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ABSTRACT

Based upon the high power, high performance spacecraft burl being developed by

Ford Aerospace & Communications Corp. ( FACC), this study has investigated the

Spacecraft Configuration for the second generation Mobile Satelli ±ae System

(MSS) in the followLng areas:

1. 20 meter antenna ( s) configuration;

2. Spacecraft power, dissipation, mass and physical size trade-off;

3. Needed spacecraft modifications;

4. Transponder linearization techniques.

The study results indicated that the advanced spacecraft bus being developed

by FACC is capable of supporting the required payload for the second gener-

ation MSS. This study's results also point out that more attention should be

given to the techniques for transponder linearization and avoidance of passive

intermodulation.

-4-

t	 _

l-



Page

6

9

t AI

.,

TABLE OF CONTENTS

FOREWARD

ACKNOWLEDGEMENT

ABSTRACT

	

1.0	 Introduction & Summary

	

2.0	 The Second Generation Mobile Satellite System
Requirements and Study Considerations

	

3.0	 MSS Spacecraft Configuration

	

4.0	 Spacecraft Power, Mass and Dissipation

	

5.0	 Needed Modifications

	

6.0	 Antenna Feed Study

	

7.0	 Transponder Linearization Techniques

17

_5_.

^_u



i

1.0	 INTRODUCTION AND SUM WY

The basis for the configuration studies for the second generation

mobile satellite system (KISS) will be the Advanced Communications Satellite
i

Bus being developed by Ford Aerospace and Communications Corporation (FACC). 	
i

This spacecraft is expected to be operational and commercially available by

1990. The bus is designed to satisfy a broad range of multi-mission payload

requirements in a cost effective manner. The primary objective of the bus

design is the selection of a reliable approach with the lowest overall system

cost. Compatibility with both STS and expendable launchers is maintained.

The bus incorporates a unified bi-propellant propulsion system capable

of providing apogee injection into geosynchronous orbit for a variable begin-

ning of life (BOL) satellite mass. The bus is 3 axis stabilized and has

stationkeeping fuel and design features permitting a mission lifetime of ten

years.

The satellite bus configuration is such as to provide the maximum heat

rejection capability within the constraints of the booster fairing and STS

envelopes. Heat pipes will be implemented in the thermal control system which

is capable of maintaining the temperatures of the satellite communications

equipment within a desirable range throughout the ten year life.

The satellite's solar array provides selectable (modular) power of

2000 to 3500 watts to the satellite; bus power is regulated to an operating

range of 28-35V throughout sunlight and eclipse operations. Attitude control,

telemetry and command processing, thermal control, and battery charging are

performed in the satellite by time sharing a central processor. In addition,
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the central processor provides the control functions for the propulsion stage

required for launches from the STS for perigee injection. The perigee propul-

sion stage functions are integrated with those of the satellite through

perigee injection and its ultimate separation from the satellite.

The satellite bus configuration is such that modular construction

allows substitution of communications modules and antennas for differing

payload requirements from program to program.

Non-communications payload bus hardware is standardized to provide the

broadest range of applicability to future projected commercial satellite

program. Determining the design features of the YACC Advanced Satellite Bus

for the HESS program is the principal objective of this study. The study is

performed to synthesize the design of the satellite to accommodate the

payload(s) as defined by JPL.

In the study, it was found that there are several dominant factors

which constrains the design of the MSS spacecraft. They are:

o the physical size of the antenna package (including reflector and

deployment boom);

o the mass of the antenna(s) system;

o The RF/DC efficiency of the UHF high power amplifier (HPA).

The required dissipation of the spacecraft is less serious than other

constraints.

Based upon characteristics of the Advanced Communications Satellite

Bus being developed by FACC, several trade-off studies have been performed to

-7-



optimize the spacecraft configuration for its mass, power and physical, size.

These preliminary studies have the following results:

I. A single 20 meter antenna can be packaged into the existing

spacecraft bus. A two-antenna configuration requires some

modification of the existing spacecraft bus and a new perigee

stage.

2. With a single antenna configuration, for both transmit and

receive, passive intermodulation (PIM) might become a problem and

cause unacceptable system degradation. To avoid or minimize the

passive intermodulation interference, special guidelines should be

implemented in the frequency allocation and design of the com-

munications system.

3. The existing power subsystem can provide sufficient DC power for

the second generation MSS satellite if the HPA/linearizes can

achieve a RF/DC efficiency of 30%. If the linearization techni-

ques cannot be implemented or are too complicated to incorporate

into the spacecraft, then the available RF power would be reduced.

4. Initial analysis indicated that the existing attitude control

system can handle the solar pressure effects caused by the large

size reflector and the deployment boom. The analysis also indi-

cated that the existing spacecraft, with a single antenna

configuration, can achieve the required pointing accuracy.

-8-
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	2.0	 The Second Generation Mobile Satellite System Requirement and Study

Considerations

	

2.1	 Basic S st2EDJ"escription

The second generation land mobile satellite is designed to be opera-

tive during the year 1992 using 1990 technology. It is designed to provide

voice and data communication to mobile users throughout a vast geographic

area: CONUS, Alaska and Canada. Utilizing multiple spot beams, a high power

spacecraft bus, and frequency re-use, the usual power and bandwidth con-

stiraints could be somewhat alleviated and thousands of channels could be

providing service to hundreds of thousands of users. The system, as currently

conceived by JPL, consists of a space segment and a ground segment. In thi3

study, we concentrate on the space segment.

The baseline space segment consists of two satellites - one at 90OW

and the other at 1300W. Only the east satellite is considered for the purpose

of the spacecraft configuration study.

The satellites are assumed to be operating at the UHF' and Ku-Bands.

The UHF frequency is for links between the satellite and mobile terminals.

The Ku-Band is for links between satellite and the gateway station or Network

Management Center. Tables 2-1 and 2-2 summarize the baseline design, its

requirements, and assumptions provided by JPL. The baseline design also

assumes a non-overlapping feed design, i.e., one feed element per beam. A

simplified block diagrams of the communications payload is provided in Figure

2-1.

W
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i	 To achieve 2 to 4 times frequency reuse for each satellite, the 10 MHz

UHF band is divided into 7 frequency aub-bends, approximately 1.4 MHz each.

Each of the multiple UAF beams is assigned to operate in one of the seven

sub-bands with some frequency sub-bands being reused 2 to 4 times. Figure 2-2

shows the footprints of the east satellite and its frequency reuse plan.

2.2	 Required Satellite RF Power, Antenna Pointing Accuracy and Antenna

Characteristics

To meet the system requirement, a spacecraft bus which can provide an

average RF power of 300 watts to 500 watts has been selected. The required RF

power will normally be distributed equally to the 24 beams. 	 Due to thelif-

ferent traffic it?1Yensity in each beam coverage area, the instantaneous power

per beam may be substantially higher or lower than the average power, The

selected spacecraft should be designed to handle this power variation.

To achieve maximum frequency reuse, a 20 meter UHF antenna is chosen

for the system. With this 20 meter reflector, the crossover beamwidth for

each beam is about 1.4 degrees.	 The required pointing accuracy and stability

is 0.15 degrees to minimize antenna pointing loss and interference.

The Ku-Band antenna is about 0.4 meters in diameter and requires a

pointing accuracy of about 0 . 2 degrees.



TABLE 2-1

Second Generation Mobile Satellite System Assumptions and/or
Requirements (Baseline Design)

Operating Time Frame

Technology

Satellite Bus

No. of Satellites

Satellite Locations
East Satellite
West Satellite

Operating Frequency
UHF (uplink)

(downlink)
Ku-Band (uplink)

(downlink)

Assumed Bandwidth
UHF
Ku-Band

Number of Multiple Beams
UHF
Ku-Band

Antenna Size
UHF
Ku-Band

Required Satellite RF Power
UHF
Ku-Band

1992-2000

1990

Next Generation High
Power Satellite Buses

2

90o W
1300 W

821-825, 845-851 MHz
866-870, 890-896 MHz
13.2 GHz
11.65 GHz

10 MHz (4 MHz & 6 MHz)
50 MHz

21 (West cA t) 24 (East sat)
1

20 meters
0.4 meters

300 W (min), 500 W (max)
10 W

-11-



Number of Satellites
Satellite Locations
Frequency, MHz (uplink)

(downlink)
UHF Bandwidth, MHz
Channel Spacing, KHz
Backhaul Frequency, GHz (uplink)

(downlink)
Backhaul Bandwidth, MHz
No, of Backhaul Beams

2
900 W and 1300 W
821-825, 845-851
866-870, 890-896
10
5
13.2
11.65
50
1

29
24-26
0.15

28.69
4.3	 j

i300 (min), 500 (max)
10

:rJ•

TABLE 2-2

Additional Baseline Assumptions and/or Requirements

System Parameters

Satellite Parameters

System Noise Temperature, dB-K
Carrier-to-Intermod Ratio, dB
Pointing Accuracy, degrees
Required EIRP, dBw/channel

UHF
Ku

Required Satellite RF Power, Watts
UHF
Ku

-12-
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2.3	 Study Objectives and Considerations

The objective of this study is to provide JPL with a spacecraft con-

figuration design for the second generation land mobile satellite. In our

study, the spacecraft selected is the high power, high performance spacecraft

being developed by Ford Aerospace and expected to become commercially avail-

able in the early 1990'x. The study includes the following tasks:

1. Spacecraft and antenna configuration study;

2. Spacecraft DC Power. Power Dissipe.tion and Mass

3. Specific Modifications Needed for the MSS

4. Antenna Feed Study.

In addicion, a survey of linearization techniques for the UHF and

L-Band spaceborne power amplifiers will also be conducted.

To understand the problem and define it into some workable areas, we

selected a study methodology which is illustrated in Figure 2-3. In this

study, our efforts have been divided into two major areas:

1. MSS payload and its power, mass and dissipation requirements;

2. Spacecraft bus and how to package the required payload onto the

spacecraft bus under development.

In the first task, the selection and packaging of the 20 :i)eter

reflector(s) becomes a major issue. A single antenna for both transmit and

receive utilize the space mass efficiently. However, a common antenna for

-14-
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I

both transmit and receive may have potential problems in passive

intermodulation, This trade-off study of several antenna configurations was

performed in the study. Several candidate antenna systems are also evaluated.

In the selection of the reflector(s), weight and size of the reflector are the

critical criteria in the selection process, because the selected payload

should be implemented for STS launch with an existing (or developing)

II spacecraft. The weight and physical constraints play an important role in

packaging the desired payload into the existing bus without violating the STS

launch envelope and the existing bus launch weight.

As in most spacecraft designs, DC power capability is another

constraint. Initially, the requirement of 500 watts (maximum) RF power and

50% eclipse capability does not seem to be a problem. However, further inves-

tigation revealed that the efficiency of the high power amplifier (HPA) is a

determining factor in deciding whether the required payload can be fitted into

the FACC bus. If the RF/DC efficiency of the HPA is only 20% then the

required solar array power requirement will be 3364 watts and the thermal

dissipation in the communications module is 2400 watts. This change will

result in a dry spacecraft mass increase of 16.9 kg for the solar array and

18.6 kg for the thermal and structural subsystems. Careful judgment must be

given to implement this change since the dry spacecraft mass margin, of a

maximum mission perigee module, will be reduced by 36%. Physical changes to

the FACC bus can be readily accommodated since ample margin exists between it

and the limiting STS payload envelopes. With this consideration, the

linearization of the HPA becomes an important factor in the spacecraft con-

figuration study.

-15-



In a multiple-carrier operation, most of the high power amplifiers

(HPAs) have to be operated in a "back-off" mode to minimize the effects of

intermodulation. In general, DC/RF conversion efficiency decreases with the

amount of backoff. From a spacecraft standpoint, the backoff required to

achieve 22-24 dB C/IM value may result in unacceptably low DC/RF efficiency.

Should this occur, linearization techniques, which "make" the HPA more linear

thus reduce intermodulation levels, would become another important factor in

sizing the spacecraft power subsy? !.tem. To assess the impact of linearization

on the spacecraft configuration, several linearization techniques were inves-

tigated in the study. However, each linearization technique has its

advantages and disadvantages. Some techniques re quire complex circuitry and

some techniques require additional amplifiers. All of them introduce new

hardware, thus increasing the weight of the communications payload. To select

an optimum and practical linearization technique, a detailed trade-off among

complexity, power and mass has to be conducted. Due to the limited scope of

this study, only a general survey and a preliminary evaluation can be per-

formed for the linearization techniques.

Considering all these factors, the spacecraft configuration study

appears to become a classical spacecraft trade-off study among mass, power,

dissipation and physical size.

IIn'
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3.0	 MSS SPACECRAFT CONFIGURATION

Our choice for the 2nd generation MSS spacecraft configuration is

represented by a single UHF antenna system, using the Lockheed Missiles and

Space Corp. (LMSC) wrap—rip reflector and deployment boom. This conclusion

was reached based on the antenna configuration tradeoff outlined in Section

3.1 as well as the following criteria:

o MSS system requirements

o Available STS payload envelope

o FACC spacecraft bus compatibility

o FACC perigee stage launch mass capability

1
-17-
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' Figure 3-1 shows an on-orbit perspective sketch of the baseline

FACC/MSS spacecraft configuration. The most striking feature is the unfurled

20.0 meter diameter UHF/LMSC wrap-rip reflector on the east side of the

satellite. The reflector is deployed with its deployment boom in the anti-

earth direction. To minimize the impact on the attitude control system a

minimum structural frequency of 2 Hz is desirable for the reflector and boom.

The RF beam is pointed northward to look at the contiguous U.S., Alaska and

Canada. The reflector is illuminated by either a 21 or 24 element feed

located on top of the FACC spacecraft bus communications module. This loca-

tion will keep the RF transmission line losses from the feed to the tran-

sponder at a minimum. The FACC spacecraft bus is in principle a rectangular

box which measures 2.6 meters long by 1.7 meters high by 1:6 meters wide. The

box is located such that the widest dimension is oriented to look in the north

and south directions to assure maximum thermal radiator area available for the

payload equipment. The MSS transponder is located on the inside of this box

on the north and south panels. Each honeycomb panel has hestpipes sandwiched

in between them and Optical Solar Reflectors (OSR) on the outside to dis•-

tribute the thermal heat load and control the temperature of the equipment.

Areas of the satellite that do not have high thermal power dissipations are

covered externally by multi-layer insulating blankets.

In contrast to the large UHF antenna the Ku-Band antenna is only 0.4

S	 meters in diameter.. It is an offset-feed design and is located on the west
a

side of the spacecraft bus.

The FACC/MSS spacecraft is a modular design to simplify its assembly,

integration and testing. These modules can be described as follows:

-19-
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a. Spacecraft Suppoit Cradle provides the electrical and mechanical

interface between the satellite and the STS.

b. Perigee Stage Module provides the impulse to inject the vehicle

from the STS parking orbit into the geosynchronous transfer orbit.

It also provides the mechanical and electrical interface between

the support cradle and the MSS spacecraft.

c. Spacecraft Bus consists of two modules. They include the

Communications Module which houses the communications transponder

equipment located on the north and south panel radiators for

maximum thermal power dissipation capability. A Subsystems Module

supports the housekeeping functions of the spacecraft. Among them

is the bipropellant propulsion system which provides the impulse

and control at apogee to change from geosynchronous transfer orbit

to geosynchronous orbit as well as staticnkeeping maneuvers for

ten years. Also included is the Attitude and Orbit Control System

(AOCS) hardware including momentum wheels, rate gyros, earth and

sun sensors and their associated electronics equipment. The power

control system supplies and controls the DC power requirements of

the payload and housekeeping equipment. Major components of this

system are batteries, power control unit, shunt and the solar

array. The solar array also is modular since additional panels

may be added to satisfy the specific power requirements of the

payload. The subsystem module also supports the Telemetry,

Tracking and Command equipment.

-20-



d- The Antenna Module contains the feed assembly, as well as the

refl,ctor and boom assemblies.

If the passive intermodulation products of the combined transmit and

receive antennas present a problem then an alternate solution should be

considered. The solution can be to have two separate antennas, one for trans.,

mit and one for receive, which are deployed individually. There are two basic

problems associated with this concept. One, the envelope of the LMSC reflec-

tors and booms stowed side by side exceeds the STS payload envelope and

second, the launch mass capability of the FACC stage is exceeded. The first

problem may be solved by reducing the 20.0 meter antenna aperture a small

amount to reduce the the stowed envelope of the reflector and boom. 	 The

second problem is that the fully fueled spacecraft exceeds the capability of

the FACC perigee stage by 558 kg. This can be remedied by using a new perigee

stage based on the SRM-1 solid propellant motor manufactured by the Chemical

Systems Division of United Technologies Laboratory (CSD/UTC).

3.1	 Antenna Configuration Tradeoff

To meet the MSS mission requirements, five antenna configurations were

considered for this study. Table 3-1 summarizes the results of this tradeoff

which includes the following UHF antenna system possibilities:

Al Two LMSC reflectors deployed individually from a FACC bus.

A2 Two Harris reflectors deployed together from a FACC bus.

H1 A single LMSC reflector deployed from a FACC bus.

-21-
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B2 A single center-feed Cassegrain antenna system.

B3 A single center-fed prime focus antenna system

As the ,following paragraphs will demonstrate configuration B1 is the

best choice based on STS envelope restrictions and the FACC perigee stage

launch mass capability. A mass comparison between the LMSC and Harris Corp.

reflector and deployment systems can be found in Table 4.3-3.

3.1.1	 Antenna Configuration Al - Dual LMSC Antenna Reflectors

This configuration is the best choice from the antenna design

standpoint. No passive intermodulation products are created because the

transmit and receive antennas are separated. In this concept each 20 meter

diameter LMSC reflector is deployed individually away from the FACC bus using

the LMSC deployment boom. Unfortunately there are two basic problems with

this approach. One is that in a horizontal STS launch configuration the

stowed envelopes of the LMSC reflectors and booms exceed the STS payload

envelope. Since this interference is small, optimization of the reflector and

boom diameter might allow stowage within the STS payload envelope. The second

problem is that the dry launch mast; of 1491 kg exceeds the capability of 1247

kg of the FACC perigee stage vehicle. Alternate perigee stages such as the

one using the CSD/UTC SRM-1 perigee motor can be considered to launch a

spacecraft with this configuration.

3.1.2 Antenna Configuration A2 - Dual Harris reflectors

The antenna design benefits of this configuration are identical to

that of Al. The idea behind this concept was to deploy the Harris Corp.

-22-



+4u wY.	 ...4	 ^	 ...	 ...	 a .

'r

Deployable Truss Structure (DTS) reflectors with a single deployment boom.

After deployment of the stowed reflectors they are allowed to unfold from

their respective edges. The stowed 20 muter diameter reflectors and the

deployable boom can be stowed within the STS payload envelope. In principle

this concept is sound, however the mass of the reflectors and boom, 181 kg

each and 454 kg respectively, required modification of -the existing spacecraft

bus and a new perigee stage to deliver the spacecraft to the geosyrdchronous

orbit.

3.1.3 Antenna Configuration B1 - Single LMSC Reflector

The principle of this concept is to deploy a single L14SC reflector

away from the spacecraft bus using an LMSC deployment boom. The advantage of

this approach is that the stowed reflector and boom can be readily placed in

the STS payload bay envelope. Also the dry spacecraft launch mass of 1218 kg

can be accommodated by the FACC perigee stage vehicle. For the above reasons

this configuration is the best choice for the MSS spacecraft. Since transmit

and receive antennas are combined, passive intermodulation products are a

concern for this configuration.

3.1.4 Antenna Configuration B2 - Center-fed Cassegrain Antenna

The thought behind this concept was to explore possible benefits of a

center-fed cassegrain antenna geometry. In this configuration the LMSC main

reflector would be placed on top of the spacecraft bus and a suhreflector

would be deployed away to its proper geometric position. The feed also would

be placed on top of the bus to minimize the RF path losses to the transponder.

The stowed spacecraft can fit inside the STS payload envelope. The biggest

-23-
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problem with this configuration is that the field of view of this antenna is

blocked by the large subreflector and its deployment structure. In addition

the mechanism for such a structure will be very complex. Since transmit and

receive antennas are combined passive intermodulation products are a concern

for this configuration.

3.1.5 Antenna Configuration B3 - Center Fed Antenna

This center-fed antenna geometry was also considered but after short

examination it became obvious that too many problems make this configuration

impractical. The 2.0 X 4.0 meter feed and its deployment structure cause too

much blockage of the RF beam. Also the RF transmission line losses from the

feed to the transponder ae large. In addition the mechanism required to

deploy the feed will be very complex. Since transmit and receive antennas are

combined the passive intermodulation products are of concern for this

configuration.

3.2	 Single Antenna Spacecraft Configuration

This spacecraft configuration was chosen as the prime candidate for

the MSS mission. It is based on a single 20 meter diameter LMSC wrap-rib

reflector and the LMSC deployment boom. This concept is compatible with the

STS payload envelope and this spacecraft can be launched by the FACC perigee

stage vehicle.

—24—
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3.2.1 Deployed Spacecraft Configuration

An on-orbit picture of the MSS spacecraft can be seen in Figure 3-2.

The most striking feature is the 20.0 meter diameter unfurlable UHF antenna

reflector that is deployed 24.5 meters away, towards the east, from the FACC

spacecraft bus using the deployable boom. The reflector is deployed to

provide an F/D ratio of one and also to have a sufficient offset to provide a

clear field of view for the RF beam looking towards the earth. The UHF feed

is rotated into position to illuminate the reflector. The feed is closely

coupled to the payload module minimizing the RF line losses. The 2828 watt

solar array consists of twQ wings each having three panels which are extended

towards north and south respectively. The wingspan of this array is 18.0

meters. The antenna reflector for this configuration is a LMSC wrap-rib

design that has 20 radial ribs that are covered with a gold plated molybdenum

mesh. The 20 ribs will provide a surface accuracy of the parabolic reflecting

surface of LAMBDA/60. The choice of the reflector deployment boom is also the

LMSC design since it and the reflector have the least mass.
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3.2.2 Stowed Spacecraft Configuration

f -F.

I )'

;i

Figure 3-3 is an illustration of what the MSS spacecraft might look

like when it is stowed in the STS payload bay. The size of the stowed 1LMSC

reflector and boom dictates that the spacecraft is launched in the horizontal

position. To facilitate assembly, integration and testing the satellite is

divided into independent modules: the spacecraft support cradle, perigee

stage module, subsystems bus, module, payload bus module as well as the

antenna module. The total length of this assembly in the STS bay is 7.2

meters. As can be seen in the picture the 2.8 meter diameter, 3.0 meter long,

stowed LMSC reflector and boom assembly control the configuration of this

layout. The antenna module is mounted directly on top of the FACC bus module

central cylinder to provide the most direct structural load path through the

perigee stage cradle into the STS keel and longeron fittings. The large size

of the feed requires it to be stowed for launch adjacent to a support

structure. A simple 57 degree rotation about the hinge axis will place it in

the proper position to illuminate the reflector. The deployed feed is located

as close as possible to the payload transponder to minimize the RF line

losses.

Concepts having a fixed UHF feed were investigated but the sheer size

of 2.0 X 4.3 meters of a 21 beam feed array make this solution impractical.

The 2828 watt solar array is divided into two solar array wings. The

wings, consisting of three panels covered with solar cells and a deployment

yoke, are stored adjacent to thz north and south side of the satellite module

respectively. Ample room is provided to enlarge the solar panels or to add

panels if the DC power requirement if the MSS transponder show]
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The perigee stage module provides the necessary impulse to propel the

spacecraft into the geosynchronous transfer orbit from the STS parking orbit.

Since the propulsion motor is of the solid propellant type the spacecraft will

have to be dynamically balanced. Along with this motor the module contains

the necessary adapters and spacecraft separation systems. The spacecraft

support cradle provides the mechanical and electrical interface between the

satellite and the STS orbiter.

3.3	 Dual Antenna Spacecraft Configuration

Since two indc-ppndent transmit and receive UHF antenna systems is the

best solution to minimize the passive intermodulation products, therefore

making the electrical design much simpler, this concept was studied in some

detail. The following paragraphs and illustrations of this section describe

Harris Corp. reflectors and deployment boom. LMSC reflectors and booms were

considered but not shown in detail since the stowed envelope of two wrap-rip

reflectors and their deployment boom exceed the STS envelope. Subsequent

optimization of this boom diameter to obtain a minimum structural of the

deployed system frequency of above 2 Hz or optimization of the reflector

diameter might make it possible to stow two reflectors.
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3.3.1	 On-Orbit Spacecraft Configuration

Y

t"	
YI

The on-orbit configuration shown in Figure 3-4 was developed to

evaluate the effect of adding a second UHF antenna system to the spacecraft.

For this concept two Harris Corp. Deployable Truss Structure (DTS) reflectors

and a single deployment boom were studied. These systems were considered

since their stowed volumes can fit inside the STS payload envelope. The two

stowed reflectors are deployed 25.7 meters in the anti-earth direction. After

their deployment the DTS reflectors, which in this case are mounted on their

respective edges, are.allowed to unfold in the east or west direction. The

span across these reflectors measures 48.0 meters. The spacecraft 2828 watt

solar array wings are deployed in the north and south direction with a

wingspan of 18.0 meters. Again in this configuration the two UHF Seeds are

closely coupled to the communications transponder. Even though the principle

of the dual antenna configuration is sound the mass of 181.0 kg for each

reflector and 454.0 kg for the deployment structure make this an impractical

solution.

-31-
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3.3.2 Stowed Spacecraft Configuration

A stowed configuration of this antenna concept can be seen in Figure

3-5. The stowed envelope dimensions of the HARRIS Corp. reflectors and boom

require the spacecraft to be placed horizontally in the STS payload bay. In

this position it will occupy 7.2 meters in length of the available 28.3

meters. The cross-sectional view of the STS payload envelope shows that two

2.0 meter diameter stowed reflectors can be readily accommodated in the 4.6

meter diameter envelope. The two UHF feeds measuring 2.0 X 4.0 meters need to

be stowed for launch. A simple rotation of 570 about a hinge axis is required

for each feed to lock in its proper on-orbit position. The feeds are located

as close as possible to the communication transponder located in the FACC

payload module. The rest of FACC spacecraft bus, including solar arrays,

perigee stage module and the spacecraft support cradle is identical to one

described in Section 3.2.2.

3.4	 Harris Reflector System

The following paragraphs provide a short description of an unfurlable

reflector system manufactured by Harris Corporation, Government Aerospace

Systems Division in Melbourne, Florida.

3.4.1 Harris Antenna Reflector Design Concept

The Deployable Truss Structure (DTS) design represents an extension

of the proven Harris radial rib technology. The DTS design evolves from the

existing radial rib technology in two steps. First, a truss structure is

;a
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added to the rib in order to provide increased stiffness. Text the rib is

segmented and the segments connected via articulating joints in order to

provide a more compact stowed package. Since the rib shape is not extremely

critical to the contour accuracy in our design, the rib segments are made from

straight graphite tubes. Figure 3.4-1 shows a typical section of a reflector

geometry which includes elements of the truss rib as well as the members which

connect adjacent ribs.

Figure 3.4-2 illustrates a single partially deployed rib. Latching

joints are shown at two locations, inboard and outboard of the intersection of

the radial rib members and the compressive, vertical strut. These latching

joints must lock to form inboard and outboard rigid members. The nonlotching

Joint between them must remain free to rotate in the plane of the truss

preserving the structural characteristics of the pin-jointed truss. Small

clips, or rod guides, attached to the main structural members and joints,

support the tension rods while stowed. The deployment of the rib pulls the

rods free from the rod guides. A four-bar linkage connecting the radial rib

members synchronimes and controls the deployment.

3.4 .2 Stowed Reflector Concept

A typical stowed DTS reflector can be seen in Figure 3.4-3. The

stowed envelope of a 20.0 meter diameter reflector aperture is 2.0 meters in

diameter by 2.5 meters long. To clarify this picture the reflector mesh and

surfane cords have been omitted. The stowed reflector is unfolded using a

Mechanical Drive System (MDS) which controls the deployment of the reflector.

It is located at the upper end of the hub and is attached to the innermost

radial-rib member. Deployment force is transmitted to the other three radial
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members by the four bar-linkage. Tension rod$ are pulled free from the ten-

sion rod guides and clips by the rib action. Linkages drive the ribs to their

deployed positions simultaneously. Once fully deployed with the inner and

outer rib joints latched, the rib assumes the characteristics of a pinned-end

truss.

3.4.3 Refllutor Mesh Concept

The surface design used on V! 	 DTS structure is a Harris pioneered,

dual drawing surface system. The design involves the placement of a secondary

structure behind the primary reflective surface and joining the two with a

number of ties sufficient to achieve the desired surface accLracy.

The implementation of this surface involves the use of a gold plated

mesh to form the reflective surface, multistrand graphite cords to create the

surface contour, graphite-epoxy strips to establish gore boundaries, and

adjustable standoffs by which the reflective surface assembly is attached to

the graphite radial ribs. The reflective mesh is a .0012 inch diameter gold

plated molybdenum mesh knitted into a tricot pattern with openings small

enough to provide a reflective surface at UHF. Harris developed this mesh and

was the first to use preplated, molybdenum monofiliment wire and the first to

use a tricot knit for a RF reflective surface. Molybdenum with its high

strength, low coefficient of thermal expansion, and excellent plating charac-

teristics results in a highly reflective surface with relatively low tensions,

good resistance to handling, and minimal thermal interaction with the graphite

cord and graphite rib supporting structure. Preplating with gold assures

minimal interfilament friction with uniform, optimum thickness for RF

reflectivity. The tricot knit is most familiar as the double-knit fabrics
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that were popular for their ability to "give" in two directions without
1

unravelling at the edges or with broken strands.

Multistrand graphite cords are used to form a thermally insensitive

substructure which combines with GFRP ribs to form a precision foundation for

the mesh. The circumferential arrangement of cords increases the effective

resistance of the ribs to axisymmetric loading produced by thermally induced

mesh tension variations. The negative thermal properties to produce a near

optimum condition for thermal stability.



4.0	 SPACECRAFT POWER, MASS and DISSIPATION

4.1	 Electrical Power Subsystem

4..1.1	 Requirements

The electrical power subsystem must generate, store, condition and

distribute electrical power to ensure the spacecraft meets all performance

requirements throughout all mission phases. Specifically, operation in sun-

light at 2395 watts (see Table 4-1.1 and 4.1-2) and bus subsystem maintenance

in eclipse of 1266 watts is required.

4.1.2 General Description

The spacecraft electrical power subsystem (EPS) is a dual bus, direct

energy transfer system designed to accommodate a spacecraft primary load of

approximately 2.4 kW for a 10 year equinox synchronous orbit lifetime.

Primary power is provided by two separate Sun-oriented planar solar array

wings. The voltage of each solar array wing is regulated by a separate

sequential linear partial shunt regulator. During periods of solar eclipse

and peak requirements, power is supplied by two nickel hydrogen batteries.

These batteries supplement the solar array during peak power demands such as

augmented catalytic thruster (ACT) firings. DC/DC converters provide regu-

lated power to secondary loads. The inter-relationship of the major EPS

elements is illustrated in Figure 4.1 -1.

The solar array consists of two single axis Sun-oriented wing

assemblies. Each assembly consists of a deployment mechanism, three rigid

^c-
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panels and an orientation mechanism connected to the solar array drive system.

The solar array drive assembly (SADA) consists of a dual, two channel solar
s

array drive electronics (SADE) and two solar array drive mechanisms. The

drive provides for the support and positioning of the arrays about the satel-

lite pitch axis and for the transfer of pcaer and signals from each array to

the sctellite module.
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TABLE 4.1-1

Communication Payload DC Power Requirement
Watts

UHF

• High power amplifiers (24)
@ 20.8 watts RF each = 500 watts RF
efficiency = 30%	 500/.30 =

• Downlink RCVR/Translators (25) @ 6W

• Uplink RCVR/Translators 25) Q 6W

Total URF

1667.0

150.0

150.0

1967.0

Ku-Band

• Upconverters @ 3W

• Downconverters @ 3W

• TWTA (1) @ 1OW RF
efficiency = 30%	 10/.30 =

• Upconverter L.O. @ 3W

• Downconverter L.O. @ 3W

Total Ku

Pa

-43
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TABLE 4.1-2
Power Summary

Watts at beginning of synchronous orbit (BOL)
SYNCHRONOUS ORBIT

AUTUMNAL SUMMER ECLIPSE
EQUINOX SOLSTICE

COMMUNICATIONS TRANSPONDER 2042.2 2042.2 1021.2
RF TELEMETRY, TRACKING & COMMAND 16.8 16.8 16.8

'	 PAYLOAD SUBTOTAL 2059.0 2059.0 1038.0

SPACECRAFT CONTROL ELECTRONICS S/S 69.0 69.0 69.0
APTITUDE CONTROL SUBSYSTEM 95.6 95.6 45.6
PROPULSION SUBSYSTEM 0.7 0.7 0.7
THERMAL CONTROL 92.0 92.0 46.0
ELECTRICAL POWER SUBSYSTEM 13.0 13.0 10.0
HARNESS LOSS 21.3 21.3 15.0

BUS SUBTOTAL 291.6 291.6 186.3

BATTERY INTERFACE LOSS - - - - 41.9
BATTERY CHARGING 101.9 44.9

SATELLITE TOTAL 2452.5 2395.5 1266.2
i

SOLAR ARRAY CAPABILITY 3575.0 3251.0 - -
BATTERY CAPACITY AT 70% DOD - - - - 1502.7

2-36.8 Ah NiH2 TYPE BB (36.8)
MARGIN 1122.5 855.5 236.5	 j
% MARGIN 46% 36% 19%

Watts at the end of 10 years (EOL)

COMMUNICATIONS TRANSPONDER 2042.2 2042.2 1021.2
RF TELEMETRY, TRACKING & COMMAND 16.8 16.8 16.8

PAYLOAD SUBTOTAL 2059.0 2059.0 1038.0

SPACECRAFT CONTROL ELECTRONICS S/S 69.0 69.0 69.0
ATTITUDE CONTROL SUBSYSTEM 95.6 95.6 45.6
PROPULSION SUBSYSTEM 0.7 0.7 0.7
THERMAL CONTROL 92.0 92.0 46.0
ELECTRICAL POWER SUBSYSTEM 13.0 13.0 10.0
HARNESS LOSS 21.3 21.3 15.0

BUS SUBTOTAL 291.6 291.6 186.3

BATTERY INTERFACE LOSS - - - - 37.E
BATTERY CHARGING 105.4 45.3 - '-

SATELLITE TOTAL 2456.0 2395.5 1261.9

SOLAR ARRAY CAPABILITY 3578.0 2828.0 - -
BATTERY CAPACITY AT 70% DOD - - - - 1502.7

MARGIN 622.0 432.1 240.8
% MARGIN 25m 18% 19%
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The SADE is a dual box containing two redundant sides. Each of these

sides is capable of controlling both channels of the solar array drives. The

solar array drive has a stepper motor with two independent motor windings for

redundancy.

The SADA always provides drive motion at the rate of one step

(0.11250 ) of each array, every 27 seconds. This corresponds to an angular

rate of 150/hour for each array. In addition to this stepping rate, a slew

augmentation capability is provided to speed up the operation of each or both

the north and south arrays at a slew rate consistent with dynamic constraints.

The direction and number of slew steps are commandable from the ground.

During the transfer and drift orbits, the array is stowed so that load

support and battery charging are accomplished with the two outboard panels

(one per wing). The array is designed to support synchronous orbit operation

at end of life summer solstice with an electrical power capacity of 2828 W.

The battery configuration consists of two nickel hydrogen batteries

connected to the applicable bus through battery discharge diodes. The battery

charge current is controlled by dedicated solar array sections and battery

charge controllers. The charge current is applied sequentially to each bat-

tery on a 50% duty cycle. Open circuit protection is provided for the bat-

teries by diode bypass networks connected across each cell. Temperature and

pressure sensors are utilized to provide temperature control inputs for bat-

tery heaters and sense the state of charge of the cell.



The power control electronics (PCE) consists of the power control unit

(PCU), two shunt dissipator assemblies, two battery control units, and elec-

troexplosive device actuation functions. A key feature of the PCE is the

provision of two independent primary buses. The outputs of each solar array

wing and one battery are dedicated to each bus, with the capability provided

to parallel connect or separate the two buses by ground command, as required.

The output of each solar array wing is independently regulated to 35 + 0.5 V

DC by use of a sequential linear partial shunt regulator. The PCE provides

sequential battery charge control and individual battery reconditioning

capability by ground command.	 Single part failure criticality is eliminated

by use of circuit redundancy and alternate modes of operation are selectable

by ground command. All satellite electroexplosive devices (EEDs) are control-

led by the PCE, which employs redundant, fail safe circuitry for these impor-

tant functions.

4.1.3	 Solar Array

The solar array design relies extensively on already developed and

flight-proven hardware from the INTELSAT V program. The solar array design

for ASS would be modified to utilize improved efficiency cells.

The solar array consists of six deployed solar cell panels arranged in

two identical wings. Each wing consists of three solar panels,

holddown/release mechanism, deployment mechanism, and a yoke, complete with

hinge for mounting to the spacecraft solar array drive mechanism. The array

blocking diodes are mounted in the sequential shunt assemblies, mounted on the

inboard solar panel.
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wcn wing of the array has an output of 1414 W nominal at 35 V at the 	 '

PCU terminals at summer solstice after 10 years in orbit. This is

accomplished on each panel by 58 parallel by 99 aeries, 20 X 40 mm solar

cells, each covered with a 150 micron thick eerie-doped microsheet cover

slide. Each of the three solar panels composing one wing is 2.1 X 2.5 m. The

panel substrates are fabricated from graphite face sheets bonded to an

aluminum honeycomb core as used for INTELSAT V.

The overall width is 2.1 m and deployed length is approximately 8.75 m

including the yoke and mounting hinge. The solar array wing accommodates

17,226 solar cells for the primary power and 567 cells for battery charging.

Blocking diodes on the main bus form part of the shunt dissipator assembly.

The array is stowed during launch and transfer orbit. Load support

and battery charging are accomplished with two outer panels (one per wing).

Power available at BOL equinox is 3575 W. The array is designed to support

synchronous orbit operation at EOL equinox with an electrical power capacity

of 3078 W.

4.1.4	 Battery Design

Two nickel-hydrogen batteries are connected to the applicable bus

through the battery control units. Each battery consists of 27 hermetically

sealed cells connected in a series that deliver a nominal discharge voltage of

33.6 V and a minimum capacity of 36.8 Ah at 101C measured to 1.0 volt per

cell.

The batteries wiil be similar to those flying in INTELSAT V Flight

Models 6, 7, and 8, the only flight-proven Ni-H2 spacecraft to date.
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The nominal mass of the batteries is 56.3 kg. Thermal control is

achieved with individual resistive heaters for each cell, which are operated

by the heater control circuit in the battery control units based on tempera-

ture sensed by a prec!,aion thermistor mounted on the battery. Two additional

thermistors serve as telemetry sensors.

The electrical design is implemented with the required redundancy and

reliability. The series connection between cells is provided by two parallel

connected wires. Battery power connections are made to the terminals at the

ends of the cell series with four redundant wires leading to the battery

connector. The battery is protected against an oprn circuit condition by a

diode bypass network connected across each cell. Battery charging is provided

by dedicated solar aFray sections and battery charge controllers in the bat-

tery control units. This configuration permits multiple charge rate combina-

tions that result in excellent flexibility and reliability.

The batteries can be utilized to a 70% depth of discharge, based on

the actual capacity measured at 101C.

Table 4.1 -3 summarizes key battery performance re quirements and

capabilities.

4. 1 .5 Power Control Electronics

The power control electronics consists of the following elements:

1 each - sequential shunt assemblies

1 each - power control unit

-49-
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2 each - battery control units

1 each - electroexplosive device control function

The sequential shunt units are a direct adaptation of INTELSAT V units

modified for mounting in the solar array yokes.



Item

Battery load power (EOL)

Battery life

Battery voltage (EOL)

Battery depth of discharge

Battery cycles charge/discharge

Cell failure protection

Temperature range control

Requirement

1262 W

10 years

27.8 V min

70% max

880 cycles

Open circuit
protection

OOC to 250C

Capability

1500 W*x

10 + years

33.6 V

70.0%

1000 + cycles

Diode bypass
circuit

Heater + charge

TABLE 4.1-3. Major Battery Requirements vs. Capability

j
s

** End of ,life with no cell failures
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The power control unit is greatly simplified over INTELSAT V for this

topology. Battery control functions and EED functions are contained in the

Battery Control Unite and EED Control Unit respectively.

Solar Array Regulation

The power control unit in conjunction with the two sequential shunt

units (SSU) regulate the voltage output of the solar array. This is

accomplished by each SSU sequentially shunting the voltage taps (control

buses( of the main array subcircuits of each wing as required to maintain the

primary bus voltage of 35 + 0.5 V DC during sunlight operation. Sequential

shunt operation is controlled by a primary bus voltage error amplifier located

in the PCU. The same error signal from the error amplifier also controls

operation of the following:

o Solar array power reduction control

o Battery voltage limiters located in the battery control units

o Battery charge controllers located in the BCUs

Use of the existing INTELSAT V sequential shunt units allow control of

bus regulation at beginning of life. The lower load limitation results from

the two unregulated (unshunted) main power sections of each solar array wing.

To reduce the minimum spacecraft load to solar eclipse load, the two unregu-

lated array power sections of each solar array wing are sequentially switched

off the buses as loads are reduced. This is accomplished through the solar

array power reduction control located in the PCU. When the error signal moves
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outside the range for maximum solar array voltage regulation this signal

causes the solar array power reduction control to open circuit the unregulated

solar array unregulated power circuits on each solar array wing as required.

The resulting reduction of solar array output allows bus regulation to be

maintained. As primary bus loads are increased, full so1F.r array power com-

mands applied to the solar array power control reconnect the full solar array

capability. In the event that primary bus loads are increased to nearly

design limits prior to initiating the above command the batteries will supnnry

the power deficiency until the command execution.

Eclipse Load Support

Upon entrance into solar eclipse the error signal from the error

amplifier will move outside the range for minimum solar array voltage

regulation. This change as sensed by the battery voltage limiter in the

battery control unit (BCU) causes activation of the battery voltage limiter.

Battery voltage upon eclipse entrance may be as high as 42 V. The voltage

limiter will provide the required voltage drop to maintain the primary bus

voltage below 35 V. As the battery discharge voltage approaches 35 V, this

limiter will provide a low loss battery power transmission path for the

remaining eclipse duration. Upon exit from solar eclipse restoration of solar

array power will deactivate the battery voltage limiter.

This same voltage limiter is utilized in sunlight to limit the maximum

voltage applied to ACT heaters to 35 V. Upon commanding on ACT heater the

battery voltage limiter will operate under local loop control independent of

the primary bus error signal. Control of. voltage applied to these heaters is

similar in function as with the primary bus.
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Battery Charge Control

Battery charge control is provided by the following:

o Solar array battery charge circuits

o Battery charge controllers in the BCUs

o Battery charge circuit relays

Three battery charge circuits on each solar array wing ars connected

in series with the solar array buses within the sequential shunt units. ":his

configuration provides three currers,. sources from each solar array wing:,

These battery charge circuits are connected to the BCU via the PCU.

Within the BCUs, these circuits are connected io the batteries via charge

on/off relays and charge controllers. Provided in each BCU is a relay to

parallel the A tr l D and the B and E solar array battery charge circuits.

Required battery charge rate is selected by use of the charge on/off relays

and circuit parallel relaye. Continuous battery trickle charge is maintained

by closure of the circuit C and F relays in the respective BCUs. Full charge

at the required level is selected by closure of the A, B, D, E relays and the

circuit parallel relays.

Sequenced operation of the battery charge controllers will allow

alternate full charge of one battery while the other battery is maintained in

trickle charge.
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Battery charge controllers in each BCU are key to providing the

required charge control.	 ;I

Upon eclipse emergence the battery charge controllers are inhibited

until the primary bus error signal approaches a level indicating that the

solar array is in voltage regulation. 	 This function automatically ensures

that the battery charging load is not applied to the solar array bus until

ability to support spacecraft loads is provided.

Battery Temperature Control

Control of minimum battery temperature is provided by heaters in each

battery controlled by battery temperature controllers in the BCUs. 	 This

contrctler design remains the same as used in the INTELSAT V PCU. A thermis-

for in each battery provides the temperature sensing for control. Control

limits for battery heater operation are as follows:

Heater on	 (+1)oC

Heater off (+5)oC

Command inputs are provided to override the automatic temperature

control function. Through these inputs the battery nesters can either be

inhibited or turned on independent of the automatic controller operation.

Telemetry Aonitors

Conditioning of analog and binary telemetry data generally is

accomplished within the EPS. The only exception will be temperature monitors

where the thermistor connections will be passed through for processing in the
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telemetry unit. Design of the conditioned telemetry monitors remain the same

as I14TELSAT V. These monitors are as follows:

a. Current Telemetry

b. Battery Cell Voltage (multiplexed)

c. Bus and Battery Voltage

d. Status Monitors

E. Battery Cell Pressure

All analog signal conditioning monitors will provide a 0 to 5 V

output. Status monitors will provide or TTL compatible output.

Battery cell pressure monitor outputs will be provided as separate

analog channels and wil l not be multiplexed with battery cell voltages.

4.1.6 DC/DC Converters

The DC/DC converters are the electrical interface between the majority

of spacecraft loads and the primary power buses. The converters provide load

control, fault isolation, and optimized manag *ant of secondary load power.

By locating the DC/DC converters within the user load unit, electromagnetic

compatibility (EMC) and secondary power regulation are optimized.

4.1.7 Power Budget and Performance

The power summary for synchronous orbit conditions is presented in

Table 4.1-1. The summary shows predicted values of load power by subsystem,
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the predicted solar array performance at the end of 10 years, and the result-

ing system power margin.

4.2	 Spacecraft Dissipation Summary

The MSS baseline communication payload dissipation is 1600 watts under

worst case signal conditions. Bus module dissipation is approximately 375

watts for a satellite total thermal dissipation of just under 2000 watts. The

FACC bus has been sized to accommodate 2100 watts of communications module

dissipation and 500 watts of service module dissipation. A breakdown of the

dissipation summary can be seen in Table 4.2-1.

The primary dissipators on this design are the north and south panels

which radiate directly into space. This provides the most direct heat path.

Heat rejection is provided by OSR second-surface mirror radiator surfaces

utilizing metalized quartz glass.

Section 5.1 and 5.2 will discuss the structure and thermal

configuration.
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TABLE 4.2-1
Dissipation Summery

Watts at beginning of synchronous orbit (BOL)

AUTUMNAL
EQUINOX

SYNCHRONOUS ORBIT
SUMMER	 ECLIPSE

SOLSTICE

1542.3
16.8
16.6
18.6

1594.3

COMMUNICATIONS SUBSYSTEM
RF TELEMETRY, TRACKING & COMMAND
BUS COMPONENTS
COMM HARNESS LOSS

PAYLOAD MODULE SUBTOTAL

SPACECRAFT CONTROL ELECTRONICS S/S
ATTITUDE CONTROL SUBSYSTEM
PROPULSION SUBSYSTEM
THERMAL CONTROL
BUS HARNESS LOSS
SHUNT CONTROL UNIT
BATTERY CONTROL UNIT
BATTERY INTERFACE LOSS
BATTERY DISSIPATION

BUS MODULE SUBTOTAL

SATELLITE TOTAL

Watts at the end of 10 years (EOL)

COMMUNICATIONS SUBSYSTEM
RF TELEMETRY, TRACKING & COM14AND
BUS COMPONENTS
COMM HARNESS LOSS

PAYLOAD MODULE SUBTOTAL

771.2
16.8
12.0
'15.0

814.9

58.0
40.0
0.7

40.0
6.6
5.0
8.0

37.6
286.7
482.6

1297.5

771.2
16.8
12.0
15.0

815.0

1542.3
16.8
16.6
20.5

1596.'2

58.0
90.0
0.7

80.0
7.5

111.4
8.0

34.2
389.8

1986.0

1542.3
16.8
16.6
20.5

1596.2

58.0
90.0
0.7

80.0
7.5

101.7
8.0

36.4
382.3

1978.5

1542.3
16.8
16.6
18.6

1594.3

56.0
90.0
0.7

80.0
7.3

86.4
8.0

SPACECRAFT CONTROL ELECTRONICS S/S
ATTITUDE CONTROL SUBSYSTEM
PROPULSION SUBSYSTEM
THERMAL CONTROL
BUS HARNESS LOSS
SHUNT CONTROL UNIT
BATTERY CONTROL UNIT
BATTERY INTERFACE LOSS
BATTERY DISSIPATION

BUS MODULE SUBTOTAL

SATELLITE TOTAL

58.0
90.0
0.7

80.0
7.3

93.8
8.0

34.5
372.3

1966.6

58.0
40.0
0.7

40.0
6.3
5.0
8.0

37.6



The power summary presents the worst case power requirements of each

subsystem. At the end of 10 years in orbit, the electrical power subsystem

will supply 2828 watts during sunlight hours. The power required for full

spacecraft operation during sunlight is only 2395.9 watts for a total margin

of 432.1 watts.

The FACC bus can provide sufficient power for the second generation

MSS.

4.3	 Spacecraft Mass Summary

The spacecraft mass has been minimized to provide a maximum mass

margin. The calculated mass margin of 93 kg represents 8% of the spacecraft

dry mass. Secondly, extensive calculations have been performed to develop

accurate mass estimates for the spacecraft items. The spacecraft mass summary

can be seen in Table 4.3-1. Note that with a Thiokol Cap. PSM 63E perigee

stage motor deployed from STS cargo bay, the perigee motor capability is

1247.4 kg (00 motor off-load and 15% perigee augmentation). Table 4.3-2

represents our rough estimate of STS cargo mass of the MSS IPSM motor perigee

stage for a typical shuttle launch. Table 4.3-3 provides a mass comparison

between the LMSC and Harris Corp. reflector and deployment boom.

conclusion is that the FACC bus can support the predicted mass and

launch on STS.
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MASS TOTAL

TABLE 4.3-1

Mass Summary

(Single LMSC Reflector and Boom)

SUBSYSTEM	 i	 MASS

o Transponder, unk'	 i	 -144•1
i
1

o Transponder, Ku-Band	 {	 59.2
I
I

0	 20.0 m Reflector (60 0 900 MHz	 107.3
LMSC w/ 20,% margin)

i

o One UHF .Feed	 1	 70.0

i
0 0.4M Ku-Band Reflector	 i	 1.0

• Solar Array - 2B28N EOL 10 years 	
i	

88.9

• Batteries 2-36.8 Ah, Ni-H
2'	56.3

50% eclipse ops,

0 Miscellaneous	 i	 18.4

Structure	
"r	 w 264.0

o Main Body	 1	 156.0	 1
I

0 1 Reflector Deployment Mechanism (LMSC) i	 108.0

t

rYi L-^lil	 1	 f	 7J• ^

I	 I

zzzzzzzzzzco=o-zz>o-czcmz_cv _mzzcaereezze.zzzaczzzzzzozazccezz_za_opoezazz
1
I	 1

Dry Spacecraft Total	 1	 1239.3*
^	 I

An IPSM 63E perigee stage capability is 1247.4 kg
(0% offload of motor, 15% perigee augmentation)

s
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TABLE 4.3-2

Mass for STS Mission with IPSM-63E Perigee Motor
MASS
(kg)

Spacecraft EOL Mass	 1247.40

Stationkeeping and Drift Orbit Propellant 	 326.14

Apogee Propellant 	 1268.57

CTO Mass	 2842.09

Perigee Augmentation (15%)	 366.10

Post Perigee Maneuver	 3208.20

Perigee Stage Burnout Mass	 459.22

Perigee Propellant	 4066.00

Spin-up and Attitude Control	 6.00

Deployed Mass

ASE Mass

Cargo Mass
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Table 4.3-3. LMSC vs. Harris Reflector System !lass

!	 !	 LMSC	 i	 Harris	 1

• Reflector,	 20 m	 1	 1	 1 107.31 107.31	 1	 1 181.41 181.4

• Deployment Boom 	 1	 1	 108.01 108.01	 1	 1 227.01 227.0
1

• Single Reflector System	 i	 i	 1 215.31	 j	 i 408.4

• Reflector,	 20.0 m	 1	 2	 1 107.31 214.6 1 	2	 1 181.21 362.4

• Deployment Boom	 1	 2	 1 108.01 216.01	 1	 1 454 .0 1 454.0

• Dua, ..eflector System	 i	 i	 i 430.61	 i	 i 816.4
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4 . 4	 Spacecraft Life and Redundancy Considerations

The FACC design uses previous heritage hardware that has been

qualified for a 10 year mission. New hardware is derived from current tech-

nology of the minimum risk and highest reliability. This approach to the

design selection minimizes reliability risks for MSS Satellite.

The key reliability features of the design are:

o All electronics units are redundant

o Dual power buses allow for degraded system operation in the event

of a bus failure

o Open cell protection for all nickel-hydrogen battery cells

o Sipropellant apogee thruster ensuring higher reliability then

conventional solid fuel apogee motors

Component level redundancy and extensive cross-strapping are used

throughout the design to eliminate single point or critical failure modes.

Most spacecraft failure effects are isolated to individual subsy°`ems or

limited to lower level subsystem equipment groups so that a failure will not

disable or degrade the performance of the remainder of the spacecraft or

redundant functional units.

The primary mode of switching of redundant spacecraft equipment is by

relay activation. All switching to standby redundant equipment is performed

by ground uplink command. This approach is used instead of onboard failure

detection to avoid false switching and undesirable spacecraft operation.
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u tsraaea or called components are primarily detected by monitoring telemetry

and spacecraft performance.
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5.0	 Needed Modifications

	

5.1	 Structure Modifications

The FACC bus structure can accommodate the single reflector design as

seen in the power. dissipation and mass summaries in sections 4.1, 4.2 and

4.3, respectively.

No major modifications to the structure are required. 	 For detailed

spacecraft structural configuration, see Section 3.4.

An overview of the spacecraft structure is as follows:

Bus Module System

o Propulsion - Subsystem provide sufficient impulse for 10 year of

on-orbit attitude control. The liquid bipropellant nitrogen

tetroxide (N204 ), monomethylhydrazine (MMH) subsystem uses one

titanium oxidizer tank (located at C.G. of S/C) and two tanks for

MMH, all pressurized by two tanks of helium. This subsystem will

provide final injection into geosynchronous orbit and allow totally

redundant attitude control forces. In addition, the attitude and

orbit control thrusters provide nutation control, initial

spacecraft despin, apogee, impulse, attitude control and

stationkeeping attitude control. Redundant +h—a+« Q +nma Ara

isolated by sets of fuel and oxidizer latch va
•

Fuel and Oxidizer Latch Valves



o Power - The dual bus direct energy transfer electrical power

subsystem, in conjunction with the solar arrays and solar array

drives provide electrical power for the satellite. Two 36.8-ampere-

hour nickel hydrogen batteries provide power for the satellite

during eclipses and the solar array for peak transient loads.

o Attitude Control - The subsystem design is a momentum-bias type

with two momentum wheels. A reaction wheel is provided for redun-

dancy during three axis satellite control. Attitude information is

provided by earth and sun sensors, which are used both in transfer

orbit and synchronous orbit operations.

o TT&C - The TT&C uplink signals, with command or ranging information

modulated onto a carrier, are received by the command antenna and

fed to redundant receivers. The uplink signal is demodulated,

providing the command signal to the command units or the r?nge tone

signal to the telemetry transmitter for turn-around ranging. The

command signals are detected and processed by the command unit.

The ranging tones from the receiver are fed to the telemetry

transmitter, wher4, they phase modulate the downlink carrier.

Payload Module System

o Optimized Structure - The structure subsystem provides support and

housing for the payloads and all supporting subsystems, and mates

with the perigee stage. It provides the major satellite thermal

control functions.
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o Solar Array and Drive - The solar array subsystem (as described

previously) is composed of two wings, three panels per wing, con-

; taining two separate electrical buses. The solar array fully

deployed tracks the sun by the solar array drive (SADA) of the

attitude and orbit control subsystem.

o Thermal Control - See Section 5.2

o Modularity - The spacecraft is composed of modules. The ability to

integrate and test the modules separately has proven to be of

tremendous value. The value is seen in reduced schedule risk and

providing test advantages.

5.2	 Thermal Control Modifications

Thermal Control is accomplished by primarily passive techniques (selec-

tive component location, selective finishes, and materials, multilayer

insulation) to maintain the satellite equipment within acceptable

temperatures. Heaters augment tht passive design for components requiring

unique temperature control.

The maximum thermal dissipation of the 'MCS payload module (1600 watts)

is lower then the maximum thermal capability (2100 watts) of the FACC bus.

The average predicted temperature of the payload module meets the internally

imposed requirements. Therefore, no modifications to the thermal control

subsystem are required.

The FACC bus thermal design combines both traditional and new concepts

for 3 axis spacecraft. The thermal radiatovs are located on the north and
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south panels as was mentioned in Section 4.2. Heat pipes are used on the

north and south panels of the payload module to transfer heat to colder loca-

tions within the module. The aluminum/ammonia variable conducting heat pipes

embedded into the honeycomb north and south panels, are not redundant, but

their heat transport is derated 50% relative to the performance requirements.

The heat pipes are straight, U-shaped and L-shaped with a maximum operating

temperature of +500C.

5.3	 Solar Pressure Effects for MSS - Configuration B1

Due to the size and complexity of the MSS satellite, initial calcula-

tions of solar pressure effects were confined to modelling major parts of the

structure for input to simple calculations. An accurate and thorough solar

pressure model is beyond the scope of this current effort. The procedure to

be followed for future analytical efforts is outlined here for reference.

1. Model each major segment such that data may be entered into the

solar pressure computer program.

2. Investigate modelling techniques for parabolic reflectors,

specifically the "polyconic parabolic" approximation.

3. After entering the data, run the program for a variety of orbital

and seasonal cases.

Consideration of the B1 onfiguratiun has shown the following points:

1. CG location in the y direction is critical

assumed.
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r of the various structural parts with respect to the y-z

plane is also also critical to keeping roll/yaw torques small. In

other words, there are -o momentum arms with y subscripts in

Figure 5-1.

3. Peak torques will appear about the y axis and thus will drive

momentum wheel size and wheel operating range.

4. During the day, pitch torque will vary sinusoidally according to

the sketch in Figure 5-2. Peak torque is estimated as 3.8 X 10-4

Aim. This means a pitch momentum wheel needs to absorb about 12

Nms momentum over 1/2 a day.

5. Roll/Yaw torque will occur when the sun rises out of the

equatorial plane, this angle peaks at 23.44 degrees. To give a

rough idea of magnitude, the major segment of the support struc-

ture was analyzed. The triangular structure was examined and

found to exhibit an area that ranges from 4.8 ft 2 per bay up to

7.4 ft2 per bay depending on the sun angle out of equatorial

plane.

Using the maximum, a cylindrical model was generated. This section at 	 l

midnight in summer solstice, would contribute 5.5 X 10 -5 NM of torque about
i

the roll axis. Based on pitch torque values for various segments, the other

segments contribution to roll/yaw torque could at most triple this value. For

sizing purposes, a peak roll/yaw torque level of 1.5 X 10" 4 Nm seems

appropriate. Based upon this preliminary analysis, it was indicated that the
I

existing attitude control subsystems in the FACC bus can handle the solar

pressure effect caused by the large size reflec'or and the deployment boom.
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The analysis also indicated that FACC buss can achieve the required pointing

accuracy with a single antenna configuration.
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6.o	 ANTENNA FEED STUDY

6.1	 Antenna Configuration

The antenna configuration selected is shown in Figure 6-1• This is a

dual frequency transmit and receive antenna and was selected for the typical

spacecraft reasons i.e., weight, space, and cost. Further, this simplifies

the design in spacecraft integration, and the number of interfaces required,

thereby reducing the number of interconnects for the feeds and their

associated electronics.

The antenna feed system assumed for the MSS is a non-overlapping feed

design. It has been shown that with the 7-band frequency reuse arrangement,

it is possible to achieve better than 22 dB harrier-to-cochannel interference

isolation (C/I) in the coverage region using simple feeds composed of 4

microstrip patches each. This relatively simple feed array/beam forming

network has the advantage of smaller size and lighter weight, compared with a

more complex feed system with lower sidelobe performance. The achievable gain

for this non-overlapping array is about 1 dB below the nominal optimum value.

Although other types of feed elements can be used, microstrip patch feed

elements are selected due to their simplicity, light weight, ease of implemen-

tation and the fact that they lend themselves quite naturally to an integrated

flat and compact feed array design. The feed dimensions and array shapes can

be seen in Figure 6-2 and 6-3.
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	6.2	 Multipacting Effects - Interconnect Cabling

The recommended interconnect for the antenna feed is flexible cable,

since the spacecraft configuration would require on-orbit feed Deployment.

Flexible cable is very well suited for this application and is flight

qualified by use on multiple space programs. Further, studies by JPL on the

application and use of flexible cables is well docup.ponted in NASA "technical

report 32-1500" titled "Report on RP Voltage Breakdown in Coaxial Transmission

Lines" by R. Woo. This document shows that the flexible cable is acceptable

in this frequency range. However, the transitions from cable to connector

must take into account the fd (frequency-distance) characteristics to prevent

multipacting at the cable/connector interface. The cable/connector multipart-

ing is a solvable problem by using dielectric to fill the transition area and

testing to verify the workmanship. Since the antenna is planned as a dual

frequency transmit and receive system PIMS (passive intermodulation products)

must be given serious consideration at this frequency and power. Due to

limitations of time and allocation PIMS and their associated solutions are

beyond the scope of this study and are only listed because of the potential

problems that can result if PIMS are present.

	

6.3	 Feed Deployment Wechanism

The concept for UHF fend deployment is shown in Figure 6-4. This

design is a modification of existing mechanisms used on multiple spacecraft

programs and is considered flight qualified. The design is a machined

aluminum t-luss-like structure, which provides the structure/feed mounting

interface and incorporates the spring deployment energy for the feed. The
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mechanism design provides a cam-follower to guide tho feed deployment and a

latch for positioning lockup. The aluminum structure is light-weight and

rigid for launch and latch-up loads.

6.4	 Passive Intermodulation

If the spacecraft resource constraints ( power, mass and physical size)

limits our selection of the antenna to a single antenna for both transmit and

receive, then attention in the design of the antenna (both feed and reflector)

should be paid to avoid passive intermodulation.

Pass Intermodulation (PIM) is a non-linear interference phenomenon

caused by passive devices, much like the intermodulation interference gener-

ated by a non-linear, active devices, such as the TWTA, in multiple carrier

operation. Passive IM has been identified as a serious threat to multicarrier

communications systems. Particularly, in high power systems with low noise

receivers, surprisingly high levels of PIM can be encountered and can

seriously degrade system performance. In the high power transmit side,

presumably linear components such as coaxial cable connectors or discon-

tinuities in antennas or reflector panels, can behave non-linearily and gener-

ate intermodulation products with frequency in the receive band. With a

sensitive receiver, these PIM products can be very harmful for the received,

wanted signals.

Detailed investigation of passive component IM generation at Ford

Aerospace was begun in 1972 following isolation of the PIM gene_ation in th^

USASCA HT-MT antenna development. Most recently, a detailed investigation, on
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passive intermodulation has been conducted in the INTELSAT V Maritime

Communication System, an L-Band system.

Figure 6-5 shows the simplified block diagram of the I-V Maritime

payload. It was found that when ti-n signals were transmitted from the L-Band

transmitter, strong intermodulation products (7th and 27th products) were

found at the L/C receiver (point A in the diagram). With a nominal signal

level of 0 dBm, a PIM of about -20 dBm would cause the C/I to degrade to about

20 dB at point A which was unacceptable for the system.

The set of photos in Figure 6-6 represents the PIM products at point A

before and after the PIM problem was cured.



C-BAND L- BAND
ANTENNA 70 WATTS ANTENNA

C-BAND C/L	 L-BAND	 1 L-BAND
RECEIVER CONVERTER	 AMPLIFIER OIPLEXER

1636-1644 MHz

TYTA FILTERS
RECEIVERO!•

4tS2.S-4200.5 MHz

500274
KESS0027/GAIL

i-i6-84/M1

FIGURE 6-5 SIMPLIFIED BLOCK DIAGRAM OF INTELSAT V MARITIME TRANSPONDER
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After detailed i istigation and antenna modifications, the PIM

problem has been cured. Photos (E) and (F) in Figure 6.6 represent the con-

trolled PIM products at point A after the problem has been resolved.

The current research has identified several potential causes of PIM

within any communications system.

1. The presence of ferromagnetic materials in the system hardware

such as connectors causes serious problems. The mere presence of

urge amounts of ferromagnetic materials in nearby structures such

as antennas can cause PIM phenomena. This is probably not

surprising because the ferromagnetic phenomenon is by its very

nature non-linear.

c. The existence of Metal-Insulator-Metal (MIM) junctions which are

exposed to -&he carrier frequencies can result in non-linear

behavior which can in turn result in PIM generation. These junc-

tions are usually found to be caused by naturally occurring oxides

which are present on the metals used in the system, but as men-

tioned in ( 4) can also result from poor workmanship.

3. Microdischarges can be caused by microcracks, whiskers and voids

in metal structures, and these can cause PIM generation.

4. Workmanship has also been found to be a cause of PIM; not directly

of course, but loose connections or the existence of dirt in

connections can create microdischarges or MIM junctions which in

turn create PIM interference.



W7117,

1

1	 F

5. Finally, all materials are at some level non-linear, and even

non-ferromagnetic materials will exhibit PIM phenomena albeit at a

very low level.

Research has identified most of the potential causes of PIM but it has

been less successful in finding cures for the problem. A number of guidelines

have been proposed which will help mitipt-- the PIM problem but it is not

possible to apply all of them in any particular situation.

1. Appropriate choice of frequencies to avoid overlap with

interference.

2. Adequate separation of Transmission and Reception equipment to

avoid generation of PIM's.

3. Appropriate choice of materials for the system components, the

banning of all ferromagnetic materials in particular.

4. Careful attention to workmanship.

These primary rules should be used for the MSS design, but even care-

ful attention to all the guidelines will not guarantee that a system will be

PIM free. Only adequate system testing in both the design and production

stages will assure that a system till perform as required.
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7.0	 TRANSPONDER LINEARIZATION TECHNIQUES

	

7.1	 Introduction and Summary

Existing and potential linearizers applicable to the Land Mobile

Satellite user downlinks were surveyed and evaluated. The performance

criteria used in evaluating the potential linearization techniques were:

o DC/RF efficiency

o Compatibility with the MSS channel parameters, ie, 880 MHz, 1.4 MHz

bandwidth channelia, 20-40 watts usable RF output power, SSB or low

data rate digital (pm) modulation techniques, minimum 25 dB C/I.

Linearizer Survey

The following linearization techniques were surveyed.

o Brute force (output RF backoff)

o Improved EER with envelope feedback

o Feed forward (post distortion)

o Predistortion

o RF (cavity) feedt.)ack

Figure 7.1-1 summarizes the operational principles of these

techniques. Sections 7 .2 through 7.6 describe each linearization approach in

detail.
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Linearizer Evaluation

The five potential linearization techniques were evaluated in relative

terms for	 a..r efficiency, complexity, and development risk.	 Table 7.1-1

summar;zes this evaluation.
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E Tr," a 7.1 -1	 Comparison of Linearization Techniques

Linearization Relative Relatives Relative	 Relative
Technique Efficiency Mass(1,e'1 Complexity	 Devel. Effort

4 f̂
Brute Force 4 (22-26%)	 1 (1.0) 1	 1K^
(RF output backoff)

Improved EER 1	 (33-5090)	 4 (1.4) 5	 5

(Envelope Feedback)

G{
^ Cavity RF Feedback 2 (28-34%)	 2 (1.1) 2	 2

Predistortion 3 (28-33%) 3 (1.2) 3	 3

Feed Forward 5 (15-20%) 5 (1.7) 4	 4

(Post distortion)

Notes:

(1) PA + linearizer mass; does not include weight of solE
thermal, etc associated with efficiency ratings.

(21 Numbers in parenthesis Eire estimated ratios (relative
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All linearization techniques except feed forward are potentially

useful for the Land Mobile Satellite user downlinks. The feed forward tech-

nique is judged to be inappropriate for MSS since its potential linearization

improvements are negated by its need for a second amplifier with attendant

mass and power.

The brute force was used for the yardstick in this evaluation. This

approach is the simplest, requiring no additional linearizer circuitry, and

has the minimum development risk. The required 26 dB C/I could be obtained

with an estimated 24% DC/RF efficiency using the brute force backoff approach.

Depending upon the spacecraft bus chosen and its primary power capabilities,

the brute force approach may well be adequate for the second generation MSS

mission.

The improved EER approach, with envelope feedback, offers the highest

potential overall efficiency (33-50%).	 It is by far the most complex

approach, however, and requires further analysis to verify its feasibility for

handling angle modulation and for operation over a 1.4 MHz channel bandwidth.

A large development effort would be required to achieve a flight qualified EER

unit.

For somewhat less efficiency improvement and much less development,

the RF (cavity) feedback approach appears promising. Predistortion would

yield approximately same efficiency as cavity feedback, and have less

bandwidth restrictions, but requires considerable additional circuitry plus

extensive integration time to tailor each predistorter to its associated PA.

Recommendation for future efforts:
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The following future efforts are recommended to provide the basis for

selecting an MSS linearization approach:

1. Quantitatively evaluate capabilities of cavity feedback - bread-

board amplifier at nominal frequency, bandwidth, output power,

evaluate performance vs cavity bandwidth, amount of feedback

employed, at nominal and max output power levels. Determine

performance under conditions of many input signals - determine if

pre-clipping is necessary or desirable. Compare performance

against brute force performance.

2. Replace cavity feedback with predistorter and repeat tests.

Compare predistorter and cavity feedback performance.

3. Analytically evaluate the improved EER approach in sufficient

detail to verify its feasibility and potential efficiency improve-
i

ments for MSS. Specifically,
	 6

o Model the feedback loops and time delays to assure the required

bandwidth can be achieved.

o Analyze the high-speed switching regulator requirements to	 x

verify that a high-efficiency regulator can be achieved at the

MHz rates required.

o Analyze the performance with angle modulated signals to

determine. if the required C/I performance is attainable with

FM or PM modulation.

7.2	 Brute Force Approach (Backoff)
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7.2.1	 Operation

In terms of RF hardware complexity, the simplest approach to achieve

y	 the MSS linearity requirements is to use a class AB/B amplifier backed off

from saturation. No other linearization techniques arA used; the required

linearity is achieved at the expense of efficiency and resulting spacecraft

power.

This brute force technique provides the yardstick by which the effec-

tiveness of other linearization techniques can be measured. If spacecraft

primary power is not a limiting factor, brute force must also be considered as

a serious candidate due to its relative simplicity and lox development risk.

To assess the DC/RF efficiency of the brute force approach, one must

establish the criteria for acceptable linearity. For the second generation

Land Mobile Satellite, the following requirements are assumed:

Frequency	 880 MHz
Bandwidth	 1.4 Mhz
Average Po	 12-20 watts
Max Po	 3 dB above average
C/31M	 26 dBc (2-tones, equal power)

7.2.2 Performance

FACC has developed and flown a 70-watt 1550 MHz quasi-linc-^r transmit-

ter for the Intelsat V Maritime Communications Subsystem (MCS). This high

power transmitter is designed to accommodate SCPC operations with low inter-

modulation distortion and is sufficiently close to the MSS requirements to use

as a basis for performance predictions. Key performance parameters are:
Frequency	 1540 MHz
RF output power, min
High power	 48.3 dBm (67.6 watts)
Low power	 45.3 dBm (34 watts)

Bandwidth	 7.5 MHz minimum
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0.15 dB
65 dB
20 dB (no damage)
46 deg max
10 deg/dB max
12 dB (max input level, noise power loading)

Passband flatness
Gain
Overdrive
Phase shift
AM-PM transfer
C/IM
DC power, max
High power
Low Power

Operat;Lng Temp.

247 W
132 watts

-10 to +61 deg C

^y

The block diagram of the MCS transmitter is shown in Figure 7.2-1. It

consists of an input limiter/amplifier, driver output, two 40-watt power

amplifiers, and DC/DC converter. 	 It can be operated in the low power

(40-watt) mode using either amplifier. When the high power mode is selected,

both amplifiers are operated in parallel with their outputs combined in a

hybrid. In the low power mode the selected amplifier 's connected directly to

the output port.

The input limiter is a peak clipper used to protect the amplifier

under overdrive conditions.

It should be noted, in using the MCS performance to predict the per-

formance of a brute force PISS transponder, that the MCS transmitter's perfor-

mance is specified in terms of AM/PM conversion, phase shift vs drive, and

noise power loading (NPR) performance - two-tone C/31M is not a specific

requirement and was not necessarily optimized in the design or alignment. The

MCS transmitter C/I performance is therefore somewhat pessimistic compared to

what could be achieved for an MSS transmitter design optimized for C/3IM

performance.

Figure 7.2-2 presents the C/31M performance and DC/RF efficiency vs

output backoff from nominal RF drive for a typical MCS transmitter flight

unit. Performance is given for each of the two 40-watt power amplifier sides.
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It should be pointed out that for the MCS design, the nominal drive is

slightly (approx 0.5 dB) below the single-carrier saturation level:

f
	 At nominal drive, the C/3IM performance is 15 to 15.5 dB and

t

	

	
efficiency is 26 to 28%. C/3IM performance of 26 dB is achieved for both

amplifiers Fit a nominal 3 dB output backoff with corresponding operating

` efficiencies of 20%. This data was taken at room temperature and nominal bus

voltage. A minimum 18% worst-case efficiency is estimated over temperature,

bus voltage variations, and life.

The MCS amplifier design uses 4 parallel transistors, each having a

stage efficiency of nominally 50% at 0 dB backoff. It is estimated that a

similar, 1990 time frame design for a 40-watt, 880 MHz PA could be achieved

with two paralleled output stages, with each stage having a 0 dB. backoff

efficiency of 65%. With the elimination of one output combiner (0.15 dB

improvemc ') and increased stage efficiency, an efficiency improvement factor

of 1.35 would be realized.

Applying this 1.35 improvement factor to the 18% worst-case MCS

performance, an estimated 24% Land Mobile Satellite PA efficiency could be

obtained for a 26 dB C/31M performance using the brute force backoff approach.
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7.2.3 Advantages and Disadvantages

a

0

Brute force linearization achieves the required linearity by simply

using a power amplifier having high saturation output level and backing off

the drive (and RF output power) until the required linearity its achieved.

This approach is simple, reliable, and good for all modulation types.

There are no bandwidth constraints.

Its cey disadvantage is its relatively low efficiency compared to

other linearization techniques.

7.3	 Envelope Feedback (EER)

Modern envelope feedback techniques (e.g., OSCAR 7, Sokal's 1975

patent, HELAPS, etc.) are improvements upon L. Kahn's original 1952 envelope

elimination and restoration (EER) method. Envelope feedback, when properly

implemented, yields a highly efficient and linear system. Its implementation

is quite complicated however, and the system requires careful balancing of

components and control of parasitic influences.

l

7.3.1 Description of Operation

Figure 7.3-1 presents a simplified block diagram of an improved EER

implementation.

-91-



DIFERENTI
AMPLIFIER

AMPLITUDE 
IDETECTOR

ti

AMPLITUDE
DETECTOR

POWER
AMPLIFIER

POWER
OUTPUT ATTENUATOR

TRANSLATOR
(OPTIONAL)

CONTROL
MECHANISM

500390
KEL50039/GMI

I-23-85/GM/MISCt

FIGURE 7.3-tt IMPROVED EER AMPLIFIER BLOCK DIAGRAM.



S

The basic approach is straightforward in theory. The input signal is

split into two paths, amplitude and phase. The phase path is hard-limitr_d to

remove the amplitude information and drives a high-efficiency CW amplifier.

The amplitude path is envelope detected to recover the amplitude information.

A square wave signal operating at several times the highest frequency

component of the Ali envelope in pulse-width modulated by the AM signal. the

PWM signal controls a fast-switching regulator. The regulator output is

filtered to recover the AM signal and then modulates the collector voltage of

the CW amplifier, resulting in an amplified reconstruction of the input

signal. A sample of the amplifier output is AM detected. This signal is then

used in a feedback loop to increase amplifier linearity. In more eiophisti-

cated systems, phase feedback is also provided.

This technique enables the amplifier to be of a high-efficiency

switching type. Efficiency is maintained over the input dynamic range since

the collector voltage is varied, not amplifier input drive.

7.3.2 Performance

An envelope feedback transponder (146 MHz transmit frequency, 50 kHz

bandwidth) was built and flown on the OSCAR 7 amateur radio satellite.

Efficiency and intermod performance are summarized below (ref. 2).

Sokal (ref. 3) has reported efficiencies of 85% and IM levels less

than 40 dB achieved over a voice channel bandwidth at HF (3.9 MHz) using an

improved EER system with a class E rf stage and a switching regulator

modulator.
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King (ref. 4) states that Skylink, using a proprietary HELAPS

technique, can achieve an efficiency of 33-459 for high-power 800 MHz tran-

sponders with 30 dB C/I ratios.



Table 7.3-1. OSCAR 7 Efficiency and C/I Performance

Power

Drive Pout Consumption Efficiency

0 dB 11.2 W 25.3 W 44%

-3 dB 5.6 W 13.2 W 42%

-6 dB 3.0 W 7.5 W 40%

-10 dB 1.2 W 3.6 W 33%

Intermodulation during

two-tone test

3rd order - -34 dB

5th order - -40 dB

(referred to 11.2 W)
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t`	 Advantages:

The improved EER approach offers extremely high efficiency compared to

other linearization techniques. The technique is flight-proven in the 146 MHz

band (OSCAR 7)• Efficiencies of 30-50% at 800 MHz with C/I ratios of 30 dB

are potentially available.

Disadvantages:

The approach is extremely complex, requiring:

o high efficiency RF power amplifier design;

o high efficiency switching regulator having a fast output response

over the AM envelope bandwidth (2-3 times the channel bandwidth, or

in excess of 3 MHz). This poses a challenging design problem;

o critical matching of circuit elements, e.g., detectors;

o careful control of parasitic elements (delay differences through

amplitude and phase channels, phase lags in switching regulator,

tracking of system responses over dynamic 'range, etc.).

In addition, most of the available data is for narrow-band AM and SSB

systems. Further investigation is required to determine what performance

could be achieved for angle-modulated signals or for the 1.4 MHz wide MSS

channels.

7.4	 Feedforward
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Feedforward was first conceived by H.S. Black in 1924. Harold Seidel

of Bell Laboratories investigated and experimentally verified its effective-

ness in improving amplifier linearity starting in the late 60 t s (references

5,6). The feedforward technique does not use feedback, so RF transit time

delays are not important, and amplifiers with long transit times, e.g., TWTAs,

can be effectively lineari-ed over wide bandwidths. The feedforward approach,

however, requires two amplifiers instead of one, in addition to couplers and

delay lines with tight requirements, so it is relatively , unattractive for

space applications.

7.4.1	 Description of Operation

Figure 7.4-1 presents a simplified block diagram of a single-stage

feedforward control system. 	 The input signal. is split into two paths. One

path drives the main amplifier. A sample of the amplifier output, at a level 	 <

of 1/G, where G is the main amplifier gain, is fed to one input of a 	 i

comparator. The other input to the comparator is the input signal (from the

other output of the input splitter), which has been delayed by a factor, T1,

equal to the time delay of the main amplifier.

1
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Any non-linearity (amplitude or phase)	 introduced by the main

'
amplifier is output by the comparator as an error signal. This error signal

is then routed through the auxiliary (error) amplifier. The auxiliary

amplifier has the same gain as the main amplifier. Thus, its output is an

error signal equal in magnitude and phase to that of the distortion in the

main amplifier output. (Since th^.3 auxiliary amplifier is only handling the

error signal, it is operating in a linear mode and introduces only very small

errors due to its nonlinearities.)

The output from the auxiliary amplifier is then subtracted from the

main signal in an output coupler. A second time delay, T2, is introduced

between the main amplifier output and this coupler to compensate foi the time

delay of tht ?auxiliary amplifier.

The resultant output signal has only residual low-level error

(distortion) products due to the nonlinearity of the auxiliary amplifier and

the unbalances of the system couplers.

7.4.3 Performance

Seidel has demonstrated 31M reductions for a 20 MHz 'bandwidth, 4 CHz

TWTA amplifier of over 38 dB using feedforward linearization. These results

were time independent over several months, demonstrating the inherent long-

term stability of the feedforward technique (6). However, his experiments

were performed on an amplifier already working in a very linear mode, so it is

unclear how this directly applies to increased DC/RF efficiency for a given

C/I performance.

E
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ELAB of Nurway has performed experiments with similar feedforward

techniques on a 4 GHz TWT amplifier for satellite communications. Bakken (7)

sPu»s data indicating that a feedforward TWT amplifier can be operated 4 dB

closer to saturation relative to a single TWTA and achieve P6 dB C/I

performance. Again, however, it is difficult to determine from his paper the

relative DC/R1' efficiency of a feedforward configuration compared to a single

amplifier.

7.4 . 4 Advantages and Disadvantages

The feedforward approach involves no closed loops, so it is uncondim,

tionally stable. Since feedback is not used, amplifier time delays are

unimportant, and the approach can be used with devices such as TWTs over wide

bandwidths. Although an additional amplifier is involved, the implementation

is relatively simple.

The key disadvantage is that an additional amplifier, of essentially

the same performance as the main amplifier, is required. This additions„l

amplifier, with its attendant mass and power, makes the feedforward 'approach

relatively unattractive for space applications.

7.5	 Predistortion

Linearization by predistortion introduces a nonlinear distortion into

the power amplifier input signal path. This predistortion is complementary in

phase and amplitude to the PA's nonlinearity, yielding an overall transfer

function with improved linearity.

i



f4.r

r

i
i

EI

Considerable study and experimentation has been performed in recent

years toward the use of predistortion linearizers for broadband satellite

power amplifiers [ 7-12) and ground-based SSB microwave amplifiers [13-14).

This high level of interest in the predistortion linaArization approach stems

from the following:

o No feedback loops are involved, so significant linearity improve-

ment is possible over wide bandwidths.

o The predistortion approach enables use of existing PA designs

(primarily TMs in current satellite designs, although PET SSPAs

are becoming more commonplace), so relatively low development risk

is involved in adding a predistortion linearizer.

7.5.1	 Description of Operation

Overall design approach

The steps followed in linearizing a PA using predistortion are typi-

cally as follows:

First, the nonlinearities of the ;4r3r amplifier are characterized.

This characterization is typically based on the amplituao and phase char^a-

teristics of the PA vs drive. 	 Figure 7.5-1(a) illustrates the typical

amplitude and phase characteristics vs drive of a microwave TWTA amplifier.

As the input drive approaches saturation, the gain is compressed and the phase

shift increases.

-101-

s-a



kr ­.^ 74719tNP
it 

V. t

Next, a predistortion network is synthesized which introduces a com-

plementary nonlinearity to the input signal, is, an expanding gain and

decreasing phase shift (phase lead), as shown in Figure 7.5-1(b).

The predistortion network and PA are then integrated. The predis-

torter !o aligned and compensated, including temperature compensation, to

maximize the overall transfEr linearity (specifically, to minimize the output

backoff required to achieve the required C/31M ratio). Figure 5-1(c) and

7.5-1(d) illustrate the resulting overall amplitude, phase, and C/31M

characteristicE.

Predistortion network

The predistortion network (see Figure 7.5-2a) consists of the follow-

ing elements: Input power eplitter, a linear arm containing a time delay

element (phase shifter) and attenuator, a non-linear arm containing the dis-

tortion generator, and an output hybrid combiner. Other components may

include temperature compensation networks, an output . amplifier to make up the

loss through the network, a soft limiter (primarily used with TWT amplifiers

to control overdrive), and PA phase/amplitude equalizers.

The typical network functions as follows:

The nonlinear arm contains a distortion generator. This may consist of

a Shottky diode attenuator, FET attenuator, FET amplifier, bipolar amplifier,

or other nonlinear circuit wh.lch simulates at low signal levels the amplitude

and phase characteristics of the power amplifier to be linearized. The gener-

ator output is combined with the linear output in a hybrid combiner. The

phase relationships of the two inputs to this combiner are such that the
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resulting output has the desired inverse characteristics of the power
	 w

,

amplifier (refer to Figures 7.5-2b and 7.5-2c).

The other components which may be used (eg, output amplifier, limiter,

equalizers) depend upon the channel requirements and type of amplifier being

equalized. For the MSS application (relatively narrow bandwidth, solid- state

power amplifier), these would probably not be needed.

7.5 . 2 Performance

Most of the available performance data relates to C or Ku-band satel-

lite PAs, so the absolute efficiencies achieved are not directly applicable to

the MSS. However, the improvement achieved in terms )f how closely the PAs

could be operated to saturation and still a..hieve high C/I ratios is

relevant.

Figure 7.5-3 presents the results obtained by ANT-Germany using a 4

GHz FET PA with predistortion [111. This work, performed for Intelsat, used a

single stage FET amplifier as the linearizer. The figure compares the

linearized FET PA with an unlinearized FET and a typical 4GHZ TWT amplifier.

The linearized FET amplifier achieved C/I ratios in excess of 30 dB when

operated at 3 dB output backoff. By comparison, the unlinearized FET required

6 dB output backoff to achieve similar performance, while the TWTA required 10

dB backoff. The DC/RF efficiency for the linearized FET amplifier was twice

that for the unlinearized FET for a 30 dB C/I performance.

Other experimenters report similar improvements in C/I performance vs

output backoff. Kumar and Whartenby of RCA [91 report a 30 dB C/I performance

at 2.5 dB backoff of a 12 Ghz TWTA using a dual-gate MESFET attenuator as the
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_oI generator. Bremerson, at al, of Thomson-CSF demonstrated

similar performance on a 13 -watt Q GHz TWTA using a Shottky barrier diode

network in the linearizes.

7.5.3 Advantages and Disadvantages

The predistortion linearizer has several potential advantages for

satellite operations. No closed loops are involved, so bandwidth is not

constrained. The linearizer is separate from the PA, so the latter can be

developed somewhat independfntly. The linearizer design is relatively simple,

and it adds little mass and power to the spacecraft.

Key disadvantages of the predistortion linearizer is the extreme care

required for alignment of phase and gain, and the need to individually marry

each linearizer to its associated PA. Also, long-term stability of the PA and

linearizer require evaluation to assure that long-term drifts do not degrade

performance.

7.6	 Cavity Feedback

To be effective, an RF feedback approach must

(1) be applied around several gain stages (30-40 dB open-loop amplifier

gain) so that adequate gain remains in the closed-loop mode.

(2) band-limit the feedback path so that the loop gain falls below

unity before the phase cross-over frequency is reached. (3) have

small amplifier time delays in order to achieve usable bandwidths.

RF feedback is normally dismissed as a potential linearization tech-

nique for satellite transponders due to its inherent narrow-br^ndedness, par-
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.ten TWT amplifiers are used. However, Sor the MSS application,

with its relatively narrowband channels (1.4 MHz) and solid-state amplifiers

with low time delay, RF feedback becomes an attractive linearization

candidate.

7.6.1	 Deecription of Operation

R. Place [1] has presented an RF feedback approach using a high-Q

cavity resonator in the feedback path to limit the feedback bandwidth so that

the loop gain falls below unity before the phase cross-over frequency is

reached, assuring stable operation. Figure 7.6-1 shows an illustration of

this approach. (In the figure, the cavity is shown in the output path. If it

has excessive loss for this location, a low-loss directional coupler can be

used at the amplifier output and the cavity located at the amplifier input or

in the feedback path).
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Figure 7.6-1 Cavity Feedback Implementation

The amplifier output in this configuration is given by

e  =	 AC	 e i +	 1	 eim.	 (1)
-T-+=C	 -T + ASC

The desired output is reduced by the factor C/(1+ABC) while the IM is

reduced by the factor 1/(1+ABC). 	 Thus, the IM improvement achieved is

approximately equal to the gain reduction from the applied feedback.

Derivation of required cavity bandwidth

The required cavity bandwidth is determined by the amplifier time

delay, T, and the amount of feedback applied. The bandwidth must be suffi-

ciently narrow so that the open-loop gain falls below unity at the phase

crossover frequency. The phase crossover frequency, f c r is found by

Phase = 360(fc )T + tan-1 (fc/BW)	 (2)
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where T = Ta + Tb

= total time delay through the amplifier and feedback path

BW = resonator 3 dB bandwidth

Assuming a 45 degree phase margin, the allowable phase shift is 135 degrees.

i
Noting that the phase shift through the resonator must approach 90 degrees at

the crossover frequency (since the resonator must provide significant attenua-

tion at this frequency), eq (1) is then solved for the crossover frequency by

135 = 360(fc )T + 90

fc = T/B
	

(3)

The open loop gain must drop to unity or less at this frequency.

That is,

1 = ABC

abc
Ti
	
£c/BW)2)1/2

By manipulating,

BW =	 2f	 (4)
c

((abc)2-1)1/2

Substituting eq(3) into eq(4), we obtain the required cavity bandwidth as

BW =	 1	 (5)

4T((abc)2_1)1/2
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7.6.3 Performance

Eq (5) expresses the required cavity bandwidth as a function of tl,.e

amplifier time delay and open-loop gain. Recalling that the IM reduction is

also a function of open loop gain (in dB, IM improvement = 20 log (1+ABC),

Place has plotted the required cavity bandwidth vs time delay and IM
e

improvement. (Sse Figure 7.6-2).

i

i
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FIGURE 7.6-2 REQUIRED BANDWIDTH VS
TIME DELAY AND C/I IMPROVEMENT
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From Figure 7.6-2 it can be seen significant IM reduction can be

•	 achieved using a narrow cavity resonator in a negative feedback loop. For

+	 example, a 3-stage UHF amplifier may be expected to have a 40 dB gain with a

time delay in the order of 20 ns or less. 	 By using a 2.77 MHz bandwidth

cavity resonator in a negative feedback configuration, approximately 15 dB IM

improvement could be achieved across the 1.4 MHz MSS channel bandwidth.

s	 Greater improvements can be achieved with narrower bandwidths or less

a
amplifier time delays. It should be noted that, if the bandwidth is narrowed

too much more, it will begin to affect the channel passband response. Also,

the amplifier gain will be correspondingly reduced as IM performance is i

improved, requiring additional gain stages ahead of the feedback loop.

7.6.4 Advantages and disadvantages

Advantages

Simple implementation The cavity feedback approach is straightforward and

simple to implement. No critical phasing or matched detectors is required.

Modern dielectric resonator technology enables achievement of the required

narrow resonator bandwidth in a small volume and with extremely stable tem-

perature performance. FACC has qualified and flown dielectric resonators with

Qs greatly in excess Pf those required for this application.

Versatile. Unlike other approaches, eg, HELAPS, the feedback approach is

relatively insensitive to dynamic range and type of modulation employed.

Unconditionally stable. The narrow-band resonator in the feedback loop

provides unconditional stability.
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Disadvantages.

Cain redaction. The amplifier gain is reduced by the IM improvement obtained,

so 1-2 additional low-level gain stages must be added to make up this gain.

This is a relatively minor impact.

Time delay control. In order to achieve effective usable bandwidth, time

delays through the amplifier and feedback path must be controlled to be on the

order of 20 no or less. With broadband UHF solid-state amplifiers, this

should not be a problem.

Mass. A moderate (C 1 kg) mass increase is required due to the additional

dielectric resonator.
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