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SUMMARY

A new, and as yet unexplored, approach to passive flutter control is aero-
dynamic detuning, defined as designed passage-to-passage differences in the
unsteady aerodynamic flow field of a rotor blade row. Thus, aerodynamic
detuning directly affects the fundamental driving mechanism for flutter, i.e.,
the unsteady aerodynamic forces and moments acting on individual rotor blades.
In this paper, a model to demonstrate the enhanced supersonic unstalled aero-
elastic stability associated with aerodynamic detuning is developed. The

N	 stability of an aerodynamically detuned cascade operating in a supersonic inlet
w	 flow field with a subsonic leading edge locus is analyzed, with the aerodynamic

detuning accomplished by means of nonuniform circumferential spacing of adja-
cent rotor blades. The unsteady aerodynamic forces and moments on the blading
are defined in terms of influence coefficients in a manner that permits the
stability of both a conventional uniformally spaced rotor configuration as well
as the detuned nonuniform circumferentially spaced rotor to be determined.
With Verdon's uniformly spaced Cascade B as a baseline, this analysis is then
utilized to demonstrate the potential enhanced aeroelastic stability associated
with this particular type of aerodynamic detuning.

NOMENCLATURE

c	 airfoil chord

1

k	 reduced frequency, k = we/um

u„	 cascade inlet velocity

•	 ys	 mean airfoil position

C	 perturbation sonic velocity

COA unsteady aerodynamic moment coefficient

CM	 influence coefficient of airfoil, n



C	
P_

P	 1/2pu2

—°p--
eCp 1/2pu2

M	 dimensionless unsteady aerodynamic moment

Mm	 cascade inlet Mach number

P	 perturbation pressure

AP	 perturbation pressu re difference

S	 uniform airfoil spacing

Sd	 nonuniform airfoil spacing

U	 perturbation chordwise velocity

V	 perturbation normal velocity

a	 amplitude of oscillation

a	 complex oscillatory amplitude

U	 interblade phase angle

C	 level of aerodynamic detuning

S	 cascade stagger angle

P	 fluid density

m	 oscillatory frequency

[]	 matrix

Subscripts:

d	 detuned cascade

n	 airfoil number

R	 reference airfoil uniformly spaced cascade

Re	 reference for set of even numbered airfoils of detuned cascade

Ro	 reference for set of odd numbered airfoils of detuned cascade
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INTRODUCTION

Structural detuning is defined as blade-to-blade differences in the nat-
ural frequencies of a blade row resulting from variations in the individual
blade structural properties. Mathematical models have been developed which
demonstrate that even the small amounts of blade-to-blade structural detuning
associated with manufacturing tolerances can have a beneficial effect on the
flutter characteristics of rotor assemblies (refs. 1 to 5). Furthermore, these
models indicate that the aeroelastic stability of a rotor can be controlled by
the deliberate introduction of increased levels of blade-to-blade structural
detuning in the rotor design.

However, blade-to-blade structural detuning is not a universally accepted
potential mechanism to eliminate flutter from the operating range of a fan or
compressor stage. This 1s because of the associated manufacturing, material,
inventory, engine maintenance, control, and cost problems.

A new, and as yet unexplored, approach to passive, flutter control is
aerodynamic detuning, defined as designed passage-to-passage differences in
the unsteady aerodynamic flow field of a rotor blade row, Thus, aerodynamic

detuning results in blade-to-blade differences in the unsteady aerodynamic
forces and moments acting on a blade row. This results in the blading not
responding in a classical traveling wave mode typical of the flutter behavior
of a conventional aerodynamically tuned roior. Thus, aerodynamic detuning
directly affects the fundamental driving ;mechanism for flutter, the unsteady
aerodynamic forces and moments acting on individual rotor blades.

Supersonic unst,alled flutter is a significant, problem in the development
of advanced gas turbine fans and compressors because it restricts the high-
speed operating range of the engine. Hence, the objective of this research
program 1s to develop a model for aerodynamic detuning applicable to supersonic
unstalled flutter. In particular, a mathematical model is developed to analyze
the stability of an aerodynamically detuned rotor operating in a supersonic
inlet flow field with a subsonic leading edge locus, with the aerodynamic
detuning accomplished by means of nonuniform circumferential spacing of adja-
cent rotor blades. This method of aerodynamic detuning was selected because
small solidity variations do not have a dominant effect on the steady-state
aerodynamic performance of a rotor. In this model, the unsteady aerodynamic
forces and moments acting on the blading are defined in terms of influence
coefficients in a manner that permits the stabilty of both a conventional
aer,gdynamically tuned rotor configuration as well as the detuned nonuniform
circumferentially spaced rotor to be determined,

UNSTEADY AERODYNAMIC MODEL

Current aeroelastic stability analyses of conventional aerodynamically
tuned and structurally detuned rotors utilize two-dimensional aerodynamic
models applied in a strip theory technique. Hence, a two-dimensional, uni-
formly spaced, airfoil cascade is used to represent a typical rotor blade
section. These models then analyze the unsteady aerodynamics associated with
the airfoil cascade executing harmonic oscillations in a classical traveling
wave mode, i.e., with a constant interblade phase angle D between adjacent
airfoils.



For supersonic unstalied flutter, a flat plate airfoil cascade embedded
in a supersonic inlet flow field with a subsonic leading edge locus (fig. 1)
undergoing torsion mode harmonic oscillation is considered. The fluid is
assumed to be an inviscid, perfect gas with the flow isentropic, adiabatic, and
irrotational. The unsteady continuity and Euler equations are linearized by
assuming that the unsteady perturbations are small as compared to the uniform
throughflow. Thus, the boundary conditions, which require the unsteady flow
to be tangent to the blade and the normal velocity to be continuous across the
wake, are applied on the mean positions of the oscillating airfoils.

Unsteady cascade aerodynamics and, in particular, the unsteady forces and
moments acting on the uniformly spaced airfoils are then predicted using
various techniques, for example (refs. 6 to 14). Of particular interest are
the analyses of Verdon (ref. 6), Brix and Platzer (ref. 9), and Caruthers
(ref. 10). These analyses utilize a finite cascade representation of the semi-
infinite cascade. The cascade periodicity condition is enforced by stacking
sufficient numbers of uniformly spaced single airfoils until convergence in the
unsteady flow field is achieved.

For the aerodynamically detuned, alternate nonuniform circumferentially
spaced rotor, an analogous unsteady aerodynamic model is utilized. In partic-
ular, the unsteady aerodynamics associated with the small perturbation torsion
mode harmonic oscillations of a nonuniformly spaced two-dimensional flat plate
airfoil cascade embedded in an inviscid, supersonic inlet flow field with a
subsonic leading edge locus is considered.

The analysis of this type of configuration is most easily accomplished
utilizing a finite cascade representation of the semi-infinite cascade
(fig. 2). As seen, there are two distinct flow passages: a reduced spacing or
increased solidity passage and an increased spacing or reduced solidity pas-
sage. also, the detuned cascade is composed of two separate sets of airfoils.
For convenience, these are termed the set of even numbered airfoils and the set
of odd numbered airfoils. Thus, two passage periodicity is required for this
detuned cascade, i.e., the periodic cascade unsteady flow field is achieved by
stacking sufficient numbers of two nonuniform flow passages or two airfoils,
one from each set.

For the alternate nonuniform airfoil spacing aerodynamic detuning tech-
nique being considered, the spacing, Sd, of the two sets of airfoils is
equal (fig. 2). Thus, the individual sets of odd and even numbered airfoils
can be considered as cascades of uniformly spaced airfoils each with twice the
spacing of the associated baseline uniformly spaced cascade. This enables an
interblade phase angle for this aerodynamically detuned cascade configuration
to be defined. In particular, each set of airfoils is assumed to be executing
harmonic torsional oscillations with a constant interblade phase angle, Bd,
between adjacent airfoils. Thus, this detuned cascade interblade phase angle
is twice that for the corresponding baseline uniformly spaced cascade. The
interblade , phase angle for the motion between the sets of even numbered and
odd numbered airfoils is determined from the flutter mode which is obtained by
specifying the detuned cascade phase angle, Bd, and the level,of aerodynamic
detuning, c, which defines the nonuniform airfoil spacing.
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where S is the spacing of the baseline uniformly spaced cascade and S1
and S2 denote the spacing of the reduced and increased flow passages of
the detuned cascade.

Tha formulation of the linearized differential equations describing the
unsteady perturbation quantities for the finite aerodynamically detuned cascade
is based on the method of characteristics analysis of the finite uniformly
spaced airfoil cascade developed by Brix and Platzer (ref. 9). In particular
the dependent variables are the nondimensional chordwlse, normal, and sonic
perturbation velocities, U, V, and C, respectively. The independent variables
are the dimensionless chordwise and normal coordinates, x and y as defined
in figures 1 and 2 and t o me t. Assumirg harmonic motion at a frequency W,

the resulting set of differential equations which describe the unsteady pertur-
bation flow field are specified in equation (2).

Tx 	 Mme- i y+ax+ikMmC0

au	 ac
ax+ay +ikU-0

au	
M2-1 

aV
=0Ty — m	 ax

Solutions to this system of equations are obtained by the method of
characteristics. The compatibility equations are specified in equation 3.

f( ll
[4d—Xj 	

2

LdxJS  

	 + 
M2_	 (U - C) _ 0

(2a)

(2b)

(2c)

(3a)

where the subscripts C, n, and str indicate that the relation is valid
along the left or right running characteristic and the characteristic in the
streamline direction, respectively.

The flow tangency boundary condition requires that the normal perturbation
velocity component, V, be equal to the normal velocity of the airfoil surfaces
on the mean position of the oscillating airfoils. For an aerodynamically
detuned airfoil cascade executing harmonic torsional motions about an elastic
axis located at xo as measured from the leading edge, the dimensionless
normal perturbation velocity component on the n-th airfoil is specified in
equation (4).

Vn ( x ' Y s . t ) = -an {i + (x - xo )ik) e 
1(kt+nBd)	

(4)
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where ys denotes the mean position of the airfoils, k 1s the reduced
frequency, 0 is the interblade phase angle, and an denotes the amplitude
of oscillation of the n-th airfoil.

These boundary conditions are applied on the mean positions of the oscil-
lating cascaded airfoils. For the uniformly spaced cascade depicted in
figure 1, the mean position of the n-th airfoil is given in equation (5).

nd tan C < x < nd tan C + 1	 ( 5a)

ys = nd	 (5b)

n=0, t1,±2,...

where d is the perpendicular distance between adjacent airfoils, as indicated
in figure 1.

For the nonuniformly spaced airfoil cascade depicted in figure 2, the mean
position of the n-th even numbered airfoil is specified in equation 6.

[,n]dl + d2 = D	 (6a)

 D tan C<x< [fl D tan C+1	 (6b)
 

ys = [fl 
D	 (6c)

The mean positions of the set of odd numbered airfoils can be expressed in an
analogous manner.

Thus, the formulation of the mathematical problem for the unsteady aero-
dynamic model of the alternate nonuniform circumferentially spaced detuned
cascade is complete. At the intersection points of the characteristics,
equation (3) represents a system of three differential equations in three
unknowns, with the appropriate boundary conditions specified in equations (4)
and (6). The unknown chordwise, normal, and sonic dimensionless perturbation
velocities, U, V, and C, in each of the two periodic flow passages of the
semi-infinite cascade are then determined by means of the two airfoil passage
stacking technique in conjunction with the finite difference scheme developed
b y Brix and Platzer for the tuned cascade configuration.

The dimensionless unsteady perturbation pressure distributions on the sur-
faces of a reference airfoil from each set in the periodic detuned cascade are
defined by these perturbation velocities. In particular, these perturbation
unsteady surface pressure distributions are determined by means of the linear-
ized unsteady Bernoulli equation. The nondimensional unsteady aerodynamic
moment acting on the reference airfoil, M R , and the standard torsion mode
unsteady aerodynamic moment coefficient, Caa , are then calculated by integrat-
ing the unsteady surface perturbation pressure difference across the chordline
per equation (7).

6
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MR m 0 A P( x , Ys, t ) ( x - xo )dx a Caaake iwt 	 (7)

0

where aR is the amplitude of oscillation of the reference airfoil.

INFLUENCE COEFFICIENT TECHNIQUE

The boundary conditions specified in equations (A) and (6) require that
the nonuniformly spaced airfoils oscillate with equal amplitudes, a situation
not appropriate for the detuned airfoil cascade. In addition, the application
of this analysis is unnecessarily costly because the complete periodic per-
turbation flow field must be recalculated, not only for every new cascade
geometry and flow condition, but also for each interblade phase angle value
considered for a particular cascade and flow condition. These limitations are
easily rectified by calculating the unsteady aerodynamic moment coefficients,
Caa, by means of influence coefficients. This influence coefficient technique
will first be developed for a cascade of uniformly spaced airfoils and then
extended for the aerodynamically detuned nonuniformly spaced cascade.

For an aerodynamically tuned cascade with N uniformly spaced airfoils,
the total unsteady aerodynamic moment acting on an arbitrary reference airfoil,
MR , can be expressed in terms of influence coefficients per equation (8).

MR c0 ^
CM^ R 

+ al IM^ 
R 

+ ... + aR ^CM
J 
R + 
	 + aN

[N] 

R	
(8)

Here, [CMI 
R 

denotes the influence coefficients on the reference airfoil,

R, associated with the motion of airfoil number n. Physically it represents
the unsteady aerodynamic moment acting on the fixed reference airfoil, R, due
to a unit amplitude torsional oscillation of airfoil number n. When n cor-

responds to R, the influence coefficient [CM) R is the unsteady moment acting

on airfoil R due to its own motion, with al other airfoils fixed.

For the detuned nonuniformly spaced cascade, a reference flow passage
bounded by two reference airfoils must be considered. This is because the
detuned cascade is made up of two distinct sets of airfoils, termed the odd
numbered and the even numbered airfoils, and two distinct flow passages. Each
of these flow passage.; is bounded by one airfoil from each airfoil set, per
figure 3.

A reduced spacing flow passage is taken as the reference. The reference
airfoil for the lower boundary of the reference flow passage and for the set
of even numbered airfoils is denoted by Re. The reference airfoil for the
upper boundary of the reference flow passage and for the set of odd numbered
airfoils is denoted by Ro. Thus, the unsteady aerodynamic moment acting on
these two reference airfoils can each be written in terms of the influence of
the sets of odd and even numbered airfoils as follows.
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+ °RO [CMe]	
+ 
	

+ aH_1 [CN-1]	 (9)
	R O , Re 	

RO,Re

The two groups of bracketed terms are associated with the motion of the
sets of odd numbered and even numbered airfoils, respectively. Also, to assure
that there are an equal number of reduced spacing and increased spacing flow
passages in the cascade, i.e., that periodicity is achieved by stacking two
airfoil passages at a time, equation (9) has been developed assuming that the
cascade is made up of an odd number of airfoils, thereby resulting in an even
number of airfoil passages.

The amplitude of the harmonic oscillations of the set of odd numbered

airfoils is denoted by OR exp(in Od ), with Od defining the constant
0

interblade phase angle between sequentially odd numbered airfoils. The set of
even numbered airfoils are assumed to oscillate with a complex amplitude

aR 
e 

exp(in 0d ), with the same constant interblade phase angle. The amplitude

and phase difference between the motions of the sets of odd and even numbered
airfoils is accounted for by considering the amplitudes of oscillation,

aR	 and aR , to be complex quantities. Because the interblade phase angles
o	 e

are referenced to the reference airfoils, Re and Re, the dimensionless
unsteady aerodynamic momnets, equation (10), are rewritten in terms of the
amplitudes of oscillation of the two reference airfoils as follows.

Rol 	 U  3MRO,Re -
 C'.

R°	

CM +

 RO,Re + e	 CCM^ R R
o' a	 o' e

+ ... + e i

 1N-I
2^ Od C

CMI RO, R
ee

	

+aR	
CCR	

+ eiOd [CM]	 +	 .R
e	 RO,Re	

Re, Re

+ e i CN23J Od [CN 1^
	

(10)
R O ,R e°

,R 
e

1

s yam•®'



where the subscripts Ro,Re refer to the individual reference airfoils.

These two reference airfoil unsteady aerodynamic moments can be shown to
be a standard elgenvalue problem, expressed in matrix form as follows.

	

MRo
	 CM 11 '1

R 
	

[CM'] 
Re	

aRo

r	
(cas	

1
1C 1	 1	

11)

	

MRe	
°Re	 M11 Re	

CM2] R
e	 ;Re

where:

[IN- 1_2
^C 

J R RLR^ 

	
[CM] 	

1
	 J p

	

[CM1]	 . CM	 + e d 	 ++ e	 2	 d M

R o ,R e	 Ro,Re	 Ro,Re	 o' e

	

r 1	
LN3^	

^C R R• LCM	
+ eiRd [C 41 	 + . . , + ei NL 2 a

[C

	

M2]	
d	 M-1

R o .Re	M Ro ,Re	1 MJJRo .Re	M 	 o . e

The terms [CM'] R ,R
	

describe the influence that the set of odd numbered

O e
airfoils has on the unsteady moment developed on reference airfoils R 	 and

Re respectively. [CM2I R ,R
	

represents the effect that the set of even

O e

numbered airfoils has on these two reference airfoils.

Equation 11 denotes a standard eigenvalue problem. The unsteady aero-
dynamic moment coefficient, C., is the elgenvalue of the influence coefficient

matrix, (CM], with the associated eigenvector defining the flutter mode for the
nonuniformly spaced cascade, i.e., the relationship between the motions of the
sets of odd numbered and even numbered airfoils. In the limit wherein this
aerodynamically detuned cascade becomes uniformly spaced, the elgenvalue prob-
lem of equation ( 11) reduces exactly to that considered by Bendlksen ( ref. 4)
for a tuned airfoil cascade.	

[CM]
The influence coefficients 

	 R ,R	 are determined from a modification
O e

of the unsteady aerodynamic model previously described. For example, to

determine [CM] R , airfoil n 1s harmonically oscillated while all of the
0

other nonuniformly spaced cascaded airfoils are kept fixed and the effect on
reference airfoil Ro calculated. With all of the influence coefficients

determined in this manner, [CM1] RR
	

and 
[CM']

 
R ,R	

are calculated by

o e	 o e
vector addition of the appropriate influence coefficients after multiplication
by the specified complex interblade phase angle term. To analyze a different
interblade phase angle, it is only necessary to perform the vector addition in
terms of this new phase angle. The influence coefficients calculated from the
unsteady aerodynamic model do not have to be recalculated.
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Thus, this matrix formulation of the eigenvalue problem (eq. (11)) is
utilized herein in conjunction with the influence coefficient technique to
efficiently determined the standard dimensionless torsion mode unsteady aero-
dynamic moment coefficients, Ca,,, for specified aerodynamically tuned and

detuned nonuniformly spaced cascade configurations.

MODEL VERIFICATION

To verify the formulation of this aerodynamically detuned finite cascade
model, the limiting case of a uniformly spaced cascade configuration is con-
sidered. In particular, both this detuned finite cascade analysis based on an
influence coefficient technique and the uniformly spaced infinite cascade
analysis of Adamczyk and Goldstein (ref. 11) are applied to Verdon's uniformly
spaced Cascade B configuration (ref. 14).

The real and imaginary parts of the unsteady aerodynamic moment coeffi-
cient, CC,a, predicted with these two models are presented in figure 4, with

the interblade phase angle 0 as a parameter. Two interblade phase angles
are associated with each point shown in figure 4. Bd refers to the inter-
blade phase angle utilized in equation (10) and 0 is the interblade phase
angle calculated from the elgenvectors of equation (11). Because the cascaded
airfoils are executing single degree of freedom torsion mode oscillations, the
stability of the cascade is specified by the sign of the imaginary part of this
moment coefficient, with positive values corresponding to an unstable configur-
ation. As seen, there 1s excellent agreement between these two analyses for
all interblade phase angles.

RESULTS

To demonstrate this nonuniform airfoil spacing technique for aerodynamic
detuning, the Cascade a geometry is utilized as a baseline with a mldchord

elastic axis location.

The influence coefficients, [CM, , for both the uniformly spaced baseline

cascade and a 13.3 percent nonuniformly spaced cascade are presented in
figure 5. As seen, the airfoils from 0 to -m have no influence because of
the law of forbidden signals. For the detuned cascade, the reference airfoils
Re and Re are oscillated. For comparison purposes, the results are shifted
so that the results presented in this figure correspond to airfoil number two
being the oscillating reference airfoil in all cases. These influence coeffi-
cients are displayed in a manner corresponding to airfoil number 2 harmonically
oscillating with all other airfoils in the cascade fixed. As seen, the oscil-
lating airfoil has a significant effect only on the unsteady moments developed
on the airfoils in its immediate vicinity. Also, the influence of the oscil-
lating airfoil itself on the total unsteady moment coefficient, C., is
stabilizing. The stabilizing or destabilizing influence of the other airfoils
in the cascade can not be determined from these influence coefficients alone.
This is because the total unsteady moment coefficient is determined from these
influence coefficients by performing the vector addition indicated in
equation (11) for a specified interblade phase angle value referenced to the
oscillating airfoil.
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The variation of Cap, with interblade phase angle for both the 13.3

percent nonuniformly spaced detuned cascade and the baseline is presented in
figure 6. For the conditions considered, the baseline cascade exhibits an
ipstability, i.e., the imaginary part of C. has a positive value. How-
ever, the aerodynamic detuning associated with this nonuniform spacing results
in a neutrally stable or stable Aonfiguration for all interblade phase angle
values. Also, the nonuniform airfoil spacing generally exhibits a beneficial
effect on stability in that this aerodynamic detuning results in the imaginary
part of the moment coefficients for the detuned cascade becoming more negative
than the corresponding baseline values. This beneficial effect is particularly
evident for interblade phase angle values corresponding to forward traveling
waves, being somewhat less pronounced for backward traveling waves.

Figure 7 shows the effect of inlet Mach number on the variation with
reduced frequency of the imaginary part of C,, a, for the least stable inter-

blade phase angle value. For a constant Mach number value, the stability of
the uniformly spaced baseline configuration is generally enhanced by the non- 	 Is
uniform airfoil spacing, with the larger effects associated with the lower Mach
numbers. Also, as the Mach number increases, there is a decreased effect of
aerodynamic detuning on the critical reduced frequency, defined as the reduced 	 j
frequency resulting in neutral stability and characterized by a value of zero
for the imaginary part of C.Q.

To demonstrate the fundamental mechanism for the enhanced stability of the
detuned cascade, the reduced frequency and Mach number at which the detuned
configuration is neutrally stable but the baseline cascade is unstable is con- 	 {
sidered: k - 1.2375 and M - 1.15, per figure 7. The chordwise variation of
the imaginary part of the dimensionless surface pressure and pressure differ- 	 r

ences on the reference airfoils for the detuned and baseline configurations
are presented in figures 8 to 13. As seen, the aerodynamic detuning affects
the imaginary part of the unsteady surface pressure distributions over the
complete airfoil chord, including the surface intersection locations, of the
Mach waves and their reflections (figs. 8 to 11). However, there is only a
relatively small effect on the chordwise distributions of the unsteady pressure
differences in front of the first Mach wave - airfoil intersection location as
a result of this aerodynamic detuning (figs. 12 and 13). The effect of aero-
dynamic detuning on these unsteady pressure difference distributions are asso-
ciated with the Mach wave - airfoil intersection locations and the chordwise
distributions aft of the first intersection.

Because the nonuniform airfoil spacing at these conditions primarily
affects the pressure difference distribution over the mid and aft chord por-
tions of the airfoil surfaces, the elastic axis location should have a signi-
ficant effect on the detuning stability enh:.ncement. This is demonstrated in
figure 14 which considers the effect of elastic axis location on the stability
of the baseline and detuned cascades of these conditions. As seen, as the
elastic axis is moved forward of m0 dchord, the Improvement in stability due to
aerodynamic detuning is increased as compared to a movement of the elastic
axis aft of midchord.



It is interesting to consider the fundamental differences betwoen the two
cascade configurations at the conditions fur , which both are neutrally stable,
M . 1.32 and k . 1.3 per figure 1. The chordwise variation of the imaginary
part of the surface pressures and the pressure differences are presented in
figures 15 to 20. As seen, the detuning primarily affects the chordwise dis-
tributions of the unsteady pressures on the pressure surfaces of the two
reference airfoils (figs. 15 to 18). However, the chordwise distributions of
the unsteady pressure difference for the baseline and the detuned cascade con-
figurations are significantly different (figs. 19 and 20) even though their
integrated values are equal, i.e., the imaginary part of Ca,, for each of
these configurations is zero. Thus, although the aerodynamic detuning has
greatly affected the unsteady aerodynamic loading distributions, the aero-
elastic stability has not been affected.

SUMMARY AND CONCLUSIONS

A model for aerodynamic detuning to achieve enhanced supersonic unstalled
aeroelastic stabilty has been developed. This model analyzes the stability of
an aerodynamically detuned rotor operating in a supersonic inlet flow field
with a subsonic leading edge locus, with the aerodynamic detuning accomplished
by means of nonuniform circumferential spacing of adjacent rotor blades. The
unsteady aerodynamic forces and moments acting on the blading are defined in
terms of influence coefficients in a manner that permits the stability of both
a conventional uniformly spaced rotor configuration as well as the detuned
nonuniform circumferentially spaced rotor to be determined.

The effect of this aerodynamic detuning on the fundamental unsteady aero-
dynamics and aeroelastic stability were considered utilizing Verdon's Cascade
B as a baselin( at.--Figuration. This study demonstrated the potential enhanced
stability asssrc^a y.cd with this.type of aerodynamic detuning. The aerodynamic
detuning sig0 ficantly affected the chordwise distributions of the unsteady
surface pressures. However, aerodynamic detuning did not always affect the
unsteady pressure distributions over the complete airfoil chord. For condi-
tions such that the baseline configuration was unstable but the detuned cascade
neutrally stable, the effect of aerodynamic detuning on the unsteady pressure
differences was shown to be associated with the Mach wave airfoil intersection
locations and the chordwise distributions aft of the first intersection. For
these conditions, it was then demonstrated that a forward position, as opposed
to an aft position, for the elastic axis was associated with increased stabil-
ity enhancement. It was also shown that for one particular set of conditions,
both the uniformly spaced and the aerodynamically detuned cascade configura-
tions were neutrally stable but the associated unsteady surface pressure and
pressure difference chordwise distributions were significantly different, i.e.,
detuning significantly affected the surface pressure distributions but did not
enhance the cascade stability.
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