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Abstract

Two-dimensional dissipative MHD turbulence is randomly driven at small

spatial scales and is studied by numerical simulation in the presence of a

strong uniform external magnetic field. A novel behavior is observed which is

apparently distinct from the inverse cascade which prevails in the absence of

an external magnetic field. The magnetic spectrum becomes dominated by the

three longest-wavelength Alfv_n waves in the system allowed by the boundary

conditions: those which, in a box size of edge 2_, have wave numbers

(kx, ky) = (I, 0), (i, i), and (i, -I), where the external magnetic field is

in the x direction. At any given instant, one of these three modes

dominates the vector potential spectrum, but they do not constitute a

resonantly coupled triad. Rather, they are apparently coupled by the smaller-

scale turbulence.
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I. INTRODUCTION

A somewhat formalized problem in fluid and plasma turbulence which has

received considerable attention in recent years is that of forced, dissipative

turbulence which results when excitations are randomly injected into the

medium at a well-defined length scale. The three-dimensional Kolmogoroff

direct cascade which results in fluid turbulence I is familiar, as are (by now)

the "inverse" cascades which result in two-dimensional fluid flows 2-5 and in

two-6-8 and three-dimensional magnetofluids. 9-13

Most of the effort so far has been expended on isotropic media and the

similarity-variable power-law spectra which can be predicted by Kolmogoroff-

style dimensional analysis. Particularly in the case of a plasma in the

presence of a strong external magnetic field, the assumption of isotropy is

not a good one, for the magnetic field renders even an initially isotropic

spectrum strongly anisotropic, as recently demonstrated by Shebalin, et al. 14

Here, we report a numerical study of forced two-dimensional MHD turbulence

in the presence of an externally-imposed uniform magnetic field. Hossain 15 et

al., have previously studied the long-time evolution of an inverse cascade of

magnetic vector potential for this system. Here, we are interested in the

possibility that the external magnetic field may suppress or modify the

inverse cascade.

In the presence of the uniform external magnetic field, the usual

arguments 13 used to suggest the possibility of inverse cascades no longer

apply. The ideal magnetic invariant (mean square vector potential) is no

longer one that survives truncation in Fourier space. The absolute

equilibrium Gibbs ensemble no longer predicts condensation at the longest

allowed wavelength in the limit of an infinite number of degrees of freedom.
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There is no longer any a priori reason to expect an inverse cascade or any

enhanced transfer to long wavelengths in the spectrum of any particular

quantity.

Somewhat to our surprise, we have found that a substantial amount of long-

wavelength excitation results from injection at a short-wavelength forcing

band. The magnetic spectrum becomes dominated, in a rather unfamiliar way, by

the three longest-wavelength Alfv_n waves allowed by the boundary

conditions. The back-transfer ceases before these three Fourier coefficients

contain the same high fraction (> 90%) of the total mean square vector

potential as the two longest wavelengths did with no external magnetic field,

but they still come to dominate the spectrum. The resulting state does not

fit neatly into the developed taxonomy of inverse cascades 13 for the isotropic

case, and we are uncertain as to what to call the new phenomenon.

In Section II we set out the dynamical equations and numerical

procedure. The computed results are reported in Section III. Section IV is

given over to discussion and comparison with a relevant hydrodynamic 16

parallel, that of Rossby waves.

II. DYNAMICAL EQUATIONS AND NUMERICAL PROCEDURE

We use the equations of incompressible MHD in what has by now become a

familiar dimensionless form:

_v
~ i V2
_t -_.V_ + _ x B - Vp + _ _ (i)

i v2
_t - V x (Z x B) + _ B, (2)
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where B is the magnetic field, _ is the velocity field, _ is the current

density, p is the pressure, and V.% = 0 = V.B. Moreover, _ = V x B. The

pressure p is determined by taking the divergence of Eq. (i). R and RM

are the mechanical and magnetic Reynolds numbers, respectively:

R = U0 L0/v , RM = L0 U0/n (3)

where L0 is a length scale, U0 is a typical flow speed, and v and n are

the kinematic viscosity and magnetic diffusivity, respectively.

We will treat the two-dimensional case, in a limit in which 3/_z _ 0 for

all field variables. B and _ are assumed to have only x and y

components, and to obey periodic boundary conditions over a square box of edge

A

2_. B will be divided into a uniform part _0 = B0 e and a fluctuatingX
^

, = + Bf. The vectorpart with zero spatial average Bf so that B B0 ex
A

potential af ez, assumed spatially periodic, will be used to represent

^

Bf = V x ez af. (4)

^

Notice that the total vector potential, ~a= (af + YB0)ez, is
not spatially

periodic, even though B is.N

The velocity field _ will be derived from a stream function 4, so that

^ _V2 _V2
= V_ x ez. The vortlcity _ = 4, and the current j = af.

Taking a curl of Eq. (i) and removing a curl from Eq. (2), we have the

dynamical equations in a familiar and computationally useful form:

8m V2 8J + F (5)
--_t= -v.Vm_ + Bf-Vj + v, m + B0 -_
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_af V2 _,
_--_--=-%.Vaf + _, af + B0 --+_x G. (6)

^

N . , = R-I -iIn Eqs. (5) and (6), V x B = je z and v, , n, = RM • We have added

random forcing functions F = F(x, y, t) and G = G(x, y, t), which are

understood as an arbitrary external source of random excitations at the small

scales whose statistics will be specified later. They are understood to

represent a variety of possible sources of turbulence.

All variables are represented as complex Fourier series, e.g.,

af = _ a(_, t)exp(ik._)
k
~ (7)

= [ m(h' t)exp(ih'_)'
k

where the allowed wave-vectors k = (kx, ky) can have only integer

components, not both zero. By reality of m, for example, m(-_) = m (_),

always.

For computational purposes, kX and ky are limited to the range

- N/2 + i to N/2, where the integer N is two raised to some appropriate

power. Isotropic truncation in k-space is implemented in order to take

advantage of the Orszag-Patterson 17 transform methods, which we employ

throughout.

The forcing functions in Fourier space, F(k, t) and G(k, t), are chosen

to be non-zero only inside a certain "forcing band," kmi n J ILl

5,8,15,18,19 For wave numbers inside the forcing band the forcing
kma x•

functions are advanced from the nth to the (n + l)st time step (except for

Run E) according to the prescription
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Fn+l(k) = fFn(k) + _i - f2 jn+l(k). (8a)

f is a memory factor, usually set equal to 0.95, while J is generated from

a Gaussian random number generator. For Run E we have used a constant

amplitude random phase algorithm with no memory, viz.,

Fn(k) = c exp(i_), (8b)

where the random phase angle _ lles between -_ and _.

Eqs. (5) and (6) have been solved as an initial value problem, starting

with all empty spectra (except for Run H), for the parameters listed in Table

I. Our comments in Section III are limited to a subset of these runs. The

forcing bands were typically 55 < k2 < 70 with a few exceptions of

95 < k2 < Ii0 (Table I). F and G are assumed to be uncorrelated. The time

step is At = (256) -1 .

III. NUMERICAL RESULTS

The time development of the mean square vector potential

A(t) _ I laf(k, t)l 2, is shown in Fig. la for two cases: no external
k
N

magnetic field (Run A, with B0 = 0) and with an external field (Run C,

with B0 = .5). The same forcing functions were employed in both cases.

In Run A (B0 = 0), we see that A(t) continues to increase

systematically over about 200 units of time, while for Run C (B0 = .5), a

limiting value is reached in considerably less time than that. (One unit of

time is an Alfv_n transit time of unit distance in a unit magnetic field.)
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Our earlier computations indicate that in the B0 = 0 case, A(t) will

also eventually reach a saturated value, in which the rate of supply from the

smaller scales to the largest scales will be balanced, for the longest

wavelengths, by their own dissipation. If that is the case for Run C, then it

follows that a vastly reduced rate of supply of A(t) from the smaller scales

is present.

The behavior of A(t) for Run C is similar to the behavior of the total

energy E(t),

_t) = _ [I_(_, t)l 2 + ;_(_, t)I2] (9)
k
N

for the B0 = 0 case, as is shown in Fig. lb. This is more like the bahavior

to be expected from a directly-cascaded quantity.

Figs. 2a, 2b show the mean-square fluctuating vector potential and energy,

respectively, for Run B, with B0 = I. The same variables for Run C

_B0 = .5) are displayed on an expanded scale in Figs. 3a, 3b. The large

fluctuations in A(t) are a reflection of the domination of the k spectrum

by the three longest-wavelength Alfv_n waves, those with k vectors equal

to (kx, ky) = (i, 0), (I, I), and (I, -I). We find (as is typical for

Alfv_n waves) that for each of these modes the energy, averaged over a period,

is shared equally between the velocity field and the magnetic field. (The

fields oscillate 180° out of phase with each other.)

Fig. 4a is a set of contours of constant af for Run A (B0 = O) at

time t = 234.37 (time step 60,000). The dashed contours indicate negative

values. The characteristic grouping of regions of positive and negative af

is apparent. Similar contour plots for Run B appear in Fig. 4b. A reduced,

but still significant, grouping of like-slgned regions of af is visible.
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The quasi-periodic behavior of the mean square vector potential may be

displayed by considering the Fourier decomposition of the bulk quantity A(t):

N-I
1

A(_n) = _ _ A(tm)eXp(-i_ n tm). (I0)
m=0

Individual modal squared vector potentials may be similarly defined as

N-I

i ]2A(k, mn) = g _ laf(k, tm) exp(-im n tm) , (II)
m=0

and in Eqs. (I0) and (II), t _ mAt, m _ 2_n/T, with n = - _ + I,m n 2

- N/2 + 2,..-, N/2, and T is the total duration of the time interval over

which the Fourier decomposition is to be carried out. The spectra so defined

are computed for Runs A through D and are displayed in Figs. 5a to 5d,

respectively. For all cases with B0 # 0, the spectra exhibit a pronounced

peak around the Alfv_n frequency m = 2k.B0 = 2kx B0, which is just 2B0

for kx = I. The factor of two is an artifice of the fact that we are

considering squares of amplitudes rather than amplitudes. It should be noted

that we have suppressed the zero frequency peak in the spectrum, which

corresponds to the non-zero mean value of A(t), and we have plotted only up

to a cutoff frequency m (typically, m = 8), above which the spectra
max max

are very low. It is interesting that this qualitative behavior of the

spectrum, with its sharp peak at the Alfv_n frequency, is independent of the

magnitudes of viscosity and magnetic diffusivity.

Upon time averaging, it is found that the three modes (i, 0), (I, I),

and (i, -i) contain about 35% of the total mean square vector potential.

This is a large fraction, but smaller than the very large fraction (> 90%)
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eventually accounted for by the (I, 0) and (0, i) modes in the B0 = 0

cases.

Figs. 6a, 6b, 6c show the power spectra for just the three modal vector

potentials associated with (kx, ky) = (i, 0), (I, i), and (I, -i). It is of

interest to note that these three modes do not pass excitations to each other

directly, since they do not constitute a resonantly coupled triad, but are

only indirectly coupled by the other, lower-amplitude turbulent

coefficients. Fig. 7 shows the relative contribution of these modes to the

total A.

A mean magnetic wave number may be defined by k2 = EB/A , where EB ismean

the magnetic term in Eq. (9). For B0 = 0, this ratio has been observed to

approach kmi n = 1 as t increases. For example, in Run A, kmean has

become about 2.4 by t = 120, and continues to decrease. For B0 = I, kmean

approaches about 5.5 and fluctuates unsystematically about that value. In

both cases, a typical number for the injection would be k = 8, which is the

approximate center of the forcing band 55 _ k2 _ 70.

It is also of interest to assess the degree of anisotropy which may result

from the isotropic forcing function. Following Shebalin, et al., 14 we may

introduce the anisotropy angle eQ for any field Q as

eQ = tan k± ~, k
N N

Q can be any of the fields af, B, _, j, 4, or m. For an isotropi¢

spectrum, 0Q will be 45°• In Figs. 8a to 8f, the anisotropy angles are shown

for each of the six field variables for the case of Run B (B0 = 1.0). In all

cases, the anisotropy is seen to rise rapidly, in the same direction as
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observed by Shebalin, et al., and then to decay slightly and to fluctuate.

The higher anisotropy in the more differentiated quantities j and m, which

emphasize the high-k parts of the spectrum, and which were observed by

Shebalin, et al., are not found here. The major contributions to the

anisotropy here come more from the low-k modes than in the Shebalin
N

computations.

The adequacy of the spatial resolution used in these computations should

be remarked upon, for it was not as good as one would have liked. Typically,

the computed Kolmogoroff dissipation wave number was three or four times

kma x. It would be of interest to re-do these computations at much higher

resolution (say, 128 x 128) for the same dissipation coefficients and forcing

functions.

IV. DISCUSSION

The initial results from solving the two-dimensional, incompressible

equations of MHD turbulence in the presence of random, small-scale, mechanical

and magnetic forcing are that a state develops in which the magnetic spectrum

is dominated by only three modes. These modes, which do not constitute a

resonantly coupled triad, are the three longest-wavelength Alfv_n waves

allowed by the periodic boundary conditions: (kx, ky) = (I, 0), (I, i), and

(I, -I). [The mode (0, I) is not an Alfv_n wave, since _ = _'_0 = O, in

the present geometry.] The three modes are coupledonly throughthe smaller-

scale turbulence.

For a given forcing function,the level of excitationsfor both magnetic

potentialand energy is substantiallylower with the external magnetic field

than without it. This can be due to (I) the suppression of the inverse
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cascade to a considerable extent since the usual predictors of inverse cascade

behavior are absent for a finite B0; or (2) a reduced rate of supply of the

cascadable rugged invarlants (the supply rate is not determined by the forcing

function alone); or (3) a combination of (I) and (2). The domination of the

magnetic spectrum by the three long-wavelength Alfv_n waves is a striking

phenomenon, and one that deserves further study. Of particular interest is

whether the phenomenon will persist in three dimensions.

An imperfect parallel situation exists in the case of Rossby waves in two-

dimensional Navier-Stokes turbulence, as investigated by Rhines. 16'20'21

There also, the linearized wave equations exhibit wave propagation with a

frequency having a highly anisotropic dependence upon angle. A significant

difference in the two situations is that the frequencies of the linearized

waves go to zero as k . _ for all angles, so that the wave-like properties

disappear at small scales, for the Rossby-wave case. Down to some wave

number, the fluid behaves in an essentially Navier-Stokes way. Rhines found

an "incomplete" inverse cascade, in the sense that in the wave number range in

which the oscillatory properties were negligible, the back-transfer seemed to

be unimpaired; however, the transfer became inhibited at the longer

wavelengths and while macroscopic vortices did become apparent, they were

smaller than the box size. Our situation does not have the feature that the

frequency of the linear waves goes to zero at very short wavelengths, and

significant differences from Rhines's spectrum were observed.

In summary, the non-resonant three-mode behavior displayed here is an

interesting phenomenon and deserves further study. We are unaware of anything

quite like it in turbulent systems previously studied. Greater spatial

resolution and higher Reynolds numbers seem likely to exhibit the phenomenon

in cleaner form.
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Table 1

(N x N) Mean Forcing Initial Forcing

Run Grid B0 v,, n, Wave Number Spectrum Algorithm

Run A 32 × 32 0.0 .002 8 empty Gaussian

Run B 32 x 32 1.0 .002 8 empty Gaussian

Run C 32 × 32 0.5 .002 8 empty Gaussain

Run D 32 x 32 2.0 .002 8 empty Gausslan

Run E 32 x 32 1.0 .002 8 empty Flat

Run F 32 x 32 0.5 .002 I0 empty Gaussian

Run G 64 x 64 0.5 .002 I0 empty Gaussian

Run H 64 x 64 1.0 .002 10 isotropic Gaussian

Run I i 32 × 32 1.0 .001 8 empty Gaussian
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FIGURE CAPTIONS

Fig. l(a): Time history of the mean square vector potential for Run A

(B0 = 0), which is basically monotonically increasing (upper

trace), and for Run C (B0 = 0.5) which exhibits fluctuations

after rapid saturation (lower trace). The unit of time is the

Alfv_n transit time.

Fig. l(b): Time history of the total energy for Run A (B0 = 0).

Fig. 2(a): Time history of the fluctuating part of the mean square vector

potential for Run B (B0 = 1.0).

Fig. 2(b): Time history of the total fluctuating energy for Run B

(B0 = 1.0).

Fig. 3(a): Time history of the fluctuating part of the mean square vector

potential for Run C (B0 = 0.5). This is the same curve as in

Fig. l(a), but on an expanded scale.

Fig. 3(b): Time history of the total fluctuating energy for Run C

(B0 = 0.5).

Fig. 4(a): Contours of constant vector potential for Run A (B0 = 0) at

simulation time t = 234.37 (time step = 60,000). The dashed

contours correspond to negative contour values. Note that like

sign contours clumped together.
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Fig. 4(b): Contours of constant vector potential for Run B (B0 = 1.0) at

t = 351.56 (time step = 90,000). Like signs still clumped

together but considerably less than that of Fig. 4(a).

Fig. 5(a): Power spectrum of the mean square vector potential for Run A

(B0 = 0). The Alfv_n frequency is the unit of _. Frequency

components with _ _ 4 have negligible power spectrum amplitude

are not shown.

Fig. 5(b): Power spectrum of the mean square vector potential for Run B

(B0 = 1.0), with negligible amplitude for m _ 8. Notice a

distinct peak at the longest Alfv_n frequency 2B0.

Fig. 5(c): Power spectrum of the mean square vector potential for Run C

(B0 = 0.5). The peak at m = 1 corresponds to the Alfv_n mode

with ' = I
K X

Fig. 5(d): Power spectrum of the mean square vector potential for Run D

(B0 = 2.0). In computing each of these power spectra (Figs. 5(a)-

(d)) we have thrown away approximately 12000 initial time steps as

transients.

Fig. 6(a): Power spectrum of the Fourier mode _ = (i, 0) in the mean square

vector potential for Run B (B0 = 1.0). Again we see a sharp peak

at m = 2B0 as in all the power spectra.
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Fig. 6(b): Power spectrum of the Fourier mode _ = (I, i) in the mean square

vector potential for Run B (B0 = 1.0).

Fig. 6(c): Power spectrum of the Fourier mode _ = (I, -i) in the mean

square vector potential for Run B (B0 = 1.0). Only 128 data

points are used for computing the power spectra in Figs. 6(a)-(c)

while 16384 data points were used for Figs. 5(a)-(d).

Fig. 7: The time development of the mean square vector potential and the

contribution of just the sum of the 3 dominating modes

= (i, 0), (I, I), (I, -I). [A(t) plotted here has been

coarsed-grained by a factor of 400 over that presented in Fig.

2(a)]. Notice that the coherent nature of the mean square vector

potential is due to the above three modes.

Fig. 8: Anisotropy angle, in degrees, as a function of time for Run B

(B0 = 1.0) for the fields (a) vector potential af, (b) magnetic

field _, (c) current density 9, and (d) stream function _, (e)

+ +

velocity v, (f) vorticity m. Since (a), (b), (c) is a sequence

of increasing k-moments of af, we conclude that the anisotropy

resides in the long wavelength scales. [Similarly for (d), (e),

(f) sequence.]
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