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NOMENCLATURE
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C^
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v

v =	 (u, v, w)

x, r,	 B
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Z

a

E

calibration constants
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contraction nozzle downstream distance

turbulence dissipation length scale

selected hot-wire probe positions

local velocity vector
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time-mean vector velocity magnitude

time-m,;an velocity (in x-, r-, 9-directions) in

facility coordinates

axial, radial, and azimuthal cylindrical polar coordi-

nates

Cartesian coordinates

effective cooling velocity acting on a wire

side-wall expansion angle

turbulence energy dissipation rate
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correlation coefficient (estimated) between cooling

velocities of adjacent wire orientations

swirl vane angle with respect to facility axis

turbulent viscosity

time-mean density

Subscripts

4, 5,6	 refer to the six probe measuring positions

refer tc the three selected cooling velocities

summation indices

value at inlet to flowfield

root-mean-squared quantity

Superscripts

time-mean average

fluctuating quantity

relative to probe coordinates
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CHAPTER I

INTRODUCTION

1.1 Combustor Design Phenomena

The function of the gas turbine combustion chamber, illustrated in

Figure I, is to heat the air from the compressor up to the design maxi-

mum temperature. That is, the temperature that the combustion chamber

and turbine will stand without undue creep or distortion for a reason-

able period of time. The combustor must also give reasonably uniform

velocity and temperature distributions onto the leading edge of the tur-

bine blades. Complete combustion to minimize the formation of carbon

particles and pollutants and ignition reliability at high altitudes are

both very important criteria for the efficient performance of a gas tur-

bine combustor.

To improve `lame stabilization and promote mixing between the incom-

ing fuel and the hot products of combustion, swirl is often imparted to

the incoming combustion air prior to entry into the primary zone. The

purpose of swirl is to assist in the creation of a toroidal flow reversal

to obtain high rates of mixing. This type of recirculation provides bet-

ter mixing than might be obtained by other means, such as bluff bodies

Ill.
In design situations, the engineer has to analyze the swirling re-

circulating turbulent flow within combustors whose complexity is increas-

ed manyfold by the processes of combustion and heat transfer. Atpresent

1
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the combustor designer is faced with making only slight modifications to

present combustors because of the economic limitations of full-scale test-

ing of combustion chambers. Before a route can be provided which leads to

the accomplishments of design oblectives more quickly and less expensive-

ly than current practice permits greater knowledge is required concerning

the flowfields inside gas turbine combustion chambers.

1.2 The Present Research

In gas turbine and ramjet combustion chamber development, designers

are aided by both experimental and theoretical studies [2]. Both methods

of approach are complementary, theoretical modeling being aided by care-

fully chosen experiments [3]. A major area of research need, with which

the present research work is concerned, is the measurement of time-mean

and turbulence properties in nonreacting stiirling flow in various combus-

tor geometries, so as to aid in the understanding and developmentofsuit-

able turbulence models [4].

Some recent researchers [5,6, 71 have measured the time-mean and

turbulence properties of swirling flowfields in the presence of chemical

reaction. However, a more fundamental knowledge of the fluctuating velo-

cities and their cross-correlations for a variety of swirl strengths

under isothermal conditions is needed before the complex interactions of

chemical reaction and turbulent mixing are fully understood. The present

research is restricted to isothermal flows.

The specific problem being investigated experimentally is concerned

with the steady turbulent flow of air in axisymmetric geometries under

low speed conditions. Specifically, flow exits from a round-sectioned

contoured nozzle with known velocity and turbulence distributions and

2
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enters a round pipe with an expansion ratio D/d = 2 or I, as illustrated

in Figure 2. The incoming air may possess a swirl component of velocity

via passage through an annular vane swirler with blades at angle $ to

the undisturbed flow direction.	 If swirl is present, the resulting flow-

field domain may possess a central toroidal recirculation zone (CTRZ).

In the sudden expansion case a corner recirculation zone (CRZ) is provok-

ed because of the abrupt change in geometry of the boundary. It is well

known that both of these recirculation zones contain large turbulent

eddies which promote turbulent mixing. To simulate ramjet combustion

chambers, the test section may be equipped with a strong contraction noz-

zle of area ratio 4.

Of vital concern is the characterization of these turbulent, swirl-

ing, confined jet flows in terms of the effects of swirl strength, expan-

sion ratio, and downstream blockage on the time-mean velocities and Rey-

nolds normal and shear stresses. Realization that these flows also play

an important role in many other engineering applications has ins,plred

definite desire for investigation in this area.

1.3 Experimental Investigation

Measurements of the time-mean and turbulence characteristics of con-

fined swirling jet flows are being used to aid in the evolution of turbu-

lence models for these complex flow situations. These measurements are

part of a larger ongoing project at Oklahoma State University into the

fundamental concepts of swirling flows in combustor geometries.

The present research has included flow visualization techniques us-

ing kerosene smoke and neutrally-buoyant helium-filled soap bubbles re-

corded on still [A] and movie [9] photographs. Time-mean velocities in

3



swirling and nonswirling confined flowfields have been found by use of a

five-hole pitot probe [8, 101. Turbulence properties usin g the single

hot-wire multi-orientation technique [11] and a crossed hot-wire probe

[12] have been measured in nonswirling flowfields. The performance of

the annular vane swirler used in this report has also been studied using

a five-hole pitot probe [13]. Predictions of the flowfields correspond-

ing to the ones studied have been made using the measured inlet condi-

tions [14,15,16]. The predictions are achieved by using the STARPIC

computer code which solves the appropriate partial differential equa-

tions and simulates turbulence by means of the two-equation k-e turbu-

lence model [4].

All this previous work has been performed using the low speed wind

tunnel, as seen in Figure 3, in the Mechanical Engineering laboratory at

Oklahoma State University. The facility consists of an axial-flow fan

whose speed can be varied. Numerous fine screens and straws produce flow

in the settling chamber of relatively low turbulence intensity. The con-

toured nozzle leading to the test section has been designed to produce a

minimum adverse pressure gradient on the boundary layer and thus avoid

any regions of separated flow within the nozzle. The test section con-

sists of either a 15 cm or 30 cm diameter plexiglass tube depending on

which expansion ratio is desired. Plexiglass was chosen so as to allow

accurate probe positioning and permit flow visualization. The substan-

tial size of the test section provides excellent probe resolution. The

swirler, placed upstream of the test section, consists of ten variable

angle flat blades with a pitch-to-chord ratio of 0.68. Each individual

blade can be set to any desired angle between 0 and 80 degrees. Three

swirl flow types are investigated in the present study: nonswirling,

4
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flow (¢ = 0 0 swirler removed), moderately swirling flow (¢ = 38 and 450)

and strongly swirling flow (¢ = 60 and 70°).

1.4 Scope and Objectives

The focus of the present research is the measurement of time-mean

and turbulence properties of a confined swirling jet. The measurements

provide a data base foi the development of turbulence models for these

flow situations. Measurements have been made for a full range of swirl

strengths and geometric configurations over the entire flowfield of inter-

est. Specifically, these objectives include:

x
1. Measurements of time-mean velocities and complete Reynolds

stress tensor to find the effect of swirl on a suddenly expanding con-
4

fined jet with an expansion ratio of 2. Swirl vane angles of 0 (swirler

t
removed), 38, 45, 60, and 70 degrees are considered.

2. The effect of a strong contraction nozzle with an area reduc-

tion ratio of 4 located at two large chamber diameters downstream of the

jet exit is investigated. Time-mean velocities and turbulent stresses

are measured for three cases of swirl, ¢ = 0, 45, and 70 degrees.

3• A directioi:al sensitivity analysis is performed on the measur-

ing technique to determine the relative accuracy of the technique to ap-

proach time-mean velocity.

4. Measurements of time-mean velocities and Reynolds stress tensor

in a nonexpanding confined jet flowfield (D/d = 1) to find the effect of

tile sudden expansion on three cases of swirl, ¢ = 0, 45, and 70 degrees.

5• Determination of the length scale of energy containing eddies

in suddenly expanding and nonexpanding confinedjets. Theswirlstrengths

of interest are nonswirling, medium, and strong swirl.

5
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CHAPTER 11

REVIEW OF PREVIOUS EXPERIMENTAL STUDIES

IN RECIRCULATING FLOWS

Previous experimental work in axisymmetric recirculating flows pro-

vide an important background for this investigation. Information regard-

ing nonswirling and swirling turbulent flows have been extensively re-

viewed. Techniques.in the measurement of turbulence are constantly be-

ing updated; these require reviewing for their applicability to the

present study. Noteworthy results are included in the summary where the

emphasis is on oonreacting turbulent swirling flows.

2.1 Confined Nonswirling Flows

One of the first researchers to make a thorough investigation into

confined nonswirling jet flow was Chaturvedi [17), who measured the mean

velocity and pressure and characteristics of the turbulence in a confin-

ed jet with an expansion ratio D/d = 2. The mean velocity and pressure

measurements were made by pitot probe and stagnation tube, respectively.

Measurements of velocity head were made using a pitot tube of very small

diameter with a 15 degree taper machined internally on the leading edge.

This was due to regions of high turbulence intensity or where the direc-

tion of the velocity vector was unknown. The turbulence characteristics

were measured first with a single hot-wire to determine u' anA again

with cross-wires to determine the radial intensity v'; the measurements

6
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9	 also produced the turbulent shear u'v'. It was reported that the corner

recirculation zone (CRZ) extended to a length of two chamber diameters

downstream of the jet exit for the sudden expansion case with high turbu-

lance intensities on the edge of this zone.

Many researchers have studied the recirculation zone behind a pipe

step [18-22], in particular, the reattachment length. Krall and Sparrow

[18] utilized an orifice in an electrically heated tube to create flow

separation with water as the modeling fluid.	 It was presumed that the

peak Nusselt number occurred at the reattachment point which they found

existed at 1.25 to 2.50 pipe diameters downstream from the onset of sepa-

ration. Their results agreed with those of Phaneuf and Netzer [19] in

that the reattachment length was unaffected by the Reynolds number in the

turbulent range. Also, they found that the peak Nusselt number became

spread out into a broad zone for strong separations caused by large step

heights. This transition from a point to a broad zone occurred between

h/D =0.16 and h/D = 0.25, where D is the pipe diameter and h is the step

height.	 It was also found that increasing the step height moved the.

peak point slightly downstream.

Back and Roshke [20] and Roshke and Back [21] also investigated the

reattachment length by visual observation in water flows. The diametev,

expansion ratio used was 2.6 and a conical contraction section just up-

stream reduced the boundary layer thickness. Small 0.76 mm diameter

holes were located on the larger diameter tube one step height apart.

Reattachment locations were determined by slowly metering dye through

the holes and observing whether it moved upstream or downstream.

Phaneuf and Netzer [19] measured wall static pressure as well as

mean axial velocities behind abrupt steps where the expansion ratios
	 i,

7
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were 0.303 and 0.195. They found that the reattachment zone spreads out

with both increasing Reynolds number (for a given step height) and in-

creasing step height providing the Reynolds number Is in tha turbulence

transition range. It was further concluded that the point o f izlaAimum

heat transfer does not coincide with thr zone of reattachment and further-

more it is dependent upon the inlet mass flux.

Three different step heights of 0.6, 1.6, and 2.0 were studied by

Ha Minh and Chassaing [22]. They measured the time-mean axial veloci-

ties and the turbulence characteristics of the flow. Agreement between

hot-wire and pitot probe measurements were found to exist for the time-

mean velocities. The Reynolds stresses were successfully measured using

the rotating, inclined, single hot-wire technique, and their results com-

pared well with previous studies [17].

Laser doppler anemometry was used by Mocn and Rudinger [23] to study

the behavior of recirculating flows. Even though an L.D.A. system was

used, only mean axial velocities were measured, particularly those found

in regions of recirculation. The L.D.A. system with the aid of a Bragg

cell cou;d detect the velocity reversals in the recirculation region.

Johnson and Sennett [24] developed a measuring technique to deter-

mine the mean and fluctuating velocity and concentration distributions

along with their cross correlations by using a laser doppler velocimeter.

This method was developed using coaxial jets in sudden expansions with

D/d = 2.07. A laser-induced flourescence technique was used to measure

the concentration of a flouresceni: trace material.

Janjua [11] measured the time-mean velocities and complete Reynolds

stress tensor for an abrupt and gradual expanding confined jet. The six-

orientation single hot-wire technique was employed in a confined jet of

8



expansion ratio 2. The results obtained using this technique were found

to be in good agreement with those found by Chaturvedi [17]•

2.2 Free Swirling Jets

Swirl can be imparted upon a flow by many different means. Rose

[25] used a very simple method of prodoLing swirl by rotating a pipe at

9500 rpm so as to provide an approximately fully-developed turbulent

flow in solid body rotation. By this means it was only possible to ob-

tain a relatively weak degree of swirl. Because of the low swirl number

involved, Rose was capable of using a single hot-wire and an X-meter in

the flowfield to determine the turbulence intensity components and the

direction of the flow velocities, respectively. He found a free swirl-

ing jet, in contrast to a nonswirling jet, that the jet spreads at a

larger angle, entrains fluid more rapidly, and consequently displays a

more rapid reduction of mean velocity and turbulence intensity.

Chigier and Beer [26] generated swirl by introducing varying propor-

t i ons of air through tangential ports while the remainder of the air was

introduced axially. General velocity and static pressure distributions,

form and shape of Coe central toroidal recirculation zone (CTRZ) were ob-

tained for differing degrees of weak swirl and varying discharge nozzle

configurations.

Using a three-dimensional probe, Kerr and Fraser [27] found that the

jet mass rate, angle of spread, and the reciprocal of the axial velocity

all vary linearly with the swirl number. They proposed that the swirl

number S be defined as

f IL
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where T is the nozzle torque, G is the jet thrust, and De is the effec-

tive nozzle d,ametee.

Chigier and Chervinsky [28] Tarried out an experimental investiga-

tion on a series of swirling air jets. The swirl generator was composed

of axial and tangential air inlets. Measurements of time-mean values of

velocity and static pressure were made with a five-hole spherical impact

probe. With this instrument they found that there was a progressive de-

crease in the length of the potential core for an increasing value of

degree of swirl. In addition, they noticed that for weak and moderate

swirl the velocity profiles are effectively similar from an exial dis-

tancu of four nozzle diameters downstream of the jet exit. For stronger

swirling jets similarity is not acKieved until a distance of ten jet dia-

meters has been reached.

Using a rotating pipe similar to Rose [25], Pratte and Keffer [29]

measured the time-mean properties, turbulence, and distribution of kine-

tic energy via means of fine pitot probes and single hot-wire anemometry.

Again this was possible because of the weak component of swirl velocity.

The most common and effective method of producing swirling flows is

via use of vane swirlers. Mathur and MacCailum [30] conducted an evalua-

tion of swirler efficiency for both annular (with hub) and hubless swirl-

ers. Extensive presentation of velocity profiles and recirculation zone

geometry was given as a function of the degree of swirl. They found that

for increasing values of swirl a central toroidal recirculation (CTRZ)is

formed. This is caused when the adverse pressure gradient along the jet

axis cannot be further overcome by the kinetic energy of the fluid flow-

ing in the axial direction. They also concluded that tan 0 was a good

measure of swirl for jets issuing from vane swirlers.

10
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Syred et al. [31] concentrated on turbulence measurements in strong-

ly swirling flows via a single hot-wire six-orientation technique inside

the central recirculation zone. Local turbulence intensities were found

to be extremely high in and near the CTRZ. Measurements of all six tur-

bulent stress components showed strong variations of absolute kinetic

energy levels and strong nonisotropy of the stresses and associated tur-

bulent viscosity.

Claypole and Syred [32] studied the effect of combustion on the

CTRZ using a dual beam laser. They found that combustion considerably

lowers the level of recirculation even at high levels of swirl. A broad-

er coverage of the measuring techniques and results for free swirling

flows can be obtained from Reference [33]•

2.3 Confined Swirling Flows

Very little in the open literature has been written concerning tur-

bulence measurements in confined swirling jet flows. The measurements

that have been reported have been made with highly expensive nonintru-

sive instrumentation. However, several researchers have reported on

time-mean veloci t y measurements within confined flows with swirl.

Mathur and MacCallum [34] studied the characteristics of a swirling

jet issuing into a model of square cross-section. They used an isother-

mal air model to obtain time-mean velocity profiles with a five-hole

pitot probe and a water model to obtain qualitative data. Mathur and

MacCallum found that the initial rates of spread of enclosed jets is

more rapid than for free swirling. Also, that the central toroidal re-

circulation zone is much stronger in enclosed jets than free jets.

N
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Rhode et al. [8] measured the time-mean velocity properties again

using a five-hole pitot probe inside a swirling confined jet. By using

interchangeable expansion blocks with varying degrees of expansion angle

a with increasing swirl strength, they found that the influence of a is

negligible for the CRZ. But the effect of the twirl strength was to

shorten the length of the CRZ and generate the existence of the CTRZ.

The length of the CTRZ was then found to increase for increasing swirl

strength. They also noted that on the jet centerline downstream of the

CTRZ a precessing vortex core (PVC) existed. This PVC then continued to

the exit of the test section. ?lowever, this study only included weak

and moderate swirl strengths. This work was extended by Yoon and Lilley

[10] to include higher swirl strengths and to study the effect of differ-

ent contraction nozzles placed at various axial locations in the test

chamber. They found that a strong contraction nozzle of area ratio 4

greatly affected the size and shape of the CTRZ and PVC.

Beltagui and MacCallum [351 completed a wide range of experiments

on annular and hubless swirlers with and without combustion. The expan-

sion ratios they used were D/d = 2.5 and 5.0 with varying degrees of

swirl. Mean flow and static pressure measurements were made with a water-

cooled five-hole spherical pitot probe. Their investigation concluded

that the maximum diameter of the CTRZ is primarily a function of the

chamber diameter (approximately 0.65 chamber diameters) and only slight-

ly alters for varying degrees of swirl, by combustion or by D/d ratio.

They also noticed that the presence of a central hub in the swirler had

little effect on the flow patterns.

Using an expansion ratio of D/d = 2 and a five-hole pitot probe,

time-mean velocity measurements were made in a swirling isothermal and

11
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reacting confined jet by Syred and Dahman 	 [36].	 They studied the effect

of introducing bluff bodies into the jet on the size and shape of the

central	 recirculation zone.	 Also,	 they found that by	 increasing the fur-
a.

pace exit diameter, only a small effect was noticed upon the aerodyna-

mics of the system.	 They also reported that for furnaces requiring low

calorific value gas, only medium swirl	 produced the desired recircula-

tion zone.

Baker et al.	 (7]	 and Hutchinson et al.	 (61	 used	 laser doppler anemo-

metry to measure the values of mean velocity and turbulence intensity in

the recirculation region of a swirling reacting flame. 	 Methane was	 ig-

nited at the burner and the flow then seeded with Tio 2 particles to en-

hance the light scattering.	 As flow reversals are found in swirling
j

flames, a frequency-shifting technique was used to solve the directional 1

ambiguity of the doppler signal. 	 Both groups of researchers found high

levels of turbulence near the exit of the jet for even a moderate swirl 1
i

number.
i

Laser velocimeter measurements of a confined turbulent diffusion

flame burner was made by Owen	 (5]•	 Mean and rms turbulent velocity lev-

els were measured for axial 	 and tangential components of.the reacting

flowfield.	 He measured four different swirl 	 strengths near the exit of

the burner and found there was no significant variation on the time-mean
I

profiles for increasing swirl. 	 He also found that the turbulence is

high with significant deviation from isotropy over 	 the	 initial	 mixing re- s

gion of the jet.	 In this area large scale fluctuations decrease for in-

crease in swirl strength.	 A bragg cell was used for directional sensi-

tivity of the flow.

13
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Habib and Whitelaw [371 measured the time-mean velocities and direc-

tional turbulence intensities in a swirling confined coaxial jet. Two

measuring techniques were used to measure the turbulence, hot-wire anemo-

metry, and L.D.A. The two methods were in close agreement even in the

corner recirculation zone. These researchers only used low values of

swirl strength; therefore, no central recirculation zone was formed.

Using a five-hole pitot probe and a single normal hot-wire, Vu and

Gouldin 1381 measured the time-mean and turbulent properties of a confin-

ed isothermal coaxial jet under co-swirling and counter-swirling condi-

tions. They found that levels of high turbulent fluctuations and large

dissipation rates characterize the central flow region for both co- and

counter-swirl. They suggested that with chemical reaction the internal

structure of the recirculation zone is of much less importance to the

combustion process than the turbulent transport properties in the vicin-

ity of the CTRZ and the interjet shear layer. However, they reported

that no central recirculation zone was formed for the co-swirling case.

Gouldin et a]. [391 continued this work with special emphasis on

co-swirling flows with combustion. They found that with the presence of

chemical reaction a CTRZ was formed. This seems surprising as mass con-

servation requires axial flow acceleration with combustion and therefore

a favorable pressure gradient must exist over a portion of the test sec-

tion. Since the formation of the CTRZ requires an adverse pressure gra-

dient on the centerline, one would expect combustion to inhibit recircu-

lation zone formation. However, the researchers showed by application

of Bernoulli's equation that the pressure on the centerline increases

with combustion.

14
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No PVC was found by Brum and Samuelson [40) in dilute swirl combus-

tors with or without combustion. They suggest that the PVC is an arti-

fact of the modeling process and is not present in full scale combustors

as dilution jets are present. The researchers found that if only 70 per-

cent of the inlet air was swirled and the remainder used as dilution air',

no PVC existed.

The six-orientation single hot-wire technique was used by Janjua

et a]. [41) in an isothermal nonswirling and swirling confined jet with

an expansion ratio of 2. Measurements in the nonswirling jet compared

favorably with those of previous researchers [8, 171• The swirling jet

results presented were quite limited but did show that around regions of

recirculation large values of turbulence intensity and shear existed,

even for moderate swirl. The researchers also performed an uncertainty

analysis on the hot-wire technique. This involved changing certain in-

put parameters to the data reduction and determining the percentage

change in output parameters. They found that the most inaccurate output

term was u'w'.

Sommer [42) measured time-mean and fluctuating properties of con-

fined coaxial jets and found that a CTRZ did exist for the co-swirling

case. He found that the recirculation zone consisted of a one-celled

toroidal vortex characterized by low internal swirl velocity, high tur-

bulence intensity, and large turbulent dissipation rates.

The previous experimental work presented here gives a good indica-

tion of the levels of the properties that are quantified in this study.

However, before any direct comparison can be made between these reported

results and the present measured data, the flows must be similar. This

must involve not only geometric similarity but also, and more importantly,

15



filet flow conditions must be dynamically similar. This often in-

c the use of a similar inlet contoure,

lumber and shape of swirl vane blades

16
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CHAPTER III

MEASUREMENT TECHNIQUES AND ANALYSIS

Turbulence measurements in a complex flowfield have always been a

complicated problem encountered by engineers. In the past turbulence

phenomena have been discussed by various authors in detail and various

methods of turbulence measurements have been suggested 133, 43, 441. One

of the most widely-used instruments to obtain turbulence quantities is

the hot.-wire anemometer, the most common of which is the single hot-wire.

When used at a single orientation and in a two-dimensional flow with a

dominant flow direction, a single hot-wire can measure the streamwise

components of the time-mean velocity and the root-mean-square velocity

fluctuations at a particular location in the flowfield. A two-wire

probe can be used to determine the time-mean velocities, streamwise and

cross stream turbulence intensities, and the cross correlation between

the two components of the velocity fluctuations [43, 451•
	 .I

Hot-wire measurements in a complex three-dimensional flowfield are

considerably more difficult than in one- or two-dimensional flowfieids

in which the mean flow is predominantly in one direction. To measure

the three velocities and their corresponding fluctuating components in a

three-dimensional flowfield such as encountered in combustor simulations,

a triple hot-wire technique is typically used.

The three-wire probe technique permits the necessary simultaneous

measurements from which three instantaneous velocity components can be

17
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determined. The appropriate signal processing can produce estimates of

mean velocity components and the Reynolds stress tensor. However, the

three-wire probe technique is very complex, requiring a multi-dimensional

probe drive to align the probe in the mean flow direction. Also, sophis-

ticated signal processing electronics is required to handle the three in-

stantaneous hot-wire voltages. Finally, because of the fact that three

hot-wires are involved, the dimensions of the instrument tend to be large,

causing poor spatial resolution.

In recent yearn the use of single-wire multiple-orientation tech-

niques is rapidly growing in popularity. This is because of their abil-

ity to measure all the time-mean velocities and all the components of

normal and shear turbulent stresses in complex flowfields. The method

is very cost effective, requiring only standard hot-wire electronics.

Assumptions regarding the nature of the turbulence are that it is sta-

tionary and that it follows a normal probability distribution. 	 It is

for these reasons that makes the six-orientation, single hot-wire tech-

nique suitable for swirling confined jet flows.

3.1 Single-Wire Six-Orientation Technique

Multi-orientation of a single hot-wire is a novel way to measure

the three components of a velocity vector and their fluctuating compo-

nents. A method devised by Dvorak and Syred [46] uses a single normal

hot-wire.oriented at three different positions such that the center one

is separated by 45 degrees from the other two. The velocity vector at a

location is related to the three orthogonal components using pitch and

yaw factors as defined by Jorgensen [47]. The data are obtained in the

form of mean and root-mean-square voltages at each orientation. However,

18
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the measurements done with a single wire do not supply all the informa-

tion needed to obtain the turbulence quantities. Therefore, in addition

to a single wire, Dvorak and Syred used a cross-wire probe to obtain the

covariances between the voltages obtained at adjacent hot-wire orienta-

tions.

King (481 modified the technique developed by Dvorak and Syred. His

method calls for a normal hot-wire to be oriented through six different

positions, each orientation separated by 30 degrees from the adjacent

one. Mean and root-mean-square voltages are measured at each orienta-

tion. The data reduction is performed using some assumptions regarding

the statistical nature of turbulence, making it possible to solve for

the three time-mean velocities, the three normal turbulent stresses, and

the three turbulent shear stresses.

The six-orientation, hot-wire technique requires a single, straight,

hot-wire to be calibrated for three different flow directions in order

to determine the directional sensitivity of such a probe. The three

directions and three typical calibration curves are shown in Figures 4

and 5• Each of the calibration curves follows a second order, least

square fit of the form:

E. = A. + B.u. /2 + C.U.
	

(3. 1)
i	 i	 ii	 ii

which is an extension of the commonly used King's law. In this equation,

A i , B i , and C  are calibration constants, and u i can take on a value of

U, v, and w for the tnfee calibration curves, respectively.

When the wire is placed in a three-dimensional flowfield, the effec-

tive cooling velocity experienced by the hot-wire is:

22 = v2 + G2 u2 + K2-2
	

(3.2)
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where G and K are the pitch and yaw factors defined by Jorgensen [471

to be:

G = v(u and w = 0) 	
0.3a)

u(v and w = 0)

and

K = -v(u and w	 0)	 (3.3b)
w(u and v = 0)

which are evaluated from the three calibration curves (Figure 5) for a

constant value of E 2 . Equation (3.3) shows that the pitch and yaw fac-

tors are calculated with the -v component i = 2 in Equation (3.1) of the

effective cooling velocity as the reference. Therefore, the calibration

constants used in Equation (3.1) are the coefficients in the E versus v

calibration of Figure 5, i.e., in a general flowfield:

E
2 = A2 + B2 

2 1/2 + C
2 Z

with Z as given in Equation (3.2) above.

Figure 6 shows the pitch and ,yaw factors as a function of hot-wire

voltage determined from the calibration curve of Figure 5. Both factors

vary with hot-wire voltage, but the yaw factor is far more sensitive.

The sensitivity analysis discussed in the next section demonstrates that

uncertainties associated with the varying pitch and yaw factors do not

seriously affect the accuracy-of the estimated flow quantities.

To carry out measurements in the confined Jet flowfield, the wire

is aligned in the flow in such a way that in the first orientation the

wire is normal to the flow in the axial direction and the probe coordi-

nates coincide with the coordinates of the experimental facility. Thus,

20
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the six equations for the instantaneous cooling velocities at the six

orientations, as given by King [481, are:

zI = v2 + G2 u2 +
K2 w2

(3.4a)

Z? = v2 + G2 (u cos 30° + w sin 30°)2

+ K2 (w cos 30° - u sin 30°) 2 (3.4b)

Z 3 v + G (u cos 60° +
2

w sin 60°)

+ K2 (w cos 60° - u sin 60°) 2 (3.4c)

Z4 = v2 + G 
2 
w2 + K2 u2 (3.4d)

Z5 = v2 + G2 (w sin	 120° + u cos	 120°)2

+ K2 (u sin 120° - w cos	 120°) 2 (3.4e)

Z6 = v2 + G2 (w sin	 150° + u cos	 150°)2

+ K2 (u sin 150° - w cos	 150°) 2 (3.4f)

Solving simultaneously any three adjacent equations provide expressions

for the instantaneous values of the three velocity components, u, w, and

v in terms of the equivalent cooling velocities (Z 1 , Z2 , and Z 3 , for ex-

ample, when the first three equations are chosen). It is then possible

to obtain the three time-mean velocity components and the three normal

turbulent stresses of the Reynolds .tress tensor, in a manner described

in Reference [411.

To determine the cross-correlations of the turbulent fluctuations,

a correlation coefficient has to be assumed. King [481 argued that if

two wires are separated by an angle of 30 degrees, the fluctuating sig-

nals from the wires at the two locations would be such that their con-

tribution to the cooling of the wire would be related by the cosine of
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gle between the wires. This assumption leads to the following two

of the correlation coefficients:

yZpZQ = cos 30 = 0.867
	

(3.5a)

YZQZR = cos 30 - 0.867
	

(3.5b)

ate yZpZQ with yZQZR and YZPZR, King [481 introduced the following

onship:

YZ PZ R = nYZ P Z Q ' YZQZR
	

(3.6)

n is given a value of 0.8. A sensitivity arslysis presented in

rVldemonstrates that there is no significant error magnification

data reduction due to the correlation terms.

o obtain measurements of the correlation coefficients in a swirl-

..owfield, a triple hot-wire and a time correlator would have to be

used. Dvorak and Syred (461 used a double-wire in a two-dimensional

flow and found that the above assumptions are quite good.

3.2 Eddy Dissipation Rate Measurements

Studies of the en—gy processes in shear flows have all suffered

from uncertainty in determining the rate of turbulent dissi pation. Hinze

[491 shows that this process can be expressed in cartesian coordinates by

/ au1	 iau \ au1
c = " ^^ (ax. + ax i ) ax3	

(3.7)

(where u! is the component of the fluctuating velocity in the x i direc-

tion). Assuming incompressible, homogeneous, small scale turbulence,

Hinie reduces this equation to the form:
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(3.8)

2

E = 15vV2 (^) (3.90)

2(au1

c Iaxi
)

Lawn (50) suggests that complete isotropy is not required for Equa-

tion (3.8), but the condition that the transfer of energy from one velo-

city component to another be relatively small suggests that the normal

stresses due to these components be approximately equal. This condition

is defined as "second class local isotropy" by Bradshaw [43)• The assump-

tion does not neglect the existence of shear, and in fact includes an in-

herent nonisotropy by giving special emphasis an the mean flow direction.

This reasoning states that all the turbulent energy is initially produc-

ed in the component of the flow direction and is then distributed among

other components. This turbulent energy could be distributed by means

of the pressure fluctuations [50).

if Bradshaw's definition applies, and assuming that all the turbu-

lent dissipation occurs in the mean flow direction, then Equation (3.8)

reduces to:

2

E = 15 v (^)	 (3.9)

where s is in the direction of the local time-mean velocity.

Invokinq Taylor's hypothesis (a/at = V a/as),that the fluctuations

at any point in the flowfield are caused by the whole turbulent fiowfieid

passing that point with a constant velocity 4, it follows that

i
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Heskestad [51] has suggested that the use of Taylor's hypothesis can

possibly overestimate the dissipation rate and therefore introduced a

modification to the convective velocity:

2	 ,2	 12	 2	 2

+2 (at) _ (ax) (I + az + z	 2"' )	 ( 3.11)
v	 v	 v

However, Antonia et al. [52] did not apply this modification to mea-

surements in the fully developed region of axisymmetric free jetataxial

locations greater than x/D = 40. They found that there was a linear de-

crease in dissipation rate for increasing axial location.

Laufer [531 used Equation (3.7) to determine the eddy dissipation

rate. He measured five of the nine contributions to the sum and assumed

that isotropic relations may be used to derive the remainder. His mea-

surements were performed in a fully-developed turbulent pipe flow, a re-

latively easy fiowfield. However, his results contained several incon-

sistencies mainly because of the errors incurred while measuring five

different derivatives. Lawn [50] also measured the energy dissipation

in turbulent pipe flow. He concluded from his own and Laufer Fs results

1531 that Equation (3.8), which assumes complete isotropy, will not be

grossly in error if the pipe Reynolds number is greater than 9 x 10 4 . Any

slight errors that do exist could be attributed to poor high frequency

response of hot-wires and to finite wire length. Isotropy is approached

as the Reynolds number increases and is a good approximation at Re = 9 x

10 4 . Lawn [501 used Equation (3.8) with a Reynolds number of 4 x 1o4

with a single hot-wire and then Equation (3.7) with a double wire; he

found that the results did not show a great deal of scatter between the

I
t

i
4

i

24



two methods, indicating that a single hot-wire could be used at the lower

Reynolds number.

Habib and Whitelaw [1:41 measured the dissipation rate in a confined

coaxial jet without swirl. They used the isotropic relationship of Equa-

tion (3.8) and compared their results with those obtained with the TEACH

computer code [55)• The researchers found that the calculated results

were a factor of two higher than the measured results. However, the mea-

surements were only of a preliminary nature and the authors concluded

that neither the precision nor the detail of the measurements were suffi-

cient for satisfactory appraisal.

In confined coaxial swirling flows, Vu and Gouldin [38] used Equa-

,ion (3.10) to determine the dissipation rate. From this they were able

tc calculate the length scale of dissipation from the well-known k-c re-

lationship.	 In addition, estimates of the Taylor microscale and the

Kolmogorov length scales were obtained using isotropic relationships and

the eddy dissipation rates. The fact that Vu and Gouldin [38) have no

comparisons to make with their results in swirling recirculating flows

attests to the fact that accurate measurements in such a flow are quite

difficult.

To ivoid errors associated with taking many turbulent derivatives,

the isotropic relationship of Equation (3.10) is used in this study to

determine the eddy dissipation rate. The high Reynolds numbers employed

in this project also gives another point in favor for usingthe isotropic

assumptions.

3.3 Contribution to Turbulence Modeling

'The practical need of the turbulence measurements in swirling flows
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can be seen from studying the Reynolds equations. In solving the Rey-

nolds equations for time-mean velocities, specification is required of

the turbulent stresses, usually via the turbulent viscosity p t . While

the molecular viscosity is a real property of the fluid, existing whe-

ther the fluid is in motion or at rest, the turbulent viscosity requires

some flow of fluid to become effective and is thus not a property of the

fluid but a aarameter of the fluid motion. This parameter describes the

behavior of the turbulent stresses in terms of the time-mean velocity

gradients, implying the assumption that the turbulence transport is of

the gradient type. Although simple models are availijc'e for the

specification of p t , especially in boundary layer flows, for example,

they are not useful for recirculating flows.

Increasingly complex flowfields are governed by increasingly compli-

cated equations for the time-mean properties, which contain increasingly

more components of the turbulent (Reynolds) stress tensor. For example,

the increasing number of components required are:

1. Nonswirling boundary layer flow--rx-component Dnly;

2. Swirling boundary layer flow—rx and r0 components;

3. Nonswirling axisymmetric recirculating flow--•rx, xx, rr, and 00

components;

'4. Swirling axisymmetric recirculating flow--rx, re, xe, xx, rr,

and 00 components;

with more complex flows requiring, again, all six components.

In nonswirling axisymmetric recirculating flow, the turbulent (Rey-

nolds) equations of conservation of axial and radial momentum may be

solved (along with the conservation of mass [continuity] equation) so as

to obtain t i me-mean values of p, u, and v (time-mean pressure, axial and
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radial velocities) throughout the flowfield. The equations for u and v

contain only the following components of the turbulent (Reynolds) stress

tensor T:

rxx	 Pu 2 = 2u t Bx - 3 Pk
	 (3.12a)

T rr = -pv 12 = 211 t v	 3 pk
	 (3.12b)

T BB = -Pw,2 = -2utaw - 2 pk	 (3. 12c)

	

Du	 Dv
r rx = P u ' v ' = lit ( Dr + 3x)	

(3.12d)

which are usually related by way of an isotropic turbulent viscosity p

to the appropriate components of strain (velocity gradients) in the form

also shown. Incompressibility has also been assumed and the terms con-

taining div v have been omitted. Notice that the normal components also

contain the term - 3 pk (which is often omitted in practice) in order

that summation of the normal components and application of the continu-

ity equation are consistent with the definition of k = (u' 2 + V.2+ w`2)/2.

If swirl is also present, coupled with the above is an equation for

conservation of swirl momentum from which the time-mean swirl velocity w

may be obtained throughout the flowfield. Additional terms also appear

in the other momentum equations. From the turbulence simulation point

of view, additional components of the turbulent (Reynolds) stress tensor

appear in the s.virl equation:

	

rx6 = -pu'w' = ux	 (3.13a)

TrO = - p v'w' = pr r (M)	 (3.13b)

i
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These correlations are usually related by way of an isotropic turbulent

viscosity p to the appropriate components of strain (velocity gradients)

in the form shown on the extreme right hand of these equations. Thus

all six different components appear in the governing equations. Notice

that axisymmetry has reduced the complexity, not only of the governing

equations themselves but also of the constitutive relations.

If isotropic turbulent viscosity is not assumed, different values

of u may be appropriate to different components of the turbulent (Rey-

y,	 nolds) stress tensor=_. That is, a double suffix is added so as to indi-

cate the component in question. Then by analogy with Prandtl-Schmidt

numbers, viscosity numbers may be defined so as to relate other viscosi-

ties to the primary component of turbulent viscosity p = p rx . (This

particular one is chosen, since it is the only component which remains

in the governing equations of a nonswirling boundary layer flow, on which

much previous research has taken place. Swirling boundary layers con-

tain u re in addition to p rx and only one viscosity ratio appears.) Thus

one is interested in whether or not the following viscosity numbers are

unity (isotropic) or not (nonisotropic):

oxx = J'/uxx	
(3.14a)

°rr - u /prr	
(3.14b)

"9e = 11/0 B0 	 (3.14c)

a rH = lI /p r6	
(3.14d)

ox0	
u/ p xe	(3.13e)

There is some evidence that these values are not unity 131, 551, but gen-

eral recommendations are not available 1561• The remaining problem is

how the main component of turbulent viscosity is to be specified by a

:a

j
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turbulence model. Or, rather, the more complete question of how are all

the components of turbulent (Reynolds) stress to be specified, either

directly (advanced differential or algebraic stress modeling) orindirect-

ly (via the turbulent viscosity concept).

A turbulence model is a set of differential and/or algebraic equa-

tions for things like k, c, u i u^, u!m', m, 2 , etc. which connect statisti-

cal properties of turbulence (correlations) with each other and with

terms appearing in the time-averaged equations of conservation of mass,

momentum, energy, and chemical species. Auxiliary relations are like

	

u i u^ = -const k
2 r -1

lu./ax.	 (3.15a)

I/2	 -1
R  = -const (mZ

Z
 )	 pek	 (3.156)

Models are classified according to the turbulent flux hypothesis

(whether or not turbulent exchange coefficients are introduced) and the

number of extra differential equations to be solved. 	 If introduced, ex-

change coefficients have generally been assumed isotropic until recently,

even in flows with swirl, but recent experimental, inverse and predic-

tion works have disputed this for swirling flows.	 Briefly the choice

available i=-:

1. Prandtl mixing length p rx = pl 2 (2A:n)1/2

2. Energy-length p rx = c p k2E-I;

3• Differential stress modeling Dr rx/Dt = P
rx + D rx + R rx + Erx'

4. Algebraic stress modeling r rx = f (other -r's, k, E, A).

Here 6 is the time-mean flow rate of strain tensor, k and c are turbu-

leer kinetic energy and dissipation rate, and P, D, R, and E stand for

production, diffusion, redistribution, and dissipation in the turbulent

29



stress equation. The first two choices are examples of theories of the

exchange coefficient type; the second two are of direct stress specifica-

Lion type.

Currently two-equation energy-length models are to be recomme,ided

for application in practical engineering situations; in particular the

k-c model where E = k l ' 5 /Z and A, is the macrolength scale of turbulence.

Models of this type have been successfully modified and applied to swirl-

ing flows, even with nonisotropic assumptions [58, 591.	 Recent relevant

„ork is discussed elsewhere [601. Numerical and analytical inverse

solution of the turbulent swirl flow boundary layer equations (which

allow turbulence model development directly from time-mean experimental

data) have been useful for this purpose. Details of the general turbu-

lence model development in both nonreacting and reacting flows are avail-

ahle via recent conferences [61, 621.

The advantage of a turbulent kinetic energy TKE model over a simple

algebraic "local" model is that solution of a PDE for k allows upstream

"historical" influence to assert itself on the subsequent flowfleld.

Application of several such models to flowfields of interest in, sudden

expansion burners have been reviewed elsewhere [631• For high speed tur-

bulent reacting flows of specific interest to ramjet dump combustors,

two models show significant promise: the Harsha one-equation model [641

and the Rod! two-equation k-E model 1571. Applications to reacting jet

fl:n-ws shows that both appear to be suitable [651• More advanced turbu-

lence models, such.as those based upon the Reynolds-stress modeling ap-

proach, are not yet fully developed to warrant their use in recirculat-

ing flowfield problems as encountered in gas-turbine combustors. In
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addition, such an approach will appreciably increase the computation ef-

fort.

Measurements of the complete Reynolds stress tensor and the time

mean velocity gradients can lead to knowledge of the turbulent eddy vis-

cosities via use of Equations (3.12) and (3.13). Determination of the

rate of eddy dissipation in conjunction with the turbulent viscosity can

be used to introduce a numerical value to the constant term C u in Equa-

tion (3.15). Typically, C u is given the constant value of 0.09 in swirl-

ing flows. However, it has been shown that this value is unrealistic

and is more likely to be a function of the velocity gradients [66). The

measured data from this study will be used to obtain a relationship for

	

	 !
h

the values of C [67).u i
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CHAPTER IV

DIRECTIONAL SENSITIVITY ANALYSIS

The analysis is performed at any specific flowfield location by ini-

tially placing the probe in a free jet such that the coordinate system

of the probe coincides with the coordinate system of the jet, as shown

in part (a) of Figure 7. Measurements are then taken by rotating the

probe in the manner of the technique just described. To simulate the ef-

fect of the flow shiftin g its dominant flow direction, the probe is ro-

tated by 9 degree about its z-axis, as shown in part (b) of the figure.

This rotation causes a misalignment between the probe coordinate system

and the facility coordinates. This discrepancy can be accounted for by

use of the Eulerian matrices described in section 4.1. 	 In this configur-

ation, the measured time-mean values, normal and shear stresses are in a

coordinate system oblique to the jet coordinate system. However, they

can be transformed back to the facility coordinate system [581. Notice

that. the correct directional sense of the rotation must be followed so

that standard coordinate transformations may be used on the probe data

so as to obtain facility coordinate data. Results shown later in Chap-

ter VI have been obtained in this manner.

To examine the directional sensitivity of the wire further, the

probe was subsequently rotated about its new x-axis, thereby forming a

compound angle between probe and the dominant flow velocity, as also

shown in Figure 7, part (c). Again, the time-mean velocities and

T.
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Reynolds stress tensor can be deduced in terms of the jet coordinate sys-

tem by the method shown in section 4.1, and the results and their accu-

racy are also discussed in Chapter VI.

Specifically, the directional sensitivity of the technique is assess-

ed at five flowfield situations for self-consistency using the following

five configurations:

	

Case 1	 B =	 0 0 	=	 0°

	

Case 2	 6 = -45 0 	0°

	

Case 3	 e = -45 0 	¢ _ -45°

	

Case 4	 e = -90 0 	=	 0°

	

Case 5	 0 = -90 0	_ -go-

The above five probe/flow configurations are used at each of five

representative situations in a free axisymmetric nonswirling jet at x/d

= 0 (laminar in potential core region), 3 and 10 (turbulent in shear

layer region) and in a free axisymmetric swirling jet at a location in a

region of strong shear just downstream of the exit from a variable-angle

vane swirler with swirl vane angles of 45 and 70 degrees, representing

moderate and strong swirl cases. In these swirling jet Gases, the probe

was located just downstream of the swirler exit, outside of any regions

of recirculation: this part of the flow was chosen as it is in an area

of rapid acceleration and is unlikely to contain any instantaneous flow

reversals which might cause erroneous readings. Specifically, the fol-

lowing five situations are used:

	

Situation A	 x/d = 0	 Nonswirling laminar region

	

Situation 6	 x/d = 3	 Nonswirling turbulent region

	

Situation C	 x/d = 10 	 Nonswirling turbulent region

i
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Situation D	 x/d = 0	 Swirling turbulent region with

swirl vane angle 45 degrees

Situation E	 x/d = 0	 Swirling turbulent region with

swirl vane angle 70 degrees

These locations are illustrated in Figures 8 and 9. It will be seen later

that the sensitivity analysis assures users that knowledge of local con-

figuration of probe versus flow direction is not required a priori, and

useful results are forthcoming and relatively insensitive to specific

configurations.

4.1 Coordinate Transformation

4.1.1	 Rotational Matrices

To investigate the shifting of the dominant flow direction, the

p robe holder versus local time-mean flow vector configuration is varied

through five different cases of interest. To relate probe coordinate

data back to the facility coordinate system, use is made of Eulerian ro-

tational matrices. These make it possible to relate all time-mean velo-

cities and the full Reynolds stress tensor back to the facility coordi-

natr. system after any axis rotation.

Any (x,y,z)-Cartesian coordinate axes may be rotated about the x,

Y, or z axis, respectively, by an angle B, with corresponding coordinate

cransformation matrices:

	

1.	 0	 0

	

Rx8 = 0	 Cosa	 -sine

	

0	 sine	 cose

34
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COO	 0	 s 1 n0

Rye	 0	 1	 0

-sine	 0	 cos0

cos0	 -sine	 0

Rze	 sine	 cose	 0

0	 0	 1

For example, a rotation about the z°axis by angle 0 results in old (x,

y, z) coordinates of a point being related to its new (X, Y, Z) coordi-

nates via:

[x y z)T - 
Rz0 [X Y ZjT

Similarly, velocity components (u, v, w) are related to (U, V, W) via

[u v 
W1  

= Rze (U V 
W1 

In the notation of Figure 1 with velocity components

U, v, w in x, r, 0 facility coordinates

U, v, w in x, y, z probe Case 1 coordinates

U, v, w in x, y, z probe Case 2 and 4 coordinates

U, v, w in z, y, i probe Case 3 and 5 coordinates

the following relationships prevail.

4.1.2 Case I

The facility and probe Case I coordinates are coincident and

[u v w1T	 [u v w]T
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4.1.3 Cases 2 and 4

In this case, a rotation *f 0 degree is applied about the z-axis,

resulting in

[u v W1  = Rz0 [u v w]T

which leads to

u u cos 0- G sin 0

v =	 u sin 0+v cos 0

w w

From this the directional time-mean velocities in facility coordi-

nates can easily be inferred. The angle terms in the relationships are,

in fact, the directional cosines [69], which can be used to determine

the stress transformations in terms of facility coordinates. The direc-

tional cosines between any new coordinate axes, for example, x, y, and	 (^

z, and the original coordinate axes z, y, and i can be conveniently tabu-

lated as follows:

	

x±

x	 y	 z

	

tl	 m l 	nl

Y f2 m2 n2

	

i ! ;	 m	 n

	

3	 3	 3

These directional cosines (R i , m l , n  for 1 = I, 2, and 3) can be used

in the general three-dimensional stress equations governing the trans-

formation of coordinates via [68]

Txx = 
z 
T" + mITgy + n^i ij + 2R 1 m l T,Y + 2m 1 n 1 TYZ + 2niklTZx

Tyy = as above with subscript I replaced by 2
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T - as above with
zz

Txy = zIz2T" + mlm

+ (m i n 2 + m 2 n

T	 = as above with
yz

Tzx = as above with

subscript I replaced by 3

!TYY + n 1 n2 Tii + (z l m2 + R2m1)Txy

I
)TYZ + (nlz2 + n2zl)TZx

subscripts (I, 2) replaced by (2, 3)

subscripts (1, 2) replaced by (3, 1)

These relationships lead to evaluation of all the stress components in

facility coordinates, from corresponding data originally reduced in probe

coordinates.

4.1.4 Cases 3 and 5

To go from Cases 2 and 4 to Cases 3 and 5, a rotation of ¢ degrees

is applied about the nee x-axis, resulting in

[u v w] T = RX^ [u v w]T

and

[u v w] T = Rz9Rx^ [u v w]T

which is

rul 	 - sin0 cosh + sin0 sino	 u[cosO

	

sin0 + cos0 ces^ - cos9 sino	 v

^w] [ 0	 sinO	 cos¢	 w

Again, this relationship permits time-mean velocity components to be con-

verted back into facility coordinates. The coefficient matrix defined

the directional cosines relating the two coordinate systems; these can

be used for normal and shear stress transformations in the manner de-

scribed in section 4.1.3.
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CHAPTER V

EXPERIMENTAL FACILITY

5.1 Calibration Equipment

A small axisymmetric free jet is used for the static calibration of

the hot-wire. The calibration jet facility, shown in Figure 10, consists

of a seamless contoured nozzle geometrically similar to that of the flow-

field facility. A settling chamber and turbulence management section

consisting of packed straws is just upstream of the contoured nozzle.

The nozzle itself has a throat diameter of 34 min and is :apable of pro-

ducing Reynolds numbers up to 6 x10 5 (based on throat diameter). The

air is delivered by a thermally stabilized compressed air generator and

produces air at ±0.5°C to that of th-2 wind tunnel. The air is control-

led tD the nozzle by means of a diaphragm valve and a Fisher and Porter

model 10A1735A rotameter. This arrangement allows 30 calibration points

to be read over a wide range of known velocities (found by independent

pitot probe measurements).

It is necessary to calibrate the hot-wire in a flowfield of known

properties. The one-dimensional low turbulence level (essentially lami-

nar) potential core of the free jet was utilized for this calibration.

The hot-wire is calibrated for three different flow direction, u, v, and

W. as shcwn,in Figure 5. Each of the three calibration curves are ob-

rained with zero velocity in the other two directions. The calibration

curves demonstrate that the hot-wire is most efficiently cooled when the

I
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flow is in the direction of the u component, whereas the wire is most

inefficiently cooled when the flow is in the direction of the w compo-

nent. The three orientations of the probe were made possible by use of

a rotary table and DISA 5514151 and 55H153 mountin g tubes.

The familiar King's law relationship

E2=A+BZn
	

(5. 1)

which is employed as a calibration curve in most conventional hot-wire

anemometry applications has considerable limitations. Perry and Morrison

[691 have shown that this relationship is only satisfactory for mean

velocities over a limited range. These researchers illustrated by dyna-

mic calibration that this form of relationship is only suitable for flows

with low turbulence levels. Typically, linearizers are used which apply

the relationship of Equation (..1) to the hot-wire output signal. The

values of A, B, and n are variable to suit individual wires. The limit-

ed range of application of such an expression and its restriction to low

turbulence levels makes the use of linearizers very undesirable in high-

ly turbulent flows since it could lead to considerable errors.

Dvorak and Syred [46] found that the expression

E 2 = A + BZ1/2 + CZ
	

(5.2)

gave an excellent fit to obtained calibration data with a very small

standard deviation being obtained over a large velocity range (i to 60

m/s). Such a curve fit is a more realistic approach since the conven-

tional relationship of Equation (5.1) is based on the steady flow heat

transfer relationship and thus may well not provide an accurate descrip-

tion of the behavior of individual wires. A relationship of the form of

Equation (5.2) is used to fit a curve fit to the whole calibration curve
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Sim
_.



I

using a least squares curve fitting technique. This curve thus allows

the instantaneous velocity to wander over the entire range from zero up

to the maximum value seen in the flow without distortion.

A hot-wire does not record a true zero velocity voltage while under

calibration because of the thermal convection velocity induced by the

bouyancy arising from the wire's own heat. Thus the zero velocity vol-

tage obtained.during calibration is spurious and is not included in the

points used to obtain the curve fit.'

A further point in favor of Equation (5.2) is made by Dvorak and

Syred [46]. They showed that a curve fit of this form from static cali-

bration data fitted very well the dynamic calibration data of Perry and

Morrison (69] and thus stated that dynamic calibration is probably un-

necessary. This is to be expected, as the diameter of the hot-wire is

very small (usually 5 pm); therefore, the flow in the vicinity of the

wire may be considered laminar. Thus the hot-wire sees a time-varying

laminar flow.in the turbulent flow whereas in the calibration rig it

sees a time-steady laminar flow. This also explains the good approxima-

tion achieved by the expression in Equation (5.1) despite its having

been based on laminar heat transfer analysis.

5.2 Confined Jet Facility

The swirling confined jet test facility is shown schematically in

Figure 3• Air flows through an axial flow fan whose speed can be adjust-

ed by means of a U.S. varidrive motor. The range of speed of the fan is

then 1100 to 3100 rpm. The air then enters a flow straightener and tur-

bulence management section, consisting of mesh screens and packed straws.

Next is the contoured nozzle leading to the test section. This
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axisymmetric nozzle was designed by the method of Morel to produce a

minimum adverse pressure gradientin the boundary layer to avoid the flow

unsteadiness phenomenon associated with 	 local	 separation regions.	 The

throat of this contoured nozzle is	 15 cm onto which an annular vane

swirler may be fitted. 	 The swirler consists of ten blades which may be

individually set to any angle of interest.	 A solid hub of 4 cm diameter

is	 located at the center of the swirler with a streamlined nose facing

upstream.	 The downstream end	 is simply a flat face, simulating the geo-

metric shape of a typical	 fuel	 spray nozzle.	 More detailed information

concerning the swirler can be found elsewhere 	 [13]. j

The test section itself consists of a 90 degree expansion block of p

8diameter 30 cm and width 3.2 cm, giving an expansion ratio of 2.	 A 125

cmlexi	 lass tube is then	 laced over the expansion block toP	 9	 P	 P	 provide t

the main body of the test section. 	 In addition, another plexiglass 	 tube
13

of similar legnth but	 15 cm diameter is used to provide an expansion 	 ra-

tio of unity.	 The substantial	 size of the test model	 provides excellent

probe resolution for the hot-wire measurements.
S

The test section has the option of being equipped with a strong con-

traction nozzle of area ratio 4. 	 This nozzle has a 45 degree slope fac-

ing upstream and can be located at any axial	 location.	 Alignment of the

t
contraction nozzle and test section with the wind tunnel is obtained with

the use of a laser beam.
r

t	 A manual	 traversing mechanism can be attached to the test section

as shown	 in Figure l;.	 This mechanism	 is equipped with a 	 linear vernier

scale which	 is accurately readable to within t0.25 mm. 	 This allows a
i

probe to be accurately traversed across the chamber radius with the capa-

bility of manually rotating a probe about 	 its axis to an accuracy of

r^
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±0.2 degree. A more detailed description of the confined swirling jet

facility at Oklahoma State University can be found in Reference [15].

5.3 Hot-Wire Instrumentation

As mentioned previously, the six-orientation single-wire technique

emp'loys standard e'-..tronic equipment for the determination of the time-

mean and turbulent stresses in the flowfield. The sensor used in this

study is a normal hot-wire probe, DISA type 55P01. This probe has two

prongs set 3 mm apart which support a 5 um diameter tungsten wire. This

wire is gold plated near the prongs to reduce end effects and strengthen

the wire. A DISA 5 m cable connects the probe support to the main bridge

unit. The anemometer used is a DISA type 55M01, constant temperature

standard bridge. The mean voltage across the hot-wire is measured using

a Hickok Digital Systems, model DP100, integrating voltmeter with the

root-mean-square component of the voltage being measured using a Hewlett

Packard, model 400 HR, AC voltmeter.

To measure the eddy dissipation rate and hence the dissipation

length scale, a special electronic analog device was constructed to time-

differentiate the fluctuating electronic signal. This device was assem-

bled using a 741 operational amplifier and various capacitors and resis-

tors. A schematic of the differentiator is shown in Figurel2a. For the

device to effectively differentiate at the required frequencies, the

break frequency of the instrument must be approximately ten times that

of the differentiating frequency. The plot of gain versus frequency in

Figure 12b shows that the cutoff frequency is not reached until after 20

kHz. The calculated break point of the system is at a gain of 100; in

?ddition, a gain of unity was obtained from the differentiator at a
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frequency of 1.5 kHz. This is well within the range of frequencies to

be differentiated. The output voltage from the anemometer was first

passed through a DISA 55D25 filter before analog differentiation. The

cutoff frequency setting for the wire is critical, since too high set-

tings would include undesirable amounts of electronic noise and too low

settings would suppress high frequency components of the signal. The

settings were determined at typical locations in the flowfield by using

a Hewlett Packard 3580A spectrum analyzer to identify regions of high

noise. A unity gain follower was placed before the differentiator to

prevent any high impedance loading of the differentiator.

The mean square of the differentiated signal was measured using

Thermal Systems Inc. true rms voltmeter, model 1076. This instrument

has a 1MQ input resistance to attenuate the low frequency signals.

1

, n
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CHAPTER VI

RESULTS AND DISCUSSION

Nonswirling and swirling nonreacting flows are investigated in an

axisymmetric test section with expansion ratio D/d = 2, which may be

equipped with a strong contraction nozzle of area ratio 4 located at L/D

= 2. This nozzle has a 45 degree upstream facing slope as described ear-

lier (10). Measurements have also been made in a nonexpanding test sec-

tion with expansion ratio D/d = I. The nozzle inlet velocities and Rey-

nolds numbers employed in this investigation are high enough to ensure

that the flowfields studied are under conditions independent of Reynolds

number variation. They correspond approximately to conditions reported

in associated studies (101.	 In each case, radial profiles of interest-

ing properties at six axial locations are presented. All properties

shown are normalized with respect to the swirler inlet uniform axial

velocity U  deduced independently from a measurement upstream of the

swirler. Finally, an accuracy and directional sensitivity analysis in-

volving the time-mean and turbulent properties of a round free jet has

been performed. Percentage changes of some of the important input para-

meters and their effect on the calculated output quantities have been

studied. Five probe-jet axis orientations have also been used to simu-

late the shifting of %the dominant flow direction and consequently the

effectiveness of the hot-wire technique to measure the properties of a

strongly swirling flow whose local flow direction is unknown.
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Deduced results from the measured hot-wire signals are presented in

Tables I through XXIII.

6.1 Effect of Swirl

6.1.1 Nonswirling Flows (D/d = 2)

Figurel3shows time-mean and turbulence data fcr the nonswirling

flow.	 A nearly-flat axial velocity profile is seen in the entrance re-

gion of the test section. As expected, there is no measurable swirl

velocity and only a small radial velocity. Although a corner recircula-

tion zone (CRZ) is present, there is no evidence of a central toroidal

recirculation zone (CTRZ). 	 Indeed, there is no swirl-induced centrifu-

gal force to encourage its formation. The hot-wire anemometer cannot

sense flow direction; however, directional properties of the flow can be

inferred from earlier five-hole pitot probe data [10], and flow visual-

ization photography [9]. Nevertheless, the author has retained the posi-

tive values on all figures wherever possible uncertainties might exist.

The time-mean data show good agreement, within 5 percent, with that found

by Chaturvedi [17] in a similar test section, and with that found by Yoon

and Lilley [10] using a five-hole pitot probe in the same test facility

with identical flow conditions.

The maximum values of normal stresses appear on the shear layer with

the axial fluctuation component dominating. Earlier results [17] indi-

cated that the axial turbulence intensity was larger than the other two

components and that the radial turbulence intensity was approximately

equal to the tangential turbulence intensity. This is confirmed in the

present study.
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The six-orientation technique produces positive values of shear

stress. However, in certain locations in the vicinity of recirculation

zones, the radial gradient of *_hc axial velocity is predominately posi-

tive which is associated with negative values of u'v'. Nevertheless,

all shear stress values in this document are plotted as positive. Be-

cause of the absence of velocity gradients in the x- and O-directions,

only one shear stress (the xr-component) is significant in the nonswirl-

ing case. This shear stress, plotted in Figure 13, tends to be lower

than the earlier study [17). 	 It should be noted, however, that the shear

stresses are the most difficult turbulent quantities to measure accurate-

ly in a complex flowfield. Uncertainties in measurements of time-mean

velocities and turbulence intensities are increased in the determination

of shear stresses.

6.1.2 Moderate Swirl (Did = 2)

In confined swirling jet flows the axial and tangential time-mean

velocities dominate, as can be seen from Figures 14 and 15. The corner

recirculation zone can be seen clearly at the expansion plane of the

test section. The CRZ is not seen at any other axial location, indicat-

ing that the swirling flow greatly reduces the length of the CRZ. Swirl-

ing flow produces a central toroidal recirculation zone which can also

be seen in the figures. The CTRZ appears to have a length of approxi-

mately 1.5 D. Downstream of this point on the Jet axis, indication is

given of a precessing vortex core (PVC) extending to the exit plane of

the test section. The PVC is defined as a region of low axial velocity

i
and high almost solid body rotation swirl along the axis, and is found

to be present in the swirling flows considered. Your. and Lilley [10] 	
I.
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also measured the time-mean swirling flowfield using a five-hole pitot
^ll

probe, and the present data are found to be in good agreement. 	 The PVC

is most clearly observed	 in flow visualization studies using still photo-

graphy	 18,	 101	 and videotape recordings (91.

The three normal	 turbulent stresses appear to be	 fairly	 isotropic

at all	 locations	 in the test chamber with maximum values occurring 	 in

regions of recirculation and regions of high shear. 	 It was	 found that

large-scale turbulence with big eddies occurs 	 in	 recirculation regions

and that small-scale turbulence with small 	 eddies occurs	 in regions of

peak velocities.	 In the downstream regions of the test chamber, the tur-

bulence	 levels are	 low, with a more uniform radial	 profile,	 indicating a
i

more developed nature of the flow. }

It can also be seen that all 	 three shear stress components are sig-

nificant	 in swirling flows, as expected.	 The maximum values of shear j

stress occur in the thin

downstream direction as

and 77/u2 are found t
0

shear layer regions but quickly dissipate in the

the shear layer broadens. The stresses u'v'/uo

have large values close to the wall, because of

the steep axial and swirl velocity gradients.

6.1.3 Strong Swirl (D/d = 2)

Time-mean velocity profiles for the strongest swirl cases consider-

ed are shown in Figures 16 and 17. Almost all of the flow leaves the

swirler near the outer edge, producing steep velocity gradients in this

vicinity. High velocity gradients can also be seen near the wall, es-

pecially at x/D = 0.5• The strong centrifugal forces present in the in-

coming flow produce rapid outflow to the confining boundary. Both cen-

tral and corner recirculation zones can be seen clearly from the time-

. n
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mean plots. However, it appears that the CTRZ is shorter forth is strong

degree of swirl as compared to the moderate swirl case. In contrast,

the PVC gets wider as the swirl strength increases, as also found in five-

hole pltot probe data [101.

The normal turbulent stresses have increased in magnitude, consis-

tent with the increase in swirl strength, and still a good degree of iso-

tropy is observed throughout the entire flowfield. The highest turbu-

lence levels again occur in regions of recirculation and on the shear

layers. It can also be seen that high turbulence levels are found in

the PVC.

The most dramatic effect of the increase of swirl is the large in-

crease crease in all three shear stress values. It can be seen that

very high values of shear stress occur in the shear layers and near the

walls. The PVC also contains high values of shear stresses and turbu-

lence levels. Overall, the values of shear stresses are higher than in

other swirl strengths considered.

6.2 Effect of Strong Contraction Nozzle

6.2.1 Nonswirling Flows

Time-mean and turbulence characteristics for the nonswirling flow

with a strong contraction nozzle at L/D = 2 are presented in Figure 10.

The plots show that results vary only slightly from that of the corre-

sponding flowfield without a contraction nozzle (see Figure 13). The

major difference appears to be a slight reduction in the length of the

CRZ. The measured time-mean flowfield compares favorably with previous

data (10).
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6.2.2 Moderate Swirl

The effects of the contraction nozzle on the moderately swirling

flow with ^ = 45 degrees are shown in Figure 19. The presence of the

contraction nozzle accelerates the flow and produces a strong favorable

pressure gradient over the entire flowfield of interest. This pressure

gradient conflicts with the adverse pressure gradient inherent in swirl-

ing flows (associated with recirculation zones). Regions of positive

axial velocity occur near the centerline at all axial locations. The

central recirculation zone is now located in annular region around the

jet axis and is much smaller than in the corresponding open flowfield of

Figure 15. A narrow central core region is observed to extend through-

out the length oi the test section with strong solid body rotation. Posi-

tive axial velocities now occur in this region, as opposed to negative

ones in the corresponding open-ended flow case; this and other time-mean

data are in excellent agreement with earlier experimental [10] and pre-

diction [4, 161 studies.

The directional turbulence intensities do not show any significant

increase in magnitude compared to the open-ended swirling flow. However,

the turbulent shear stresses are found to increase near the jet axis as

the contraction nozzle exit is approached. This is because of the fairly

high turbulence levels in this region and the effect of strong velocity

gradients with which these stresses are associated.

6.2.3 Strong Swirl

For swirl vane angle 0 = 70 degrees, measurements are given in Fig-

ure 20 with the strong contraction blockage located at L/D = 2. The

axial velocity near the axis is positive, though less so than in the 45
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degree case of Figure 19, since the favorable pressure gradient has nu.

to overcome an even stronger unfavorable pressure gradient. The central

recirculation region is now very small, extending in an annular region

to less than x/D = 1.0, considerably less than the no-blockage case of

Figure 17. At the axial station x/D = 1.0, forward flow occurs across

the whole test section. Very strong swirl velocity magnitudes and gradi-

;nts are seen, which contrast, sharply with the corresponding open-ended

flow situation. A wide core region is again noticed along the jet axis

containing strong solid body rotation; movie photography reveals the pre-

cessing nature of this phenomenon. Again, time-mean data compare very

well with previous work (ld].

The normal components of the Reynolds stress tensor show an increase

in turbulence along the jet axis as the contraction is approached--more

so than in the 45 degree swirl case of Figure 19, but similar to those

found in Lhe open-ended case of Figure 1/, Now, larger values are found

near the axis, associated with the strong vortex core region. Shear

stress levels at the entrance to the test section tend to be slightly

lower for the blockage case. But the levels are an order of magnitude

higher in the core region near the contraction nozzle. Again, this is

because o f the strong time-mean velocity gradients in this area.

^.3 Effect of Expansion Ratio

6.3.1 Nonswirling Flow (D/d = 1)

Figure 21 shows the very flat axial time-mean velocity profiles

associated with a one-dimensional flow. The flowfield is seen to be

homogeneous throughout the whole test section. This is because of pres-

sure losses due to abrupt expansions being absent in the nonexpanding
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confined jet. Radial velocities are fours.', to be present across the

whole test section. This was not to be expected as there is no expan-

sion of the flow in this case. These velocities are assumed to be an

error of the six-orientation technique which is discussed later in this

chapter. No recirculation zones are evident at any section of the flow-

field, as expected.

The successful design of the wind tunnel and contraction njzzle is

evident by the low levels of turbulence intensity measured. The absence

of time-mean velocity gradients and flow discontinuities also explains

the fact that all components of the Reynolds stress tensor are negligi-

ble.

S
6.3.2 Moderate Swirl (D/d = 1)

l

Strong axial and tangential time-mean velocities dominate in the	 j

nonexpanding confined jet. These velocities were found to be approxi-

matel y twice as large as those in the corresponding expanding flowfield
(

(D/d = 2). A momentum balance across the test section indicates that
t

these increases in magnitude are to be expected 1701. These results can

be seen in Figure 22. This is because the wall of the test section pro-

duces a favorable pressure gradient across the entire flowfield which
i

conflicts with the adverse pressure gradient within the swirling flow.
i

However, a cure region around the jet centerline is found to contain

strong solid body rotation and positive axial velocities. Evidence can

i
be seen from the time-mean velocity plots of Oe central hub of the

swirler. Negative radial velocities were expected and measured in this

particular flowfield.
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Directional turbulence intensities are found to be similar in mag-

nitude for this case as in the expanding flowfield (D/d = 2) except in

the entrance region. This is because of the lack of regions of recircu-

lation normally associated with high turbulence levels. The turbulence

in this flowfield is primarily caused by passage of the air through the

swirler and because of the velocity gradients. Because of these velo-

city gradients, shear stresses are significant throughout the entire

flowfield. The magnitude of these stresses were found to be comparable

to those in the expanding case.

6.3.3 Strong Swirl (D/d = 1)

It can be seen from Figure 23 that the tangential time-mean velo-

city completely dominates the flowfield. This strong swirl velocity pro-

duces a large core region with low axial velocity on the jet centerline.

This is because of the centrifugal forces within the flew. Again, no re-

circulation zones are present within the flowfield. Radial velocities

have increased due to the increase in swirl velocity.

The large gradients associated with the core region produce high

levels of turbulence intensity along the jet centerline and correspond-

ingly a large increase in all of the shear stresses in this region.

Shear stresses in the entrance region of this flowfield are much lower

than in the expanding case. Again, this is because of the lack of recir-

culation zones.

6.4 Turbulence Parameters

The eddy dissipation rate measurements have been performed in flows

with two different expansion ratios with three degrees of swirl. The
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levels ^f confinement considered are with expansion ratios of D/d = 2

and I with swirl strengths of nonswirling, moderate, and strong swirl.

The measurements are obtained using the time differentiating technique

described in Chapter III. Estimates of the different length scales of

the flows can be obtained from the measurements of the dissipation rates.

The eddy dissipation length scale (macroscale) is estimated via:

k3/2
8 =

E

the Taylor microscale is deduced from the isotropic relation:

1/2

).= (15»x`)

and finally the Kolmogorov length scale is given by:

1/4

n = (E ll3/
The eddy dissipation, E, has dimensions of L 2/T3 , the same as velo-

city cubed divided by a length scale. At any axial station, the station

mean axial velocity , U	
2

y	 0 (d/D) ) and chamber diameter D are used for

this purpose. Accordingly, plots of

E

u3 f
_'4d/D3

0

are given. The dissipation length scale is nondimensionalized with re-

spect to the test chamber diameter D.

6.4.1 Expanding Flowfield (D/d = 2)

Measu; :ments of the turbulent dissipation rate in a confined, ex-

panding, nonswirling jet are shown in Table XII and Figure 24. The
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plots show that most of the dissipation occurs on the thin shear layer

in the entrance region. As the shear layer spreads across the entire

test section, the corresponding dissipation rate follows. The dissipa-

tion rate is also seen to be high in the CRZ. As expected, the dissipa-

tion rates in the essentially laminar portion of the potential core are

very low. These low dissipation rates in the laminar core region tend

to cause high values of length scale, as seen in Table XIII. The length

scales are . largest on the jet centerline, outside the potential core,

and then decrease as the test section is radially traversed. This is be-

cause the dissipation rates are low on the centerline, then increase

radially; but the kinetic energy of the turbulence is somewhat constant

across the test chamber.

(hen a moderate degree of swirl is introduced to the flow, the dis-

sipation rate is found to increase significantly in the entrance region

of the test section (Figure 24 and Table XIV). However, these values

are rapidly reduced in the downstream region of the chamber. This im-

plies that most of the production and dissipation of the turbulent energy

is being performed in the entrance region of the test section where areas

of recirculation and high shear dominate the flow. On the shear layer

eddies are formed which contribute to the large rates of dissipation.

Within the recirculation zones large scale eddies cascade energy to its

smaller scales which eventually leads to its dissipation.

The measurements of dissipation rate in the entrance region of the

test section must only be considered as qualitative as several sources

of error may be present at these axial locations. In the recirculation

zones the time-mean velocity direction is not well defined; therefore,

perfect alignment of the sensor in the mean flow direction is not assured.
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Two other distinct types of error were certainly present. The first was

discussed by Kovasznay 171] and is the one arising of loss of response

of the anemometer equipment to high frequency turbulence components. The

anemometer system has a cutoff frequency of approximately 30 kHz which

is below the frequencies at which turbulent dissipation occurs. The mea-

sured dissipation rate must therefore be extrapolated to its full rate

by assuming a theoretical turbulence spectrum. Pao [72] suggested such

a spectrum but it has yet to be conclusive in free or confined shear

flows. Estimates of the Kolmogorov length scale indicate thatitis much

smaller than the hot-wire length. This leads to the second source of

error of having to average over the hot-wire length. Wyngaard [73] has

shown that the underes!imation of the dissipation rate is in the order

of 6 percent for the present flow conditions. As this is considered

within the scatter of the data, no hot-wire length corrections to the

measured data have been made.

The distribution of length sc.-3;e for ^ = 45 degrees can be seen in

Table XV. The table shows that low values of length scale can be expect-

ed for moderately swirling flows, especially in regions of high accelera-

tion. Further downstream the length scales are close to unity, indicat-

ing that the flow is probably of a more uniform nature. The low dissipa-

tion rates at the exit of the test section also lend to this conclusion.

The effect of increasing the swirler angle to 70 degrees can be

seen in Figure 24 and Table XVI. A note of interjection: the wind tun-

nel test facility cannot provide equal Reynolds number flows for all of

the swirl strengths considered because of the blockage caused by the

swirler vanes. Therefore, the nondimensionalizing inlet velocity, U 0

varies for each of the swirl strengths. As this value is raised to the

It
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third power, this number becomes very significant and hence the change

in scales of Figures 24 and 25• Nevertheless, the dissipation rates in

the entrance region of the test section with 70 degrees of swirl are

still higher than the corresponding cases with 45 degrees and zero swirl.

Peak regions of dissipation still occur in the same regions as in the 45

degrees of swirl flowfield, but the reduction of dissipation rates across

the test section is more rapid.

The dissipation length scales, shown in Table XVII, are smaller

than the other flcw cases considered, mainly because of the existence of

larger recirculation zones and greater shear.

6.4.2 Nonexpanding Flowfield (D)d = 1)

Eddy dissipation measurements in nonexpanding confined jets are pre-

sented in Tables XVIII through XXIII and Figure 25• The same scales are

kept on the axis of the plots to correspond to the expanding flowfield.

As can be seen from Figure 25, the eddy dissipation rate is greatly de-

creased for the nonexpanding flow. This can be explained by the fact

that there are no areas of recirculation present for any of the swirl

strengths considered. However, on the centerline of the test section

the dissipation rates are independent of expansion ratio for the swirl-

ing flows. This is because velocity gradients are present due to the

tangential velocity.

The dissipation length scales in the nonexpanding flowfield tend to

be generally lower than In the expanding case but more uniform across

the entire test section. Table XXIII shows that these length scales are

smaller than the test chamber diameter, indicating that turbulent dissi-

pation is occurring.
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6.4.3 Important Turbulence Properties

Other properties in turbulence modeling are the kinetic energy of

turbulence, k, and the turbulent dissipation length model, E. These are

defined by

k = (u' 2 + v 12 + w'2)/2

R = Ic3/2/e

and can be obtained from data presented earlier, but are conveniently

deduced and plotted now.

Plots of the kinetic energy of turbulence for two varieties of ex-

panding flowfields for a range of swirl strengths are shown in Figures

26 and 27. These figures show that most of the kinetic energy of the

turbulence in the nonswirling expanding flowfield is occurring in the

downstream regions of the test section away from the laminar-type flows

encountered in the entrance region. In the swirling flowfield high

levels of kinetic energy are observed in two distinct regions. One is

the entrance regior, wh re there are two thin shear layers. The other is

in areas of recirculation including the PVC.

In the nonexpanding flowfield the levels of kinetic energy are very

low in the nonswiriing flow. This is because of the absence of any time-

mean velocity gradients except very close to the confining wall boundary.

In the swirling flowfields energy levels are again fairly large in the

entrance regions and in the core region around the jet centerline. It

can be seen from both Figures 26 and 27 that outside areas of recircula-

tion and shear the radial profiles of the kinetic energy are fairly uni-

form, indicating a developed nature of the flow.

;i
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Figures 28 and 29, and Tables XII, XV, XVII, XIX, XXI, and XXII

show plots of the calculated dissipation length scale, in the expanded

and nonexpanded geometries, respectively. The accuracy of these plots

is dependent upon the accuracy of the measuring techniques used for de-

termining the dissipation rate and the directional turbulence intensi-

ties. In deducing the kinetic energy of turbulence the root-mean-square

of the three turbulence intensities is measured. Therefore, any error

in these measured quantities is compounded in the determination of the

kinetic energy.	 In calculating the dissipation length scale the kinetic

energy is raised to the power 3/2, this again magnifying any error in the

I	 i

measurements. Any errors likely to be found in the eddy dissipation

rate measurements have been discussed previously in section 6.4.1. 	 It	 j

'r
is expected that the entrance region of the test section would be an area

of the flow to give the least accurate measurements of the dissipation

^r
rate. It can be concluded that areas of high shear and recirculation

r

(and hence high turbulence levels) will produce the worst estimates of

dissipation length scales. 	 5'

The plots presented here show that the largest dissipation length

scales can be expected in the nonswirling expanding flowfield, especial-

ly in the downstream regions where the kinetic energy is high and the

dissipation rate is fairly low.	 In the entrance region of the swirling

flowfield the dissipation rates are very high with most of the turbulent

dissipation quickly spreading over the entire test section. This leads

to small dissipation length scales in entrance regions of the flowfield.

In the nonswirling, nonexpanding flowfield the dissipation length

scales are very low across the entire test section. This is because of	 ,'

the very low turbulence levels throughout the flowfield. For the
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swirling flows the length scales are small in the entrance region but

increase in size inside the core region as the exit to the test section

is approached. This is be-ause of the large values of kinetic energy

found in the core regions.

Overall, it is felt that these plots of the dissipation length

scale are indicative of the levels of turbulence transport found in swirl-

ing confined flows with the downstream regions of the test section giv-

ing the more accurate quantitative data due to the inherent problems of

hot-wire anemometry in the entrance region of the test chamber.

6.5 Uncertainty Analysis

The uncertainty analysis includes a determination of the sensitiv-

ity of the six-orientation hot-wire data reduction to various input para-

meters which have major contributions in the response equations. Pitch

and yaw factors (G and K) are used in the response equations described

in Chapter III in order to account for the directional sensitivity of

the single hot-wire probe. Figure 6 shows the pitch and yaw factors

plotted against the hot-wire mean effective voltage. Both the pitch and
- r

yaw factors are functions of the hot-wire mean effective voltage, but the 	 a

yaw factor is far more sensitive. A one percent increasein the hot-wire

)
voltage reduces the pitch factor by 1.3 percent and the yaw factor by 56	

IF
percent. For the present study the values of these factors are chosen

at an average hot-wire voltage experienced in the flowfield. This was

appropriate since the output quantities (u, urms , u'v', etc.) are only

weakly dependent on the value of K. This can be seen in the data of

Table XXIV which summarizes an analysis performed on the data reduction

program at a representative position in the flowfield.

i
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Table XXIV demonstrates the percent change in the output quantities

for a I percent change in most of the important input quantities. For

the data presented in this table, only quantities calculated from the

probe orientation combination 5, 6, and I are used, for simplicity. The

situation is thatof a moderately swirling confined flowfield from a

swirl generator with vane angle of 38 degrees. 	 In this swirling flow

orientation, 6 was the minimum of the six mean effective coolin g veloci-

ties. King [48] has argued that the probe orientation combination ap-

proximately centered around the minimum effective cooling velocity pro-

duces more accurate estimates of calculated turbulence quantities than

do the other orientation combinations. However, all previously reported

data have been obtained by averaging all the six possible combinations.

It is not unusual in hot-wire anemometry to have the mean velocity

components and turbulence quantities that are measured be quite sensi-

tive to	 ;1ges in mean hot-wire voltage. For interpretive purposes,

the mean hot-wire voltage variations can be thought of as being either

errors in measuring the mean voltage, or shifts in the individual wire

calibrations due to contamination or strain "aging" of the wire. The

data of Table XXIV demonstrate that the most serious inaccuracies in the

measurement and data reduction technique will be in the estimates of tur-

bulent shear stresses, the most inaccurate output term being u'w'.

As already discussed in Chapter III, an ad hoc assumption is made

regarding _he numerical values of the correlation coefficients used in
i

the deduction of time-mean and turbulence quantities. The results of

the uncertainty analysis (Table XXIV) show the time-mean and turbulence

quantities to be relatively insensitive to variations in the correlation

coefficients. Therefore, the major ad hoc assumption made in the

60
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technique does not seem to have a great effect on the output quantities

compared to the effect of other input quantities.
i

,I

The accuracy of the hot-wire technique is dependent upon two types

of	 input parameters.	 One set is the measured input data and the other

is the assumed data of the reduction procedure. 	 The accuracy of the re-

suiting deduced values are from the d.c.	 voltages	 (E I , E5 , E 6 ), the rms

of the fluctuating voltages 	 (E	 E5	 E6	 ), the pitch and yaw
rms	 rms	 rms

factors	 (G and K), and the correlation coefficients 	 (y).	 Each of
z.z.

these quantities	 is not equally	 likely to have a I 	 percent error.	 For

example, an error of I	 percent in the mean voltage is very large and is

more realistically	 in the order of 0.25 percent. 	 However,	 it	 is useful }

to appreciate the likely error in each of the input parameters, an assess-
. c

ment of which is now given.

The quality of the measured input data of mean voltages and rms

fluctuating voltages depends upon the instrumentation used and the com-

plexity of the flowfield at the measuring location. In laminar stable

flows, these values are likely to be very accurate (less than 0.25$),

whereas in turbulent shear regions the mean voltages are measurable to

0.5 percent and the rms voltages to 1.0 percent. Pitch and yaw factors

are obtained from calibration curves through a sequence of measurements

made in a very stable flowfield in the potential core of the calibration

jet. They are not likely to be in error by more than j.2 percent.

The assumed input parameters of the data reduction, the correlation

coefficients, could be in error by as much as 5 percent. This is be-

cause in most turbulent flows the correlation coefficients are usually

not less than 0.8 and no greater than 0.9. As mentioned in Chapter III,
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the correlation coefficient vaaues of 0.867 are obtained from measure-

ments in a round free jet, a flow similar to the type being studied.

Overall, the worst possible scenario would be the cumulative effect

of reinforcement of errors in these parameters as follows. In laminar

regions the maximum errors are: 9 percent for time-mean velocities, 15

percent for normal stress, 22 percent for shear stresses, and 55 percent

for the xB-component of the shear-stress tensor. In turbulent shear re-

gions the maximum errors are: 18 percent for time-mean values, 24 per-

cent for normal stresses, and 29 percent for shear stresses, except 98

percent for the xB-component.

It may also be noted that absolute accuracy of the technique depends

also on the physical size of the probe interfering with the flow, the

position of the wire at each of its rise orientations, and the effect of

the dominant flow direction on the measured cooling velocities. These

are assessed in the following section with section 6.9 conclu,.ing the

discussion. On this basis, it is felt that maximum errors of 5, 10, and

15 percent are realistic deviations from the true time-mean, directional

turbulence intensity, and turbulent shear-stress values over most flow-

field locations.

6.6 Directional Sensitivity Analysis

in Laminar Jet

The directional sensitivity of the technique is assessed at the five

locations A through E (see Figures 6 and 9) corresponding to five differ-

ent flow situations. The first of these is in the laminar potentional

core region, at x/d = 0 and r/d = 0. Table XX,V give the results with

the probe coordinates aligned with facility coordinates, as Case 1 of
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Figure 7 illustrates. This is referred to as Situation A Case 1 with 	
i

analogous statements later. The time-mean velocities, nondimensionaliz-

ed with the jet exit velocity deduced from an independent measurement,

are shown. In this one-dimensional flowfield the axial velocity is ex-

pected to be unity with the other two components of the velocity vector

to be equal to zero. Results using each of the six possible combina-

tions of three adjacent wire-orientations are presented, together with

the mean of the values. The standard deviation and its ratio with the
i

mean are also presented to show the amount of scatter in the readings.

As can be seen, the error for the axial and swirl velocities are very

low for each combination. The radial velocity error tends to be larger,

possibly because of slight probe misalignment with the normal to the jet

axis. The mean of these quantities brings the data to well within accep-

table limits.

Results of the probe being rotated by 45 degrees about the z-axis

(as in Case 2 with 0 = -45 0 ) are shown in Table XXVI. This is Situation

A Case 2. The probe coordinate system is now different from the jet co-

ordinate system but the measured velocities can be related to the facil-

ity coordinates by use of the rotational matrices given in Chapter IV.

The values given in Table XXVI and indeed all the tables are presented

in terms of the facility coordinate system. The results show that this

misalignment of the probe with the dominant flow direction still gives

excellent values of velocities in the laboratory coordinate system with

the use of any of the six possible wire combinations. Consequently,

averaging of the data also gives good results.

Rotation about the z-axis by -90 degrees to obtain Case 4 results

in no data being generated by the technique. This is because in a
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steady one-dimensional flowfield, all the instantaneous cooling veloci-

ties acting on the hot-wire are equal for all six rotations. As the

data analysis requires that their cooling velocities be subtracted from

rich other (see Reference [411), all the output terms are deduced as

zero.

i
To further investigate the shifting of the dominant flow direction,

the probe was rotated twice (-45° about its z-axis, followed by -45°

about its new x-axis) so as to conform to Case 3. The results of these

axis rotations can be seen in Table XXVII. Again the laboratory coordi-

nate deduced values and deviations from expected values are relatively

I
low, although not quite as good as in the previous casj. The advantages

of averaging can be seen in Table XXVII, where the under- and/or over-

estimation of the velocities for the individual positions are smoothed

out after averaging.

Rotations of 9 = -90 degrees and 0 _ -90 degrees were also carried

out at the same flow location, thus obtaining Case 5. Table XXVIII 	 `!

i
shows the results of these rotations. Good axial and tangential velo-

city values can be seen but with a decrease in the accuracy of the radi-

al velocity.

6.7 Directional Sensitivity Analysis in

Turbulent Nonswirling Jet

i

Similar rotations of the probe about its axes have been performed

on the shear layer of a free nonswirling axisymmetric jet at two axial

locations,, x/d	 3 and 10, referred to as Situations B and C. At these

points in the flow the axial velocity dominates with a small contribu-

tion from the radial velocity.	 In axisymmetric jets -it is well known
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that the axia'. directional turbulence intensity is larger than its other

two components [74]. The only significant shear stressin this flowfield

is the rx-shear. Tables XXIX and XXX, obtained with Case I probe con-

figuration in Situations B and C, confirm this.	 Incidentally, all the

data presented in this study are a consequence of a typical set of read-

ings obtained from the hot-wire technique. If a large amount of scatter

is found in deduced results at a particular location, the problem is fur-

ther investigated and/or remeasured before being accepted as valid. Data

reported elsewhere [41] have been thoroughly analy;--d and checked for re-

peatability.

Tables XXIX and XXX are used as a standard for nonswirling flow-

field values at locations B and C, so as to be able to compare the re-

sults obtained from other probe configuration cases. However, the radial

time-mean velocity appears to be very large for this part;cular flow-

field and could possibly be in error. The coefficient of variation

is/x) is seen to be acceptable for most of the flow properties except

for the shear stresses. These large variations are caused by the shear

stresi^es being two orders of magnitudes lower than the time-mean veloci-

ties. Sometimes the data reduction will not resolve a particular para-

meter. This is usually the consequence of subtracting two almost equal

effective cooling velocities as described earlier. If a large propor-

tion of the data is not resolved from the different combinations of cool-

Ing velocities used, the parameter deduced is taken to be zero.

Results for probe configurations of Cases 2 and 4 for location B

are given in Tables XXX1 and XXXII; corresponding data for location C

are given in Tables XXXIII and XXXIV. 	 It can be seen, from Tables XXXII

and XXXIV, that the Case 4 results give poor estimates of the time-mean
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radial and swirl velocities and underestimates of the axial components

of the velocity vector. This is expected because the time-mean velocity

vector is almost parallel to the hot-wire support axis, and rotating the

probe through its six orientations yields little effect on the sensed

data. This also decreases values of the axial turbulence intensity but

significantly increases the other two normal stress components. Accep-

table values of the axial normal stress are obtained via B = -45 degrees

(Case 2 probe configuraticn) but again the tangential and radial turbu-

lence intensities are increased; however, not as significantly as To the

previous Case 4. Shear stress values for both Cases 2 and 4 are found

to be very poor with large coefficients of variation. Also, many	 the

turbulence quantities are not resolved.

It would appoar from these results that the six-orientation hot-

wire technique is a poor tool to use if the flow is dominately in the

direction of't`e probe support, for reasons just described. 	 If this

occurs, simply reconfiguring the probe holder versus flow direction can

overcome the problem.

Tables XXXV through XXXVIII correspond to the last four tables, but

now probe configurations of Cases 3 and 5 are used at locations B (Tables

XXXV and XXXVI) and C (Tables XXXVII and XXXVIII). Now the time-mean

velocity components are seen to be in excellent agreement with the val-

ues determined from the standard configuration of Case 1. The axial nor-

mal stress tends to be underestimated at x/d = 3 and overestimated at

x/d a 10, relative to the Case l calculations. The radial turbulence

intensity is consistently- overestimated for both compound configurations

and both axial locations. This could infer a failing of the hot-wire

technique. The tangential turbulence intensity measurements are found
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to provide acceptable results. The dominant shear stress (the rx-compo-

nent) in this flow is found to measure very well in the configurations

of Cases 3 and 5, relative to Case 1 values. The coefficient of varia-

tion is not too large considering the magnitude of the numbers involved.

The final components of the Reynolds stress tensor, although appearing

co be measurable, exhibit a great dee , .; scatter, perhaps indicating

that these values are close to zero.

6.8 Directional Sensitivity Analysis in

Turbulent Swirling Jet

Two free swirling jets were considered for further assessment of

the hot-wire technique. The air flow exiting from an axisymmetric noz-

zle of a wind tunnel passes through a vane swirler with 10 adjustable

flat blades. The test facility and time-mean performance of the swirler

are described at length elsewhere 1131,. For the present study the subse-

quent large chamber confinement was removed and the free jet flow alone

was studied, with swirl vene angles of 45 and 70 degrees being used.

Figure 9 gives the specific measurement locations D and E used for mea-

suring the 45 and 70 degree swirl situations, respectively. These loca-

tions are in the high shear region of the flow close to the swirler exit.

They were chosen since it was expected that all six components of the

stress tensor would be significant, thereby providing a good test of the

technique for their measurement. The hot-wire was also placed well away

from the edge of the recirculation zone, so as to avoid any instantane-

ous flow reversal on the wire. Rotations of the probe axes have been

performed conforming to Cases 4 and 5 only,for both of the swirl strengths.



The standard six-orientation technique in the configuration of Case

I produces the properties of both swirling jets as given in Tables XXXIX

and XL. As can be seen, all components of the time-merlin flow and the

Reynolds stress tensor are evaluated. The two sets of results are not

quite at the same flowfield location because of the change in size and

shape of the recirculation zone as swirl strength increases. However,

the increase in the turbulent properties of til'3 flow are clearly evident.

Rotation about the z-axis by -90 degrees to Case 4 probe configura-

tion causes a deterioration in the accuracy of the results obtained from

the technique, as inspection of Tables XLI and XLII for 45 and 70 degrees,

respectively, shows. The axial and swirl time-mean velocities are still
i

fairly accurate for both flows but the radial velocity has suffered a	 t
1

large increase (or decrease) relative to its measurement with Case 1.

.The normal stresses deduced after the rotation appear to be reasonable

except for the radial and swirl components in the strong swirl flow of

Situation E. These two components are greatly overestimated with a,great

deal of scatter in the results.	 It is again feltthat these poor results:

are because of the technique's inability to measure acc<erately flow 	 l

properties when the dominant flow direction is in the direction of the

probe holder. That is, when a large velocity is approximately normal to 	 }

the -Hire in each of the six measuring orientations, insensitivity re-
^	 l

i
suits as discussed earlier. Correspondin g ly, the shear stresses also

show a reduction in accuracy, with all three components either over- or	 k'

underpredicting the Case 1 values. 	 i

The results of the compound angle of Case 5 are presented in Tables

XL M and XLIV, respectively, for the 45 and 70 degree swirl cases. The

axial time-mean velocity is seen to be good when compared to the standard
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case, but the other two components show a reduction in accuracy in these

highly turbulent flowfields. The inaccuracy of the radial velocity has

been discussed earlier. The three components of the turbulence inten-

sity appear to be fairly good with reasonable values deduced compared to

the standard Case 1 values. Again, however, the radial and tangential

components are less than desirable for the strongly swirling flowfield.

The shear stresses for the 45 degree swirl situation D are considered

f

good except for the u'w' term. This component is subject to great in-

accuracies for only slight errors in these input data, as described ear-

lier in section 6.5. For the strongly swirling flow (Situation E) the

measured stresses are not so good when compared with the standard Case 1

measurements. As these tables Indicate, the time-mean velocities and 	 i

normal stresses are subject to error which is magnified in the determina-

tion of the shear stresses.

6.9 Assessment of the Technique

General results of the present and previous studies are.now assess-

ed in connection with the applicability, accuracy, and directional sensi-

tivity of the six-orientation single normal hot-wire technique.

Previously, in his measurements of strongly swirling vortex flows,

King (481 compared his time-mean velocity and normal stress measurements

with corresponding measurements obtained using a Laser Doppler Veloci-

meter. He found excellent agreement indicating the validity of the

method. He was not able to compare shear stress measurements in his

swirl flow; however, he was unable to use his LDV for this purpose. In

fact, despite the existence of advanced multicolor LDV systems and their

use for shear stress measurement, no one has yet reported them in highly

1

J
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swirlingflow situations, certainly not one overa range of swirl strengths

as reported in this thesis.

The present measurements have been compared with previously avail-

able data whenever possible. In the nonswirling confined jet case, re-

suits for time-n.-an velocities u and v, normal stresses u 	 and v'
rms	 rms

and shear stresses u'v' compare very favorably (see Reference [41), Fig-

ures 7 and 8) with those of Chaturvedi [17). He used a cross-wire probe

for the shear stress measurements. So also did McKillop [12) for non-

swirling confined flow in the same facility as the present research. Re-

sults, with and without exit nozzles, are in good agreementfor the above

quantities (see also Reference [12), Figures 21 through 28). The larg-

est errors of approximately 15 percent occurred with the shear stresses

in regions of high gradients.

In the swirling confined jet case, comparison with Janjua and

McLaughlin [75) for a moderate swirl strength in an identical facility

has been possible. They made triple-wire hot-wire measurements in a

flaw with an inlet swirl vane angle ^ = 38 degrees, using analog w-

digital signal conversion and computer data reduction. For this purpose

it was necessary to know in advance the local time-mean velocity vector

direction; the data of Yoon and Lilley [10) were used for this purpose.

Their measurements [75) of time-mean velocity compare very well, within

5 percent, with those of Reference [10) and hence of Reference [41). Their

measurements [75) of the three normal Reynolds stresses and the three

shear Reynolds stresses are compared to x/D = 0.5, 1,0, and 1.5 with the

six-orientation single-wire measurements of Reference [41). There is ex-

cellent agreement, with a maximum discrepancy of 8 percent (see Refer-

ence [75), Figures 10 through 18), indicating again the validity of the
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present measurement technique. It appears to be an extremely viable,

cost-effective technique for turbulent flows of unknown dominant direc-

tion, requiring only accessibility to the measurement location. Probe

interference appears not to be a major problem.

For the present study, Figures 26 through 30 summarize measured

values for the five situations A through E, respectively. Each figure

presents facility coordinate time-mean velocity, normal and shear stress

values obtained with each of the five probe holder versus facility con-

figuration possibilities of Cases 1 through 5. A remarkable observation

is that, in general, the configuration is of little importance; results

appear quite constant across the five cases.

On the other hand, present production run results have used the

Case 1 configuration exclusively.	 In those results, generally, ensemble

average of deduced results from each of the six possible combinations of

three adjacent wire orientations has been used. This was because of

lack of local flow directional knowledge--if this knowledge is available,

it is expected [48] that the combination with minimum cooling velocity

in the central of the three wire orientations used will produce more

accurate estimates of deduced flow quantities. From results of the pre-

sent study for Situations A through E, Table XLV confirms this, especial-

ly for time-mean values. In any case, the appropriate choice of wire

orientation for minimum cooling velocity is not known a priori. The

values given in this table could only be determined after the measure-

ment. However, for turbulence quantities and in the 45 and 70 degree

situations, more confidence may be placed in the average of all possible

wire combinations. This smoothing has been used exclusively in the pre-

sent study.

71



16	 n

CHAPTER VII

CLOSURE

7.1 Conclusions

The present research is concerned with the time-mean and turbulence

properties of a low speed, nonreacting, swirling flowfield. The measure-

ments have been performed in a model of an axisymmetric gas turbine com-

bustor with varying degrees of swirl and geometry. The six-orientation,

single hot-wire technique has been used to produce meas^!!ements of the

time-mean velocities and complete Reynolds stress tensor in all of the

flowfields of interest. The tur;'rslent eddy dissipation rate and hence

the dissipation length scale have been deduced for selected flowfields

via time differentiation of the fluctuating hot-wire signal.

The existence, size, and shape of both the corner recirculation

zone and the central toroidal recirculation zone are affected by the de-

gree of swirl. Measurements show that increasing the swirl strength

from zero to medium swirl produces shortened corner regions and the gen-

eration of a central bubble extending to approximately 1.5 chamber dia-

meters-downstream of the jet exit. In addition, a precessing vortex

core is observed on the jet centerline which stretches to the exit of

the test section. Increasing the swirl strength enlarges the central

zone and vortex core with negligible effect on the corner region.

The introduction of swirl to the confined, expanding jet flowfield 	
i

greatly increases the turbulence properties of the flow. High levels of
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normal and shear stresses are found on the two shear layers in the en-

trance region of the test section. Dissipation rates are also found to

be large in the high shear regions of the flow. These rates reduce and

spread over most of the flowfield as the exit to the test section is ap-

proached.

Placement of a strong contraction nozzle at L/D = 2 with an area re-

duction of 4 causes a significant effect on the time-mean swirling flow-

field. Central recirculation zones are shortened and axial velocities

along the entire jet axis become positive. The core regions become nar-

row with strong swirl velocities and gradients. Turbulence levels and

shear stresses are found to increase along the jet centerline near the

exit of the contraction nozzle but decrease slightly at the jet exit.

No recirculation zones are found to be present in the nonexpanding

flowfield with uniform velocity profiles across the entire test section.

The swirling flowfields exhibit strong tangential velocities compared

with the corresponding expanding flow. A core region is still evident

with almost solid body rotation along the axis. Turbulence levels are

found to be low for this flow except near the jet centerline where

strong velocity gradients are present.

The ccuracy and directional sensitivity of the six-orientation hot-

wire technique has been performed in axisymmetric and swirling free jets.

Variation of input parameters and their effect on the output data has

shown that the least accurate output quantities are the shear stresses,

in particular the 0-component.

The directional sensitivity analysis has shown that the technique

adequately measures the properties of a flowfield independent of the

dominant flow direction except when the flow is predominately in the
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direction of the probe holder, with the six-orientations of the probe

creating insignificant changes in hot-wire response. The analysis shows

that this component of time-mean velocity is inadequately deduced. Only

reconfiguration of the probe can overcome this problem a posteriori.

7.2 Recommendations for Further Work

Fundamental research work should be continued in swirling flows in

several areas. First, the introduction of a round nonswirling jet into

i
the existing flowfield should be studied to enable a greater understand-

ing of the performance of a gas turbine combustor. This would involve 	 d

measurements of the time-mean and turbulence properties of the resulting 	 I
}

flowfield. Second, the turbulent dissipation rate would have to be de-

termined in such a flowfield before successful modeling of combustors

fcould be achieved. This may involve improving the existing technique to

account for the high frequency turbulence components and the averaging

I
over the hot-wire length.
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1

i

O
N

p—rN
O O

n^m0
=^

Nd
C

mmm
mmN
O

mvr_
-

mNN
O

omNrH N

ehw
O

mm
_

m
m
m_

mmmn

m—mmN
-

vmN
'

.

O O O O O O o O O O O O O O O O O

m
omN'

mmOm

rvn
Q

mrm
^

ONm
v

Nn
r

mN
-r

mN
mN

nd
ON

ON
Ol7

rrnm

-rmN

OmmN

mmON

mvmv

Om
Hm

1^"j-

- O
!.

7C O Oi O O1 O
1

Oi Oi O Oi Oi Oi O O O P O O la

C
O

`"

—=
x

O
o^

N
1•!N
n
O
i

t7
Nv
N
O
1

Or
N
O
i

m
Nv
N
O
1

v
rv
N
O
i

N
ON
H
O
i

v
mrm_

O
i

m
r!
mr

O
1

O

mr

O
t

O

v
v

_r

O
1

m
m0
O

C
1

^

O
m

r

O
i

LLI
rmm

O
i

Q
m
m

O
i

Nnm

o
t

r
H
v

O
i

n
Qr!
N

O
1

^

v

+ 	 'a
'	 :^

p	 5
91(

W
J
Q
~

m
p

^
Nm
^

Nmm
N

mmr
H

rrm
N

^•vmv

d
vN
N

mmv
N

mmmm
r̂mr

h
r
N

r
mm'

m
r
'

-C!
NN

Nm
QN

NQNr

toNrd

mNrm
_'(^
'^

O O O O O O O O O O O O O O O O O
Er-

O

O

_m
O
N

Or
17
N

ON
`

vNr
7

NN
Pi
Cl

-
m
O

Om
Nm

Nm
r
7

mQ
m
N

v
m
m

N
N
v

N

m
r
N

mr
mN

m̂m
O

-m
m
-

AIDN
r
O

mm'
l'!

-

-	 I	 ,.

O O O O O O O O O O O O O O
1

O
t

O O J
y

O
O
OQ

0r
N

ON
m

I(1N
7

OO
C!

N
r
N

ON
N

mN
N

O
O
N

N1- O
0

111N
-

O
O

Nr
O

ON
O

NN
O O

1
-

• C O O O O O O O O O O O O O O O O O

i

i

<g



g

1

g
m	 Q	 r	 n

r	 O	 d	 `_	 N	 v	 m	 tmD	 r	 O	 r	 N	 e	 n	 dm	 N
N	 ^	

OI	 N	 N	 e	 a	 N	 N	 N	 N	 N	 d	 N	 O	 N
N	 e	 v	 a	 a	 e	 e. a	 e	 e	

e	 v
O O O O O O O O O O O O O O O O O

m	 O	 m	 r	 N	 l7m	 m	 0	 O	 Oml
	 N

0 	N	 W	 n	
m

O	 n	 mm 	 N	 O	 N	 8	 Cdl	 N	 n	 v Om m m m	 m m oN N N N N	 N	 N N N Q N N N N N NO O o O O O O O O O O O O O O O O

^T,v
7

m O N O N	 p
p	 d	 d	 A	

C	

N	 N	 Q.	 N	 r	 m	 N	 m	 r
m	 Oml	 Imll	 d	 m	 O	 try	 N	 N	 v	 N	 m	 m	 O	 m

o	 tmv	 r	 to	 ^n	 n	 ^	 t7	 a7	 w	 N	 n	 N	 N	 N

-	 o	 0	 6	 0	 0	 0	 0	 0	 0
O	 O	 O	 G	 O	 O O PC p

cov
—

-	 m	 v	 n	 m	 m	 t°	 n	 N	 m
m	 o N	 m	 m	 m	 N	 N	 em	 m	 N	 °n	 IN-	 m	 o	 m	 m	 o	 e	 r	 N	 m	

m
O	 O	 ^	 N	 N	 N	 m	 r	 r	 r	 m	 r	 o	

v	 m	 v

O.	 N	 N	 N	 N	 N	 N	 N N	 N	
N	 N	 N	 N	 ` o

x	 o 0 6 0	 0 0 0 0 0	
6 0 0 0 0 0 0 o

3

v

^
coQ
~

I	 P	 ^	 p	 ^	 ^	 m	 m	 e	 N	
N	 m	 r	 N	 m	 m

N	 m	 O	 !7	 N	 m	 m	 O	 m	 O	 N	 td'1	 m
Nm	 e	 a	 m	 v	 N	 m	 N	 p	 m	 m	 O	 O	 OO	 p m	 d	 m	 m	 m	 N	 N	 N	 N
O n	 N N	 m

6 6 6	 6	 6	 o 0 6	 0	 0 0 0
	 0	 0	 0	 0 0

d	 O
v	 O	 m	 N	 O N N	 m	 m	 m	 O	 O	 N	 d	 r nN	 N	 N	 O	 m	 d	 N

Q	
II	 rI	 m	 O	 N	 N	 O	 N	 O	 m	 N	 m	 N	 O	 O' O

Q	 'N	 N	 N	 O	 !7	 O	 O	 m	 m.	 r	 N

O O	 O	 O	 O O O	 O	
O	 O	 O	 O	 Oqq O O O

O	

-

8 O	 0	
pp

8Q	

$	 O 8	 0 0
O	 O	 Q O O Or	 N	

8	
` a 	 r.	 N

O	

N

o	 a n N	 m	 N	 N N	 N	
N
0 	 0 0 0 0a o 0 0 0 0 0 0 0 0

 06 0

;i

Sz

f p.

98



d
C

•C
O

W
J
Q
H

m a m- e m v m o a o omm	 m 0 Nm m m m m m 0 0 e m m a	 -	 m
m U' m r m m m N m	 m N m m om m m m m m m m m m m m m r m -
N O O O O O	 O O -
O O O O O O O O O O O O O O O O O

^.	 O N N r O - m m o a m - t7 m r
r (^ {Y r m m N N m m m P+ m I- r m N

O ow N b V b	 r m m m m m m m D dn 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

O e v - m m m m O O N e - O N 
N

m m e O a m n n m m n N n m a n
m	 m m N m N r N e 1'1 O m r e m w N

O O O O m0 O O O O O O O O O O O
O O O O O O O O O O O O O O O O O

O
7

v t7 m - a mm N m m O O m O m N n N \m
m $ r m n m m m e m m	 m N	 m m E

	O O O O O O O O	 7^o\-	 -	 -
x O O O O O O O O O O O O O O O O O

v
N ^ m m m o r o e m- m a n n^ v vm m m m m a m a^	 m m om_ m r r m m m	 m e r n m m m mO m^ t7 N N N m - - O N N N N N N N e

O O O O O O O O O O O O O O O O O

mm m r m v m r m e m r m m m O W
O O m m m N m N a r N N m	 r m w

O n	 r m	 n	 m m m	 m o 0 0
O 'O O O O O O
0 O O O O O O O O O O O O O O O O

g 
0 0 8 8 8 0 8 0 0 0 8 0 8 8 S

C ^r m N 8 r m N 0	 0 0 O ON m{^ (^ N N N N	 ,

C O. O O O O C; 	 'O O O .0 O O O O O O

99



N

u'
N

IIi

V^m
C

C
O	 O

o^
_	 x

w
J
m	 m
~	 O

O
O

0
m

N a n v m ^ O m - m m n m n m ^ O
n d m N m m m m ^ N m N m O m m Nm r m F O m N	 m o m v m m m m Fm N v v m v v F n m m m m F m n mO O O O O O O O O O O O O O O O O.	 .	 .	 .	 .	 .	 .
O O O O O O O O O O O O O O O O O

n n n m v N m om r O	 N O m
m	

r m
v O m N v m - v v O m m m r - N m
o m o n N o 	 m n	 N m m m r	 r
O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
O O O O O O O O O O O O O O O O O

N v m O v N m n m O m m m m m ^F m m v N N v m m m m O N m m N
O m	 O v O m m m F r m !! PI r m

O O O O O O O O O O O O O O O O o.
O O O O O O. O O O O O O O O O O O

O

n m- m m- ry m m m n m rym N mm m m m^ \
m m m O l7 m v	 m m n O	 N	 m
N m r n m v v m m ° m n n n	 N	 EO O m O m m' m n m m m m m m m m
-	 u	 o 0 0 0 0 0 0 0 0 0 0 0>.	 .
0 0 o c o 0 0 0 0 0 0 0 0 0 0 0 0

v

N o v m m^ n o m^ N m o N r m mm r m O m m m 0 o m O O m m m N mm m m m m m n n mm n	 r r N e m
r_	 m n w	 O 0 0 0 O O 0 O O O
O O O O O O O O O O o O O O O O O

m m m m m o m m m N n m a, o m m m
o n m m	 m m m m^ a m o m m N
r m m N N N v r o m ^ m m m	 mn n n F m m m O N r. v	 m v m m m
O O O O O O O	 ^	 O O O O O
O O O O O O O O O O O o O o O O O

3 8s s 88 s S° s s pp 8	 S o 8
m O m 8 m 0 , N

l O m O m 8 m O m
F m N	 r m 	 O ' m N	 r m Nv n N P! N N N N N	 O O O O

o o o 0 0 0 0 0 0 0 0 0 0 6 6 6 6

100

t



t	 m	 N	 -	 n	 O	 m	 m	 m	 o	 r	 N	 H	 m	 Q	 v	 O

N O O O O	 O O O O O O O O	 O

'	 o	 m	 m	 m	 m	 m	 Q	 o	 m	 -'o	 o-	 m	 o	 m	 m	 ;

N m N	 N	 m	 m m	 m	 m	 m	 n	 m	 m	 O	 O O NN	 n-	 m	 m	 m	 N	 m	 r	 m	 N	 m-	 r	 m	 m	 ,	 I

O O O	 O	 O	 O O O	 O	 O	 O O	 O	 o	 O O O	 i

P

p	 Q	 Q	 r	 m	 n	 m	 N	 n	 m	 m	 m	 N	 n	 N	 n	 mm m m	 m	 m m r r	 m	 m	 m	 m	 m	 m	 O ON O O U O O O O O O O D O O O 	 ^

N O N	 N	 n	 m	 m	 O Q	 O	 N	 r	 m	 m	 Q	 o	 Qm N N	 n	 O	 N m	 m	 O	 O m	 m	 m	 N n	 O
I

0 0 0 0 0 0 0 00 0 0 0 0	 0 0 0 0

-	 r	 ry	 N	 o	 m	 o	 m	 N	 o-	 N	 Q	 o	
'

0 0 0 0 0 0 0,a	 m m	 m	 m	 m	 m	 o o	 p	 N	 N	 n
r	 m	 Q	 ry	m	 o m	 m	 m	 mN	 m	 Q	 oM 

m	 m	 m	 r	 n	 r	 m	 N	 r	 O	 m	 -	 ^	 O	 m	 I	 _
m	 t

0 0 0 0	 0 0 0 0 o o o o	 o	 0 0 0 0	 "i
O	 it	 71u

N	 m	 m	 N	 O	 N	 m	 m	 m	 m	 Q	 m	 r	 n	 '	 m \^N
O	 m	 m	 N	 m	 m	 O	 O	 m	 m	 v	 m	 ry 	-	 r	 m	 E	 ':-J
V	 O	 +(P	 N	 N	 m	 m	 O	 m	 m	 m	 N	 n	 O	 Q	 O	 O	 N	 ^ L	 k
v	 m	 {^	 m	 ry 	m	 l7	 N	 N	 N	 N	 N	 N	 N	 N	 -	 ^	 1-'!	 3	 9{j

O	 O	 O	 O	 O	 O	 O	 O	 O	 O	 O	 o	 o	 o	 O	
!

_	 v	 II

J	 m	 17	 m	 N	 N	 N	 N	 m	 N	 m	 N	 m	 m	 m	 m	 N	 m

G	
m m	 m	 m	 m	 N	 N	 m	 O	 Q	 n	 _N	 N	 n	 m	 n	 mm	 C!	 m	 m	 r	 m	 N	 ^	 m	 N	 O	 m	 n	 m	 O	 m	 Q

O N ry	
N	 S	 r	 N	 N	 _	 O O	 O	 O	 O	 O O

W	 f

O O	 O	 O	 O	 o	 O	 O	 O	 O	 o	 O	 O	 O	 o	 O	 O	 t

-	 -	 O	 mo	 m	 m	 O	 m	 m	 N	 r	 O	 m	 -	 o	 m	 n	 m	 "

O	 O S O	 O	
m	 N r	 ^	 M	 m	 m	 N	 n	 m	 b N

N	 O	 m	 Q	 n	 N	 m	 N	 N	 Q	 N	 m	 N	 m r

O O O O	 O O O O O O O O O O O O O
O	 ^	 ^	 p	 ^.	 O	 O	 O	 .^

i	 8$	 8	 8	 S	 S	 8	 0 g S	 S	 S S

y .	O 	 ^	 m	 m	 m	 m	 N	 N	 N	 N	 O	 O	 O	 U
N	 8Y	 N	 88 N	 VV	 N	 8 

N	 V m	 N	 m
n	 m	 N	 r	 i(1	 N	 n	 n	 N N

a O O O O O O O O O O O O O o O O O

R	 o	

V

F

i
f



V

S

t
f

m a a m m Or O re mm-n mm m
--m nr rN nv Nn

` N 8 0 8 8 8 8 8 8 8 °0 8 8 8$ 8 8 8
0 o u o 0 o o o o 0 o 0 0 0 0 0 o

i

i
m n - m O O r m N m m r m 0^ O

O N m m m_m ^ m w

p
O N m H m lmV N NO ^ O_

n 8 O O 8 8 8 O 8 8 O 8 8 8 8 8 8 O
O O O O O O O O O O O O O O O O O

C1 O m O m m O m m N O v O m mm r m m m N m m m m m m N m m m

v
m

0
N

8
N

8
O

8
l7

8
O

8
m

8
m
8

m
8

v

8
v
8

m

8
n
8

m
8 8 8 8

0 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
N O.0

C
U

m
a

r
r

rn mm vO mm O0 n O m
vO Nm mO n

-
m^D

m
m

7
^
>

o^ 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 o 8
_	 — x o 0 o e o 0 0 0 0 0 0 0 0 0 0 0 0

— m
w ^.
Jm
Q m

msn
n
mm-

m
O

OmN
Nm
O_

mmm
vOm

nm
m

mm
v

rmm
OmO

oO
m mm

NmN
mN
v

mv
rOm

0 0 0 0 0 0 8 8 8 8 8 0 8 8 8 8 8 8
O O O O O O o O O O O O O O O O O

` m v n N m m m m r m m m r m Om n m O v m N {7 v m m_ r m

8 N0 8 8 8 8 8 8 8 0 0 8 8 00 8 8 8
O O

.
O O O O O

p

O

p

O O O

p

O

p

O O

p

O
.
O O

88 8 00 O 0p 8 8 8 O
p
O O 8 8 8 8 8" O m O m 0 0 0 O In O m m m

O OOO nm mn Nm
8
m rn mN N

N OON
m ' 8 n

O
m
O

N
O O

K O O O O O O O O O O O O O O O O O

102

I



5

O m r m m' o m N N N m N N m a mN _N m n_ N v O m vv_ m m m

N 8 8 8 p
p

8
_

8 8 8 8 8
_

8 8 8 8 8 0 8 Ap
r

8
O O O O O O

.
O O O O O O O O

.
O O O

10p O n Imp m O O W N m O N O Q Imp m mO
8 8 8 8 8 8

N
5 8

N
8

N
8.

N
8

N
8

N
8

N
8

N
8 8

v
8.

0
.
0

.
0

.
0

.
0

.
0

.
0

.
0

.
0 0

.
0

.
0

.
0

.
0

.
0

.
0

.
0

h N m o r N m N m m r O m O ON m m m m m O r N r N v m v co

v
N

0
v
8

m
8

m
8

m
8

N
8

N
8

N
8

m
8

N
8

m
8

m
8

m
8

m
8

v
8

m
8 8

7 O O O O O O O O O O O O O O O O Q
^ N O

O
u O

m
O

mm
N

o
O
pN8

mm
o
8

mm
N
8

Om
m
8

m
ON
8

mmIn
8

Om

o
mm
m
8

v
I
8

mN
o
8

OO
Np8

vN
op8

Ov
pN8

mv
vp8

O_m
p8

3

_ x O O O O O O O o O O O O O O O O O
L

W v
J
m

mm mm
N
r mm mo

N
o m r

m
Om N

m
v

r
r

NN r
O

N0 Nm NN
Q N

o
v
e

N
"o

N
S

m
No

N
8

m
8

v
8

v
8

m
p0 .

m
8

v
8

m
°0

N
8

N
8

N
8

N
8

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

~ m_ r O r m m 0 m m N o r m m m 0O N N m m m v m o m v O mO N N ^ N N v v m N m O N m C _
p8 p _

0 0 0 0 0 0 0 O8 0 0 0 0 0 0 8 8.
O O O O O O O O O O O O O O O O p

8 8o m g 8 N$ 8 8$ 8$ S o 0
r m

O v m m m m N N N N O O O O
a 0 O O o o O O O O o O O O o O O O

103



104

m N m • n m m v m v O v m rH n m m O N_ m m m h n N O m H N

" 8 8 8 8 8 8 8 8 0° °o °o °0 8 °o e g g
0 o a o 0 o o 0 o o o o o 0 0 o 0

O ¢ m — m N N r O m H m N m m m r
O m m_ o, O m r_ m m H m N m H m

N O S 8 8 O S S 8 S 8 O S 8 O 8 8 O.
O O O O O O O O O O O O O O O O

.
O

N N m m m m b v r m N m m NN^ n m N m m v N N m n H mN m N N m N N m N N m m m N m lV lY
0 0$ 8 8 0° 8 °o °0 8 8 8 8 °0 8 00 8 8

0 o O O O O O O O 0 o 0 o o O O O
u N>O
0
O m m m O m m r O m v r m r v m ^ v
v O m O m

8
m I m

8
N
8

-m m
8

m
8

0
8 8

N
8

N
8

N
8

v
8

0
8

3
_ a- 8 8 8 8 8 >
— x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

W ^
JF v m O m m ' N v N N O m m n O
Q v n m N m m N v m m N m m O
F- N _N N _O N m m H N N

8
N m

8
m
S

v
S

N
8

v
8O O O O S S O O O O O O

O O O O O O O O O O O O O a O O O

N N a N O r v O m N v O N O v m 01
O N ^ O r N N N m m m m m O ^ m

0 8 8 8 8 8 8 8 8 8 0 8 8 8 0 8 8 8. . . . . . . . . ..
0

.
0

.
0

.
0

.
0 0 0

.
0 0 0 o a o 0 0

.
0 0

8 8$ 8 8 8 8 8$ 8 0° 8 00N 8 m N N O N N a. N N° n ° N N O r N N O n N Hp e m m m m N N N N C O O O
K O O O O O O O O O O O O O 6.0 O O



r m m m r v m v m O v n m m n rO v m m m m r m a n n - r - •m m m n o r r m m m m n m- m om m m m n n O m N r O mN n n N n N N O O O O
_

O O O O O O O O O O O O O O O O O
I 1 1 1 1 1

m O m n n m m n N m m n v N rm U. m v vv m m m m m m o m O m mnc7 O m r m m n m m ^ p N a N O m v• nO m r m v - C m v r U nn n N N C! C! O O O
J O O O O O O O O O O O O O O O O O_^ 1 1 1 1 I 1
3N m m N m n m a m n m r -- m o N a¢ m n m m n m- r o m m n n
N

m m n m v r V N m n n_ m m m0 o m r m n m v 0 v m m 0 0II n l7 n N N N N - 0 O O O n
o o o o o 0 o o o 0 0 0 0 0 o 0-0¢ -06 D

? ui n m m n m v n m n w m N - m N m r mO
U o• O' m

r
n

m
m

r -
n

m n m O v n n m m m
W	 20 _ m m Oe n m n r m nN m n m m
J	 W ^() O- n n n - - - O O O O O -

v
- nJ -

m II >• O O O O O O O O O O O O O O O O OF C .0. ^+7
N 3 r m m m r m r m- N m m- m N 0 mG -- n m O m O n a m m r m m m mD J m N m m m n m - m m n m n v nIL m m n 0 m m - v' r m m n iJ N O mO v n N O n n N n N N n N N
g o o o o o o o o o o o o o o o O o
¢wE
I n m O m N r o m - m m N m o m rW n O w m O r m n n m o n n m m nO n m :^^ r m n r O O n m n n mr m m m m m m n m n n r m m n mO O O O O n n O m - 7 O O O O O

O O O O O O O n n :. 1 O O O O O O
1 1 I 1 1 I I 1 1

o
N

oQ1

Ifl m N S IÎO! S
8

1

S n Om N S 0r Om N 0O
0 S NN S N

` v n n n n n N N N -
m
O

m
O Ô O
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TABLE XXV

MEASUREMENTS FOR SITUATION A, CASE 1

Combination
Used u/u0

Measured
VA  w/uo

612 0.978 0.203 0.009

123 0.961 0.199 NR

234 0.970 0.126 0.020

345 0.968 NR* 0.013

456 0.976 0.011 0.008

561 0.967 0.197 0.017

Mean x	 0.970	 0.147	 0.013

I

1

S.O. a	 0.006	 0.074	 0.005

a/x	 0.006	 0.503	 0.353

* Not Resolved
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TABLE XXVI

MEASUREMENTS FOR SITUATION A, CASE 2

Combination Measured

Used u/u v/uo w/uo o

612 0.978 0.031 0.035
i
?'

123 0.972 0.036 0.040 {

234 0.990 0.056 0.015

345 0.982 0.043 u.022

456 0.988 0.024 0.049 ai

561 0.986 0.022 0.041 I"?

Mean x 0.983 0.021 0.033

k

S.D.	 a 0.006 0.012 0.012

o/x 0.006 0.553 0.353
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^I

Mean x

S.D. o

a/ x

0.958

0.008

0.009

-0.039

0.031

0.805

0.001

0.039

38.986

TABLE XXVII

-I	 MEASUREMENTS FOn SITUATION A, CASE 3

ti
r

Combination	 Measured
Used	 u/uo	 v/u

0
w/u$

612
	

0.954	 -0.030
	

-0.008

123
	

0.954
	

-0.031
	

-0.008

234
	

0.967
	 -0.039	 -0.051

345
	

0.948
	

-0.103
	

0.080

456
	

0.971
	

0.001
	

-0.003

561
	

0.951
	

-0.030
	

0.006
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TABLE XXVIII

MEASUREMENTS FOR SITUATION A, CASE 5

Combination Measured

Used u/uo V/uo w/uo

612 0.976 0.203 0.010

123 0.960 0.200 NR

234 0.971 0.126 0.019

345 0.968 NR 0.013

456 0.976 0.010 0.008

561 0.968 0.198 0.017

Mean x 0.969 0.147 0.013

•	 S. D:	 a 0.005 0.074 0.004

o/x 0.006 0.503 0.317

y
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APPENDIX B	 6RWiNAL PHA 4a

FIGURES	
OF, POOR QUALITY,

i
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63• iY

i

t

i

r ^,
P RI MARY	 NE^ I	 ZO- -	 DI LUTION ZONE

Figure 1. Typical Axisymmetric Gas Turbine Combustion Chamber

205



I SWIRL VANE ANGLE 4)
INLET TKE kin

D/2

/(a) SCHEMATIC OF TEST SECTION
GEOMETRY.

CRZ

_	 CT_RZ

(b) EXPECTED RECIRCULATION ZONES

Figure 2. The Flowfield Being Investigated
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(a) CASE 4.
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PROBE

JYM

PROBE \\	

x(13)
90)

(b) CASES 2 AND 4

(c) CASES 3 AND 6

Figure 7. Configuration Used in the
Directional Sensitivity

Study
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Traverse Unit

Figure 11. Mot--Wire Probe Mounted on Test Section
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(a) Schematic of Differentiato•r
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(b) Bode Plot of Differentiator

Figure 12. Schema"sic and Bode Plot of W fferentiator
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