
SIGNAL mALYSIS TEeWNIQUES 
FOR INCIPIENT FAILURE DmETION 

IN TURBOrnCETINEIP'4e 

Thomas Coffin 
Hyle Laboratories, Huntsville, Wla. 

Abstract 

This paper reviews the status of an investigation 
to develop, implement, and evaluate signal analysis 
techniques for the detection and classification of 
incipient mechanical failures in turhachinery, 
Signal analysis techniques available to describe 
dynaanic measurement characteristics are reviewed. 
Time domain and spectral methods are described, and 
statistical classification in terms of mments 1s dis- 
cussed. Several of these waveform analysis techniques 
have been implenented on a coquter and applied to 
dynmic signals. A laboratory evaluation of the 
methods with respect to signal detection capability is 
described. Plans for further technique evaluation and 
data base developanent to characterize turhpmp incip 
ient failure modes from Space Shuttle main engine 
(SSME) hot firing measurements are outlined, 

Although little can be done to anticipate mechaw- 
ical failures which exhibit very short periods of 
g~owth, most failures are preceded by growing toler- 
ances, imbalance, bearing element wear, and the like, 
which may manifest themselves through subtle mdifica- 
tions in the waveform observed by dynamic measure- 
ments. Incipient failure detection is based on 
observing and recognizing measurable phenmena that 
occur as a result of nminal system operation and 
those associated with cmponent degradation, The 
techniques are analytical, but their application is 
necessarily empirical, based on correlation between 
derived signature characteristics and observed 
mechanical condition. 



Turbomachiner y malfunction may result from a 
rider of distinct failure modes such as turbine blade 
wear or bearing element fatigue. Each of these mecha- 
nisms may be eqected to influence the waveform or 
spectral content measured by a transducer in a some- 
what different fashion. Thus, it is clear that a 
single best signal analysis technique or indicator is 
not to be expected for system condition monitoring. A 
series of tests, each designed to detect a given 
failure mde, is therefore desirable, 

The Space Shuttle main engines have and are pres- 
ently undergoing extensive hot firing tests at which 
time vibration measurements on the high pressure fuel 
and oxidizer turbopumps are acquired. Thus, a wealth 
of vibration data is available from these components 
under widely varying operational conditions. Under 
contract with NASA/MSFe, Wyle is investigating tech- 
niques of analyzing these data to indicate SSm coanpo- 
nent condition. 

Revim of the literature on machinery condition 
diagnostic methodologies indicate approaches employ- 
ing thermal, chemicall fetallographic, and vibration 
analysis techniques. ' This discussion is limited 
to the assesment of mtion detected by a transducer 
fixed to the machine during operation. (Appropriate 
sensor selection and location is not a trivial con- 
sideration with respect to component fault detection.) 
Historically, the most comon diagnostic approach has 
been to detect and track the root-mean-square vibra- 
tion level (displacement, velocity, or acceleration) 
as an indication of machinery condition. Performing 
the sme analysis in separate frequency bands provides 
some improvement in fault identification since gross 
failure modes, such as imbalance, may show up at well- 
defined frequencies with respect to the synchronous 
speed, Signature analysis techniques thus fall 
naturally into two categories, time domain methods and 
characterization in the frequency domain. Several of 
these techniques presently under evaluation are next 
described, 



Time Domain Methods 

Time Domain Averaging. This lnethod is a well- 
known technique for extract' g4 eriodic signals from 
noisy or complex waveforms. The procedure can be 
explained by assuming a given signal x(t) is the sum 
of a periodic component p(t), and additive noise, 
nlt) : 

By summing one time slice of x(t) with another but 
delayed one period later than the previous, the 
periodic component will add coherently, and the noise 
component, if uncorrelated, will not. After N addi- 
tions of the signal with itself, the time domain aver- 
age signature, D (t) r may be expressed as 

This process is equivalent to a comb filteg in the 
frequency domain as illustrated in figure 1. As the 
nmber of replications increases, so does the sharp- 
ness of the main lobes and attenuation of nonharmonic 
frequencies. The TDA method has been effectively 
applied to large rotating machinery evaluations, and 
implementation on a small computer is quite direct. 
It is noted that the process is coherent, requiring 
that the period of the signal to be extracted be known 
or assumed. 

Random Decrement Analysis. The response of a 
structural dynamic system is a function of both the 
applied loading and system properties. Changes in 
system characteristics such as modal frequencies or 
darnping may be indicative of component degradation. 
The so-called random decrement signature has been 
applied extensively to the extraction of structural 
system clyyicteristics in the presence of complex 
loading. "he procedure is similar to the TDA 



method described above in that the measured signal is 
repetitively shifted and added to itself: 

However, in the present case, the time delay 
between successive segments, tn, is no longer a fixed 
period but is determined by the amplitude and/or slope 
of the signal attaining specified values. The most 
popular choice in defining a trigger level for acquir- 
ing successive samples is to simply specify an ampli- 
tude threshold, xs (such as the rms value of the sig- 
nal), at which time each segment is initiated, giving 

tn = t when x(t) = x s . 
Figure 2 illustrates the evolution of a random 

decrem~nt signature from a complex response measure- 
ment. An advantage of the randomdec method is that 
system characteristics need not be known a priori. As 
structural flaws or cracks develop in a component, the 
altered structural character istics will modify the 
randomdec signature, providing an indication of psssi- 
ble incipient failure. 

Characterization by Moments. If our measurment, 
x(t) , be assumed a representative smple function 
drawn from a stationary process, statistical mments 
can be estimated in terms of time averages: 

The first two moments are the familiar mean and vari- 
ance, respectively. Note that if the signal is swmS 
metric about the mean, all odd order moments are zero, 



Of special interest is the normalized fourth moment, 
or kurtosis coefficient: 

2 
R = m4/m2. 

Similar to the peak/rms ratio, the kurtosis pro- 
vides an indication of the spread of the distribution, 
nee. the proportion of extreme values with respect to 
the rms level. For example, 

K = 1, square wave 
R = 1.5, sine wave 
K = 3, random signal with Gaussian amplitude 

distribution 

Bearing faults or seal rubs often cause intermit- 
tent contact over a fraction of a revolution of the 
machine. The onset of such behavior therefore imparts 
an impulsive nature to a measurable signal, which may 
be detected as an increase in the kurtosis coeffi- 
cient. Since the kurtosis coefficient is normalized 
by the signal variance, this parameter should be rela- 
tively insensitive to machinery loading conditions. 

Adaptive Noise Cancellation. Measurements 
obtained on the SSME turbopmp housing during engine 
operation are corrupted with a high level of undesired 
noise from a multitude of sources, The concept of 
adaptive noise cancellation is a means by which sig- 
nals corrupted by additive noise or interference can 
be estimated. An adaptive filter is a recursive 
nmerical algorithm which, for stationary stochastic 
inputs, closely approximates the performance of a 
fixed Wiener estimation filter. The method uses a 
"primary" input containing both the desired signal and 
noise along with a "reference" signal correlated in 
some unknown way with the primary input noise. The 
reference input is weighted based on its past values 
and subtracted from the primary input to yield an 
estimate of the desired signal. The general concept 
of adaptive noise cancellation is discussed in detail 
in reference 7, and use of the process as applied to 
machine monitoring is presented in reference 8. 
Reference 8 also describes the application of 



statistical moment and cepstrum analysis techniques to 
turbine bearing fault detection subsequent to adaptive 
filtering. Application of the adaptive filtering 
technique to SSNE turbopump measurements is illus- 
trated in the next section. 

Envelope Detection. Bearing element and trans- 
mission gear mesh frequencies have been observed as an 
mplitude modulation superimposed on a measured com- 
plex vibration time history. Envelope detection has 
therefore been applied to the identification of 
related defects. The general approach is to detect 
the envelope of the measured signal followed by 
spectrum analysis to extract predominant frequency 
contributions in the envelope time history. These 
frequencies have been associated with flaws, which may 
not be detectable in the spectrum of the original 
wideband signal. In 1958, Dugundji introduced the 
concept of a pre-envelope function defined as 

where x(t) is the original time signal, and $(t) is 
Hilbert transform of x (t) . 

The pre-envelope is a (mathematically) complex 
time signal, the modulus of which is the signal 
envelope. 

The availability of microprocessors and the fast 
Fourier transform (FFl?) algorithm has made it possible 
to implement envelope detection software on Fourier- 
based analyzers due to the duality between Fourier/ 
Hilbert transforms. Thus, the pre-envelope function 
may be extracted by Fourier transforming the original 
vibration signal, discarding all negative frequen- 
cies, doubling the positive frequency values, and 
taking the inverse transform of this one-sided spec- 
trum. The modulus of the resulting complex valued 
time history yields the desired signal envelope. An 
obvious computational advantage of the above approach 
is that the envelope function can be direct19 



extracted using a standard FFT analyzer and calcula- 
tor. Subsequent spectrum analysis of the envelope 
tine history is then a simple additional step in the 
cmputation. It might be noted that the resulting 
envelope signal may also be analyzed by the above time 
averaging techniques to investigate signal charac- 
teristic/fault correlations. 

Turbomachinery components exhibit distinct 
characteristic frequencies associated with machine 
operation such as shaft speed, impeller blade passage, 
bearing element rotation, etc. Spectral representa- 
tion of measurements, either by band-pass filtering or 
freguency transformation, is therefore the most popu- 
lar approach in practice for machine condition trend- 
ing and fault identification. 

Power Spectral Density (PSD) . If a measurement 
time history is viewed as a representative sample 
function from a stationary randam process, the mean- 
square density spectrum (or PSD) describes the £re- 
quency distribution of the process mean-square. The 
PSD may be estimated in several ways but is now most 

nly extracted by applying the discrete Fourier 
transform on a digital spectrum analyzer and defined 
by 

where Sx(f) is the PSD at frequency f, x(f) is the 
discrete Fourier transform of a segment of the time 
history of length T, and the asterisk denotes the con- 
jugate complex; the brackets indicate an ensemble 
average. Due in part to the availability and effi- 
ciency of digital analyzers, the PSD and cross PSD 
have become the standard format for complex signal 
description and system parameter identification. 
Another reason for its popularity is the straightfor- 
ward interpretation of linear excitation/response 
relations and system characteristics in the frequency 
dmain . 



Bispectrum Analysis. As the PSD is the spectrm 
of the process second moment, the bispectrm repre- 
sents the (two-dimensional) r;pectrm of the Urird 
joint moment and can be estimat~ad by 

The PSD and bispectrm may be seen to be the first two 
of a heirarchy of higher order statistical descrip- 
tions as the mean and variance are to higher order 
moments. Higher order spectra have been applied for 
some bime to define joint correlations in statistical 
data and more 15:t~ntly to dynmic system parameter 
identification. As a diagnostic tool, the nor- 
malized bispectrm may be applied to detect the onset 
of nonlinear system behavior and possible asso~iated 
component degradation. The bispectrm analysis tech- 
nique can be implemented on contemporary FFT analyzers 
since only one-dimensional transforms are required. 
Symmetry of the function permits evaluation over only 
a portion of the two-dimensional frequency plane. 

Cepstrum Analysis. The power cepstrum l2 was 
first defined as the power spectrum of th logarith 
of the ordinary PSD and may be written as f 3 

c* (7-1 = I 
where &- denotes the Fourier transform and the vari- 
able T in the cepstrum is called the quefrency. 
Alternative expressions for the power cepstrum include 
the absolute value of the above, without squaring, and 
the indicated transform, which is real, as opposed to 
its squared modulus. In any event, the power cepstrm 
serves to indicate periodicities in the PSD. Thus, an 
increase in the harmonic content or uniform sidebands 
in the signal will be indicated by peaks in the power 
cepstrm. The quefrency at which a given peak occurs 
defines the period (or frequency difference) between a 
series of harmonic components. It may be noted that 
the power cepstrum is, in truth, a time domain charac- 
terization of the measured signal since the quefrency 
has units of time. The cepstrum technique has been 
applied successfully to remove echoes (periodic 



reflections) in acoustic and sonar aplieations as 
well as to enhance the harmonic content in bearing 
element vibration spectra. 

Implementation and Simulation 

Five of the above techniques have been irilpke- 
menked on a camputer and applied to the extraction of 
knom signals from noise and to SSm tuzbopmp vibra- 
tion measurements. Software develoment and results 
are documented in references 1 and 2. We here illus- 
trate several results indicative of technique 
performance. 

The m A  method was implement on a HewleQt 
Dackard 5451-C computer systen and applied to the 
extraction of a sinusoid with additive noise, The 
results of this exercise are illustrated in figure 3, 
The spectrm of the sinusoid is shown in figure 3(a), 
The spectrm of the s m e  sine plus noise is shown in 
figure 3 (b) , Improvement in the discrimination of the 
speetr al component is illustxated in figure 3 (c )  , 
representing 50 W A s  and figure 3 (dl , after 950 ~ W S .  
As noted previously, the TE)A method requires a prisci 
knowledge of periodicities sought, Mowever, based on 
ordered sannpling corresponding to tachmeter or 
synchronous speed measurements, improved resolutian 
of significant spectral components by this method has 
been obtained. 

Performance of the randomdee method on a sine 
wave plus noise process is illustrated in figure 4, 
The input signal is shown in the top illanstratian, 
The associated randolmdec signature is shown in the 
center. Increased periodicity in this signature is 
evident thugh the signature is still quite coaplex, 
As a matter of interest, a second randmdee was 
extracted using the first as input and is shown in the 
lwer time history. The imbedded sine wave is here 
seen to be well identified. As noted in the above 
discussion, the randmdec algorith has the adivantage 
of not requiring prior knowledge of periodicities in 
the signal, The est&lishment of optimm threshold 



conditions for signature extraction requires further 
investigation. 

The adapative filter concept was implemented 
using an available hard-wired digital filter (DAG 
10251). A schematic of the data analysis setup is 
shown in figure 5. Typical pre- and post-filtered 
PSDs £ram a high pressure oxidizer turbopmp measure- 
ment are shown in figure 6. The first spectrum repre- 
sents the ordinary PSD of the signal obtained with a 
12.5-Hz resolution. The second illustrates the s m e  
spectral decomposition obtained after processing of 
the signal with the adaptive filter. A marked 
improvement in resolution of turbopq periodic compo-. 
nents is clear. Identification of synchronous and 
blade passage harmonics has been enhanced signifi- 
cantly. work remains in the engineering interpreta- 
tion of spectral values obtained from adaptive fix- 
tered measurements. 

As a final illustration, figure 7 shows sme 
results from a bearing life investigation e r a  the 
statistical moment technique was applied. This 
figure illustrates the time history of rms accelera- 
tion and kurtosis coefficient measured on the bearing 
housing of a roller bearing during endurance test on a 
Timken test machine. Nlote the distinct increase in 
kurtosis coefficient at approximately 457 hours, which 
is not reflected in the acceleration time history. 
Inspection at this time revealed a small fatigue crack 
on the inner race though the test continued for 657 
hours, at which time extensive bearing damage was 
observed. 

The above results are quite promising. Implaen- 
tation of moment spectra, envelope spectra, and 
bispectral methods is presently in progress. Genera- 
tion of a data base of adaptive filtered spectra for 
SSME hot firing measurements is also being performed, 
Recent additional SSMF: measurements obtained internal 
to the turbopump casing will be most useful to detec- 
tion technique evaluation. Upon completion of this 
evaluation, the most promising techniques will be 



optimized computationally and integrated into the MSFC 
diagnostic data evaluation system. 
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Figure 1. Time domain average comb filter 



Figure 2. Evolution of a random decrement signature 5 

.,. 

.,, . I* n. I.. 1.. 3.. 1" 7" .I w. 8- 
I.. "I ,I* 

- 
I.. U LC* 

Figure 3. Spectrum of time domain averaged signal of 
sinusoid with additive random noise 
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Figure 4. Random decrement signature of sinusoid 
plus noise 
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Figure 5. Data reduction flowchart for implementing 
adaptive noise cancellation 
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Figure 6. Spectrum of SSME turbopump measurement 
before and after adaptive filtering 
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Figure 7. Variation of acceleration and kurtosis 
coefficient with test time 14 




