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Abstract

This report is concerned with the derivation of the equations of

motion for the Spacecraft Control Laboratory Experiment (SCOLE). Ior

future reference, the equations of motion of a similar structure

orbiting the earth are also derived. The structure is assumed to

undergo large rigid-body maneuvers and small elastic deformations. A

perturbation approach is proposed whereby the quantities defining the

rigid-body ma.ieuver are assumed to be relatively large, with the elastic

deformations and deviations from the rigid-body maneuver being

relatively small. The perturbation equations have the form of linear

equations with time-dependent coefficients. An active control technique

can then be formulated to permit maneuvering of the spacecraft and

simultaneously suppressing the elastic vibration.
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1.	 Introduction

We shall first derive Lagrange's equations of motion for the

spacecraft of Fig. 1 regarding the structure as orbiting about the earth

and then modify these equations so as to describe the laboratory

experiment.	 In the derivation, the shuttle is treated as a rigid body

and the beam and antenna as flexible, distributed parameter systems.

The equations of motion can be further modified for the case of a rigid

antenna.

The equations describing a maneuver of a rigid space structure,

consist of nonlinear ordinary differential equations. 	 On the other
i

+	 ")

hand, the equations describing the small elastic displacements of a I	 J

flexible structure, relative to the rigid-body maneuver are linear
I

j

partial differential equations.	 Hence, the complete equations of motion

describing a flexible bogy during a maneuver represent a set of
I	 '

1

nonlinear hybrid differential equations.

Hybrid systems possess an inf i . ,, i. n number of degrees of freedom. j

In practice, however, it is necessary to reduce the number of degrees of

freedom to a finite one, which implies spatial discretization and

truncation.	 Substructure synthesis often provesy	 p	 es 	 as a method of
i

discretization and	 truncation,	 particularly	 in the case of di-•'•ibuted

substructures.	 Even in the case of discrete substructures,	 et of

linearly independent vectors can be used as admissible vectors to reduce

the number of equations of motion.

In this report, we propose a perturbation technique whereby the

flexible spacecraft maneuver is assumed to consist of a combination of a

rigid-body maneuver and small motions including rigid-body deviations

from the rigid-body maneuver and elastic vibrations. 	 Regarding the
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rigid-body maneuver as known, the perturbation equations for the

vibration control reduce to a set of linear ordinary differential

equations with known time-varying coefficients.

2. Equations of Motion of the Spacecraft

It is convenient to refer the motion of the spacecraft to a given

reference frame xOyOz0+ where the frame can be regarded as being
i

	

embedded in the rigid shuttle. The reference frame has six degrees of 	 !,

freedom, three rigid-body translations and three rigid-body rotations.

We propose to derive the equations of motion by means of the

Lagrangian approach. To this end, we must first obtain expressions for

the kinetic energy, the potential energy and the virtual work.

Considering Fig. 1 and denoting the position of the origin 0 of the

frame xOyOz0 by the vector R and the position of a point S in the

shuttle relative to 0 by r, the position of S relative to the inertial

frame XYZ is RS = R + r. Moreover, denoting by a the vector from 0 to a

nominal point A on the appendage and by u the elastic displacement

vector of the point, the position of A in the displaced configuration

is RA = R + a + u. It must be noted that the vectors r, a and u are

likely to be measured relative to axes x0y0zo. In view of the above,

the velocity of a point S in the shuttle is

R S = R + w x r
	

(1)

where R is the translational velocity and w is the angular velocity of

the frame x O yOz0 with respect to the inertial frame. Similarly, the

velocity of a point A in the appendage is

RA =R+w x (a+u)+u
	

(2)	 1
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where u is the elastic velocity of the point relative to the xOyOz0

frame. Hence, the kinetic energy of the spacecraft is

T.
	

m	 mI f IRS 12dmS + ^ f IRA I'dmA

	

S	 A

=2 f 1R+wx rl 2dmS +2 f IR+wx (a+u)+ul2dmA

	

m
s

	MA

	

2 mIRI2 +	 J,	 + R•(w 
x S.	 + 2 

f 1u12dmA

	

"	
MA "

+ R•[f u dmA + w x f u dmA ] + f ll • (w x a)dmA

	

" MA"	

"	

MA"	 MA"

+ f (w x a) • (w x u)dmA + z f Iw x u12dmA

	

MA "

	 "	 "	 "	

MA "

+ f u • (w x u)dmA	(3)

MA"

where

SO = f 

ms 

r dmS + f a dmA	(4)

	

"	 mA

and mS , mA and m are the masses of the shuttle, appendage and entire

spacecraft, respectively. Also, I 0 is the total mass moment of inertia

matrix of the undeformed structure about point 0. Note that 1x12

denotes the inner product x•x.

The potential energy is due to the combined effects of gravity and

strain energy. Assuming that the origin of the inertial coordinate

system coincides with the center of the gravitational field, the

gravitational potential can be expressed as

Vg = - Gme [f 1R + rJ -1dmS + f 1R + a + uj -1dmA ]	 (5)ms "	 ..	

MA

3
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where me is the mass of the earth and G is the gravitational constant.

The strain energy can be expressed as an energy inner product

symbolized by [ , i (Ref. 1). The total potential energy then becomes

V = 2[u,ul + V9	 (6)

The virtual work is due to external forces, including control

forces. Denoting by f S the force vector per unit volume of the shuttle

and by fA the force vector per unit volume of the appendage, we can

write the virtual work as

6W = f  fS •6RSdDS + f0 EA' 6RAdDA	 (7)
S	 A

where DS and DA are the domains of the shuttle and appendage,

respectively.

Before deriving the equations of motion, we consider certain

simplifying assumptions. To this end, we estimate the maximum possible

angular velocities by ignoring the effects of the appendage and

examining the prescribed maneuvers of the shuttle alone. For the 200

maneuver about the x 0 axis, applying maximum torque, the maximum angular

velocity is approximately .06 rad/s. For the 90 0 maneuver about the z0

axis the maximum angular velocity is .047 rad/s. If the elastic

displacements are small, then the last two terms of Eq. (3) are of

higher order and can be neglected. The third to last term of Eq. (3)

will be retained, despite leading to nonlinear terms, because the

magnitude of the factor multiplying the independent variables u and

w tends to offset the smallness of the independent variables. Next, we

express the elastic displacements in the form of linear combinations of

admissible functions, or

4
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u=o9 (8)

where o is a matrix of space-dependent admissible functions and 9 is a

vector of time-dependent generalized coordinates. Introducing Eq. (8)

into Eq. (3) and neglecting the last two terms in Eq. (3), the kinetic

energy takes the matrix form

T = 2 mRTR + 2 wTI0 + RTCTSOw + 2 9TMA9

+ RTCToq + RTCTwTog + jTm Tw + u,Tf a%To dmA9
MA

where

(9)

m = f o dm A' $T = f 01'a dm 
M
A	MA

and

(10a,b)

MA= f oTo dm 	 (10c)
mA

is the mass matrix of the appendage. The symbol C represents a rotation

matrix from the inertial frame to the x 0y0z 0 frame and its elements are

nonlinear functions of a set of Euler angles a. The tilde over a given

vector such as v denotes a skew symmetric matrix of the form

0	 vz -vy

v = - v z	0	
v 
	 (11)

vy -vx	0

Recognizing that the magnitude of R is large and u is small in

comparison with the other vectors in Eq. (5) and ignoring terms of order

higher than three, a binomial expansion permits us to write

Vg = - Gme (mIRI -1 - R•(SO + f u dmA)I R I -3 J	 (12)MA-

5
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Introducing Eq. (8) into Eq. (6) and considering Eq. (12), the potential

energy can be written in the matrix form

Gm m Gm

V 2 9TKA9 -
	 + e3 RTCT(Sp+̂ ^)	 (13)

i	 IRI

where

KA = 10, 01	 (14)

is the stiffness matrix of the appendage. The virtual work can be shown

to have the expression

dW = FTCsR + MTsa + QT69	 (15)

where

F = f  f S dDS + f0 EA do 
S	 A

M = f jfS dDS + f aTfA dDA + f EA -D dDA 	(16)-	

DS _

	

DA	 DA

Q = 1  j fA dDA

A

o.re generalized force vectors in terms of components about x 0 ,y0 and z0.

Without loss of generality, we let point 0 correspond to the center

of mass of the spacecraft'in its undeformed state, so that the vector

SO is zero. Then, Lagrange's equations of motion can be written in the

symbolic form

dt (,T) + aR = C
T F	 (17a)

aR

d ( aT ) _ aT + 9V= M
	 (17b)

dt 
as	

2a	 as

Ft ( â ) - ag + ag = Q	
(17c)

6
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so that, considering Eqs. (9), (13) and (15), the equations of motion

for the spacecraft in orbit are

_„	 mR	 CT—^ R(3RTCTog)	 T

mR + CT Mg + Gme [R3 
+ IRI3 -

	 IRIS	 [ = C F	 (18a)

IGw + w IGw + [CR[mg + icy + wT$g + J(w)q + J(w)9

Gm	 _
+ wTJ(w)g + IRi3 (CR	 (18b)

—T "	 T•	 T-T-	 Gme —TMAg + CR + m w + KAY + f	 w a dmAw + 3 m CR = Q	 (18c)

M 	
IRI

where

N

J(w) = f (K + [aw])m dmA	 (18d)

MA

Higher-order terms have been neglected in Eq. (18b), consistent with the

preceding discussion concerning the magnitude of the maneuver angular

velocities. However, as before, nonlinear terms with 1%.rge

coefficients, such as Io and am 
A' 

have been retained. The position

vector R, its time derivatives, and the Euler angles vector a have been

considered to be of arbitrary magnitude, with the result that many other

nonlinear terms have been retained in Eqs. (18).

3. Equations of Motion for the Laboratory Experiment

In the laboratory experiment, the spacecraft is not actually free

In space, but suspended from the ceiling by means of a cable or a

beam. The following analysis applies to either case. The support is

likely to affect the dynamic characteristics of the system. Hence, in

the sequel, the support is added to the free model in the form of an

elastic member.

7
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Considering Fig. 2 1 the position vector fur an arbitrary point C on

the cable is RC - c + w, where c is a position vector and w is the

elastic displacement of the cable, both of which are measured with

respect to the inertial frame. The position vector for the point 0 is

R=c8 +w8 +e	 (19)

where the subscript B denotes evaluation at the point B and a is the

vector from point B (ball joint) to the point 0 fixed on the "shuttle",

measured with respect to the x Oy0Z0 frame. The velocity vector of an

arbitrary point C on the cable is then

RC =w 	(20)

and the velocity of point 0 is

I
R =wB +w x e	 (21)

The kinematics for the shuttle body and appendage remain the same as for

the unrestrained spacecraft in space. Hence, the kinetic energy for the

entire structure is

T = Z f IRCl 2dmC + p fI RS I 2dm s + z f IRg12dmA
mC	mS	 mA

= 2 f 1w12 dm + 2 f Iw8 + w x (e + r)I2dmS

m 
	

m 

+ 1 f IwB +w x (e+a+u) +612dmA
m 

	 "	 "

= z f 1w12 dm+ 2 mli1
2 + 2 wTIBw

mC

+ wOT x S B ) + (w x e)-(w x S B ) + 2 f 161 2dmA"	 "	 "	 mA "

+ wB ' f u dmA + (w x e) -f u dmA
m 
	 MA"
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+ j U • (w x a)dmA + f (w x a)-(a x u) dmA	(22)
MA"
	 MA

where

I  Y I D + meTe, SB - SO + me	 (23)

The elastic displacement vectors u and w have been assumed to be

small. Also, the angular velocity was assumed to be, at most, of the

same order of magnitude as in the case of unrestrained spacecraft, so

that terms of higher order can once again be neglected.

The expression for the virtual work is given by Eq. (7), but the

potential energy must be modified. The acceleration of gravity will be

assumed to be constant and can be expressed as 2 _ - gu Z so that the

gravitational potential is

V9 = f (c + w)•9 dmE + f (R + r)•2 dmS + f (R + a + u)-9 dmA
mC _	 -	 mS	 -	 mA 	

(24)

where R is defined by Eq. (19) and u Z is a unit vector in the Z

direction. The elastic potential energy for the system can be expressed

as

VE = 2 [u,u] + 2 (w,w] 	 (25)

where [w,w] is the energy inner product for the cable, which includes a

stiffening effect due to the weight of the "spacecraft". Because a

cable has little inherent bending stiffness, this effect can be

significant.

As with the appendage in the preceding section, the elastic

displacement of the cable can be approximated by a linear combination of

admissible functions, or

9
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W • in	 (26)

where ^ is a matrix of space-dependent admissible functions and n is a

vector of time dependent generalized coordinates.' Introducing Eqs. (Q)

and (26) into Eq. (22) 9 the kinetic energy takes the matrix form

T n 1 ;TM - +	
B-

1 wT I w + nTVTC B- 	 0-
TS w wT-T- w f I TM + ry^T JC Tog

'
C- '^ -	 B	 -	 A9	 B

T-T	 T-T	 T	 T-T+ w e og + 9 v w+ w f mAa w 0 dm 	 (27)

where	 r

MC = f jo dmC + m^VBV B 	(27a)
mC

is the mass matrix of the cable, including the mass of the structure
t

lumped at the end of the cable. 	 y 8 denotes the matrix 0 evaluated at

b. Introducing Eqs. (8) and (26) into Eqs. (24) and (25) the potential

energy can be written in the matrix form

k	 ^

T—T	 T	 T T	 7 T	 1 T	 1 T
n	 + SBC^ + mn ^B^ +	 C2 + 2 g KAg + 2 n KC n	 (28)

where

= f i dmC	(29a)
mC

and

KC	 (29b)

is the stiffness matrix of the support. Considering Eqs. (19) and (25),

the virtual work can be expressed as

6W = FTC 6n + MTda + QTsq
	

(30)

10
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where all the terms have been defined previously. The effect of the

friction of the ball ,joint can be assumed in the form of an external

torque. Hence, we let M = M c + M  in Eq. (30), where M c is a vector of

control moments and Mf is a vector of frictional moments caused by the

ball Joint.

Without loss of generality, we assume that point 0 is the center of

mass of the spacecraft, so that S O is zero. For the laboratory

experiment to be successful the vector a must be very small, so that the

center of mass 0 tends to coincide with point B. This is difficult to

accomplish in practice due to the friction of the ball Joint and the

difficulties of dynamically balancing a large flexible structure.

Realistically, we can expect a to be small but nonzero. Hence, for

simulation purposes, we choose a to be small, so that the kinetic energy

of Eq. (27) can be approximated as follows:

T = 2 nTMC n + 2 wT I Ow + mn T^UBCTew + 2 9TMAq
gT*BCTOS + t§Tj. + wT f JT To dmA	 (31)

"
	

MA

Lagrange's equations remain in the symbolic form of Eqs. (17), with

the exception of Eq. (17a) which must be replaced by

d ( DT ) + IV = O
TC TF	 (32)dt 

an	
aq	 B

This results in the following equations of motion for the laboratory

experiment:

MCn + mUBC%Tew + mjCTew + ^ TCTo- + (m UT + T)^ + Kcn = JCTF"	 "	 B "

(33a)

I Ow + wT I Ow + 09 + Jjj + J(w)q + J(w)§ + wTJ(w)q

F	 '.

11
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+ J%qm + (C2 1(em + mg) = M	 (33b)

Mg + mTw + 'TC*Bn + f 0TwTa dmA w + mTC^ + K^ = Q	 (33c)

- MA

Higher-order terms have been neglected and some nonlinear terms retained

in Eq. (33b), consistent with the case of the spacecraft in space. In

this case, the Euler angles vector a is assumed to be of arbitrary

magnitude, which is responsible for many nonlinear terms in Eqs. (33).

4. Simulation and Contr ol

The nonlinear equations of motion take the same basic form for the

orbiting spacecraft as for the laboratory experiment, as can be seen

above. Hence, the'solution techniques suggested here apply for both

situations.

Consider a first-order perturbation in the vectors R and w.

R=Ro +R 1 , w=w0 +w 1 	 (34)

where the first-order terms R 1 and w 1 are small compared to the zero-

order terms Rot wp. introducting Eqs. (34) into the nonlinear equations

of motion, Eqs. (18) or (33), we obtain zero-order and first-order

equations. The zero-order solutions RO and wo can be obtained from an

open-loop, rigid body maneuver strategy. These solutions can then be

inserted into the first-order equations yielding linear equations with

known time-varying coefficients. Simulation requires numerical

integration. The equations can be put into their most compact form by

approximating the first-order motion by means of a linear combination of

eigenvectors corresponding to the lower frequencies. A control

technique suppressing elastic vibration as well as rigid-body motion

12
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that deviates from the desired maneuver, can also be formulated

considering the equations in this compact form.

5. Conclusions

The equations of motion for the structure both in orbit about the

earth and in the laboratory are nonlinear, even when the elastic

deformations are small. The nonlinear terms result from the large

rigid-body maneuver. For instance, centrifugal and Coriolis terms

affecting the elastic displacements can be significant in a minimum-time

maneuver, so that they must be retained in the equations. Through a

perturbation approach, the nonlinear equations of motion can be

transformed into a set of equations governing the rigid-body motions and

a set of time-varying, linear equations governing small deviations from

the prescribed rigid-body maneuver and elastic motion. Future work will

Include applying this perturbation approach to the above equations of

motion for use in both simulation and control of the structure.
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Figure 1 - SCOLE Configuration
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Figure 2 - Laboratory Model
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