvature in contact with a rear double convex element and further includes a double convex lens spaced a fixed distance rearward thereof and having a positive focal length of between 1.2F₆ and 1.4F₆, said system comprising a double concave compound rear lens member which is optically aligned rearwardly of the front member and has a negative focal length which is substantially 2.1F₆ and which is composed of a front double concave element having its surface of strongest curvature forming an interface with a rear convex-convex element wherein the convex surface is rearmost and his weaker curvature than the interface, said lens members being movable with respect to a fixed point on their common optical axis simultaneously and continuously at different rates so as to form a virtual image of continuously variable size of an object at a stationary position in said axis through a magnification range of greater than 1.1, and said members being spaced apart a distance between 3.7F₆ and 4.7F₆, when the system produces least magnification and being spaced apart a distance between 1.5F₆ and 1.7F₆ when the system produces highest magnification, the space between the object and the front member being correspondingly between 1.2F₆ and 1.5F₆, when the system produces least magnification and between 2.5F₆ and 3.5F₆ when the system produces highest magnification.

2. A zoom type of panoramic optical system as set forth in claim 1 wherein said meniscus lens is formed of a double concave front element and a double convex rear element and further characterized by lens radii which have numerical values as given herebelow:

\[2.0(R₁+R₂)<R₄<2.7(R₁+R₂) \]

\[1.5(R₅+R₆)<R₄+R₆<1.62(R₅+R₆) \]
the radius of the front surface of said negative member being between 1.5 and 2.0 times the radius of the rear surface of said negative member, wherein R₁ to R₄ designate the radius of the lens surfaces named in order in the front lens member.

3. A zoom type of panoramic optical lens as set forth in claim 1 wherein said meniscus lens is formed of a double concave front element and a double convex rear element, and said rear member is formed of a front double concave element and a rear meniscus element, the constructional data for said system being given in the table of inequalities below:

\[3.80F₁<−R₁<1.06F₁ \]
\[2.7F₁<−R₂<1.01F₁ \]
\[1.3F₁<−R₃<1.37F₁ \]
\[1.0F₁<−R₄<1.28F₁ \]
\[0.50F₁<−R₅<1.06F₁ \]
\[0.155F₁<−R₆<1.90F₁ \]
\[0.69F₁<−R₇<1.10F₁ \]
\[0.81F₁<−R₈<0.67F₁ \]
\[0.65F₁<−R₉<0.78F₁ \]
\[1.25F₁<−R₁₀<1.55F₁ \]
\[1.0F₁<−S₁<1.20F₁ \]
\[0.00F₁<−S₂<1.11F₁ \]
\[0.37F₁<−S₃<1.47F₁ \]
\[3.5F₁<−S₄<3.64F₁ \]

5. A zoom type of panoramic optical system as set forth in claim 1 wherein said meniscus lens is formed of a double concave front element and a double convex rear element, and said rear member is formed of a front double concave element and a rear meniscus element, the constructional data for said system being given in the table of inequalities below:

<table>
<thead>
<tr>
<th>Lens</th>
<th>R₁</th>
<th>R₂</th>
<th>R₃</th>
<th>R₄</th>
<th>S₁</th>
<th>S₂</th>
<th>S₃</th>
<th>S₄</th>
<th>n₁</th>
<th>μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>L₁</td>
<td>-1.17.5</td>
<td>1.5</td>
<td>-5</td>
<td>1.2</td>
<td>-2</td>
<td>1.75</td>
<td>1.5</td>
<td>1.75</td>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td>L₂</td>
<td>-1.5</td>
<td>-5</td>
<td>1.2</td>
<td>-2</td>
<td>1.75</td>
<td>1.5</td>
<td>1.75</td>
<td>6.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

References cited in the file of this patent:

UNITED STATES PATENTS

5. A zoom optical systems according to claim 3 wherein the rear surface of the front double convex element, l₄, and the front and rear surfaces of the double convex elements all have the same radius.

2,814,296 Klent July 29, 1958
July 23, 1968
EICHI TAKANO
3,393,958
COMPACT ZOOM LENS CORRECTED OVER A LARGE RANGE OF MAGNIFICATION
Filed April 15, 1964

FIG. 1

FIG. 2

SHORTEST
INTERMEDIATE
LONGEST

SPHERICAL ABERRATION & SINUSOIDAL CONDITION (mm)
FIG. 3

SHORTEST

INTERMEDIATE

LONGEST

ASTIGMATISM (mm)

FIG. 4

SHORTEST

INTERMEDIATE

LONGEST

DISTORTION (%)

FIG. 5

SHORTEST

INTERMEDIATE

LONGEST

CHROMATIC ABERRATION (mm)

FILED APRIL 15, 1964

2 SHEETS-SHEET 2

July 23, 1968

EIICHI TAKANO

3,393,958

COMPACT LENS CORRECTED OVER A LARGE RANGE OF MAGNIFICATION

Filed April 15, 1964

2 Sheets-Sheet 2
COMPACT ZOOM LENS CORRECTED OVER A LARGE RANGE OF MAGNIFICATION.

Eiichi Takanishi, Tokyo, Japan, assignor to Canon Camera Kabushiki Kaisha, Tokyo, Japan, a corporation of Japan

Filed Apr. 15, 1964, Ser. No. 560,523

Claims priority, application Japan, Apr. 17, 1963, 38/19,678
1 Claim. (Cl. 350—276)

ABSTRACT OF THE DISCLOSURE

Compact zoom lens having a zooming ratio as large as 12 and a relative aperture as great as f/1.8, the lens being highly corrected over a large range of magnification with little variation in aberration upon zooming operation; the lens comprising four components, a first fixed converging lens group, a second axially movable divergent zooming lens group, a third lens group moving axially corresponding to the axial movement of the second lens group to avoid movement of the paraxial image point and a fourth fixed and image forming lens group.

This invention relates to a zoom lens, and more particularly to a zoom lens highly corrected over a large range of magnification. An object of the invention is to provide a miniaturized zoom lens highly corrected over a large range of magnification.

Another object of the invention is to provide an inexpensive zoom lens highly corrected over a magnification of at least ten to one.

Another object of the invention is to provide such a zoom lens which is of simple form and of a construction suitable for economical manufacture and which is capable of superior performance when used with photographic objectives having a relative aperture as great as f/1.8.

Further objects and advantages will be apparent in the description of construction and arrangement of parts as described in the specification hereinafter taken together with the drawing, in which:

FIG. 1 is an optical diagram of one illustrative form of zoom lens constructed according to the invention;

FIG. 2 depicts the graphs representing the correction for spherical aberration and the deviation in the sine condition of the zoom lens shown in FIG. 1 at the wide, mean and telephoto positions;

FIG. 3 depicts the graphs representing the correction for astigmatism and image curvature of the zoom lens at the wide, mean and telephoto positions;

FIG. 4 depicts the graphs representing the correction for distortion of the zoom lens at the wide, mean and telephoto position; and

FIG. 5 depicts the graphs representing the correction for transverse chromatic aberration at the wide, mean and telephoto positions.

It is to be understood that the terms “front” and “rear” as used hereinafter refer to the ends of the zoom lens respectively nearer the longer and shorter conjugates thereof.

The miniaturized zoom lens system in accordance with the present invention consists of four components: a fixed convergent component (I), an axially movable divergent zooming component (II), a component moving axially corresponding to the axial movement of said second component to avoid movement of the paraxial image point, and a fixed and image forming component (IV). The instant system satisfies the following two conditions:

(1) The first component composed of three positive members includes a cemented doublet of a negative and a positive lens, in which all the single positive lenses have Abbe numbers more than 55, and all the single negative lenses less than 30, satisfying the following conditions:

\[
\begin{align*}
&|v_1 - v_2| < 0.25 \times \phi_1 \times \phi_2 \\
&|v_1 - v_3| < 0.25 \times \phi_1 \times \phi_3
\end{align*}
\]

and

\[
0 < X_1 < X_2 < X_3 < 0.5
\]

wherein, the refractive power \(\phi \) and shape factor \(X \) of the three positive members are numbered, respectively, by subscript or order from the front to rear, and the refractive power of the whole first component is designated by \(\phi_1 \).

The shape factor \(X \) is defined as

\[
X = \frac{1}{\phi_1} + \frac{1}{\phi_2} - \frac{1}{\phi_3}
\]

where \(\phi_1 \) and \(\phi_2 \) denote respectively the radii of curvature of the rear and front surfaces of the lens members.

(2) The second component composed of three negative members including a cemented doublet of negative and positive lenses, in which all the negative lenses have Abbe numbers of more than 50, and all the positive lenses of less than 30, satisfies the following conditions:

\[
\begin{align*}
&|v_4 - v_5| < 0.4 \times \phi_4 \\
&|v_5 - v_6| < 0.1 \times \phi_5 \\
&|v_6 - v_7| < 0.4 \times \phi_6
\end{align*}
\]

and

\[
-1.5 < X_4 < X_5 < X_6 < 0
\]

wherein, the refractive power \(\phi_4 \) and shape factor \(X \) of the three members are numbered, respectively, by subscript in order from front to rear, and the refractive power of the whole second component is designated by \(\phi_4 \).

FIG. 1 shows one embodiment according to the present invention, wherein (I), (II), (III) and (IV) denote the components comprising the whole system, 1, 2, and 3 the members comprising the component (I), and 4, 5 and 6 those comprising component (II).
end components, each of the first and second components should be separately well corrected. In such a zooming system having not only a zooming ratio as large as 12 but also a large aperture ratio, the incident point of the refractive surfaces of the marginal ray and the principal ray is greatly changed during zooming operation, and therefore the above mentioned expedients are particularly important for such a system. For such a zoom lens system having a large zooming ratio it is generally desired that when it is set at wide position, distortion and astigmatism, which are conspicuous in the edge of the image field, and when it is set at telephoto position, spherical and chromatic aberrations, which are significant in the center of the image field, are substantially highly corrected: the present inventive system having the first and second components respectively composed of three members, each of which has power and shape factors as defined in the above conditions, satisfactorily fulfills such essential and general requirements.

A preferred example of the zoom lens forming a specific embodiment of the invention, and having a magnification range of about twelve to one, is constructed in conformity with the following table wherein dimensions are in millimeters, and the refractive indices for the sodium D-line and the Abbe dispersion numbers are respectively designated at n and v, the radii r, thicknesses d, space s, effective focal length F, and aperture ratio f, are numbered, respectively, by subscripts in order from front to rear.

<table>
<thead>
<tr>
<th>F 4.5-28</th>
<th>f 1-1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>r₁ = 35.49</td>
<td>n₁ = 1.7512</td>
</tr>
<tr>
<td>r₂ = 60.49</td>
<td>n₂ = 1.733</td>
</tr>
<tr>
<td>r₃ = 30.71</td>
<td>n₃ = 1.62541</td>
</tr>
<tr>
<td>r₄ = 13.50</td>
<td>n₄ = 0.1</td>
</tr>
<tr>
<td>r₅ = 65.34</td>
<td>n₅ = 1.62541</td>
</tr>
<tr>
<td>n₆ = 175.61</td>
<td>n₆ = 1.62541</td>
</tr>
<tr>
<td>r₇ = 80.78</td>
<td>n₇ = 1.00015</td>
</tr>
<tr>
<td>r₈ = 64.07</td>
<td>n₈ = 1.73546</td>
</tr>
<tr>
<td>r₉ = 60.6</td>
<td>n₉ = 1.00015</td>
</tr>
<tr>
<td>r₁₀ = 120.0</td>
<td>n₁₀ = 1.73546</td>
</tr>
<tr>
<td>r₁₁ = 120.0</td>
<td>n₁₁ = 1.73546</td>
</tr>
<tr>
<td>r₁₂ = 120.0</td>
<td>n₁₂ = 1.73546</td>
</tr>
<tr>
<td>r₁₃ = 120.0</td>
<td>n₁₃ = 1.73546</td>
</tr>
<tr>
<td>r₁₄ = 120.0</td>
<td>n₁₄ = 1.73546</td>
</tr>
<tr>
<td>r₁₅ = 120.0</td>
<td>n₁₅ = 1.73546</td>
</tr>
<tr>
<td>r₁₆ = 120.0</td>
<td>n₁₆ = 1.73546</td>
</tr>
<tr>
<td>r₁₇ = 120.0</td>
<td>n₁₇ = 1.73546</td>
</tr>
<tr>
<td>r₁₈ = 120.0</td>
<td>n₁₈ = 1.73546</td>
</tr>
<tr>
<td>r₁₉ = 120.0</td>
<td>n₁₉ = 1.73546</td>
</tr>
<tr>
<td>r₂₀ = 120.0</td>
<td>n₂₀ = 1.73546</td>
</tr>
<tr>
<td>r₂₁ = 120.0</td>
<td>n₂₁ = 1.73546</td>
</tr>
<tr>
<td>r₂₂ = 120.0</td>
<td>n₂₂ = 1.73546</td>
</tr>
<tr>
<td>r₂₃ = 120.0</td>
<td>n₂₃ = 1.73546</td>
</tr>
<tr>
<td>r₂₄ = 120.0</td>
<td>n₂₄ = 1.73546</td>
</tr>
<tr>
<td>r₂₅ = 120.0</td>
<td>n₂₅ = 1.73546</td>
</tr>
<tr>
<td>r₂₆ = 120.0</td>
<td>n₂₆ = 1.73546</td>
</tr>
<tr>
<td>r₂₇ = 120.0</td>
<td>n₂₇ = 1.73546</td>
</tr>
<tr>
<td>r₂₈ = 120.0</td>
<td>n₂₈ = 1.73546</td>
</tr>
<tr>
<td>r₂₉ = 120.0</td>
<td>n₂₉ = 1.73546</td>
</tr>
<tr>
<td>r₃₀ = 120.0</td>
<td>n₃₀ = 1.73546</td>
</tr>
<tr>
<td>Back focus = 0.25</td>
<td></td>
</tr>
</tbody>
</table>

FIGS. 2, 3, 4, and 5 show respectively the aberration curves for the spherical aberrations, astigmatism, distortion, and chromatic aberrations at the shortest (6.5 mm.), intermediate (30 mm.), and longest (75 mm.) focal lengths in the above mentioned embodiment, which provides an excellent quality of zoom lens system according to this invention.

While the invention is thus described, it is not limited to the precise values given, any change may be readily made without departing from the spirit of the invention.

What I claim is:

1. A zoom lens comprising four components: a first convergent component, a second axially movable divergent zooming component, a third component moving axially corresponding to the axial movement of the second component to avoid movement of the paraxial image point and a fourth fixed and image forming component, the lens being constructed in substantial compliance with the following table where the dimensions are given in millimeters, and proceeding from the front to the rear, r₁ to rₙ designate the radii of curvature of the surface, d₁ to dₙ the axial thicknesses, s₁ to sₙ the axial separations, n₁ to nₙ the indices of refraction for the sodium D-line and Vₙ the Abbe dispersion numbers; the numerical values of S₁, S₉, and S₁₀ represent, respectively, the spacings between the first, second, third, and fourth components for three positions of the movable components as they are moved to provide at least minimum intermediate, and maximum magnifications.

<table>
<thead>
<tr>
<th>F 4.5-28</th>
<th>f 1-1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>n₁ = 1.5408</td>
<td>n₁ = 1.7512</td>
</tr>
<tr>
<td>n₂ = 1.6386</td>
<td>n₂ = 1.713</td>
</tr>
<tr>
<td>n₃ = 1.6553</td>
<td>n₃ = 1.69241</td>
</tr>
<tr>
<td>n₄ = 0.21</td>
<td></td>
</tr>
<tr>
<td>n₅ = 1.6553</td>
<td>n₅ = 1.69241</td>
</tr>
<tr>
<td>n₆ = 1.5408</td>
<td>n₆ = 1.713</td>
</tr>
<tr>
<td>n₇ = 1.6553</td>
<td></td>
</tr>
<tr>
<td>n₈ = 0.21</td>
<td></td>
</tr>
<tr>
<td>n₉ = 1.6553</td>
<td></td>
</tr>
<tr>
<td>n₁₀ = 1.5408</td>
<td></td>
</tr>
<tr>
<td>n₁₁ = 1.6386</td>
<td></td>
</tr>
<tr>
<td>n₁₂ = 1.6553</td>
<td></td>
</tr>
<tr>
<td>n₁₃ = 0.21</td>
<td></td>
</tr>
<tr>
<td>n₁₄ = 1.6553</td>
<td></td>
</tr>
<tr>
<td>n₁₅ = 1.5408</td>
<td></td>
</tr>
<tr>
<td>n₁₆ = 1.6386</td>
<td></td>
</tr>
<tr>
<td>n₁₇ = 1.6553</td>
<td></td>
</tr>
<tr>
<td>n₁₈ = 0.21</td>
<td></td>
</tr>
<tr>
<td>n₁₉ = 1.6553</td>
<td></td>
</tr>
<tr>
<td>n₂₀ = 1.5408</td>
<td></td>
</tr>
<tr>
<td>n₂₁ = 1.6386</td>
<td></td>
</tr>
<tr>
<td>n₂₂ = 1.6553</td>
<td></td>
</tr>
<tr>
<td>n₂₃ = 0.21</td>
<td></td>
</tr>
<tr>
<td>n₂₄ = 1.6553</td>
<td></td>
</tr>
<tr>
<td>n₂₅ = 1.5408</td>
<td></td>
</tr>
<tr>
<td>n₂₆ = 1.6386</td>
<td></td>
</tr>
<tr>
<td>n₂₇ = 1.6553</td>
<td></td>
</tr>
<tr>
<td>n₂₈ = 0.21</td>
<td></td>
</tr>
<tr>
<td>n₂₉ = 1.6553</td>
<td></td>
</tr>
<tr>
<td>n₃₀ = 1.5408</td>
<td></td>
</tr>
<tr>
<td>Back focus = 0.25</td>
<td></td>
</tr>
</tbody>
</table>

(References on following page)

3,393,958
FOREIGN PATENTS
1,325,427 3/1963 France.

DAVID H. RUBIN, Primary Examiner.
J. K. CORBIN, Assistant Examiner.
APPENDIX B

RAY FAN PLOTS
MIRROR ZOOM WITH RELAY AND FIELD FLATNER

31 JULY. CFG,1.
MIRROR ZOOM WITH RELAY AND FIELD FLATNER

JULY 31. CFG, 2.
JULY 31. CFG 3.
APPENDIX C

COMPANY INFORMATION

Information was requested from the following companies:

1. Rank Precision Industries, Inc.
 411 East Jarvis Avenue
 Des Plaines, Illinois 60018

2. Celestron International
 2835 Columbia Street
 Torrance, California 90503

3. Fuji Optical Systems Inc.
 4855 Atherton Avenue
 San Jose, California 95130

4. Arriflex
 25-20 Brooklyn-Queens
 Expressway West
 Woodside, New York 11377

5. Angenieux
 7700 N. Kendall Drive
 Miami, Florida 33156

6. Canon U. S. A.
 One Canon Plaza
 Lake Success, New York 11042

7. Zoomar Optical Systems
 55 Sea Clift Ave.
 Glen Cove, New York 11542
Angenieux
7700 N. Kendall Drive
Miami, Florida 33156

Dear Sirs,

I am looking for what is available, or modifiable, for a zoom lens to be used in a space mission. Could you please send any information, including optical system layout if possible, on any system which would come close to meeting the following specifications:

- Variable focal length: 20 to 200 cm
- Image size (on vidicon): 18.6 x 18.6 mm
- F/number: F/8
- Spectral range: 400 to 1000 nm
- Volume: 30 x 30 x 70 cm
- Back focal length: 9 cm or more
- Front focal distance: 10 m to infinity

Thank you.

Sincerely,

Douglas W. Ricks
16 July 1984

UNIVERSITY OF ARIZONA
Attn: Mr. Douglas W. Ricks
Optical Sciences Center
Tucson, Arizona 85721

Dear Mr. Ricks:

Mr. Juergen Schwinzer of Arriflex has forwarded your request for information on a zoom lens to be used in a space mission to my attention.

Angenieux quality lens systems can very well meet your optical requirements. Enclosed please find dossier techniques and literature on the Angenieux 42X zoom lens for 1" and 1¼" tube formats.

If additional information is required, please do not hesitate to contact us. We welcome your continued interest in Angenieux products.

Sincerely,

Henry A. Peterson
EO Technical Sales

HAP/ps

Enc.
DOSSEIR TECHNIQUE

ZOOM 42 x 32 E 11
SCHEMAS OPTIQUES DU ZOOM
42 X 32 E11.

POSITION COURTE FOCALE

POSITION LONGUE FOCALE
ANGENIEUX ZOOM

<table>
<thead>
<tr>
<th>Diamètre de la lentille avant</th>
<th>180 x 160 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freier Durchmesser der ersten linse</td>
<td></td>
</tr>
<tr>
<td>Clear aperture front glass</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diamètre de la lentille arrière</th>
<th>28 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freier Durchmesser der letzten linse</td>
<td></td>
</tr>
<tr>
<td>Clear aperture rear glass</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diamètre extérieur maximal</th>
<th>220 x 190 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grösster Aussendurchmesser</td>
<td></td>
</tr>
<tr>
<td>Maximum overall diameter</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rotation des bagues de commande</th>
<th>Déplacement : 24 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stell ring</td>
<td></td>
</tr>
<tr>
<td>Total angular rotation</td>
<td></td>
</tr>
<tr>
<td>1) Mise au point - Schärfe - Focus</td>
<td></td>
</tr>
<tr>
<td>2) Zoom</td>
<td>188°</td>
</tr>
<tr>
<td>3) Iris - Blende - Iris</td>
<td>95°</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Couple maximal : axe horizontal</th>
<th>-0,7 cm kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximaldrehrmoment</td>
<td></td>
</tr>
<tr>
<td>1) Misé au point - Schärfe - Focus</td>
<td></td>
</tr>
<tr>
<td>2) Zoom (prise de mouvement)</td>
<td>0,9 cm kg</td>
</tr>
<tr>
<td>3) Iris - Blende - Iris</td>
<td>0,5 cm kg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Poids</th>
<th>35 kg en version manuelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gewicht</td>
<td>avec capot, avec platine</td>
</tr>
<tr>
<td>Weight</td>
<td>sans pare - soleil</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Monture neutre</th>
<th>Neutral fassung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutral mount</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Centre de gravité</th>
<th>450 mm environ</th>
</tr>
</thead>
<tbody>
<tr>
<td>par rapport au plan image dans l'air</td>
<td></td>
</tr>
</tbody>
</table>
TV PUMBICON 1" 1/4

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distances Focales (Brennweiten)</td>
<td>32 - 1344 mm</td>
</tr>
<tr>
<td>Focal lengths</td>
<td>1,26" - 53"</td>
</tr>
<tr>
<td>Ouverture (Offnung)</td>
<td>f/2.3 - 7.6 - f/26</td>
</tr>
<tr>
<td>Diamètre du champ image (Bildfeld Durchmesser)</td>
<td>21.4 mm</td>
</tr>
<tr>
<td>Image field diameter</td>
<td>0.845 "</td>
</tr>
<tr>
<td>Tirage optique (dans l'air) (Schnittweite)</td>
<td>64.7 mm</td>
</tr>
<tr>
<td>Rack focal length (in air)</td>
<td>2.55 "</td>
</tr>
<tr>
<td>Facteur photométrique (Photometrischer faktor)</td>
<td>1,31</td>
</tr>
<tr>
<td>Champ angulaire objet (Bildfeld winket)</td>
<td>Diagonal 35° à 56'</td>
</tr>
<tr>
<td>Object angular field</td>
<td>Horizontal 28°52 à 46'</td>
</tr>
<tr>
<td>Mise au point minimale (Nahpunkt)</td>
<td>4 m.</td>
</tr>
<tr>
<td>Shortest focusing distance</td>
<td>13 ft</td>
</tr>
<tr>
<td>Avec bonnettes (Mit vorsatzlinsen)</td>
<td>n° 1</td>
</tr>
<tr>
<td>With close-up lenses</td>
<td>n° 2</td>
</tr>
<tr>
<td>Plus petit champ objet (Kleinstes bildfeld)</td>
<td>37.4 x 49.6 mm</td>
</tr>
<tr>
<td>Smallest object field</td>
<td>1.47" x 1.95 "</td>
</tr>
<tr>
<td>Avec bonnettes (Mit vorsatzlinsen)</td>
<td>n° 1</td>
</tr>
<tr>
<td>With close-up lenses</td>
<td>n° 2</td>
</tr>
</tbody>
</table>
MISE AU POINT À L'INFINI

DIMENSIONS IMAGE

PETIT CÔTÉ = 12.84 mm
DIAGONALE = 21.40 mm
COURBE DE TRANSMISSION SPECTRALE

ZOOM 42 x 32 E 11

Longueur d’onde (nm)

Infrarouge
800 nm, \(t = 0.45 \)
1000 nm, \(t = 0.22 \)

Lumière blanche (Illuminant “A”) \(t = 0.58 \), \(T = 1.31 \)

52
Courbes de répartition d'éclaircissement

Dans le champ

Zoom 42 x 32 E.11

F = 32

F = 80

F = 400

F = 1344

Ouverture maxi

f/2.8

f/4

17.3.77
COURBES DES TRANSFERTS DE MODULATION

Zoom 42 x 32 E11

Fréquence 15 cycles/mm
λ = 546 mm
Ouverture maxi

Imagerie tangentielle

Imagerie sagittale

Le 17-3-77
DUVERTURE EN FONCTION DE LA FOCALE

ZOOM 42 X 32 E11 plumbicon 11/14

LE 18/10/76
ne 5th, 1984

The University of Arizona
Theoretical Sciences Center
Tucson, Arizona 85721

To: Mr. Douglas W. Ricks
Subject: Zoom Lens for Space Mission

Sir:

After consulting with our factory in France in regards to your letter of May 22nd, we would like to propose the following lens.

A 10x18 T2 lens which would cover the 21.4 mm format but back focal length will be 50 mm. To reach 90 mm back focal length, we would be using a 10x40 Tl Zoom F/1.5. In this condition, the exact focal distance would be 87.7 mm and the format 40.0 mm. Is this acceptable?

I find that 18.6 x 18.6 mm is excessive in vidicon tubes.

Please advise us with reference to the above. Thank you for your interest in Angenieux optics.

Sincerely,

Joseph A. Martinez
Vice President

AM:drl
APPENDIX D

PRELIMINARY REFRACTIVE DESIGN

PRECEDING PAGE BLANK NOT FILMED
REFRACTIVE INDICES

<table>
<thead>
<tr>
<th>SURF</th>
<th>N1</th>
<th>N2</th>
<th>N3</th>
<th>N4</th>
<th>N5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.620411</td>
<td>1.638527</td>
<td>1.608929</td>
<td>1.000000</td>
<td>1.000000</td>
</tr>
<tr>
<td>3</td>
<td>1.647689</td>
<td>1.684065</td>
<td>1.628939</td>
<td>1.000000</td>
<td>1.000000</td>
</tr>
<tr>
<td>5</td>
<td>1.620411</td>
<td>1.638527</td>
<td>1.608929</td>
<td>1.000000</td>
<td>1.000000</td>
</tr>
<tr>
<td>7</td>
<td>1.620411</td>
<td>1.638527</td>
<td>1.608929</td>
<td>1.000000</td>
<td>1.000000</td>
</tr>
<tr>
<td>9</td>
<td>1.647689</td>
<td>1.684065</td>
<td>1.628939</td>
<td>1.000000</td>
<td>1.000000</td>
</tr>
<tr>
<td>11</td>
<td>1.620411</td>
<td>1.638527</td>
<td>1.608929</td>
<td>1.000000</td>
<td>1.000000</td>
</tr>
<tr>
<td>13</td>
<td>1.620411</td>
<td>1.638527</td>
<td>1.608929</td>
<td>1.000000</td>
<td>1.000000</td>
</tr>
<tr>
<td>15</td>
<td>1.647689</td>
<td>1.684065</td>
<td>1.628939</td>
<td>1.000000</td>
<td>1.000000</td>
</tr>
<tr>
<td>17</td>
<td>1.620411</td>
<td>1.638527</td>
<td>1.608929</td>
<td>1.000000</td>
<td>1.000000</td>
</tr>
<tr>
<td>19</td>
<td>1.620411</td>
<td>1.638527</td>
<td>1.608929</td>
<td>1.000000</td>
<td>1.000000</td>
</tr>
<tr>
<td>21</td>
<td>1.647689</td>
<td>1.684065</td>
<td>1.628939</td>
<td>1.000000</td>
<td>1.000000</td>
</tr>
<tr>
<td>23</td>
<td>1.620411</td>
<td>1.638527</td>
<td>1.608929</td>
<td>1.000000</td>
<td>1.000000</td>
</tr>
</tbody>
</table>

CC AND ASPHERIC DATA

<table>
<thead>
<tr>
<th>SURF</th>
<th>CC</th>
<th>AD</th>
<th>AE</th>
<th>AF</th>
<th>AG</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2.95328E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>-6.73878E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>-3.50468E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
19 -1.03876E 01

<table>
<thead>
<tr>
<th>PEF OBJ HT</th>
<th>PEF AP HT</th>
<th>OBJ SURF</th>
<th>PEF SURF</th>
<th>IMG SURF</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.657999E 09</td>
<td>2.03541</td>
<td>0</td>
<td>13</td>
<td>25</td>
</tr>
</tbody>
</table>

EFL 199.0144 BF 9.0000 F/HBR 7.96 LENGTH 69.9996 GIH 1.3124

LENS IS CURRENTLY IN CFG 1

ALTERNATE CONFIGURATIONS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SURF</th>
<th>CURRENT VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFG 2:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAY</td>
<td>1</td>
<td>7.000000</td>
</tr>
<tr>
<td>PUCY</td>
<td>0</td>
<td>0.011743</td>
</tr>
<tr>
<td>PCLY</td>
<td>1</td>
<td>0.000000</td>
</tr>
<tr>
<td>TH</td>
<td>12</td>
<td>5.696891</td>
</tr>
<tr>
<td>TH</td>
<td>18</td>
<td>11.874881</td>
</tr>
<tr>
<td>TH</td>
<td>6</td>
<td>22.585569</td>
</tr>
<tr>
<td>CFG 3:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAY</td>
<td>1</td>
<td>3.937500</td>
</tr>
<tr>
<td>PUCY</td>
<td>0</td>
<td>0.020876</td>
</tr>
<tr>
<td>PCLY</td>
<td>1</td>
<td>0.000000</td>
</tr>
<tr>
<td>TH</td>
<td>12</td>
<td>11.661789</td>
</tr>
<tr>
<td>TH</td>
<td>18</td>
<td>11.396253</td>
</tr>
<tr>
<td>TH</td>
<td>6</td>
<td>17.100031</td>
</tr>
<tr>
<td>CFG 4:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAY</td>
<td>1</td>
<td>2.250000</td>
</tr>
<tr>
<td>PUCY</td>
<td>0</td>
<td>0.036533</td>
</tr>
</tbody>
</table>
CFG 4:

<table>
<thead>
<tr>
<th>WAVL NBR</th>
<th>WAVELENGTH</th>
<th>SPECTRAL WT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.58756</td>
<td>1.00000</td>
</tr>
<tr>
<td>2</td>
<td>0.40000</td>
<td>1.00000</td>
</tr>
<tr>
<td>3</td>
<td>1.00000</td>
<td>1.00000</td>
</tr>
<tr>
<td>4</td>
<td>0.00000</td>
<td>1.00000</td>
</tr>
<tr>
<td>5</td>
<td>0.00000</td>
<td>1.00000</td>
</tr>
</tbody>
</table>

APERTURE STOP AT SURF 13
LENS UNITS ARE CM
EVALUATION MODE IS FOCAL
CONTROL WAVELENGTH IS 1
PRIMARY CHROMATIC WAVELENGTHS ARE 2 - 3
SECONDARY CHROMATIC WAVELENGTHS ARE 2 - 1
REFRACTIVE OPTICS. LONGEST FOCAL LENGTH (2000 MM) CONFIGURATION AT TOP.
RAY FAN PLOTS. REFRACTIVE OPTICS 2000 MM FOCAL LENGTH. 400 - 1000 NM WAVELENGTH
ZOOM TYPE 2

REFRACTIVE OPTICS, 200 MM FOCAL LENGTH. SCALE .5 CM.
APPENDIX E

PRELIMINARY CATADIOPTRIC DESIGN
BIFRIP EJRN WITH FIELD FLATTERER

<table>
<thead>
<tr>
<th>BASIC LENS DATA</th>
<th>TH</th>
<th>MEDIUM</th>
<th>PH</th>
<th>DF</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPF</td>
<td>PD</td>
<td>0.100000E 12</td>
<td>AIR</td>
<td>PH</td>
</tr>
<tr>
<td>0</td>
<td>0.000000</td>
<td>0.100000E 12</td>
<td>AIR</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3919.116000</td>
<td>0.840201</td>
<td>SCHOTT BK7</td>
<td>1.516800</td>
</tr>
<tr>
<td>2</td>
<td>-3929.602694</td>
<td>29.979709</td>
<td>AIR</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-90.411566</td>
<td>-29.979709</td>
<td>REFL</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>-51.690562</td>
<td>29.979709</td>
<td>REFL</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10.669782</td>
<td>0.799447</td>
<td>SCHOTT LAK8</td>
<td>1.713003</td>
</tr>
<tr>
<td>6</td>
<td>47.410182</td>
<td>12.039217</td>
<td>AIR</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>136.672961</td>
<td>0.735270</td>
<td>SCHOTT SF16</td>
<td>1.620411</td>
</tr>
<tr>
<td>8</td>
<td>-14.010775</td>
<td>0.200286</td>
<td>AIR</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>-7.931797</td>
<td>0.335593</td>
<td>SCHOTT SF4</td>
<td>1.755201</td>
</tr>
<tr>
<td>10</td>
<td>-11.157716</td>
<td>0.000000</td>
<td>AIR</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>9.910903</td>
<td>0.947231</td>
<td>SCHOTT LAK9</td>
<td>1.691003</td>
</tr>
<tr>
<td>12</td>
<td>-80.350031</td>
<td>0.123377</td>
<td>AIR</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>-9.032872</td>
<td>0.337031</td>
<td>SCHOTT F2</td>
<td>1.620041</td>
</tr>
<tr>
<td>14</td>
<td>6.972849</td>
<td>0.100838</td>
<td>AIR</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>8.382768</td>
<td>0.605227</td>
<td>SCHOTT LAK8</td>
<td>1.713003</td>
</tr>
<tr>
<td>16</td>
<td>-9.108521</td>
<td>22.225798</td>
<td>AIR</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>12.414584</td>
<td>0.416382</td>
<td>SCHOTT LAK8</td>
<td>1.713003</td>
</tr>
<tr>
<td>18</td>
<td>-12.376881</td>
<td>0.057877</td>
<td>AIR</td>
<td></td>
</tr>
<tr>
<td>SURF</td>
<td>M1</td>
<td>M2</td>
<td>M3</td>
<td>M4</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>1</td>
<td>1.516800</td>
<td>1.526685</td>
<td>1.512894</td>
<td>1.522387</td>
</tr>
<tr>
<td>5</td>
<td>1.713003</td>
<td>1.729437</td>
<td>1.706678</td>
<td>1.722220</td>
</tr>
<tr>
<td>7</td>
<td>1.620411</td>
<td>1.633122</td>
<td>1.615479</td>
<td>1.627558</td>
</tr>
<tr>
<td>9</td>
<td>1.755201</td>
<td>1.791202</td>
<td>1.742997</td>
<td>1.774680</td>
</tr>
<tr>
<td>11</td>
<td>1.691003</td>
<td>1.706673</td>
<td>1.684977</td>
<td>1.699794</td>
</tr>
<tr>
<td>13</td>
<td>1.620041</td>
<td>1.642015</td>
<td>1.612268</td>
<td>1.632083</td>
</tr>
<tr>
<td>15</td>
<td>1.713003</td>
<td>1.729437</td>
<td>1.706678</td>
<td>1.722220</td>
</tr>
<tr>
<td>17</td>
<td>1.713003</td>
<td>1.729437</td>
<td>1.706678</td>
<td>1.722220</td>
</tr>
<tr>
<td>19</td>
<td>1.548141</td>
<td>1.563323</td>
<td>1.542563</td>
<td>1.556546</td>
</tr>
<tr>
<td>21</td>
<td>1.548141</td>
<td>1.563323</td>
<td>1.542563</td>
<td>1.556546</td>
</tr>
</tbody>
</table>

Refractive Indices

CC and Aspheric Data

<table>
<thead>
<tr>
<th>SURF</th>
<th>CC</th>
<th>AD</th>
<th>AE</th>
<th>AF</th>
<th>AG</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-6.35041E-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-5.16264E-01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.51502E 00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>-1.18594E 00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Clear Apertures and Obstructions
<table>
<thead>
<tr>
<th>SURF</th>
<th>TYPE</th>
<th>H</th>
<th>CH</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>OB</td>
<td>CIRCLE</td>
<td>4.3500</td>
</tr>
<tr>
<td>3</td>
<td>OB</td>
<td>CIRCLE</td>
<td>3.4500</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>CIRCLE</td>
<td>4.3500</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>CIRCLE</td>
<td>3.4500</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>CIRCLE</td>
<td>3.4500</td>
</tr>
</tbody>
</table>

PICKUPS

<table>
<thead>
<tr>
<th>SURF</th>
<th>TYPE</th>
<th>J</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>TH</td>
<td>2</td>
<td>-1.0000</td>
<td>0.000000</td>
</tr>
<tr>
<td>4</td>
<td>TH</td>
<td>2</td>
<td>1.0000</td>
<td>0.000000</td>
</tr>
</tbody>
</table>

REF OBJ HT

-0.657597E 09 (0.38 DG) 12.43083 0 3 23

EFL

-196.1110 0.0000 -7.84 79.0000 -1.3152

LENS IS CURRENTLY IN CFG 1

ALTERNATE CONFIGURATIONS

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>SURF</th>
<th>CURRENT VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFG 2:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAY</td>
<td>1</td>
<td>7.800000</td>
</tr>
<tr>
<td>PUCY</td>
<td>0</td>
<td>0.011743</td>
</tr>
<tr>
<td>PCY</td>
<td>1</td>
<td>0.000000</td>
</tr>
<tr>
<td>TH</td>
<td>6</td>
<td>4.726286</td>
</tr>
<tr>
<td>TH</td>
<td>10</td>
<td>14.380409</td>
</tr>
<tr>
<td>TH</td>
<td>16</td>
<td>15.158346</td>
</tr>
</tbody>
</table>
CFG 3:

<table>
<thead>
<tr>
<th>column</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAY 1</td>
<td>5.680000</td>
</tr>
<tr>
<td>PUCY 0</td>
<td>0.020876</td>
</tr>
<tr>
<td>PCY 1</td>
<td>0.000000</td>
</tr>
<tr>
<td>TH 6</td>
<td>8.249708</td>
</tr>
<tr>
<td>TH 10</td>
<td>18.300768</td>
</tr>
<tr>
<td>TH 16</td>
<td>7.714525</td>
</tr>
</tbody>
</table>

CFG 4:

<table>
<thead>
<tr>
<th>column</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAY 1</td>
<td>4.780000</td>
</tr>
<tr>
<td>PUCY 0</td>
<td>0.036533</td>
</tr>
<tr>
<td>PCY 1</td>
<td>0.000000</td>
</tr>
<tr>
<td>TH 6</td>
<td>27.499407</td>
</tr>
<tr>
<td>TH 10</td>
<td>4.767607</td>
</tr>
<tr>
<td>TH 16</td>
<td>1.998033</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>column</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAVELENGTH</td>
<td>0.58756</td>
</tr>
<tr>
<td>SPECTRAL HT</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

APERTURE STOP AT SURF 3

LENS UNITS ARE CM

EVALUATION MODE IS FOCAL

CONTROL WAVELENGTH IS 1

PRIMARY CHROMATIC WAVELENGTHS ARE 2 - 3

SECONDARY CHROMATIC WAVELENGTHS ARE 2 - 1
MIRROR ZOOM WITH FIELD FLATTENER

645 MM FOCAL LENGTH CONFIGURATION. PLOT SCALE .05 CM.
MIRROR ZOOM WITH FIELD FLATTENER

568 mm FOCAL LENGTH CONFIGURATION. PLOT SCALE .05 CM.
<table>
<thead>
<tr>
<th>FREQ</th>
<th>MOD</th>
<th>PHA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>1.000</td>
<td>0.0</td>
</tr>
<tr>
<td>1.0</td>
<td>0.991</td>
<td>0.0</td>
</tr>
<tr>
<td>2.0</td>
<td>0.964</td>
<td>0.0</td>
</tr>
<tr>
<td>3.0</td>
<td>0.920</td>
<td>0.0</td>
</tr>
<tr>
<td>4.0</td>
<td>0.861</td>
<td>0.0</td>
</tr>
<tr>
<td>5.0</td>
<td>0.791</td>
<td>0.0</td>
</tr>
<tr>
<td>6.0</td>
<td>0.712</td>
<td>0.0</td>
</tr>
<tr>
<td>7.0</td>
<td>0.628</td>
<td>0.0</td>
</tr>
<tr>
<td>8.0</td>
<td>0.543</td>
<td>0.0</td>
</tr>
<tr>
<td>9.0</td>
<td>0.461</td>
<td>0.0</td>
</tr>
<tr>
<td>10.0</td>
<td>0.383</td>
<td>0.0</td>
</tr>
<tr>
<td>11.0</td>
<td>0.314</td>
<td>0.0</td>
</tr>
<tr>
<td>12.0</td>
<td>0.255</td>
<td>-0.0</td>
</tr>
<tr>
<td>13.0</td>
<td>0.208</td>
<td>-0.0</td>
</tr>
<tr>
<td>14.0</td>
<td>0.174</td>
<td>-0.0</td>
</tr>
<tr>
<td>15.0</td>
<td>0.151</td>
<td>-0.0</td>
</tr>
<tr>
<td>16.0</td>
<td>0.140</td>
<td>-0.0</td>
</tr>
<tr>
<td>17.0</td>
<td>0.139</td>
<td>-0.0</td>
</tr>
<tr>
<td>18.0</td>
<td>0.145</td>
<td>-0.0</td>
</tr>
<tr>
<td>19.0</td>
<td>0.157</td>
<td>0.0</td>
</tr>
<tr>
<td>20.0</td>
<td>0.172</td>
<td>0.0</td>
</tr>
<tr>
<td>21.0</td>
<td>0.188</td>
<td>0.0</td>
</tr>
<tr>
<td>22.0</td>
<td>0.201</td>
<td>0.0</td>
</tr>
<tr>
<td>23.0</td>
<td>0.210</td>
<td>0.0</td>
</tr>
<tr>
<td>24.0</td>
<td>0.214</td>
<td>0.0</td>
</tr>
<tr>
<td>25.0</td>
<td>0.211</td>
<td>0.0</td>
</tr>
<tr>
<td>26.0</td>
<td>0.200</td>
<td>0.0</td>
</tr>
<tr>
<td>27.0</td>
<td>0.182</td>
<td>0.0</td>
</tr>
<tr>
<td>28.0</td>
<td>0.157</td>
<td>0.0</td>
</tr>
<tr>
<td>29.0</td>
<td>0.126</td>
<td>0.0</td>
</tr>
<tr>
<td>30.0</td>
<td>0.091</td>
<td>0.0</td>
</tr>
<tr>
<td>GEOMETRIC OTF: FOCUS = -0.054000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>TARGET:</td>
<td>MOD 0° 45° 90°</td>
<td>MOD 0° 45° 90°</td>
</tr>
<tr>
<td>FREQ</td>
<td>PHA</td>
<td>PHA</td>
</tr>
<tr>
<td>0.0</td>
<td>1.000</td>
<td>0.0</td>
</tr>
<tr>
<td>1.0</td>
<td>0.987</td>
<td>-0.0</td>
</tr>
<tr>
<td>2.0</td>
<td>0.958</td>
<td>-0.0</td>
</tr>
<tr>
<td>3.0</td>
<td>0.891</td>
<td>-0.0</td>
</tr>
<tr>
<td>4.0</td>
<td>0.816</td>
<td>-0.0</td>
</tr>
<tr>
<td>5.0</td>
<td>0.728</td>
<td>-0.0</td>
</tr>
<tr>
<td>6.0</td>
<td>0.635</td>
<td>-0.0</td>
</tr>
<tr>
<td>7.0</td>
<td>0.544</td>
<td>-0.0</td>
</tr>
<tr>
<td>8.0</td>
<td>0.459</td>
<td>-0.0</td>
</tr>
<tr>
<td>9.0</td>
<td>0.386</td>
<td>-0.0</td>
</tr>
<tr>
<td>10.0</td>
<td>0.330</td>
<td>-0.0</td>
</tr>
<tr>
<td>11.0</td>
<td>0.291</td>
<td>-0.0</td>
</tr>
<tr>
<td>12.0</td>
<td>0.270</td>
<td>-0.0</td>
</tr>
<tr>
<td>13.0</td>
<td>0.266</td>
<td>-0.0</td>
</tr>
<tr>
<td>14.0</td>
<td>0.276</td>
<td>-0.0</td>
</tr>
<tr>
<td>15.0</td>
<td>0.296</td>
<td>-0.0</td>
</tr>
<tr>
<td>16.0</td>
<td>0.322</td>
<td>-0.0</td>
</tr>
<tr>
<td>17.0</td>
<td>0.348</td>
<td>-0.0</td>
</tr>
<tr>
<td>18.0</td>
<td>0.370</td>
<td>-0.0</td>
</tr>
<tr>
<td>19.0</td>
<td>0.384</td>
<td>-0.0</td>
</tr>
<tr>
<td>20.0</td>
<td>0.387</td>
<td>-0.0</td>
</tr>
<tr>
<td>21.0</td>
<td>0.379</td>
<td>-0.0</td>
</tr>
<tr>
<td>22.0</td>
<td>0.359</td>
<td>-0.0</td>
</tr>
<tr>
<td>23.0</td>
<td>0.329</td>
<td>-0.0</td>
</tr>
<tr>
<td>24.0</td>
<td>0.291</td>
<td>-0.0</td>
</tr>
<tr>
<td>25.0</td>
<td>0.248</td>
<td>-0.0</td>
</tr>
<tr>
<td>26.0</td>
<td>0.205</td>
<td>-0.0</td>
</tr>
<tr>
<td>27.0</td>
<td>0.165</td>
<td>-0.0</td>
</tr>
<tr>
<td>28.0</td>
<td>0.131</td>
<td>-0.0</td>
</tr>
<tr>
<td>29.0</td>
<td>0.107</td>
<td>-0.0</td>
</tr>
<tr>
<td>30.0</td>
<td>0.093</td>
<td>-0.0</td>
</tr>
<tr>
<td>FPEQ</td>
<td>MOD</td>
<td>PHA</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>0.0</td>
<td>1.000</td>
<td>0.0</td>
</tr>
<tr>
<td>1.0</td>
<td>0.978</td>
<td>-0.0</td>
</tr>
<tr>
<td>2.0</td>
<td>0.915</td>
<td>-0.0</td>
</tr>
<tr>
<td>3.0</td>
<td>0.822</td>
<td>-0.0</td>
</tr>
<tr>
<td>4.0</td>
<td>0.712</td>
<td>-0.0</td>
</tr>
<tr>
<td>5.0</td>
<td>0.602</td>
<td>-0.0</td>
</tr>
<tr>
<td>6.0</td>
<td>0.506</td>
<td>-0.0</td>
</tr>
<tr>
<td>7.0</td>
<td>0.434</td>
<td>-0.0</td>
</tr>
<tr>
<td>8.0</td>
<td>0.392</td>
<td>-0.0</td>
</tr>
<tr>
<td>9.0</td>
<td>0.378</td>
<td>-0.0</td>
</tr>
<tr>
<td>10.0</td>
<td>0.386</td>
<td>-0.0</td>
</tr>
<tr>
<td>11.0</td>
<td>0.406</td>
<td>-0.0</td>
</tr>
<tr>
<td>12.0</td>
<td>0.426</td>
<td>-0.0</td>
</tr>
<tr>
<td>13.0</td>
<td>0.439</td>
<td>-0.0</td>
</tr>
<tr>
<td>14.0</td>
<td>0.436</td>
<td>-0.0</td>
</tr>
<tr>
<td>15.0</td>
<td>0.415</td>
<td>-0.0</td>
</tr>
<tr>
<td>16.0</td>
<td>0.378</td>
<td>-0.0</td>
</tr>
<tr>
<td>17.0</td>
<td>0.329</td>
<td>-0.0</td>
</tr>
<tr>
<td>18.0</td>
<td>0.274</td>
<td>-0.0</td>
</tr>
<tr>
<td>19.0</td>
<td>0.219</td>
<td>-0.0</td>
</tr>
<tr>
<td>20.0</td>
<td>0.170</td>
<td>-0.0</td>
</tr>
<tr>
<td>21.0</td>
<td>0.131</td>
<td>-0.0</td>
</tr>
<tr>
<td>22.0</td>
<td>0.104</td>
<td>-0.0</td>
</tr>
<tr>
<td>23.0</td>
<td>0.089</td>
<td>-0.0</td>
</tr>
<tr>
<td>24.0</td>
<td>0.085</td>
<td>-0.0</td>
</tr>
<tr>
<td>25.0</td>
<td>0.089</td>
<td>-0.0</td>
</tr>
<tr>
<td>26.0</td>
<td>0.099</td>
<td>-0.0</td>
</tr>
<tr>
<td>27.0</td>
<td>0.111</td>
<td>-0.0</td>
</tr>
<tr>
<td>28.0</td>
<td>0.124</td>
<td>-0.0</td>
</tr>
<tr>
<td>29.0</td>
<td>0.133</td>
<td>-0.0</td>
</tr>
<tr>
<td>30.0</td>
<td>0.137</td>
<td>-0.0</td>
</tr>
</tbody>
</table>
Geometric OTF: Focus = 0.047988

<table>
<thead>
<tr>
<th>FFED</th>
<th>MD</th>
<th>PHA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>1.000</td>
<td>0.0</td>
</tr>
<tr>
<td>1.0</td>
<td>0.995</td>
<td>0.0</td>
</tr>
<tr>
<td>2.0</td>
<td>0.979</td>
<td>0.0</td>
</tr>
<tr>
<td>3.0</td>
<td>0.954</td>
<td>0.0</td>
</tr>
<tr>
<td>4.0</td>
<td>0.919</td>
<td>0.0</td>
</tr>
<tr>
<td>5.0</td>
<td>0.876</td>
<td>0.0</td>
</tr>
<tr>
<td>6.0</td>
<td>0.827</td>
<td>0.0</td>
</tr>
<tr>
<td>7.0</td>
<td>0.772</td>
<td>0.0</td>
</tr>
<tr>
<td>8.0</td>
<td>0.712</td>
<td>0.0</td>
</tr>
<tr>
<td>9.0</td>
<td>0.651</td>
<td>0.0</td>
</tr>
<tr>
<td>10.0</td>
<td>0.588</td>
<td>0.0</td>
</tr>
<tr>
<td>11.0</td>
<td>0.526</td>
<td>0.0</td>
</tr>
<tr>
<td>12.0</td>
<td>0.466</td>
<td>0.0</td>
</tr>
<tr>
<td>13.0</td>
<td>0.409</td>
<td>0.0</td>
</tr>
<tr>
<td>14.0</td>
<td>0.356</td>
<td>0.0</td>
</tr>
<tr>
<td>15.0</td>
<td>0.309</td>
<td>0.0</td>
</tr>
<tr>
<td>16.0</td>
<td>0.267</td>
<td>0.0</td>
</tr>
<tr>
<td>17.0</td>
<td>0.232</td>
<td>0.0</td>
</tr>
<tr>
<td>18.0</td>
<td>0.203</td>
<td>0.0</td>
</tr>
<tr>
<td>19.0</td>
<td>0.180</td>
<td>0.0</td>
</tr>
<tr>
<td>20.0</td>
<td>0.163</td>
<td>0.0</td>
</tr>
<tr>
<td>21.0</td>
<td>0.152</td>
<td>0.0</td>
</tr>
<tr>
<td>22.0</td>
<td>0.145</td>
<td>0.0</td>
</tr>
<tr>
<td>23.0</td>
<td>0.142</td>
<td>0.0</td>
</tr>
<tr>
<td>24.0</td>
<td>0.142</td>
<td>0.0</td>
</tr>
<tr>
<td>25.0</td>
<td>0.145</td>
<td>0.0</td>
</tr>
<tr>
<td>26.0</td>
<td>0.149</td>
<td>0.0</td>
</tr>
<tr>
<td>27.0</td>
<td>0.154</td>
<td>-0.0</td>
</tr>
<tr>
<td>28.0</td>
<td>0.158</td>
<td>-0.0</td>
</tr>
<tr>
<td>29.0</td>
<td>0.162</td>
<td>-0.0</td>
</tr>
<tr>
<td>30.0</td>
<td>0.164</td>
<td>-0.0</td>
</tr>
<tr>
<td>FPE6</td>
<td>0 Dg</td>
<td>45 Dg</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>MOD</td>
<td>PHA</td>
<td>MOD</td>
</tr>
<tr>
<td>0.0</td>
<td>1.000</td>
<td>0.0</td>
</tr>
<tr>
<td>1.0</td>
<td>0.995</td>
<td>-0.0</td>
</tr>
<tr>
<td>2.0</td>
<td>0.979</td>
<td>-0.0</td>
</tr>
<tr>
<td>3.0</td>
<td>0.954</td>
<td>-0.0</td>
</tr>
<tr>
<td>4.0</td>
<td>0.919</td>
<td>-0.0</td>
</tr>
<tr>
<td>5.0</td>
<td>0.876</td>
<td>-0.0</td>
</tr>
<tr>
<td>6.0</td>
<td>0.826</td>
<td>-0.0</td>
</tr>
<tr>
<td>7.0</td>
<td>0.771</td>
<td>-0.0</td>
</tr>
<tr>
<td>8.0</td>
<td>0.711</td>
<td>-0.0</td>
</tr>
<tr>
<td>9.0</td>
<td>0.649</td>
<td>-0.0</td>
</tr>
<tr>
<td>10.0</td>
<td>0.586</td>
<td>-0.0</td>
</tr>
<tr>
<td>11.0</td>
<td>0.523</td>
<td>-0.0</td>
</tr>
<tr>
<td>12.0</td>
<td>0.462</td>
<td>-0.0</td>
</tr>
<tr>
<td>13.0</td>
<td>0.404</td>
<td>-0.0</td>
</tr>
<tr>
<td>14.0</td>
<td>0.351</td>
<td>-0.0</td>
</tr>
<tr>
<td>15.0</td>
<td>0.303</td>
<td>-0.0</td>
</tr>
<tr>
<td>16.0</td>
<td>0.261</td>
<td>-0.0</td>
</tr>
<tr>
<td>17.0</td>
<td>0.226</td>
<td>-0.0</td>
</tr>
<tr>
<td>18.0</td>
<td>0.196</td>
<td>-0.0</td>
</tr>
<tr>
<td>19.0</td>
<td>0.174</td>
<td>-0.0</td>
</tr>
<tr>
<td>20.0</td>
<td>0.157</td>
<td>-0.0</td>
</tr>
<tr>
<td>21.0</td>
<td>0.147</td>
<td>-0.0</td>
</tr>
<tr>
<td>22.0</td>
<td>0.141</td>
<td>-0.0</td>
</tr>
<tr>
<td>23.0</td>
<td>0.139</td>
<td>-0.0</td>
</tr>
<tr>
<td>24.0</td>
<td>0.141</td>
<td>-0.0</td>
</tr>
<tr>
<td>25.0</td>
<td>0.145</td>
<td>-0.0</td>
</tr>
<tr>
<td>26.0</td>
<td>0.150</td>
<td>-0.0</td>
</tr>
<tr>
<td>27.0</td>
<td>0.155</td>
<td>-0.0</td>
</tr>
<tr>
<td>28.0</td>
<td>0.160</td>
<td>-0.0</td>
</tr>
<tr>
<td>29.0</td>
<td>0.164</td>
<td>-0.0</td>
</tr>
<tr>
<td>30.0</td>
<td>0.165</td>
<td>-0.0</td>
</tr>
<tr>
<td>PHA</td>
<td>NOD</td>
<td>PHA</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>7.0</td>
<td>0.842</td>
<td>6.6</td>
</tr>
<tr>
<td>8.0</td>
<td>0.708</td>
<td>7.8</td>
</tr>
<tr>
<td>9.0</td>
<td>0.646</td>
<td>8.6</td>
</tr>
<tr>
<td>10.0</td>
<td>0.583</td>
<td>7.8</td>
</tr>
<tr>
<td>11.0</td>
<td>0.522</td>
<td>4.9</td>
</tr>
<tr>
<td>12.0</td>
<td>0.462</td>
<td>-4.0</td>
</tr>
<tr>
<td>13.0</td>
<td>0.406</td>
<td>-21.4</td>
</tr>
<tr>
<td>14.0</td>
<td>0.355</td>
<td>-42.0</td>
</tr>
<tr>
<td>15.0</td>
<td>0.308</td>
<td>-55.5</td>
</tr>
<tr>
<td>16.0</td>
<td>0.268</td>
<td>-61.1</td>
</tr>
<tr>
<td>17.0</td>
<td>0.234</td>
<td>-62.1</td>
</tr>
<tr>
<td>18.0</td>
<td>0.206</td>
<td>-60.5</td>
</tr>
<tr>
<td>19.0</td>
<td>0.184</td>
<td>-57.0</td>
</tr>
<tr>
<td>20.0</td>
<td>0.167</td>
<td>-51.3</td>
</tr>
<tr>
<td>21.0</td>
<td>0.155</td>
<td>-41.3</td>
</tr>
<tr>
<td>22.0</td>
<td>0.148</td>
<td>-18.4</td>
</tr>
<tr>
<td>23.0</td>
<td>0.143</td>
<td>36.8</td>
</tr>
<tr>
<td>24.0</td>
<td>0.142</td>
<td>80.3</td>
</tr>
<tr>
<td>25.0</td>
<td>0.142</td>
<td>97.2</td>
</tr>
<tr>
<td>26.0</td>
<td>0.142</td>
<td>105.9</td>
</tr>
<tr>
<td>27.0</td>
<td>0.144</td>
<td>111.8</td>
</tr>
<tr>
<td>28.0</td>
<td>0.144</td>
<td>116.3</td>
</tr>
<tr>
<td>29.0</td>
<td>0.144</td>
<td>120.2</td>
</tr>
<tr>
<td>30.0</td>
<td>0.142</td>
<td>123.6</td>
</tr>
</tbody>
</table>
Geometric OTF: Focus = 0.042500

<table>
<thead>
<tr>
<th>FREQ</th>
<th>MOD</th>
<th>PHA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>1.000</td>
<td>0.0</td>
</tr>
<tr>
<td>1.0</td>
<td>0.995</td>
<td>-0.0</td>
</tr>
<tr>
<td>2.0</td>
<td>0.982</td>
<td>-0.0</td>
</tr>
<tr>
<td>3.0</td>
<td>0.960</td>
<td>-0.0</td>
</tr>
<tr>
<td>4.0</td>
<td>0.930</td>
<td>-0.0</td>
</tr>
<tr>
<td>5.0</td>
<td>0.893</td>
<td>-0.0</td>
</tr>
<tr>
<td>6.0</td>
<td>0.851</td>
<td>-0.0</td>
</tr>
<tr>
<td>7.0</td>
<td>0.804</td>
<td>-0.0</td>
</tr>
<tr>
<td>8.0</td>
<td>0.754</td>
<td>-0.0</td>
</tr>
<tr>
<td>9.0</td>
<td>0.703</td>
<td>-0.0</td>
</tr>
<tr>
<td>10.0</td>
<td>0.651</td>
<td>-0.0</td>
</tr>
<tr>
<td>11.0</td>
<td>0.600</td>
<td>-0.0</td>
</tr>
<tr>
<td>12.0</td>
<td>0.550</td>
<td>-0.0</td>
</tr>
<tr>
<td>13.0</td>
<td>0.502</td>
<td>-0.0</td>
</tr>
<tr>
<td>14.0</td>
<td>0.457</td>
<td>-0.0</td>
</tr>
<tr>
<td>15.0</td>
<td>0.415</td>
<td>-0.0</td>
</tr>
<tr>
<td>16.0</td>
<td>0.377</td>
<td>-0.0</td>
</tr>
<tr>
<td>17.0</td>
<td>0.341</td>
<td>-0.0</td>
</tr>
<tr>
<td>18.0</td>
<td>0.308</td>
<td>-0.0</td>
</tr>
<tr>
<td>19.0</td>
<td>0.278</td>
<td>-0.0</td>
</tr>
<tr>
<td>20.0</td>
<td>0.250</td>
<td>-0.0</td>
</tr>
<tr>
<td>21.0</td>
<td>0.224</td>
<td>-0.0</td>
</tr>
<tr>
<td>22.0</td>
<td>0.200</td>
<td>-0.0</td>
</tr>
<tr>
<td>23.0</td>
<td>0.178</td>
<td>-0.0</td>
</tr>
<tr>
<td>24.0</td>
<td>0.158</td>
<td>-0.0</td>
</tr>
<tr>
<td>25.0</td>
<td>0.139</td>
<td>-0.0</td>
</tr>
<tr>
<td>26.0</td>
<td>0.122</td>
<td>-0.0</td>
</tr>
<tr>
<td>27.0</td>
<td>0.107</td>
<td>-0.0</td>
</tr>
<tr>
<td>28.0</td>
<td>0.094</td>
<td>-0.0</td>
</tr>
<tr>
<td>29.0</td>
<td>0.083</td>
<td>0.0</td>
</tr>
<tr>
<td>30.0</td>
<td>0.074</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Geometric OTF: Focus = 0.042500

<table>
<thead>
<tr>
<th>Freq</th>
<th>MOD</th>
<th>PHA</th>
<th>MOD</th>
<th>PHA</th>
<th>MOD</th>
<th>PHA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>1.000</td>
<td>0.0</td>
<td>1.000</td>
<td>0.0</td>
<td>1.000</td>
<td>0.0</td>
</tr>
<tr>
<td>0.1</td>
<td>0.996</td>
<td>-0.0</td>
<td>0.988</td>
<td>1.0</td>
<td>0.981</td>
<td>1.4</td>
</tr>
<tr>
<td>0.2</td>
<td>0.983</td>
<td>-0.0</td>
<td>0.954</td>
<td>2.0</td>
<td>0.927</td>
<td>2.8</td>
</tr>
<tr>
<td>0.3</td>
<td>0.963</td>
<td>-0.0</td>
<td>0.901</td>
<td>2.9</td>
<td>0.844</td>
<td>4.0</td>
</tr>
<tr>
<td>0.4</td>
<td>0.935</td>
<td>-0.0</td>
<td>0.833</td>
<td>3.8</td>
<td>0.744</td>
<td>4.9</td>
</tr>
<tr>
<td>0.5</td>
<td>0.903</td>
<td>-0.0</td>
<td>0.756</td>
<td>4.4</td>
<td>0.638</td>
<td>5.4</td>
</tr>
<tr>
<td>0.6</td>
<td>0.866</td>
<td>-0.0</td>
<td>0.675</td>
<td>5.0</td>
<td>0.537</td>
<td>5.4</td>
</tr>
<tr>
<td>0.7</td>
<td>0.827</td>
<td>-0.0</td>
<td>0.595</td>
<td>5.3</td>
<td>0.449</td>
<td>4.6</td>
</tr>
<tr>
<td>0.8</td>
<td>0.786</td>
<td>-0.0</td>
<td>0.521</td>
<td>5.4</td>
<td>0.378</td>
<td>3.2</td>
</tr>
<tr>
<td>0.9</td>
<td>0.746</td>
<td>-0.0</td>
<td>0.453</td>
<td>5.4</td>
<td>0.325</td>
<td>1.0</td>
</tr>
<tr>
<td>1.0</td>
<td>0.706</td>
<td>-0.0</td>
<td>0.394</td>
<td>5.1</td>
<td>0.288</td>
<td>-1.5</td>
</tr>
<tr>
<td>1.1</td>
<td>0.669</td>
<td>-0.0</td>
<td>0.343</td>
<td>4.7</td>
<td>0.263</td>
<td>-4.3</td>
</tr>
<tr>
<td>1.2</td>
<td>0.633</td>
<td>-0.0</td>
<td>0.298</td>
<td>4.1</td>
<td>0.246</td>
<td>-7.3</td>
</tr>
<tr>
<td>1.3</td>
<td>0.599</td>
<td>-0.0</td>
<td>0.258</td>
<td>3.3</td>
<td>0.234</td>
<td>-10.3</td>
</tr>
<tr>
<td>1.4</td>
<td>0.567</td>
<td>-0.0</td>
<td>0.222</td>
<td>2.1</td>
<td>0.227</td>
<td>-13.3</td>
</tr>
<tr>
<td>1.5</td>
<td>0.537</td>
<td>-0.0</td>
<td>0.188</td>
<td>0.3</td>
<td>0.224</td>
<td>-15.9</td>
</tr>
<tr>
<td>1.6</td>
<td>0.507</td>
<td>-0.0</td>
<td>0.157</td>
<td>-2.5</td>
<td>0.225</td>
<td>-17.5</td>
</tr>
<tr>
<td>1.7</td>
<td>0.478</td>
<td>-0.0</td>
<td>0.128</td>
<td>-6.6</td>
<td>0.228</td>
<td>-17.8</td>
</tr>
<tr>
<td>1.8</td>
<td>0.449</td>
<td>-0.0</td>
<td>0.103</td>
<td>-12.6</td>
<td>0.233</td>
<td>-16.7</td>
</tr>
<tr>
<td>1.9</td>
<td>0.420</td>
<td>-0.0</td>
<td>0.082</td>
<td>-20.6</td>
<td>0.238</td>
<td>-14.4</td>
</tr>
<tr>
<td>2.0</td>
<td>0.390</td>
<td>-0.0</td>
<td>0.066</td>
<td>-30.2</td>
<td>0.242</td>
<td>-11.3</td>
</tr>
<tr>
<td>2.1</td>
<td>0.360</td>
<td>-0.0</td>
<td>0.054</td>
<td>-40.3</td>
<td>0.243</td>
<td>-8.1</td>
</tr>
<tr>
<td>2.2</td>
<td>0.331</td>
<td>-0.0</td>
<td>0.044</td>
<td>-49.7</td>
<td>0.239</td>
<td>-5.2</td>
</tr>
<tr>
<td>2.3</td>
<td>0.302</td>
<td>-0.0</td>
<td>0.034</td>
<td>-57.9</td>
<td>0.231</td>
<td>-3.1</td>
</tr>
<tr>
<td>2.4</td>
<td>0.275</td>
<td>-0.0</td>
<td>0.023</td>
<td>-66.8</td>
<td>0.218</td>
<td>-2.0</td>
</tr>
<tr>
<td>2.5</td>
<td>0.250</td>
<td>-0.0</td>
<td>0.012</td>
<td>-86.6</td>
<td>0.203</td>
<td>-2.1</td>
</tr>
<tr>
<td>2.6</td>
<td>0.227</td>
<td>-0.0</td>
<td>0.008</td>
<td>-170.1</td>
<td>0.188</td>
<td>-3.3</td>
</tr>
<tr>
<td>2.7</td>
<td>0.207</td>
<td>-0.0</td>
<td>0.020</td>
<td>152.2</td>
<td>0.175</td>
<td>-5.3</td>
</tr>
<tr>
<td>2.8</td>
<td>0.191</td>
<td>-0.0</td>
<td>0.034</td>
<td>145.6</td>
<td>0.167</td>
<td>-7.5</td>
</tr>
<tr>
<td>2.9</td>
<td>0.177</td>
<td>-0.0</td>
<td>0.047</td>
<td>143.1</td>
<td>0.163</td>
<td>-9.4</td>
</tr>
<tr>
<td>3.0</td>
<td>0.167</td>
<td>-0.0</td>
<td>0.059</td>
<td>143.7</td>
<td>0.163</td>
<td>-10.7</td>
</tr>
<tr>
<td>Freq</td>
<td>Mod</td>
<td>PHA</td>
<td>Mod</td>
<td>PHA</td>
<td>Mod</td>
<td>PHA</td>
</tr>
<tr>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>0.0</td>
<td>1.000</td>
<td>0.0</td>
<td>1.000</td>
<td>0.0</td>
<td>1.000</td>
<td>0.0</td>
</tr>
<tr>
<td>1.0</td>
<td>0.995</td>
<td>-0.0</td>
<td>0.958</td>
<td>0.5</td>
<td>0.922</td>
<td>0.7</td>
</tr>
<tr>
<td>2.0</td>
<td>0.980</td>
<td>-0.0</td>
<td>0.840</td>
<td>0.8</td>
<td>0.714</td>
<td>1.2</td>
</tr>
<tr>
<td>3.0</td>
<td>0.956</td>
<td>-0.0</td>
<td>0.668</td>
<td>0.8</td>
<td>0.442</td>
<td>0.8</td>
</tr>
<tr>
<td>4.0</td>
<td>0.925</td>
<td>-0.0</td>
<td>0.472</td>
<td>0.1</td>
<td>0.185</td>
<td>-2.4</td>
</tr>
<tr>
<td>5.0</td>
<td>0.890</td>
<td>-0.0</td>
<td>0.284</td>
<td>-2.0</td>
<td>0.021</td>
<td>-36.1</td>
</tr>
<tr>
<td>6.0</td>
<td>0.852</td>
<td>-0.0</td>
<td>0.129</td>
<td>-8.6</td>
<td>0.094</td>
<td>-163.8</td>
</tr>
<tr>
<td>7.0</td>
<td>0.815</td>
<td>-0.0</td>
<td>0.027</td>
<td>-58.2</td>
<td>0.108</td>
<td>-165.7</td>
</tr>
<tr>
<td>8.0</td>
<td>0.778</td>
<td>-0.0</td>
<td>0.057</td>
<td>-158.7</td>
<td>0.080</td>
<td>-159.3</td>
</tr>
<tr>
<td>9.0</td>
<td>0.745</td>
<td>-0.0</td>
<td>0.084</td>
<td>-170.0</td>
<td>0.050</td>
<td>-130.7</td>
</tr>
<tr>
<td>10.0</td>
<td>0.714</td>
<td>-0.0</td>
<td>0.087</td>
<td>-174.0</td>
<td>0.056</td>
<td>-184.8</td>
</tr>
<tr>
<td>11.0</td>
<td>0.687</td>
<td>-0.0</td>
<td>0.075</td>
<td>-173.2</td>
<td>0.081</td>
<td>-65.5</td>
</tr>
<tr>
<td>12.0</td>
<td>0.663</td>
<td>-0.0</td>
<td>0.057</td>
<td>-163.6</td>
<td>0.095</td>
<td>-56.7</td>
</tr>
<tr>
<td>13.0</td>
<td>0.641</td>
<td>-0.0</td>
<td>0.045</td>
<td>-137.0</td>
<td>0.089</td>
<td>-47.9</td>
</tr>
<tr>
<td>14.0</td>
<td>0.619</td>
<td>-0.0</td>
<td>0.048</td>
<td>-100.6</td>
<td>0.062</td>
<td>-33.3</td>
</tr>
<tr>
<td>15.0</td>
<td>0.596</td>
<td>-0.0</td>
<td>0.063</td>
<td>-76.7</td>
<td>0.028</td>
<td>12.3</td>
</tr>
<tr>
<td>16.0</td>
<td>0.572</td>
<td>-0.0</td>
<td>0.076</td>
<td>-62.5</td>
<td>0.039</td>
<td>98.6</td>
</tr>
<tr>
<td>17.0</td>
<td>0.547</td>
<td>-0.0</td>
<td>0.080</td>
<td>-51.6</td>
<td>0.063</td>
<td>122.3</td>
</tr>
<tr>
<td>18.0</td>
<td>0.520</td>
<td>-0.0</td>
<td>0.073</td>
<td>-40.9</td>
<td>0.064</td>
<td>132.1</td>
</tr>
<tr>
<td>19.0</td>
<td>0.492</td>
<td>-0.0</td>
<td>0.055</td>
<td>-27.2</td>
<td>0.041</td>
<td>136.6</td>
</tr>
<tr>
<td>20.0</td>
<td>0.464</td>
<td>-0.0</td>
<td>0.033</td>
<td>-0.8</td>
<td>0.005</td>
<td>108.4</td>
</tr>
<tr>
<td>21.0</td>
<td>0.436</td>
<td>-0.0</td>
<td>0.025</td>
<td>61.1</td>
<td>0.028</td>
<td>-27.8</td>
</tr>
<tr>
<td>22.0</td>
<td>0.409</td>
<td>-0.0</td>
<td>0.040</td>
<td>102.4</td>
<td>0.040</td>
<td>-30.5</td>
</tr>
<tr>
<td>23.0</td>
<td>0.384</td>
<td>-0.0</td>
<td>0.054</td>
<td>115.0</td>
<td>0.029</td>
<td>-36.6</td>
</tr>
<tr>
<td>24.0</td>
<td>0.362</td>
<td>-0.0</td>
<td>0.059</td>
<td>117.3</td>
<td>0.008</td>
<td>-87.3</td>
</tr>
<tr>
<td>25.0</td>
<td>0.342</td>
<td>-0.0</td>
<td>0.054</td>
<td>112.5</td>
<td>0.021</td>
<td>169.9</td>
</tr>
<tr>
<td>26.0</td>
<td>0.324</td>
<td>-0.0</td>
<td>0.042</td>
<td>99.2</td>
<td>0.032</td>
<td>154.1</td>
</tr>
<tr>
<td>27.0</td>
<td>0.308</td>
<td>-0.0</td>
<td>0.031</td>
<td>72.2</td>
<td>0.030</td>
<td>141.2</td>
</tr>
<tr>
<td>28.0</td>
<td>0.292</td>
<td>-0.0</td>
<td>0.025</td>
<td>27.9</td>
<td>0.020</td>
<td>131.8</td>
</tr>
<tr>
<td>29.0</td>
<td>0.276</td>
<td>-0.0</td>
<td>0.030</td>
<td>-16.8</td>
<td>0.011</td>
<td>170.8</td>
</tr>
<tr>
<td>30.0</td>
<td>0.260</td>
<td>-0.0</td>
<td>0.041</td>
<td>-47.9</td>
<td>0.029</td>
<td>-135.5</td>
</tr>
</tbody>
</table>