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Abstract

This paper reviews the status of an investigation
to develop, implement, and evaluate signal analysis
techniques for the detection and classification of
incipient mechanical failures in turbomachinery.
Signal analysis techniques available to describe
dynamic measurement characteristics are reviewed.
Time domain and spectral methods are described, and
statistical classification in terms of moments is dis-
cussed. Several of these waveform analysis techniques
have been implemented on a computer and applied to
dynamic signals. A laboratory evaluation of the
methods with respect to signal detection capability is
described. Plans for further technique evaluation and
data base development to characterize turbopump incip-
ient failure modes from Space Shuttle main engine
{SSME) hot firing measurements are outlined.

Introduction

Although little can be done to anticipate mechan-
ical failures which exhibit wvery short pericds of
growth, most failures are preceded by growing toler-
ances, imbalance, bearing element wear, and the like,
which may manifest themselves through subtle modifica-
tions in the waveform observed by dynamic measure-
ments. Incipient failure detection is basgsed on
observing and recognizing measurable phenomena that
occur as a result of nominal system operation and
those associated with component degradation. The
techniques are analytical, but their application is
necessarily empirical, based on correlation between
derived signature characteristics and observed
mechanical condition.
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Turbomachinery malfunction may result from a
number of distinct failure modes such as turbine blade
wear or bearing element fatigue. Each of these mecha-
nisms may be expected to influence the waveform or
spectral content measured by a transducer in a some-
what different fashion. Thus, it is clear that a
single best signal analysis technique or indicator is
not to be expected for system condition monitoring. A
series of tests, each designed to detect a given
failure mode, is therefore desirable.

The Space Shuttle main engines have and are pres-—
ently undergoing extensive hot firing tests at which
time vibration measurements on the high pressure fuel
and oxidizer turbopumps are acquired. Thus, a wealth
of wvibration data is available from these components
under widely varying operational conditions. Under
contract with NASA/MSFC, Wyle is investigating tech-
nigues of analyzing these data to indicate SSME compo-
nent condition.

Techniques and Applications

Review of the literature on machinery condition
diagnostic methodologies indicate approaches employ-
ing thermal, chemicalI ﬁetallographic, and vibration
analysis technigues. ~’ This discussion is limited
to the assessment of motion detected by a transducer
fixed to the machine during operation. (Appropriate
sensor selection and location is not a trivial con-
sideration with respect to component fault detection.)
Historically, the most common diagnostic approach has
been to detect and track the root-mean-square vibra-
tion level (displacement, velocity, or acceleration)
as an indication of machinery condition. Performing
the same analysis in separate frequency bands provides
some improvement in fault identification since gross
failure modes, such as imbalance, may show up at well-
defined freguencies with respect to the synchronous
speed. Signature analysis techniques thus £all
naturally into two categories, time domain methods and
characterization in the frequency domain. Several of
these technigues presently under evaluation are next
described.
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Time Domain Methods

Time Domain Averaging. This method is a well-
known technique for extract;¥qlperiodic signals from
. 14
noisy or complex waveforms. The procedure can be
explained by assuming a given signal x(t) is the sum
of a periodic component p(t), and additive noise,
n{t):

x(t) = p(t) + n(¥).

By summing one time slice of x(t) with another but
delayed one period later than the previous, the
periodic component will add coherently, and the noise
component, if uncorrelated, will not. After N addi-
tions of the signal with itself, the time domain aver-
age signature, D(t), may be expressed as

L ML
D(t) = = 9, x(t+nt).
N
n=0

This process is equivalent to a comb filter in the
frequency domain as illustrated in figure 1. As the
number of replications increases, so does the sharp-
ness of the main lobes and attenuation of. nonharmonic
frequencies. The TDA method has been effectively
applied to large rotating machinery evaluations, and
implementation on a small computer is quite direct.
It is noted that the process is coherent, requiring
that the period of the signal to be extracted be known
or assumed.

Random Decrement Analysis. The response of a
structural dynamic system is a function of both the
applied loading and system properties. Changes in
system characteristics such as modal frequencies or
damping may be indicative of component degradation.
The so-called random  decrement signature has been
applied extensively to the extraction of structural
system cgﬁigcteristics in the presence of complex
loading. ~’ The procedure is similar to the TDha
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method described above in that the measured signal is
repetitively shifted and added to itself:

N
6r) = (I/N) D x(t +T).
=1

However, in the present case, the time delay
between successive segments, tn' is no longer a fixed
period but is determined by the amplitude and/or slope
of the signal attaining specified values. The most
popular choice in defining a trigger level for acquir-
ing successive samples is to simply specify an ampli-
tude threshold, x_ (such as the rms value of the sig-
nal), at which time each segment is initiated, giving

t. = t when x(t) = x .
n s
Figure 2 illustrates the evolution of a random
decremgnt signature from a complex response measure-
ment. An advantage of the randomdec method is that
system characteristics need not be known a priori. As
structural flaws or cracks develop in a component, the
altered structural characteristics will modify the
randomdec signature, providing an indication of possi-
ble incipient failure.

Characterization by Moments. If our measurement,
x(t), be assumed a representative sample function
drawn from a stationary process, statistical moments
can be estimated in terms of time averages:

T
= _ n
m = (/D) 0/ [x(t) ml] at

T
m = (/D f x(t) dt.
0

The first two moments are the familiar mean and vari-
ance, respectively. Note that if the signal is sym-
metric about the mean, all odd order moments are zero.
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Of special interest is the normalized fourth moment,
or kurtosis coefficient:

2
R = m4/m2.

Similar to the peak/rms ratio, the kurtosis pro-
vides an indication of the spread of the distribution,
i.e. the proportion of extreme values with respect to
the rms level. For example,

1, square wave

1.5, sine wave

3, random signal with Gaussian amplitude
distribution

K
K
K

Bearing faults or seal rubs often cause intermit-
tent contact over a fraction of a revolution of the
machine. The onset of such behavior therefore imparts
an impulsive nature to a measurable signal, which may
be detected as an increase in the kurtosis coeffi-
¢ient. Since the kurtosis coefficient is normalized
by the signal variance, this parameter should be rela-
tively insensitive to machinery loading conditions.

Adaptive Noise Cancellation. Measurements
obtained on the SSME turbopump housing during engine
operation are corrupted with a high level of undesired
noise from a multitude of sources.  The concept of
adaptive noise cancellation is a means by which sig-
nals corrupted by additive noise or interference can
be estimated. An adaptive filter is a recursive
numerical algorithm which, for stationary stochastic
inputs, closely approximates the performance of a
fixed Wiener estimation filter. The method uses a
"primary” input containing both the desired signal and
noise along with a "reference®™ signal correlated in
some unknown way with the primary input noise. The
reference input is weighted based on its past values
and subtracted from the primary input to yield an
estimate of the desired signal. The general concept
of adaptive noise cancellation is discussed in detail
in reference 7, and use of the process as applied to
machine monitoring is presented in reference 8.
Reference 8 also describes the application of
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statistical moment and cepstrum analysis techniques to
turbine bearing fault detection subsequent to adaptive
filtering. Application of the adaptive filtering
technique to SSME turbopump measurements is illus-
trated in the next section.

Envelope Detection. - Bearing element and trans-
mission gear mesh frequencies have been observed as an
amplitude modulation superimposed on a measured com~
plex vibration time history. Envelope detection has
therefore been applied to the identification of
related defects. The general approach is to detect
the envelope of the measured signal followed by
spectrum. analysis to extract predominant £frequency
contributions in the envelope time history. These
frequencies have been associated with flaws, which may
not be detectable in the spectrum of the original
wideband signal. In 1958, Dugundji introduced the
concept of a pre-envelope function defined as

zZ(t) = x(t) + i X(t)

where x(t) is the original time signal, and th) is
Hilbert transform of x(t).

The pre-envelope is a  (mathematically) complex
time  signal, the modulus- of which is the signal
envelope.

|zt = {xz(t) +§:‘2(t)};’.

The availability of microprocessors and the fast
Fourier transform (FFT) algorithm has made it possible
to implement envelope detection software on Fourier-
based analyzers due to the duality between Fourier/
Hilbert transforms. Thus, the pre-envelope function
may be extracted by Fourier transforming the original
vibration signal, discarding all negative - frequen-
cies, doubling the positive frequency values, and
taking the inverse transform of this one~sided spec-
trum. - The modulus of the resulting complex wvalued
time history yields the desired signal envelope. An
obvious computational advantage of the above. approach
is that the envelope function can be directly
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extracted using a standard FFT analyzer and calcula-
tor.  Subsequent spectrum analysis of the envelope
time history is then a simple additional step in the
computation. It might be noted that the resulting
envelope signal may also be analyzed by the above time
averaging techniques to investigate signal charac-
teristic/fault correlations.

Frequency Decomposition

Turbomachinery  components exhibit  distinct
characteristic frequencies associated with machine
operation such as shaft speed, impeller blade passage,
bearing element rotation, etc. Spectral representa-
tion of measurements, either by band-pass filtering or
frequency transformation, is therefore the most popu-
lar approach in practice for machine condition trend-
ing and fault identification.

Power Spectral Density (PSD). If a measurement
time history is viewed as a representative sample
function from a stationary random process, the mean—
square density spectrum (or PSD) describes the fre-
gquency distribution of the process mean-square. The
PSD may be estimated in several ways but is now most
commonly extracted by applying the discrete Fourier
transform on a digital spectrum analyzer and defined

by

5,(6) = (/m {x*(f) x(6))

where Sx(f) is the PSD at frequency £, x(f) is the
discreté Fourier transform of a segment of the time
history of length T, and the asterisk denotes the con—
jugate complex; the brackets indicate an ensemble
average. Due in part to the availability and effi-
ciency of digital analyzers, the PSD and cross PSD
have become the standard format for complex signal
description  and system parameter identification.
Another reason for its popularity is the straightfor-
ward interpretation of 1linear excitation/response
relations and system characteristics in the frequency
domain.
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Bispectrum Analysis. As the PSD is the spectrum
of the process second moment, the bispectrum repre-~
sents the (two-dimensional) spectrum of the third
joint moment and can be estimai.ed by

B(f,,£,) = 1/T <x(fl)x(f2)x* (f3)>, £, 0+ £, = £,

The PSD and bispectrum may be seen to be the first two
of a heirarchy of higher order statistical descrip-
tions ‘as the mean and variance are to higher order
moments. Higher order spectra have been applied for
some time to define joint correlations in statistical
data and more]RFﬁﬁ?tly to dynamic system parameter
identification. ! As a diagnostic tool, the nor-
malized bispectrum may be applied to detect the onset
of nonlinear system behavior and possible associated
component degradation. The bispectrum analysis tech-
nique can be implemented on contemporary FFT analyzers
since only one~dimensional transforms are required.
Symmetry of the function permits evaluation over only
a portion of the two-dimensional frequency plane.

Cepstrum Analysis. The power cepstrum 12 was
first defined as the power gpectrum of thi3logarithm
of the ordinary PSD and may be written as

'2

c (m = ]5‘{109 Sx(f)}

where % denotes the Fourier transform and the vari-
able T in the cepstrum is called the quefrency.
Alternative expressions for the power cepstrum include
the absolute value of the above, without squaring, and
the indicated transform, which is real, as opposed to
its squared modulus. In any event, the power cepstrum
serves to indicate periodicities in the PSD. Thus, an
increase in the harmonic content or uniform sidebands
in the signal will be indicated by peaks in the power
cepstrum. The quefrency at which a given peak occurs
defines the period (or fregquency difference) between a
series of harmonic components. It may be noted that
the power cepstrum is, in truth, a time domain charac-
terization of the measured signal since the quefrency
has units of time. The cepstrum technique has been
applied successfully to remove echoes (periocdic
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reflections) in acoustic and sonar applications as
well as to enhance the harmonic content in bearing
element vibration spectra.

Implementation and Simulation

Five of the above techniques have been imple—
mented on a computer and applied to the extraction of
known signals from noise and to SSME turbopump vibra-
tion wmeasurements. Software development and results
are documented in references 1 and 2. We here illus-
trate several results indicative of technigue
performance.

The TDA method was implemented on a. Hewlett
Packard 5451-C computer system and applied to the
extraction of a sinusoid with additive noise. The
results of this exercise are illustrated in figure 3.
The spectrum of the sinuscid is shown in figure 3{(a).
The spectrum of the same sine plus noise is shown in
figure 3(b). Improvement in the discrimination of the
spectral component is illustrated in figure 3(g),
representing 50 TDAs and figure 3(d), after 150 Thas.
As noted previously, the TDA method requires a priori
knowledge of periodicities sought. However, based on
ordered sampling corresponding to tachometer or
synchronous speed measurements, improved resolution
of significant spectral components by this method has
been obtained.

Performance of the randomdec method on a sgine
wave plus noise process is illustrated in figure 4.
The input signal is shown in the top illustration.
The associated randomdec signature is shown in . the
center. Increased periodicity in this signature is
evident though the signature is still quite complex.
As a matter of interest, a second randomdec was
extracted using the first as input and is shown in the
lower time history. . The imbedded sine wave is here
seen to be well identified. Ag noted in the above
discussion, the randomdec algorithm has the advantage
of not reguiring prior knowledge of periodicities in
the signal. The establishment of optimum threshold
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conditions for signature extraction requires further
investigation.

The adapative filter concept was implemented
using an available hard-wired digital €filter (DAC
1025I). A schematic of the data analysis setup is
shown in figure 5. Typical pre- and post-filtered
PSDs from a high pressure oxidizer turbopump measure-
ment are shown in figure 6. The first spectrum repre-
sents the ordinary PSD of the signal obtained with a
12.5-Hz resolution.. The second illustrates the same
spectral decomposition obtained after processing of
the signal with the adaptive filter. A marked
improvement in resolution of turbopump periocdic compo~
nents is clear. Identification of synchronous and
blade passage harmonics has been enhanced signifi-
cantly. Work remains in the engineering interpreta-
tion of spectral values obtained from adaptive fil-
tered measurements.

As a final illustration, figure 7 shows some
results from a bearing life investigation gﬁfre the
statistical moment technique was applied. This
figure illustrates the time history of rms accelera-
tion and kurtosis coefficient measured on the bearing
housing of a roller bearing during endurance test on a
Timken test machine. Note the distinct increase in
kurtosis coefficient at approximately 457 hours, which
is not reflected in the acceleration time history.
Inspection at this time revealed a small fatigue crack
on the inner race though the test continued for 657
hours, at which time extensive bearing damage was
observed.

The above results are quite promising. Implemen-
tation of moment spectra, envelope spectra, and
bispectral methods is presently in progress. Genera-
tion of a data base of adaptive filtered spectra for
SSME hot firing measurements is also being performed.
Recent additional SSME measurements obtained internal
to the turbopump casing will be most useful to detec-
tion technique evaluation. Upon completion of this
evaluation, the most promising technigues will be
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optimized computationally and integrated into the MSFC
diagnostic data evaluation system.
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Figure 1. Time domain average comb filter
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Figure 2. Evolution of a random decrement signatures
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