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The Martian Climate- Fnergv Balance Models with CO2/H20 Atmospheres

Progress Summary
The last semi-annual status report (March 1, 1984 - September 1, 1984)
described the necessity to consider the meridional dependence of the
Martian seasonal pressure wave. The basis is that atmospheric mass will
be transported by the same eddy diffusive mechanisms as the transport of

heat. This report presents a technique for the investigation, and develops
coupled equations for mass and heat transport in a seasonal Mars model
with condensation and sublimation of CO2 at the polar caps. Up to the
present, we have used the heat transport model to calculate latent-heat
CO2-mass fluxes between ground and atmosphere with seasonal and
latitude resolution. These fluxes will be taken into the mass transport
model in the next phase of the program. The contents of this report are:

(a) Physical Considerations of Planetary Mass and Energy Balance
(b) Effect; of Phase Changes at the Surface on Bass and Heat Flux
(c) Atmos )heric Transport and Governing Equations
(d) Numerical Analysis

Seasonal !Mars Model Formulation for a Volatile Planetary Surface with
Atmospheric Transport of Mass and Heat Parameterized h%• F.ddv Diffusion.

(a) Physical Considerations of Planetary Mass and Fnergy Balance

In formulating an energy balance climate model for Mars we characterize
a vertical zonally-averaged column composed of both the carbon dioxide
atrr.--3phere and a thermally-interactive surface regolith layer by a single
temperature Dt.,^), where ^ is the latitude and t is time. The atmosphere
has an approximately exponentially decreasing density distribution p(t,^,z)
ti pa(t,^,z)e-z/h with altitude z from the surface at z = 0 to z -# oo, where
pa is the surface density and h the scale height; while the thermally-
interactive surface extends from z = 0 down to some thermal pentration
depth z = d, where d - ( 2x8/SZ)1 /2, where rs is the regolith (soil) thermal
diffusivity and 2 T/S2 is the period of the annual heating wave (Hof fert and
Storch, 1979).

The atmospheric part exerts a surface pressure p(^,t) in general. The
equation of state in the atmosphere is p = paP,T, wh?re R is the gas constant
of CO2. Let
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be the zonally-averaged mass of the atmospheric column, where the
expression on the far RHS is from hydrostatic equilibrium, where g is the
graviational acceleration at Mars' surface. The corresponding atmospheric
scale height is h = p/(pag) ^_- RT/g. If ca and cs are the constant-pressure
specific heats per unit mass of the atmosphere and regolith layers, the heat
capacities per unit area of the atmosphere and 'soil' per unit surface area
area, respectively, mca = pacah and Cs = pscsd, respectively.

(b) Effects of Phase Changes at the Surface on Mass and Heat Flux

Let L = RT 2 dQnp/dT (Clausius-Clapeyron equation) be the latent heat ofA.
sublimation/condensation -- approximately constant for Mars conditions --
so the saturation vapor pressure over dry ice at the seasonal caps is

p(T) _ (constant) x e-L/RT

Over ice-free surfaces, the pressure is unconstrained by the underlying
surface temperature, but is affected by transport from the seasonal caps
which are continually subliming and condensing in response to seasonal
insolation cycles. We assume CO2-1ce covered surfaces are in vapor
pressure equilibrium with the atmosphere such that the ground
temperature is

Tg = Tc = - [(R/LAn(p/constant)]- 1 	150 K	 (1)

whenever the surface is frost-covered. In particular, we set Tg = T when T
> Tc and Tg = Tc when T < Tc we also assume bare ground albedos a b and
longwave emissivities Eb whEn T >. Tc and and different ice-covered values
ai and ei when T < Tc. If S(^,t) is the solar flux per unit area of the planet,
and parameterizing the longwave cooling to space by a grey body
approximation in terms of the ground temperature, we write the net
radiative heating as

S4,t)I 1 - a.b l - 8boT 4. if T > Tc
F*(T,`",t) n

	

	
(2)

S(^,t)[ 1 - ail - 6i6Tc 4; if T < Tc

where a the Stefan-Boltzmann constant. Since ground temperature is held
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at Tc over ice, a sublimation mass flux m* is injected locally into the
atmosphere over ice to balance radiative and meridional eddy diffusive
heating (regolith desorption and adsorption of carbon dio xide by processes
other than sublimation/freezing are neglected). Assuming the sublimation
heat flux Lm* is supplied by the net radiative heating over ice F*(T) plus a

Fdiff diffusive meridional heat flux (see equa tion 6) gives

0; ifT>Tc
m* (TAO =
	

(3)
[S(^,t)I 1 - ocil - eicrTc 4 + Fdiff l/L; if T = Tc

where m* = am/at = - ami/at, in which mi is the CO2-ice present on the
ground. Notice that m* can be either positive (sublimation) or negative
(condensation.), depending on whether solar heat or infrared cooling
dominates F*(T) over ice. The term Fdiff will be zero at points over the ice
cap, and will be positive only at the ice edge; also, it is small everywhere
on Mars compared to the solar heat and infrared cooling. Here we couple
the atmospheric temperature to the ice, so that T is never less than Tc.

(c) Atmospheric Transport and Governin g Equations

Meridional transport of both atmospheric mass and heat is by some wind
field V + V, ^Aiere the "primed" component represents 'eddy" fluctuations
relative to the unprimed zonal-, altitude- and short period time-average
velocity field. The eddies give rise to corresponding fluctuations in column
mass and temperature which vary about the means, such that local values
are m + m' and T + T'. By definition <V'>, <m'> and <T'> are zero, but the eddy
mass and heat fluxes <V'm'> and <V -f'> are not negligible, and may
dominate the effects of the mean meridional flow for complex
three-dimensional atmospheric circulations. Notice that both mass and heat
fluxes are carried by the same velocity fields, and hence by the same eddy
circulations, whose effects are subsumed under the < >-average.

Integrating over the column and < >-averaging the results then gives
columnar conservation of mass and energy equations in the form:

am	 I
— + V O [Vm + <V'm'> l = m*(^,t)
at
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Imca + Csl — + mcaV O I VT + <VT>1 + Lm*(^,t) = F*(m,t)
at

The divergence operator for a zonally-averaged planetary atmosphere
treated as a thin spher; 11 shell is:

a[coo( 41
v•O

acosV^

where a is the planetary radius.

It is likely that after vertical, horizontal and time averaging, the residual
mean meridional velocity in the atmosphere is small compared to the eddy
velocities, V << (V'2), as is the case with the earth's general circulation. This
suggests a parameterization of the eddy heat fluxes in terms of an eddy
diffusivity x as in North et al (1980), James and North (1982), etc.
However, and this is the critical new feature of this model we assume that
since atmospheric mass is transported by the same eddies as heat, that it
has the same meridional eddy diffusivity, i.e.,

	

- <V'm'>	 - <V'T'>
'K

aV /aam aV /aam

Substituting thew approximations, and definin g a new meridional variable

x = sink, (4)

proportional to the planetary surface area measured from the equator,
gives (after some algebra), the conservation equations,

am 1 r	 82m	 aml
— _ — I (1 - x2 )	 - 2x— 1 + m*(T,x,t), 	 (5)
at rm L	 8x2 	 ax J

aT	 1 r	 82T	 aT I	 Lm*(T,x,t)	 F*(T,x,t)
—=- 1(1-x2 )	 -2x-1-	 (6)
at	 'UT ( 	 8x2	 cox,	 C	 C

^AP,re C = mca + Cs is the heat capacity per unit surface area of the

AM
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atmosphere plus thermally -interactive regolith layer, and

,cm ° a 2 /K; 'cT = (C/mca)a 2 /x	 (7)

are timescales for meridional transport of atmospheric mass and heat.
Notice rT scales by an additional factor proportional to Lhe ratio of
atmospheric heat capacity to total heat capacity, which makes poleward
heat transport relatively less important when the surface's heat capacity is
large relative the the atmosphere's. With m*(T,x,t) and F*(T,x,t) given by
equations (2) and (3) based on the local T(xt), the simultaneous solution of
equations (E) and (7) by explicit finite-differences is straightforward.

Calculating m* during ^ndensation or sublimation of CO2-ice is
accomplished as follows: If T = Tc, then first assume m* = 0, and calculate
aT/at from equation (6). If this assumption results in 8T/at < 0, then
condensation of CO2-ice is occurring. If, instead, aT/at > 0, and,
imp-)rtantly, mi > 0, then CO2-ice is subliming. In either case, the latent
heat transfer holds the temperawre constant. This procedure only
determines that m* is not zero, but does not calculate its value, this is
accomplished by setting aT/at = 0, and using equation (6) to calculate m*.
The only other possibility if T = Tc is that mi = 0, and aT/at > 0 after
assuming m* = 0 in equation (6); then, in fact, m* = 0 and equation (6) is
used to calculate aT/at.

b
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(d) Numerica: Analysis

Re].-vant parameter values for present Mars conditions as given by Hoffert
et ai. 0981):

a = planetary radius :- 3.39 x 10 6 m
po = planetary mean surface pressure ti 700 Pa - 700 kg/s2 -m
g - surface graviation acceleration :3.73 m/s2
mo = planetary mean atmospheric mass/unit area ^- 186 kg/m2
ca = atmospheric heat capacity/unit mass t- 830 J /kg -K

camo = atmospheric heat capacity/unit area ^:- 1.56 x 10 5 J /m 2 -K

The heat capacity per unit surface area of the ground estimated from the
thermal inertia fit to temperature histories at the Mars Lander sites is

Cs = regolith heat capacity/unit area ti 1.3 x 10 6 J/m2-K

The system heat capacity/unit ared is therefore.

C = Cs t camp . 1.5 x 10 6 J/m2-K

And the atmosphere/surface heat capacity ratio is

(camp/Omars ':- 0.1

This contrasts with the atmosphere/land heat capacity ratio of - 6 on earth
where the atmosphere is much thicker; but since the high heat capacity of
the oceanic mixed layer dominates the net thermal inertia in the terrestrial
case, the overall atmosphere/system heat capacity ratio on earth is (Hoffert
et al., 1980):

(camo/C)earth :- 0.04,

which is actually less than present-day mars.

Stone's (1974) atmospheric baroclinic instability model applied to mars
conditions gives a meridional diffusion coefficient (Hoffert et al., 1981) D =
(mca /a2)c ^ 0.027 /m 2 -K, and a corresponding meridional eddy
diffusivity x ti a 2 D/rnoca - 2 x 106 m2/q. James and North (1982) suggest

the lower value D 0.004 Vl/m 2 -K, corresponding to x 3 x 105 m2/s.
For our present model we assume x - 1 x 10 6 m 2 /s for both heat and

^Y
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mass transport, which is intermediate to these values.

The corresponding timescales in equations (5) and (6) are:

1 mars Year
zm = a 2 /K 1.1 x 10 7 s x	 - 0.2 mars years

5.9 x 107 s
1 mars Year

TT = (C/mca) a2/K ^- 1.1 x 108 s x

	

	 - 2 mars years
5.9 x 10 7 s

Notice that despite the same merdional dif f usivities, meridional mass
transport is some 10 times faster than meridional heat transport because
the high thermal inertial of the regolith makes atmospheric transport
relatively less important. Nevertheless, unlike James and North (1982) we
do not assume this transport is infinite:;, last (,m -+ w), since it occurs over
a significant fraction of the martian year. We show below that it also occurs
over a time which is long compared with the timestep with which we mu-t,
integrate the conservation equations, which indicates that equation (5) as
well as equation (6) must be solved to find the seasonal pressure wave
p(x,t) = m(x,t)/g.

Equations (5) and (6) can be written in terms of a generic variat` le q(x,t) as

aq	 I f	 a2q	 aq1
- —[(I - x2 )	 - 2x—

J
 + q*(T,Yt),

at Tq	 aX2	 ax

equal to m(x,t) or T(x,t), where Tq is the relevant timescale for meridional
mixing and q*(T,x,t) is the relevant mass or heat source per unit area. In a
finite-difference approximation, we assume the domain from x = -1 to x = 1
is discretized into K intervals of width Ax = 2/K, such that the Jth point is
located at x(J) = -1 + 2 J/K, where J = 0,1,2,...,K, and J = 0, K are the endpoints
at the south and north poles, respectively. Let I be an index: denotinJ the
time t = lAt, where At is the timestep, from some inital time t = I = 0 when
the array q(O,J) is known. The object is to find q(I,J) at all future times.
Assuming a time-explict diffrencing scheme and centered differences then
gives q(I+ 1 ,J) at all points except the endpoints I = 0 and I = K in the form

At
q(I +1,J) = q(1,J) +	 •[A(J)q(I,J+1) + B(J)q(I,J) + C(J)-1(1,1- 01 + Atq*(I,J),

igAx2

c
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where

A(j) = [ 1 - x(j) 2 - x(j)oxl,

B(J) = 2[x(j) 2 - 11,

C(j) = [I - x(j) 2 + x(j)ex].

The endpoints at J - 0 and j = K are evaluated by recognizing that second
derivatives drop out since they are multiplied by [I - x(j) 2 1, and by
evaluating the first q derivative by one-sided differences:

q(I+'.,0) = q(I,0) + [At/zg1[{2[q(1) - q(0)1/,Lx)] + At q*(I,0) for x = -1

q0+ 1,K) = q(I,K) - [,&t/zgIt12[q(K) - q(K-1)1/ox}] + At q* (1,K) for x = + 1

The stability criteria for explicit solution of such parabolic PDEs is the
Courant condition, At < 1/2tgd_2 . For a spatial stepsize of Ax = 0.1 (K = 2 0
points) we therefore require At < 0.0004 mars years for equation (5) and
At < 0.004 mats years for equation (6). These timesleps are clearly much
less than those required for mass (pressure) relaxation. Thus we need some
2500 computational steps/mars year to find the m(x,t) field but only 250
steps/mars year for the T(x,t) field. However, the mass field relaxes to
repeating cycles over a time of 0.2 mars yr, while the temperature relaxes
in about 2 mars years. This suggests a strategy in which the temperature
field is computed first -- by running (say) 5 annual cycles to be
conservative -- and the source term array m*(I,J) from the last year is
saved. The weak coupling of the m-equation to the T-equation through the
dependence of tT on the local m(x,t) may be neglected in view of
uncertainties in K by replacing m by the longterm mean value mo. (In fact
both "cm and zT can probably be held constant in the calculation.) The mass
field can then be computed with an order of magnitude smaller time
resolution over (say) two annual cycles, saving only the last one.

Results can be plotted as contours of constant T and constant p = m/g on
the t,x plane, or (Ls,x) plane where Ls is the aerocentric longitude, where
intersections with the latitudes, or x's, of the V L-1 and V L-2 landers give
the time-histories of T(t) and p(t) at the lander sites. To show the seasonal
forcing, it v-,ould be ni .-, A to see contours of constant insolation S on the
(Ls,x) plane as well Finally, the pressure histories from the lander
barometers at the two Northerm hemisphere locations should be



-N,.

- 9 -

cross-plotted against observations and compared with the cm -+ 0
approximation of James and North (1982 ).
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