
Pol echnic, 
Ins Itute 
@u ~ )7(Q1[k\ NASA-CR-175836 

19850018678 

POL YTECHNIC INSTITUTE OF NEW YORK 

FINAL REPORT 

to 

NASA-AMES RESEARCH CENTER 

on 

CHARACTERIZATION-CURING-PROPERTY STUDIES 
OF HBRF 55A RESIN FORMULATIONS 

Co-principal Investigators: 

&LLfJ~ 
Eli M. Pearce » 

Dean of Arts and Sciences 
Director, Polymer Research 
Institute 

-i J I 

~
L' II. :1'. 
~ i.-·"f.,,-!~"7~ 

, /Jovan MijoViaf -
\./' Associate Professor of . 

Chemical Engineering 

LI3RAnv cnpy 
APu () -} 'u~6 

t !\ !'J 1 1 .. )\.) 

.l.AtlGLEY RESEARCH CENTER 
UBRARY, NASA 

p..~MerOH£ YJRGIWA 

JANUARY 31, 1985 

111111111111111111111111111111111111111111111 
NF00475 



... ' .-

POLYTECHNIC INSTITUTE OF NEW YORK 

FINAL REPORT 

to 

NASA-AMES RESEARCH CENTER 

on 

CHARACTERIZATION -CURING-PROPERTY STUDIES 
OF HBRF 55A RESIN FORMULATIONS 

Co-principal Investigators: 

-
r I 

Eli M. Pearce 
Dean of Arts and Sciences 
Director, Polymer Research 
Institute 

ovan Mijov-;'~"--­
Associate Professor of 
Chemical Engineering 

JANUARY 31, 1985 



Additional Research Team Members: 

1. Y. Okamoto 
Professor of Chenrlstry 

2. A. Moroni 
Post-doctoral Fellow 

3. C.C. Foun 
Ph. D . Candidate 

4. H. Mei 
Ph. D. Candidate 



FOREWORD 

The information compiled herein presents the final report of our 

research into characterization-curing-property investigations on HBRF 

55A resin formulatiohs. 

The first part of this report reviews our initial studies on "as­

received" cured samples cut from a full-size FWC. Results are pre-

sented in condensed form. Inadequacies of "as-received" and aged 

samples are pointed out. Additional electron microscopic evidence, 

not included in preceding progress reports, is offered herein. 

The second part of the report describes our results of character­

ization of "as-received" ingredients of HBRF 55A formulation. Specifi-

cally, Epon 826, Epon 828, EpiRez 5022, RD-2 and various amines, 

including Tonox and Tonox 60/40, were characterized. GPC, NMR 

and FTIR were among techniques used in the characterization study. 

The third part of our report deals with investigation of cure 

kinetics of various formulations. Hitherto, studies done using iso-

thermal DSC runs at various high temperatures yielded reliable kinetic 

models. 

The fourth part of our report describes changes in physical/ 

thermal properties (viscosity, specific heat, thermal conductivity and 
." 

density) during cure. Preliminary results were obtained at several 

temperatures between 25° - 50°C and can be used in modeling of 

cure. 



PART I 

PHYSICAL/MECHANICAL PROPERTIES, DAMAGE TOLERANCE 
AND AGING OF THE "AS-RECEIVED" GRAPHITE/EPOXY COMPOSITES USED 

FOR FWC 



EXPERIMENT AL 

The first set of experiments was conducted on various samples 

cut from a large block of a full size FWC and supplied to us by 

NASA-Ames. The samples were cut on July 29 and the various 

sample configurations are described in previous reports. The "as-re­

ceived" samples were first visually inspected for flaws, i. e., voids, 

imperfections, etc. The largest voids were visually detected and 

mapped on each sample. We initially planned to try to correlate the 

failure during testing to the original location of voids. The existence 

of numerous voids was more clearly seen in the micrographs presented 

in our progress reports. A Bausch and Lomb Bench Metallographer 

Model 32 was used for light microscopy. Samples for scanning elec­

tron microscopy (8EM) were gold shadowed and an AMR-1200 scanning 

electron microscope was used to investigate composite surfaces. 

All "as-received" samples were divided into three groups, each 

characterized by a different thermal history, as described in Table 1. 
, 

To prevent damage from occurring in the grips during tensile testing 

of mechanical properties, aluminum end-tabs were bonded to all 

samples. The end-tabs for samples for tensile and fracture. energy 

measurements were described in our previous reports. 

After the initial calculation of samples' areas for tensile testing, 

wires were soldered to the strain gages and the terminals, and then 

connected to the strain indicator. A model P-3500 strain indicator 

(Measurements Group Inc.) was used in connection with an X-Y 
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recorder. An Instron tensile tester was used throughout our experi­

mental work. Tests were run at crosshead speeds of 0.05 and/or 

0.005 in./min. The Instron chart recorded the load while the X-Y 

recorder connected to the strain indicator measured the strain. The 

corresponding stress-strain (a-e) curves were obtained for every 

. sample and an example is shown Figure 4. The best fit of data to a 

straight line was obtained by the least squares analysis. The values 

of Young's modulus were determined from the slope of the O'-e curve. 

Uniform double cantilever (UDCB) samples (type D) were also 

described previously. The beams were placed in Instron and pins 

were put through the holes in end-tabs. Stress was applied and the 

crack was then allowed to propagate to a certain length. The stress 

was released at that point, the load recorded and then the stress was 

reapplied. This cycle was repeated at least seven times for every 

sample tested. The displacement was calculated from the crosshead 

speed and the corresponding time for each run. The compliance was 

calculated by dividing the displacement by the critical load. Detailed 

calculation of the critical value of the strain energy release rate in 

mode I (GIc) was described in our progress report. 

RESUL TS AND DISCUSSION 

We first present Table 2 in which we summarize the observed 

changes in tensile properties (E, uF and eF) as a function of the 

type and thermal history of the sample. It is clearly seen from Table 

2 that thermal aging reduces the ultimate tensile strength of samples. 

The "as- received" type A samples had ultimate tensile strength 



3 

3 4 
(UTS) ranging from 8.1xlO to 1.26xlO psi. On the other hand, the 

3 3 
vacuum heated samples had UTS between 5. 35xlO and 6. 88xlO psi 

3 3 
and the air heated samples between 2. 68xlO and 7. 65xlO psi. 

Our results also show that the vacuum oven heated type A 
. 

samples had higher elongation at break (strain at failure) than their 

air oven heated counterparts. 

The most likely reason for the difference in UTS values of aged 

samples is oxidative degradation. As a result of the network degrada-

tions, one observes a reduction in mechanical properties. Photomicro-

scopic investigation of thermally aged type A samples has revealed 

interesting results. Cracks were observed in the direction perpen­

dicular to the direction of fiber axis, as clearly seen in Figures 2-4. 

These cracks appear to start from the voids initially present in the 

composite. Fracture surfaces obtained in tensile tests were then 

investigated by scanning electron microscopy (SEM). Results ob-

tained on several samples thermally aged in air, are shown in Figures 

5 and 6. Two general observations were made. First, fiber failure 

was detected mostly in the regions near the sample edge. And 

second, little' evidence was obtained for the existence of strong ad-

hesion between the fibers and the matrix throughout the sample. 

The experimentally determined values of GIc were similar to 

those reported in the literature. Thermal aging had no apparent 

effect on the values of Young's moduli. This observation was not 

surprising for both stress and strain were reduced by a similar 

relative amount, i.e., along the a-£ curve, without changing its 

slope. 



4 

The study of the effect of thermal again on the critical strain 

energy release rate (GIc) did not produce conclusive results. Six 

samples (three different thermal histories) were tested in the VDCS 

specimen configuration and the values of GIc were calculated. The 

results are summarized in Table 3. No definite trend in GIc as a 

function of thermal history was observed. Unfortunately, only two 

samples of each kind (thermal history) were available, too small a 

number for reliable evaluation of fracture characteristics. It is also 

possible that the thickness of the sample has retarded the time-depen­

dent degradation. The fracture tests were useful in the sense that 

they have provided preliminary information' about the value of GIc ' 

Fracture surfaces obtained in VDCS tests were also investigated by 

scanning electron microscopy (SEM). Results obtained on samples 

aged in air are shown in Figures 7-9. A large void is clearly seen in 

Figure 7. Fibers appear smooth and devoid of readily detectable 

damage, as seen in Figures 8 and 9. There are sporadic sites on the 

surface where an indication of resin deformation was noted. There 

are also places where there appears to be hardly any resin present, 

suggesting a low resin content in the composite and/or nonuniform 

resin distribution. The smooth fiber surfaces suggest the absence of 

strong fiber-matrix adhesion at those sites. 

In another set of preliminary experiments I four samples were 

tested by Acoustic Emission (AE) technique. The instrumentation was 

supplied by the Physical Laboratories in Princeton, New Jersey. The 

AE technique is of interest for the in situ measurements of develop­

ment of flaws· in samples under external stress. It was our intent to 

test the applicability of AE to studies on graphite/epoxy composites. 
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In the test, a sensor was placed on the sample which was then 

loaded. Various "events" were recorded during the test as a result 

of formation and/or extension of flaws. Obviously, a determined 

effort is needed in order to fully utilize the AE technique. Different 

flaws develop during testing (as measured by different sound waves) 

but precise calibration is needed to attribute them to a particular 

type of failure mechanism in the sample. A set of Figures obtained in 

our analysis was presented in our progress report. We concluded 

that a careful calibration and a well established data base are needed 

for the physical interpretation of the AE data. 



Sample 

I 

II 

III 

TABLE 1 

Thermal Histories to Which Samples Were Exposed 
Prior to Testing 

Thermal History 

. "As-received" 

6 

24.5 days/350°F in Air Oven 

24.5 days/350°F in Vacuum Oven 



TABLE 2 

Mechanical Properties as a Function 

of the Type of Sample and its Thermal History 

Crosshead 

Sample Speed 

3 
AS .05 inch/min. 4.73x10 psi 0.196% 

7 
Air heat at 350°F 3.26x10 Pa 

24~ days 

3 
A7 . 05 inch/min. 7.6Sx10 psi 0.255% 

7 
same 5.27x10 Pa 

3 
AB .05 inch/min. 2.6Bx10 psi 0.10B% 

7 
same 1.BSxlO Pa 

3 
A9 .05 inch/min. 3.39xl0 psi 0.149% 

7 
same 2.34xlO Pa 

7 

E 

6 
2.B2x10 psi 

10 
1. 94x10 Pa 

6 
3. 17x10 psi 

10 
2.19x10 Pa 

6 
2.41x10 psi 

1'0 
1. 66xlO Pa 

6 
2.24x10 psi 

10 
1.S4x10 Pa 



TABLE 2 - Continued 

Crosshead 

Sample Speed 

3 
AIO .05 inch/min. 5.35x10 psi 0.264% 

7 
Vacuum heat at 3.69x10 Pa 

350°F - 24~ days 

3 
All .05 inch/min. 6.88x10 psi 0.260% 

7 
same 4.74x10 Pa 

3 
A12 .05 inch/min. 6.82xlO psi 0.304% 

7 
same 4.70x10 Pa 

3 
AI3 .05 inch/min. 5 .03x10 psi 0 . 200% 

7 
same 3.47x10 Pa 

4 
C6 . 05 inch/min. 1.17xlO psi 0.576% 

7 
same as A6-10 8.06x10 Pa 

8 

E 

6 
I. 77xlO psi 

10 
1.22x10 Pa 

6 
2.33x10 psi 

10 
1.61xlO Pa 

6 
2.28xlO psi 

10 
1.57x10 Pa 

6 
2.llxlO psi 

10 
1.45x10 Pa 

6 
1.88x10 psi 

10 
1.30xlO Pa 



TABLE 2 - Continued 

Crosshead 

Sample Speed 

4 
C7 .05 inch/min. 1.04x10 psi 0.392% 

7 
same 7.17x10 Pa 

3 
C8 .05 inch/min. 6.94x10 psi 0.180% 

7 
same 4.79x10 Pa 

4 
C9 . 05 inch/mill. 1.14xl0 psi 0.475% 

7 
same 7.88xl0 Pa 

4 
CI0 .05 inch/min. 1.92xl0 psi 0.600% 

7 
same as AI0-13 13.2Sxl0 Pa 

3 
e11 .05 inch/min. 6.98xlO psi N .A. 

7 
same 4.82x10 Pa 

9 

E 

6 
2.59x10 psi 

10 
1. 78x10 Pa 

6 
4.18x10 psi 

10 
2.88x10 Pa 

6 
2.34xl0 psi 

10 
1.61xl0 Pa 

6 
3.15xl0 psi 

10 
2.17xlO Pa 

N.A. 



Sample 

C12 

same 

C13 

same 

C3 

no treatment 

C4 

same 

A2 

same 

TABLE 2 - Continued 

Crosshead 

Speed 

3 
.05 inch/min. 9.27x10 psi N .A. 

7 
6.39x10 Pa 

4 
.05 inch/min. 1.13x10 psi 0.375% 

7 
7.82x10 Pa 

4 
.05 inch/min. 2.71x10 psi N .A. 

8 
1.89xlO Pa 

4 
.005 inch/min. 3.32x10 psi N.A. 

8 
2.29x10 Pa 

3 
.05 inch/min. 8.10x10 psi N .A. 

7 
5.58x10 Pa 

10 

E 

N.A. 

6 
3.41x10 psi 

10 
2.35x10 Pa 

N.A. 

N.A. 

N.A. 



TABLE 2 - Continued 

Crosshead 

Sample Speed 

4 
A3 . 005 inch/min. 1.03xlO psi N .A . 

7 
same 7.08xlO Pa 

4 
Al .05 inch/min. 1.26xlO psi 0.170% 

7 
no treatment 8.7xlO Pa 

4 
AS . 005 inch/min. 1.19xlO psi N .A . 

7 
same 8.2xlO Pa 

4 
Cl .05 inch/min. 1. 51xlO psi N . A . 

7 
same 10.4xlO Pa 

4 
C2 . 005 inch/min. 1. 60xlO psi 0.403% 

7 
same 10.lxlO Pa 

11 

E 

N.A. 

6 
7.42xlO psi 

10 
5.12xlO Pa 

N.A. 

N.A. 

6 
3.97xlO psi 

10 
2.73xlO 



Sample 

01 

02 

ATA* 03 

ATA 04 

VTA**05 

VTA 06 

TABLE 3 

Critical Strain Energy Release Rate as a Function 

of Sample Thermal History 

Width(in. ) 

_4 
.5000 1.04x10 154.50 

_4 
.5240 2.06x10 86.29 

.5195 9.04x10 
_5 

158.64 
_5 

.5113 1.55x10 168.70 
_5 

.5170 9.12x10 104.30 
_4 

.5079 1. 16x10 137.07 

* AT A - Air Oven Thermal Aging 

**VT A - Vacuum Oven Thermal Aging 

12 

2 
GIc (JIm) 

3 
1.31x10 

2 
7. 69x10 

3 
1.15x10 

3 
1.92x10 

2 
5.04x10 

3 
1. 13x10 



Figure 1. 

Figure 2. 

Figure 3, 

Figure 4. 

Figure 5. 

Figure 6. 

Figure 7. 

Figure B. 

Figure 9. 

13 

Figure Captions 

Stress-strain curve for sample A-9 

Photomicrograph of a cross-section of type A sample 
thermaly aged in vacuum oven. Magnification BOX. 

Same as Figure 2. Magnification 400X. 

Same as Figure 2. Magnification 400X. 

Scanning electron micrograph of fracture surface of 
tensile specimen thermally aged in air. 

Same as Figure 5. 

Scanning electron micrograph of fracture surface of 
VDCB specimen thermally aged in air. 

Same as Figure 7. 

Same as Figure 7. 
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PART II 

CHARACTERIZATION OF HBRF 55A 

RESIN FORMULATIONS 



OBJECTIVE 

Analyze the composition of raw materials and 
determine the chemical structure of every 
component for the following studies: 

1. The influence of moisture, solvent, impurities 
on the curing behavior and physical/mechanical 
properties of final products. 

2. The effect of molecular weight distribution 
to the curing behavior. 

3. The curing kinetics of epoxy resin with different 
aromatic amine component. 

1 
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INTRODUCTION 

The composition of epoxy resins EpiRez 5022, RD-2, Epon 826 and 

Epon 828 and of curing agents Tonox and Tonox 60/40 was determined 

by analytical techniques such as Gel Permeation Chromatography 

(GPC), 1H NMR and Fourier Transform Infrared Spectroscopy (FT-IR). 

GPC analysis were run on a Water Associates HPLC instrument model 

ALC 1 CPC 244 equipped with M 6000 A solvent delivery, 660 solvent 

programmer and 7100 WISP autoinjection system. Column used was a 

100 ~ pore size Ultrastyragel with an upper exclusion limit of 

Mn=1000. Solvent was HPLC grade tetrahydrofuran at a flow rate of 

1 ml/min. A differential refractive index detector model R 400 

was used together with an UV detector model 440 at a wavelength of 

254 nm. 

The NMR instrument used was a 60 MHz Varian A60 Spectrometer and 

the epoxy equivalent weight of epoxy resins (EEW) was determined 

adding a known amount of 1,1,2,2-tetrachloroethane (TCE) as 

internal standard. 

The FT-IR spectra was taken on a Digilab FTS 20 B infrared 

spectrophotometer: the viscous liquid samples were smeared on the 

surface of a KBr plate while the solid samples were mixed with 

equal amount of anhydrous KBr and pressed in order to make a tiny 

sheer pellet. 

Epoxy equivalent weights of epoxy resins were also determined by 

dissolving a known amount of resin in chlorobenzene and titrating 

it with HBr/AcOH 0.1 N using crystal violet indicator solution 

(0.1%); the acid solution was standardized against potassium acid 

phthalate (KHC SH40 4 ). The titration was carried out according to 

ASTM 1652-73. 

Results shown by these analyses were in accord with data reviewed 
" . 

from the literature for the diglycyiditether of bisphenol A 
v 

(DGEBA) (1) (2) and for Tonox and Tonox 60/40 (3). 

2 
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The GPC analysis of Epirez 5022 shows it to be a mixture of l,4-butanediol diglycydil 

ether ( n=O ) and higher oligomers ( n=l,2, ,3 ) . 

n=O MN = 202 

n .. l WI .. 348 

n-2 MN '" 494 

n .. 3 MN .. 640 

It also contains a small amount of Xylene. 

GPC chromatogam of Epirez 5022 

o :ninutes 10 

:3 



"' '. , . 
4 

Table 1 GPC Separation or EpiRez 5022. Column. Ultra Styragel 100 R 
Mobile Phase, THF, Flow Rate, Iml/minl Detector. RI 

Sample Peak /I Retention time Composition(,,) Components (mins. ) 
EpiRez 5022 1 7.5 15.46 01igomers n~3 

2 7.9 11.23 n-2 
3 8.4 32.94 n-l 

4 9.0 39.46 l,4-butanediol 
diglycldy1 ether na 0 

5 10.4 0.9 Xylene 

Using percentages reported in table 1 for the various fractions of Epirez 5022 

the MN results are 

3 
MN='MNN L nn 

fl. 0 

where N a Weight 7. / MN n n n 

This value disagrees with values obtained as a result of titration ( MN = EEW • 2 a 

~ 131 • 2 = 262) and NMR analysis (MN = EEW • 2 a 126 • 2 = 252 ). 

It was hypothesized that the rel~tive percentages of the fractions of Epirez 5022 

were not exact, the source of error being the higher refractive index for fractions 

with n4l than n a a . 
To measure the difference in refractive index of different fractions,samples of known 

concentration of fraction #4, #3 J and #2 were injected again in the instrument and 

their peak areas measured ·and related to concentration in order to calculate RI • 

Assuming RI of fraction #4 = 1.0 , fraction #3 showed RI = 1.3 and fractioq H2 RIa 1.6 • 

Fraction # 1 was of too low concentration to give appreciable results. thus its RI 

was assumed to be the same as fraction f,! 2 ( RI a 1.6 ) • 

Correction of peak areas with the values shown gave a different percentage composition 

as shown in table 1 A . 
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Table 1 A •. Fractions of Epirez 5022 • 

Fraction If Retention time MN Differential Weight % Component 1:1. 

( min. ) RI (corrected) 

1 7.5 640 1.6 4.38 Oligomers 3 

2 7.9 494 1.6 9.16 Oligomer 2 

3 8.4 348 1.3 34.29 Oligomer 1 

4 9.0 202 1.0 51.26 l,4-butanediol 0 
diglycydil ether 

5 10.4 106 0.9 Xylene 

Using these corrected fraction percentage values,the new MN and MW were 

/~N • 262 Ln 
'II:" 

and 

3 3 

MW = ~( 11M ) ~ / ~ MN N "" 299 L n n.. L nn 
m:o ~:o 

where N "" Weight % n / MN 
n n 

MN value agrees with results obtai."I.ed from titration ( MN = 262 ). and mm. ( HN = 252). 

In order to further characterize different fractions of Epirez 5022 they were separa­

ted by vacuum distillation. 

It was very difficult to achieve good separation bet~een various fractions because 

they gave azeot:-opic mi.'Ct:ures • However it was possible to collect a small c1t:lount 

of almost pure samples which wera identified by injecting into the GPC inst=ument as 

components of Epirez 5022. A fraction cor=esponding to GPC peak # 4 ( B.P. 135 0 C @ 0.3 

~ Hg) and a fraction corresponding to peak #3 ( B.P. 175°@ 0.3 rom ag ) were 95 i. pure 

while a fraction corresponding to peak #2 ( B.P. 215 0 @ 0.3 mm HS ) contained impurities 
of f:-actions U3 and #1. A ve~I small amount of fraction #1 was ,collected ( B.? /230 @ 

0.3 lllI:1 Hg ) • 
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After GPC analysis to prove their identity and puritYJthe four fractions where charac-

terized by FT-IR, NMR and titration with HBr/AcOH in order to determine their E~~. 

Spectra obtained from FT-IR and NMR analysis are reported. 
The presence of the OH bands and the EEW values were slightly higher than the theoretical 

values in fraction U 4 of Epirez 5022, corresponding to 1,4-butanediol diglycydil ether 

( n=O ) and indicates that some epoxy group may have undergone to hydrolysis. 

GPC Separa~ion of Fraction 4 from EpL~ez 5022. Column, Ultra 
Styragel 100 1; Mobile Phase, THF; Flow Rate, Iml/mL~; Detector, 
RI. 

~inutes 



~ . ' 

o /0 
minutes 

GPC Separation of Fraction J from EpiRez ,022. Column, Ultra 

Styragel 100 A: Mobile Phase, 'rH:: Flow Rate, Iml/min; De"tector. 

R!. 

7 
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o $ ~ 

GPe Separation of Fraction 2 from EpiRez 5022. Column, 
Styragel 100 1; Mobile Phase, THF; Flow Rate, lml/mL~; 
RIo 

------------------------~~----~ y 

minutes 

Ultra 
Detector, 

8 

o 10 minutes 

GPe Separation of Fraction 1 from EpLQez 5022. Column, Ultra 
Styragel 100 A; Mobile Phase, TH?; Flow Rate, Iml/min; Detector, 
R!. 



" Caiibration cu~ve of GPC column ultra Styragel 100 ~ MW versus retention 
time. Flow rate 1 ml/min. Theoretical values of MW of Epirez 5022, 
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FT-IR spectrum of Epirez 5022. 
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FT-IR spectrum of peak #4 of Epirez 5022. 
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FT-IR spectrum of peak j3 of Epirez 5022. 
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FT-IR spectrum of peak i2 of Epirez 5022. 
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FT-IR spectrum of peak il of Epirez 5022. 
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Table 2 Comparison of the Epoxy Equivalent Weight of four fractions of 

Epirez 5022 by NMR and HBr/AcOH titration with theoretical values. 

Components Theoretical Proton HBr-Acetic 
Values HMR Acid 

Fraction 1 >320 

Fraction 2 247 175 206 

Fraction 3 174 151 168 

Fraction 4 101 104 108 

EpiRez 5022 120-140 126 131 
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Proposed mechanism of synthesis of 1,4-Butanediol diglycidyl 
ether and higher oligomeric fractions • 

/0, 
HO -t C~4-40H + CH2-CH-CH

2
Cl 

[ 
1 /0, ] 

HO-+-CKz~O~CH~CH---CH2 . 

. Epichlorohydr1n. 

1 
/0, /0, 
CH2-CH-CH2-o~-CH2~-CH2-CH--CH2 

11.4_Butanodlo1 

/0, ~H 
C~-CH-CH2-O+CH2~0-CH2-CH-CH2-O~CH2hr-°H 

1 Eplchlorohydrin 

/
0, . ~ 0 

I /, 
CH2-CH-CH2-0~CH2~-CH2-CH-CH2-0-f-CH2~O-CH2-CH--CH2 

11.4-Butanedlo1, 
Epichlorohyc1rin 

~~H-CH2-f-o-fCH2~-CKz-!:-CHz~O~CHz~-CH2-~~'cHz 

(Peak 4) 

(Peak J) 

(Peak 2) 
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R D 2 

RD-2 analysis by GPC shows a composition similar to Epirez 5022 but with lower percen­

tages of higher oligomeric fractions ( n ~ 3 ) • 

n '" 0 MN- 202 

n '" 1 MN- 348 

n '" 2 MN = 494 

n = 3 MN= 640 

It contains a lower percentage of Xylene than Epirez 5022 . 

Its FT-IR spectrum shows a reduced intensity of OH bands which agree with its lower 

content of high, OH containing oligomeric fractions. 

The weight percentage composition of RD-2 based on its fractional peak areas is shown 

in table 3 • 

o :ni!'lutes 10 Ir 
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rable 3 GPO Separation of RD-2. Column, Ultra Styragel 100 1. Mobile 
Phase, THF. Plow Rate, lml/min. Detector, RI. 

Sample Peak # Retention tIme 
Composition(~) Components (mins.) 

RD-2 1 7.6 6.8 Oligomers ~3 
2 7.9 13.1 n-2 
3 8.4 37.43 nal 

4 9.0 42.34 l,4-butanedlol 
diglycidyl ether 

5 10.4 0.33 Xylene 

Even in this case the percentage values of every fraction of RD-2 were corrected 

using the differential refractive index of every fraction ofRD-2. 

values are shown in table 3 A 

Table 3 A Fractions of RD-2 

Fraction II Retention time MN Differential Weight % Component 
( min.) RI (corrected) 

1 7.6 640 1.6 2.84 Oligomers 

2 7.9 494 1.6 10.06 Oligomer 

3 8.4 348 1.3 35.11 Oligomer 

4 9.0 202 1.0 51.26 1.4-butanediol 
diglycydil ether 

5 10.4 106 0.33 Xylene 

Using these new corrected values of wei~ht percentage for every fraction of RO-2 

it was calculated : 

~ '; 

-" " MN ". / i'lN ~ / / N ". 261 
n;"o n n ;;0 n 
.l.. .L 

-" 2 " Mt-l ". L(~n) Nn / L MNnNn "" 295 where N "" Weight % / ~ 
n n n 

11 ~ 0 ":0 

n 

)3 

2 

1 

0 
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Infrared Sand Specification 

~-2 (Dig1ycidy1 Ether of 1,4-Butanedio1) 

~:CH-CH2+-fCHhO_CH):-CH21 n O-fCI!2l;;O-CH2-~~'cH2 
3500 cm-1 = OH Stretch due to seconda~y OH,groups of ~ligorneric 

fractions. opened epox~de r~nqs and mo~sture. 
J, 

3060 cm-1 = termi~a1 epoxids CH2 stretch. R-CH-CH2 

3000 cm-1 = Methine C-H stretch 
l, 

R-Cg-CH2 
-1 2930 cm = CH2 asymmetry stretch 

-1 2880 em = CH2 symmetry stretch 

-1 1510,1450,1400 em = CS2 scis,sbring vibrati'on, defor:nation 

1350 cm-1 = CH2 twisting and wagging 
-, 

1250 em - = Symmetry ring breathing 

1100 cm-1 = C-O-C stretch 
950-760 cm-1 = Asymmetry ring stretching 



E P 0 N 8 2 6 and E P 0 N 8 2 8 

These two epoxy resins, based on the diglycydil ether of bisphenol A ( DGEBA ), 

showed , by GPC analysis , similar composition with the 828 being richer in high 

oligomeric fractions ( n = 1 , 2 ) and thus having a higher MN and MW • 

26 

GPC analysis also shows the presence of some DGEBA with one epoxy ring open ( peak #3 ). 

THese results agree with the ones reported in the literature (1) , (2) • 

GPC chromatogram of Epon 826 

I~ 10 
minutes o 
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Table 4 GPC Separation ot" Epon 826. Column, Ultra StyragellOO A: 

Mobile Phase, THF: Flow Rate, lml/min, Detector, UV 254 nm. 

Sample Peak # Retention time Composition(%) (mins. ) 
Epon 826 I 6.5 1.04 

2 7.0 7.J9 
J 7.6 4.02 

4 8.2 87.55 

GPC chrornathograrn of Epon 828 

/0 ~_ ~ 
Jr,;~fA,t...Jl.S 

Components 

n :II 2 
n .. 1 
dihydroxy 
species 

n = 0 

Table 5 GPC Separation ot" Epon 828. Column, Ultra Styragel 100A; 
Mobile Phase, THF; Flow Rate,·lml/min; Detector, UV 254 nm. 

Sample Peak # Retention time Composi tion(%) Components 
(mins. ) 

Epon 828 1 6.5 2.22 n = 2 

2 7.0 10.51 n .·1 

J 7.6 8.08 dihydroxy 
species 

4 8.2 87.55 n :II 0 
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Epon 826 

Fraction * 
1 

2 

3 

4 

Literature value MN 

Epon 828 

Fraction .IL 
11" 

1 

2 

3 

4 

:l .., 

Weight % 

1.04 

7.39 

4.02 

87.55 

* 

368 

= ( EEW • 

~.fueigh % 

2.22 

10.51 

8.08 

79.19 

MN = [MN N / I:.N = 365 
)'1:00 n n ,,=co n !Z, 

* 

2 

MW = t (MN ) 2 N / LI1N N = 385 
,.::0 n n "'::0 n n 

MN 

908 

624 

358 

340 

)= ( 178~186 

908 

624 

358 

340 

n 

2 

1 

o (dihydroxy DGEBA) 

o 

. 2 ) = 356.-372 

n 

2 

1 

0 (dihydroxy DGEBA) 

0 

Literature value: MIT = ( EEW . 2 ) = ( 185-192 • 2 ) = 370-384 

'* The reason why the experimental value of MN is at the lower limit of the literature 

value is due to the impossibility of considering the the oligomeric frac!:ion wit:h n=3 

( HN = ll92 ) which lies beyond the exclusion limit of a 100 ~ pore size U1trastyragel 

GPC column ( !-IN = 1000 ) • 
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Determination of the Epoxide Equivalent Weight of 
Glycidyl Ethers by Proton NMR Spectrometry 

(1) Sample Preparation 

Into a 1-ml volumetric flask with a ground glass 

stopper weigh about 200 mg of resin and 200 mg 

1,1,2,2-tetrachloroethane (TeE) as internal standard. 

Dilute to 1 ml with carbon tetrachloride. Stopper and 

shake for 1 min. Pipeit into a 5-mm NMR tube and add 

2 or 3 drops of tetramethylsilane and close tube. 

Obtain intergrals and calculate the EEW of the 

Material. 

(2) Results and calculation 

For example, Epon 826 

The assignment of each peak is shown in the following 

structures: 

and 

(B) (e) (D) 

e} 11 
H4-1-H 

(F) C1 Cl (F) 

(E) (A) (E) (D) (e) (B) 
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The ratio of the integrals, A:B:C:D:E, in NMR spectrum 

should be 6:4:2:4=8 if n=O while the ratio of the 

integrals of a DGEBA resin where n=1 should be 

12:4:2:8116. The hydroxyl proton and the proton 

attached to the carbon bearing the hydroxy group are 

not included in the ratio. The proton NMR spectrum of 

Epon 826 is shown in Figure and consists of five 

distinct areas as denoted by the letters at the bottom 

of the spectrum. The singlet at F(S.6 ppm) is the 

standard TeE. The EEW is calculated by comparing the 

integral (IF) of the two protons of TeE with the 

integral (IB) of the two methylene protons of the 

" epoxide group. 

EEW = ~ (we~ght of ReSin) ( Molecular weight' 
IB We~ght of TCE \ of TeE ) 

Table 6 Comparsion of the Epoxy Equivalent Weight Obtained by 

Proton Magnetic Rescn~~ce and HBr-Acetic Acid Methods 
with Literature Values 

Resin Literature Proton HEr-Acetic 
Value NbiR acid 

Epon 826 178-186 185 183 

EpiRez 5022 120-140 126 131 

RD-2 120-140 133 134 
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TON 0 X and TON 0 X 6 0 / 4 0 

These two epoxy curing agents appear to be a mixture of several aromatic amines. 

Tonox 60/40 differs from" Tonox by having about 42 % of m-phenvlene diamine ( m-PDA) • 

Tonox was principally composed of three components the main one being methylene 

dianiline ( ~mA ), 2,4-bis(aminobenzyl)aniline as confirmed by the same retention 

time of a purchased sample of the same chemical, which was also characterized by 

FT-IR ; the third peak, of high molecular mass, appeared to be composed of higher 

oligomers of MDA • 

n • 0 MDA 

n m 1 2, 4-bis (aminobenzyl) aniline 

n ~ 2 Oligomers 

These results agree with those reported in literature ( 3 ) • 

'tonox 60/40 

NH2 -0-CH2-0- NH2 

(MDA) 

~cv 
~ 

NH2 S 
+ ~~ + a r 
~NH H,N~£~NH2 

(m-POA) 2 - rt 

+ oligomers 

2,4-bis(aminob~nzyl) aniline 

Tonox 

NH2 -0-CH2-0- NH2 + 2 ,4-bis (aminobenzyl) aniline 

(MDA) 

+ oligomers 



GPC Chromatogram of Tonox 60/40 

10 I~ minutes 

Table 7, GPC Separation of Tonox 60/40. Column, Ultra Styrage1 
500 A + 100 A; Mobile Phase, THF; Flow Rate, 1m1/min; 
Detector, UV 254 nm. 

Sample Peak # Retention time Weight % Components (mins.) 

Tonox 60/40 1 15.7 ).22 01igomers 

35 

2 16.) 11.25 2,4-bis(aminobenzy1)-
aniline 

) 17.2 42.81 MDA 
4 18.) 42.72 m-PDA, 



GPC chromatogram of Tonox 

/0 
minutes 

o 

Table 8 GPC Separation of Tonox. Column, Ultra Styragel 100 A: 
Mobile Phase, THF: Flow Rate, Iml/min, Detector, UV 254 nm. 

Sample Peak # Retention time Weight ~ Components (mins .. ) 
Tonox 1 7.3 4.69 01igomers 

2 7·7 18.49 2,4-bis(aminobenzy1)-
aniline 

:3 8.4 76.81 MDA 



· , 

Infrared Studies 

(1) Sample Preparation 

The viscous liquid sample of Tonox 60/40 was smeared on 

the surface of a potassium bromide plate uniformly, then the 

spectra taken in a Digilab-FTS-20B infrared spectrometer. 

The solid sample of MDA or m-pDA was mixed with dried 

potassium bromide by grinding in a small agate pestle and 

mortar, then made into a transparent disc by using a mini-press 

die and the spectra was run by FT-IR. 

(2) Infrared Band Specification 

4,4 r -Methylenedianiline(MDA) 

H2N~CH2~ NH2 

~3420 em-l = N-H free stretch 

.,--3220 em-l = N-H bonded stretch 

3040 em-l = Aromatic C-H stretch 

2920 em -1 = CH2 asymmetry stretch 

2830 em -1 = CH2 symmetry stretch 

1630 em-l = N-H bending 

1520 -1 em = Aroma tic C"..l:C stretch 

1440 em -1 = C-H deformation 

1320-1080 em -1 =- C-N stretch 

920-760 em -1 = N-H wagging 

620-500 em -1 = C-C bending 
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· , 

m-phenylenediamine 
NH 

(m-PDA)...;-,2 

~H2 
3335 em-1 = N-H free stretch 

3220 em -1 = N-H bonded stretch 

3050, 3015 em- l = Aromatic C-H stretch 

16io em-1 = N-H bending 

1500 em-1 = Aromatic C~ stretch 

1320-1060 em-1 = C-N stretch 

840-680 em-1 = N-H wagging 

Tonox 60/40 NH2 

NH2 -0- CH2-0-
(MDA) 

NH2 +~. + 2.4-bis(aminobenzyl)aniline 

~) 2 + o1igomers 
(m-pDA 

3345 em -1 == N-H free stretch 

3220 em -1 = N-H bonded stretch 

3040 -1 Aromatic C-H stretch em = 
2900 em -1 == CH2 asymmetry stretch 

2830 em -1 = CH2 symmetry stretch 

1620 em -1 =- N-H bending 

1520 em -1 == Aromatic C'=-~ stretch 

1310-1080 -1 em = C-N stretch 

840-680 em -1 = N-H wagging 

570,500 em -1 
== C-C bending 
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FT-IR spectrum of m-PDA 
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NH2 . 2,4-bis{aminobenzyl) aniline 

+ ~ : oligomer 

NH 
(m-PDA) 2 

N-H bending 

C::''C stretch 

The FT-I~ S?ectrum of Tonox 60/40 
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Proton-NMR Studies 

(1) Sample preparation 

4,4'-Methylenedianiline (MeA) I m-phenylenediamine(m-pDA), 

and Tonox 60/40 were dissolved in chloroform-d, solvent 

with TMS standard respevtively,then run on a 60 MHz H­

NMR spectrometer. 

(2) Band Characterization 

There are four different kinds of hydrogens for MDA at 

03.25, 03.54, 06.2, 06.5, which has been related to each 

hydrogen position in the structure 

m-pDA also showed four kinds of hydrogen absorptions at 

03.25, 05.65, 05.8, 06.5 in the spectrum. The 

B-NMR spectrum of Tonox 60/40 showed six 

absorptions at 03.25, 03.54, 05.6, 05.8, 06.2, 06.5. 

Obviously, this is a combined spectrum of MeA with m-pDA. The 

weak absorption of MeA at 06.5 was combined with the stronger 

absorption of m-pDA at 06.5. 
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STRUCTURE SCHEME FOR ALL RAW MATERIALS 

EPOXY RESINS: 

Epon 826, Epon 828 (Diglycidyl Ether of Bisphenol A ) 

EPOXY DILUENTS: 

EpiRez 5022, RD-2 (Diglycidyl Ether of 1,4-Butanediol ) 

/0\ + OH 1 ° , /\ 
CH2-CH-CH2 -+CH2~O-CH2-CH-CH2,--O-fCH2~-CH2-CH __ CH2 

J n ~tH2 
CURING AGENTS: ~~ 

Tonox 60/~O NR2 -0-C!!2-0- N!!2 + ~ 

Tonox 

NH2 
+ 2,4-bis(aminobenzyl)aniline + oligomers 

NH2 -0-C!!2-0- NH2 

+ 2,4-bis(aminobenzyl)aniline + oligomers 

4,4'-Methylenedianiline (~~A) 

m-Phenylenediamine 

2,4-bis(aminobenzyl)anilL~e 



L"~ ." .'-

Determination of the amount of curing agent to be added to 
the epoxy resin for curing • 

(a) ~he epoxy equivalent weight (EEW) and hydrogen 

equivalent weight (HEW) used to calculate the curing 

agent concentration is as following: 

Material EEW 

Epon 826 183 

EpiRez 5022 131 

RD-2 134 

Tonox 60/40 

Tonox 

MDA 

m-pDA 

(b) Curing agent concentration = 

HEW 

37.6 

50.51 

49.5 

27 

HEW 

EEW 
X 100 

(c) An example using these calculations for curing 

agent concentration is as follows: (A/E=l) 

If 100% Epon 826, then it needs Tonox 60/40 = 37.6 20 55.9 
183 = • 'I-

If 100% EpiRez, then it needs Tonox 60/40 = 37.6 = 28.70,% 
131 

48 

For 80% Epon 826, then it needs Tonox 60/ 4C - 20.S5%x0.8- 16 .44~ 

20% EpiRez 5022, then it needs Tonox 60/40 - 28.70%xO.2- 5.74% 

Total 22.18% 

Therefore, the formula is: 

Epon 826 = 80 grams 

EpiRez 5022 = 20 grams 

Tonox 60/40 = 22.18 grams (A/E=1) 
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PART III 

CURE KINETICS OF HBRF 55A 

RESIN FORMULATIONS 



KINETIC STUDY OF CURING REACTIONS • 

INTRODUCTION 

Differential Scanning Calorimetry ( DSC ) was used to 

investigate the kinetics of curing reactions of epoxy resins 

( diglycidyl ether of bisphenol A , DGEBA and butanediol 

diglycidyl ether, DGBE ) with aromatic diamines ( methylene 

dianiline, MDA and m-phenylene diamine, m-PDA ) and a 

commercial product containing a mixture of these diamines 

( Tonox 60/40 ).The heat released during the isothermal cure 

at various temperatures was measured as a function of time 

and it was assumed to be directly proportional to the extent 

of cure (Fig.1). 

The autocatalytic behavior of these systems has been 

described in literature ( 1,2,3,4,9,10 ) and it is accepted 

that the kinetics of the curing reaction of epoxides with 

amines can be successfully described using the following 

kinetic equation ( 5,6 ) : 

d = d CL / dt = ( 1) 

where & is the rate of reaction, a the degree of cure, or 

extent of reaction, kl a kinetic constant expressing the 

reaction between a primary amine and an epoxide group, k2 a 

-1-



rate constant of the subsequent reactions between a 

secondary amine, an hydroxyl and an epoxide group and two 

epoxide groups ,reaction which may be anionically started by 

the tertiary amine formed during the curing reaction (7). 

The sum of the kinetic exponents m and n is assumed to be 

two. This equation can successfully describe the 

autocatalytic behavior of these systems using amounts of 

amine hydrogens and epoxide groups in the vicinity of the 

stoichiometric ratio and assuming the same reactivity for 

every amine hydrogen. 

The kinetic constant k1 was obtained by extrapolation of the 

heat flow curve at t=O 

= ( d a / dt ) t=O (2 ) 

and the remaining kinetic parameters were calculated as 

reported (5) using the rate and extent of reaction at the 

peak of the isothermal heat flow curve. (See Appendix 1 ) 

The kinetic parameters were also calculated using a non 

linear regression of a / (1- a) n over am. (See Appendix 2) 

The extent of reaction a was taken as the heat evolved 
0..: 

at a certain time ( Qt ) divided by the total heat of 

reaction evolved ( QUIt) : 

= (3 ) 

For some systems the cure was i~complete at a given 

- 2 -



isothermal temperature even after the heat flow curve 

levelled to the baseline, therefore the total heat of 

reaction was taken as : 

(4 ) 

where QIso is the heat evolved during the isothermal curing 

and QRes is a residual heat which is released by dynamic run 

of the sample after the isothermal cure • 

EXPERIMENTAL 

The formulations used in this study were composed of a DGEBA 

resin ( Shell's Epon 826 ) containing a small amount of 

"higher oligomeric fractions (8.7 %) ,DGBE reactive epoxy 

diluent ( Celanese's Epirez 5022 ) containing pure DGBE ( 

51.2 %) and higher oligomeric fractions ( n=1,34.3 %i 

n=2,9.2 %i n~3 4.3 % ), purified MDA and m-PDA and a 

commercial mixture of them ( Uniroyal's Tonox 60/40 ) also 

containing some oligomeric fractions ( m-PDA, 40 %i MDA,42%i 

2,4-bis(aminobenzyl)aniline plus oligomers, 18 % ) . 
The mixtures prepared were: 

~ ~ 

1) DGEBA MDA A/E = 1.0 2) DGEBA m-PDA A/E = 1.0 

3) DGBE MDA A/E = 1.0 4) DGBE m-PDA A/E = 1.0 

5) DGEBA/DGBE (80/20) MDA A/E = 1.0 

6) DGEBA/DGBE (80/20) m-PDA A/E = 1.0 

- 3 -



7) DGEBA Tonox 60/40 A/E = 1.0 

8) DGBE Tonox 60/40 A/E = 1.0 

9) DGEBA/DGBE (80/20) Tonox 60/40 A/E = .9 

10 ) DGEBA/DGBE (80/20) Tonox 60/40 A/E = 1.0 

11) DGEBA/DGBE (80/20) Tonox 60/40 A/E = 1.1 

12) DGEBA/DGBE (80/20) Tonox 60/40 A/E = 1.2 

The epoxy-amine mixture were prepared at room temperature by 

adding the curing agent with continuous stirring until a 

clear homogeneous solution was obtained; the solution was 

then degassed under vacuum and samples (5-10 mg ) prepared 

were sealed in hermetic aluminum pans and tested 

immediately. Samples aged even a few hours at room 

temperature gave unreliable results due to the onset of a 

slow curing reaction. Weight losses were negligible in all 

cases . A Du Pont 1090 Thermal Analyzer connected with a 910 

esc module was used to measure the heat flow as a function 

of time after calibration with high purity Indium ( Du Pont 

thermetric standard ). A steady isothermal baseline was 

established at the preset curing temperature using two empty 

sample pans. 

The sample pan was then introduced in the esc cell and the 

data acquisition initiated. Thermal equilibrium between 

sample and reference pans was achieved in less than one 

minute from the start of reaction.The reaction was 

considered to be complete when the rate curve levelled off 

to the baseline . 

- 4 -



Isothermal experiments were conducted in the temperature 

range of 373-413 0 K (100-140 0 C ). Isothermally cured 

samples were then quenched and scanned from -50 to +350 0 C 

at an heating rate of 10 0 C per minute to measure QRes.Data 

collected by DSC were processed by a Digital PDP-11 computer 

to obtain the rate and extent of cure as function of time, 

and calculate the kinetic parameters of the reaction. The 

value of (da / dt) t=O ' which is subject to an experimental 

error due to the lack of thermal equilibrium of the sample 

during the first few seconds of analysis, was optimized by a 

computer program in order to minimize differences between 

experimental and calculated results using equation (1). 

The program also calculates all actvation energies and 

frequency factors and its flow chart is shown in Appendix 3. 
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RESULTS AND DISCUSSION 

The US" shaped curves of evolution of a with the time at 

different temperatures of curing ( Fig. 2 clearly show the 

autocatalytic curing kinetic of these systems and confirm 

the validity of equation (1). All systems studied show a 

similar behavior, with differences in the temperature 

dependence of values of rate constants 

exponent m , maximum reaction rate (ap ), conversion at 

maximum reaction rate (a p ), time to achieve maximum 

reaction rate ( to 
" 

and time to achieve half of the maximum 

conversion ( tso ) Tables 1-12 ). 

An Arrhenius relationship can describe the temperature 

variation of k 1 , k 2 , ;p' tp and tso ( Fig 3, 4, 6, 7 ) while 

a p and m ( Fig S ) decrease linearly with temperature in the 

range studied. Temperature dependence of ap ' tp and tso 

allows measurements of global activation energies ( Eap ' 

Etp' EtSO) which do not distinguish between different types 

of reaction. This result was confirmed by monitoring the 

disappearance of the absorbtion band at 91S cm- 1 

characteristic of the epoxy ring by FT-IR spectroscopy (8) . 
~. , 

Temperature dependence of rate constants k1 and K2 allows to 

distinguish between the primary amine-epoxide and che 

subsequent reactions which have different activation 

energies E1 ,E 2 ) and frequency factors ( A1 ,A 2 ) (Tables 

1a - 12 a ). 
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The values of activation energies and frequency factors were 

calculated with a computer program i its flowchart is shown 

in Appendix 3. 

All the systems studied show an El value in the range 

between 13 and IS Kcal/mole, indicating similarity of the 

transition state of the attachement of primary amine on 

epoxy ring. 

Frequency factor Al of the curing reaction DGEBA with m-PDA 

is higher than DGEBA with MDA due to the higher viscosity of 

this solution which limits the mobility of the molecules • 

The reaction between DGBE and m-PDA shows a lower value of 

EI and Al compared with the reaction of DGBE with MDA • EI 

is probably lower because the small m-PDA molecule can be 

accomodated in the transition state more easily than the 

bigger MDA molecule. E2 is slightly smaller in DGBE systems 

showing the tendency of these systems to give lower energy 

transition states. 

Systems where the epoxy component contained a mixture of 

DGEBA and DGBE , cured with either MDA or m-PDA , showed 

EI ,E 2 ,A I ,A 2 values very close to the theoretical values 

calculated as the composition weighted average of the values 

of the bicomponent formulations. " 

DGEBA cured with Tonox 60/40, which contains a high 

percentage of oligomeric fractions showed activation 

energies and frequency factors lower than theoretical value; 

this behavior is even more evident in the system DGBE cured 
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with Tonox 60/40 where the values obtained experimentally 

are quite different from the theoretical ones. 

These results may be explained by the presence of a high 

amount of oligomeric fractions in Tonox 60/40 ,which 

decreases the activation energy and the frequency factor • 

This behavior is especially evident in the curing of DGBE 

with Tonox 60/40 bec~use in thi~ case the reagents 

participating to the reaction interacts synergistically. 

To clarify the effect on the curing kinetics of the presence 

of oligomeric fractions in the curing agent a study was 

performed on the system DGBE plus 2,4-bis(aminobenzyl)-

anyline . 

Activation energy and frequency factor for the primary 

reaction in this system are quite lower than the 

others, while E2 and A2 are in the same range ( Table 13 and 

l3a ) .The lower value of the parameters El in this system 

may be explained with the higher basicity of the amino 

groups of 2,4-bis(aminobenzyl)-aniline while the lower Al 

coefficent suggests the idea of a reduced mobility of this 

molecule . 

Temperature dependance of k1 and k2 for the system 

DGEBA/DGBE cured with Tonox 60/40 AlE = .9, 1.0, 1.1, 1.2) 

is shm·m in Fig. 8 and Fig. 9 . 

The curing-kinetics of the mixture DGEBA / DGBE (80:20) with 

Tonox 60/40 AlE = 1.0 show E1 slightly lower and A1 lower 

than the ?ercentage composition weighted average of the 

-
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bicomponents formulations. This behavior may be explained 

with the presence of a high percentage of oligomeric 

fractions in the curing agent which, as explained in the 

former pharagraph, reduces the mobility of the molecules in 

the reaction medium and decreases the activation energy. 

The formulations with AlE = .9,1.1,1.2'show a ~alue of E1 

very close to the formulation AlE = 1.0 .Departures from the 

stoichiometric ratio affects the value of A1 which increases 

by increasing the concentration of mobile amino groups. 

E2 values are similar for all four formulation and A2 

increases by increasing the AlE ratio from .9 to 1.1 but 

decreases above this value, due to the lower availability of 

epoxy rings needed for the reaction with the secondary 

amine. 

The Qrso evolved during the curing of every system studied 

did not change in function of temperature outside the error 

range of the technique used except for the system DGEBA with 

MDA,thus showing QRes. The high viscosity and Tg 00 of this 

system prevent high conversion Fig. 2 ) at curing 

temperatures much IOvler than its Tg 00 • 

System DGEBA/DGBE with Tonox 60/40 releases the maximum Qrso 

for the formulation AlE = 1.1 showing the maximum q~mber of 

functional groups reacted in this case. 
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Table 1. Temperature dependence of kinetic variables. 
System : DGEBA with MDA AlE = 1.0 . 
Kinetic Temperature correlation 
Variables dependence coefficient 

k1 (min-I) 1.99 E+6 exp(-6.11 E+4 I RT) -.9981 

k2 (min-1 ) 1.28 E+5 exp(-4.40 E+4 I RT) -.9978 

m 1. 99 - 2.89 E-3 *T -.9395 

dp (min -1) 2.27 E+5 exp(-4.98 E+4 I RT) -.9996 

up 1.17 - 1. 98 E-3 *T -.9732 

tp (min ) 9.96 E-8 exp(6.03 E+4 I RT) .9999 

t50 (min ) 2.56 E-6 exp(5.04 E+4 I RT) .9964 

Table 1a. Activation energies and frequency factors. 
System : DGEBA with MDA. 

Activation Energy (Kcal/mole) Frequecy Factor (min-I) 

E1 = 14.60 Al = 1.99 E+6 

E2 = 10.52 A2 = 1. 28 E+S 

Eap = 11. 90 Aap = 2.27 E+5 

Etp = 14.41 

EtSO = 12.01 
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Table 2. Temperature dependence of kinetic variables. 
System : DGEBA with m-PDA AlE = 1.0 . 
Kinetic Temperature correlation 
Variables dependence coefficient 

k1 (min-1 ) 6.99 E+6 exp(-6.40 E+4 I RT) -.9998 

k2 (min-1 ) 1. 79 E+5 exp(:-4.45 E+4 I RT) -.9934 

m 2.58 - 4.57 E-3 *T -.9935 

cip (min-1 ) 3.65 E+5 exp(-5.05 E·4 I RT) -.9966 

Q p 1.46 - 2.85 E-3 *T -.9962 

tp (min ) 1.39 E-8 exp(6.52 E+4 I RT) .9991 

t50 (min ) 7.85 E-7 exp(5.30 E+4 I RT) .9964 

Table 2a. Activation energies and ~requency factors. 
System : DGEBA wiih m-PDA. 

Activation Energy (Kcal/mo1e) Frequecy Factor (min-I) 

E1 = 15.30 Al = 6.99 E+6 

E2 = 10.63 A2 = 1. 79 E+5 

Eap = 12.07 Acip = 3.65 E+S 

Etp = 15.59 
t:) 

EtSO = 12.67 
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Table 3. Temperature dependence of kinetic variables • 
System: DGBE with MDA AlE = 1.0 • 

Kinetic Temperature correlation 
Variables dependence coefficient 

k1 (min-1 ) 7.54 E+6 exp(-6.20 E+4 / RT) -.9994 

k2 (min-1 ) .39 E+5 exp(-4.06 E+4 / RT) -.9976 

m 2.43 - 4.03 E-3 *T -.9982 

. (min-1 ) 4.87 E+5 exp(-5.16 E+4 I RT) -.9989 ct.p 

Cl p 1. 75 - 3.72 E-3 *T -.9976 

tp (min ) 2.16 E-9 exp(7.04 E+4 I RT) .9993 

t50 (min ) 1.02 E-6 exp(5.20 E+4 / RT) .9985 

Table 3a. Activation energies and frequency factors. 
System : DGBE with MDA. 

Activation Energy (Kcal/mole) Frequecy Factor (min-1 ) 

El = 14.81 A1 = 7.55 E+6 

E2 = 9.12 A2 = .38 E+5 

4'. ... a p = 12.34 Aap = 4.87 E+5 

Etp = 16.81 

Et50 = 12.43 
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Table 4. Temperature dependence of kinetic variables. 
System : DGBE with m-PDA AlE = 1.0 . 
Kinetic Temperature correlation 
Variables dependence coefficient 

kl (min-i) 1.52 E+6 exp(-5.54 E+4 I RT) -.9973 

k2 (min-i) .56 E+5 exp(-4.12 E+4 I RT) -.9980 

m 1.48 - 1. 59 E-3 *T -.9666 

. (min-i) 3.19 E+5 exp(-4.93 E+4 I RT) -.9994 CLp 

CLp 1.15 - 2.28 E-3 *T -.9612 

tp (min ) 1.87 E-8 exp(6.19 E+4 I RT) .9958 

t50 (min ) 1.40 E-6 exp(4.99 E+4 I RT) .9990 

Table 4a. Activation energies and frequency factors. 
System : DGBE with m-PDA. 

Activation Energy (Kcal/mole) Frequecy Factor (min-i) 

El = 13.23 Ai = 1. 51 E+6 

E2 = 9.85 A2 = .56 E+5 

Eap = 11.78 Aap = 3.19 E+S 

Etp = 14.79 

Etso = 11.923 
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Table 5. Temperature dependence of kinetic variables. 
System: DGEBA/DGBE (80/20) with MDA A/E = 1.0 • 

Kinetic 
Variables 

k1 (min-1 ) 

k2 (min-1 ) 

m 

tp (min ) 

t50 (min ) 

Temperature 
dependence 

3.33 E+6 exp(-6.10 E+4 / RT) 

1.26 E+5 exp(-4.39 E+4 / RT) 

1.95 - 2.71 E-3 *T 

2.26 E+5 exp(-4.94 E+4 / RT) 

1.23 - 2.19 E-3 *T 

9.07 E-8 exp(5.97 E+4 / RT) 

3.38 E-7 exp(5.61 E+4 / RT) 

correlation 
coefficient 

-.9995 

-.9~77 

-.9553 

-.9987 

-.9829 

.9986 

.9964 

Table 5a. Activation energies and frequency factors. 
System: DGEBA/DGBE (80/20) with MDA 

Activation Energy (Kcal/mole) Frequecy Factor (min-1 ) 

E1 = 14.56 Al = 3.33 E+6 

E2 = 10.48 A2 = 1.26 E+5 

Eap = 11. 79 Aa p = 2.26 E+5 

Etp = 14.26 

EtSO = 13.40 
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Table 6. Temperature dependence of kinetic variables. 
System: DGEBA/DGBE (80/20) with m-PDA AlE = 1.0 • 

Kinetic Temperature correlation 
Variables dependence coefficient 

k1 (min-1 ) 7.03 E+6 exp(-6.19 E+4 I RT) -.9989 

k2 (min-1 ) 2.86 E+5 exp(-4.64 E+4 I RT) -.9963 

m 1.24 - 1.06 E-3 *T -.9405 

. (min-1 ) 7.28 E+5 exp(-5.26 E+4 I RT) -.9976 ap 

ap 0.96 - 1. 64 E-3 *T -.9874 

tp (min ) 3.61 E-8 exp(6.12 E+4 I RT) .9971 

tso (min ) 3.28 E-7 exp(S.S4 E+4 I RT) .9923 

Table 6a. Activation energies and frequency factors. 
System : DGEBA/DGBE (80/20) with m-PDA 

Activation Energy (Kcal/mole) Frequecy Factor (min-1 ) 

E1 = 14.79 A1 = 7.03 E+6 

E2 = 11. 08 A2 = 2.86 E+5 

Eap = 12.S5 Aap = 7.28 E+5 

Etp = 14.63 

EtSO = 13.23 
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Table 7. Temperature dependence of kinetic variables. 
System . DGEBA with Tonox 60/40 A/E = 1.0 . . 
Kinetic Temperature correlation 
Variables dependence coefficient 

k1 (min- l ) 3.18 E+6 exp(-6.09 E+4 / RT) -.9971 

k2 (min-1 ) 1.42 E+5 exp(-4.40 E+4 / RT) -.9995 

m 2.15 - 3.22 E-3 *T -.9791 

ap (min-1 ) 1.46 E+5 exp(-4.80 E+4 / RT) -.9997 

<lp 1. 34 - 2.45 E-3 *T -.9958 

·t p (min ) 8.15 E-8 exp(6.02 E+4 / RT) .9994 

t50 (min ) 1. 83 E-6 exp(5.08 E+4 / RT) .9991 

Table 7a. Activation energies and frequency factors. 
System: DGEBA with Tonox 60/40 A/E = 1.0 

Activation Energy (Kcal/mole Frequecy Factor (min-1 ) 

E1 = 14.56 Al = 3.18 E+6 

E2 = 10.59 A2 = 1. 42 E+5 

Eap = 11. 46 Aa p = 1.46 E+5 

Etp = 14.38 

EtSO = 12.14 
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Table 8. Temperature dependence of kinetic variables. 
System : DGBE with Tonox 60/40 A/E = 1.0 . 
Kinetic Temperature correlation 
Variables dependence coefficient 

k1 (min-1 ) 1.16 E+6 exp(-5.50 E+4 / RT) -.9996 

k2 (min-1 ) 1.07 E+5 exp(-4.39 E+4 / RT) -.9738 

m 1. 44 - 1. 54 E-3 *T -.8623 

. (min-i) 3.64 E+5 exp(-5.03 E+4 / RT) -.9934 ap 

ap 0.95 - 1. 78 E-3 *T -.8484 

tp (min ) 4.82 E-8 exp(5.92 E+4 / RT) .9975 

tso (min ) 1.11 E-6 exp(S.12 E+4 / RT) .9928 

Table 8a. Activation energies and frequency factors. 
System: DGBE with Tonox 60/40 A/E = 1.0 

Activation Energy (Kcal/mole Frequecy Factor (min-1 ) 

El = 13.13 Ai = 1.16 E+6 

E2 = 10.49 A2 = 1. 07 E+5 

Eap : = 12.01 Aap = 3.64 E+5 

Etp = 14.13 

Etso = 12.22 
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Table 9. Temperature dependence of kinetic variables. 
System : DGEBA/DGBE(80/20) \vith Tonox60/40 AlE = .9 . 
Kinetic Temperature correlation 
Variables dependence coefficient 

kl (min-i) .725 E+6 exp(-5.54 E+4 / RT) -.9978 

k2 (min-i) .868 E+5 exp(-4.30 E+4 / RT) -.9970 

m 1.59 - 1. 80 E-3 *T -.8301 

~ (min-i) 1.33 E+5 exp(-4.77 E+4 / RT) -.9991 

CL 1.04 - 1. 46 E-3 *T -.9418 
P 

tp (min ) 1. 74 E-7 exp(5.72 E+4 / RT) .9998 

t50 (min ) 6.20 E-6 exp(4.67 E+4 / RT) .9999 

Table 9a. Activation energies and frequency factors. 
System: DGEBA/DGBE (80/20) with Tonox 60/40 AlE = .9 

Activation Energy (Kcal/mole Frequecy Factor (min-i) 

El = 13.24 Ai = .725 E+6 

E2 = 10.26 A2 = .868 E+5 

Eap = 11.40 Aap = 1. 33 E+5 

Etp = 13.68 

EtSO = 11.16 
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Table 10. Temperature dependence of kinetic variables. 
System . DGEBA/DGBE (80/20) with Tonox 60/40 A/E = 1.0 . . 
Kinetic Temperature correlation 
Variables dependence coefficient 

k1 (min-1 1.20 E+6 exp(-5.67 E+4 / RT) -.9993 

k2 (min-1 ) 1.86 E+5 exp(-4.S1 E+4 / RT) -.9998 

m 1.2S - .996 E-3 *T -.8342 

CLp (min -1) 3.04 E+S exp(-S.Ol E+4 / RT) -.9999 

ap .80 - 1.17 E-3 *T -.9294 

tp (min ) 3.25 E-7 exp(5.48 E+4 / RT) .9981 

tso (min ) 1.08 E-6 exp(S.20 E:I'4 / RT) .9987 

Table lOa. Activation energies and frequency factors. 
System: DGEBA/DGBE (80/20) with Tonox 60/40 A/E =1.0 • 

Activation Energy (Kcal/mole Frequecy Factor (min-1 ) 

E1 = 13.55 A1 = 1. 20 E+6 

E2 = 10.78 A2 = 1. 86 E+5 

Eao = 11.96 Aap = 3.04 E+5 
~ 

Etp = 13.08 

EtSO = 12.49 
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Table 11. Temperature dependence of kinetic variables. 
System: DGEBA/DGBE (80/20) with Tonox 60/40 AlE = 1.1 • 

Kinetic 
Variables 

k1 (min-1 ) 

k2 (min-1 ) 

m 

ap 

tp (min ) 

t50 (min ) 

Temperature 
dependence 

1.50 E+6 exp(-5.69 E+4 / RT) 

2.07 E+5 exp(-4.53 E+4 / RT) 

1.43 - 1.41 E-3 *T 

3.04 E+5 exp(-4.98 E+4 / RT) 

.980 - 1.63 E-3 *T 

1.01 E-7 exp(5.82 E+4 / RT) 

1.90 E-6 exp(4.98 E+4 I RT) 

correlation 
coefficient 

-.9997 

-.9990 

-.6318 

-.9996 

-.8514 

.9975 

.9966 

Table 11a. Activation energies and frequency factors. 
System: DGEBA/DGBE (80/20) with Tonox 60/40 A/E =1.1 • 

Activation Energy (Kcal/mole Frequecy Factors (min-1) 

E1 = 13.60 A1 = 1.50 E+6 

E2 = 10.80 A2 = 2.07 E+5 

Eap = 11.88 Aap = 3.04 E+5 

Etp = 13.92 

Et50 = 11. 90 

~.' 
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Table 12. Temperature dependence of kinetic variables. 
System: DGEBA/DGBE (80/20) with Tonox 60/40 A/E = 1.2 • 

Kinetic Temperature correlation 
Variables dependence coefficient 

k1 (min-1 ) 1. 70 E+6 exp(-5.64 E+4 / RT) -.9999 

k2 (min-1 ) 1.32 E+5 exp(-4.38 E+4 / RT) -.9998 

m .230 - 1. 83 E-3 *T -.8775 

. (min-1 ) 2.43 E+5 exp(-4.87 E+4 / RT) -.9997 o.p 

o.p .520 - 4.70 E-4 *T -.6793 

tp (min ) 5.88 E-7 exp(5.20 E+4 / RT) .9990 

t50 (min ) 8.58 E-6 exp(4.45 E+4 / RT) .9999 

Table 12a. Activation energies and frequency factors. 
System: DGEBA/DGBE (80/20) with Tonox 60/40 A/E = 1.2 • 

Activation Energy (Kcal/mole Frequecy Factors (min-l) 

El = 13.46 A1 = 1. 70 E+6 

E2 = 10.47 A2 = 1. 32 E+5 

Eap = 11. 63 Aap = 2.43 E+5 

Etp = 12.42 

Et50 = 10.62 
.,) 
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Table 13. Temperature dependence of kinetic variables. 
System: DGBE with 2,4-bis(aminobenzyl)-aniline AlE = 1.0 • 

Kinetic Temperature correlation 
Variables dependence coefficient 

k1 (min-1 ) 0.21 E+6 exp(-5.02 E+4 I RT) -.9949 

k2 (min-1 ) 2.28 E+5 exp(-4.76 E+4 I RT) -.9989 

m 1. 98 - 3.15 E-3 *T -.9103 

. (min -1) 3.48 E+5 exp(-5.09 E+4 I RT) -.9980 Qp 

Qp 0.85 - 1.63 E-3 *T -.9360 

tp (min ) 4.82 E-8 exp(5.95 E+4 I RT) .9991 

tso (min ) 3.72 E-6 exp(4.81 E+4 I RT) .9982 

Table 13a. Activation energies and frequency factors. 
System: DGBE with 2,4-bis(aminobenzyl)aniline AlE =1.0 • 

Activation Energy (Kcal/mole Frequecy Factor (min-1 ) 

E1 = 12.01 A1 = 0.21 E+6 

E2 = 11. 38 A2 = 2.22 E+5 

Eap = 12.17 Aap = 3.48 E+5 

Etp = 14.21 

Et50 = 11.50 
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Appendix 1. Method of rearrangement of the kinetic equation 
(1) to calculate k14 k2' m and n. 

<fa 
ti= - = (Kl + K'atr%) «"1 _Il)n cf •. (ll 

m= m U(l_:~:KI)) 
Ina 

(2) 

(
cia \ 
- =K1 dtJ t=C __ (3) 

(4) 

(5) 

m+n=2 (6) 

..... 

(2 - m)f(1 a}.-fI'f 
K2= (7) 

m-:~p 

((I-r::p~P- m - hI) 
!n C2 -nIlKlapl-m) 

m= ' m - 2Qi> 

lnQP (8) 
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linear regression. 
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Appendix 3. Flowchart of the computer proryram used to 
calculate and optimize activation energies an frequency 
factors. 
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PART IV 

PHYSICAL/THERMAL PROPERTIES OF 

HBRF 55A RESIN FORMULATIONS 

DURING CURE 
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A. Measurements of Viscosity During Cure 

A series of viscosity measurements were conducted with the' 

formulation containing DGEBA/DGBE (80/20) resin mixture and cured 

with the stoichiometric amount of the Tonox mixture (A/E=l.O). 

Rheological measurements were performed using a model R-17 Weissen­

berg Rheogoniometer which is a cone-and-plate type instrument. 

Viscosity was measured as a function of steady shear rate, curing 

time and curing temperature. 

In Figures 1-3, viscosity is shown as a function of shear rate 

for three different temperatures; 26°C, 40°C and SooC, respectively. 

In each figure there are data points for several curing times. We 

conclude that, of the conditions of this study, viscosity is indepen­

dent of shear rate. The changes in viscosity as a function of time 

and temperature during cure are summarized in Table 1. 

In Figure 4, we show the results of changes in viscosity as a 

function of curing time with temperature as a parameter. As one 

would expect, the higher the curing temperature, the lower the initial 

viscosity and the faster the increase in viscosity as a function of 

curing time. 

In Figure S, viscosity was plotted as a function of curing tem­

perature with curing time as a parameter. Solid lines connect the 

isochronous points at different temperatures. At short times, visco­

sity decreases with increasing temperature. At longer times, how­

ever, viscosity increases as the temperature is increased due to an 

increase in MW of the network. 
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B. Measurements of Extent of Reaction During Cure 

The extent of reaction was measured next in order to correlate it 

to the simultaneous changes in physical/thermal properties during 

cure. DuPont's 910 DSC cell in conjunction with the 1090 Thermal 

Analyzer were used in this study. The heating rate was 20°C/min. 

A dynamic scan of an "as-prepared" sample provided the reference 

value of the total heat of reaction (AHT). Other samples were then 

prepared and maintained at three different temperatures for various 

periods of time. At desired time intervals, samples were removed and 

scanned in DSC. The difference in the thus obtained heat of reaction 

(AHR) and the reference value (AHT) was taken as the heat of reac­

tion during the elapsed period at a given temperature. The ratio of 

AHR/AHT was take to represent the extent of reaction (a). Values of 

ex as a function of curing time and temperature are summarized in 

Table 2. In Figure 6, the extent of cure is plotted as a function of 

curing time with temperature as a parameter. A cross-plot showing 

the observed relationship between changes in viscosity and the extent 

of reaction at 40°C, is given in Figure 7. 

C. Measurements of Heat Capacity During Cure 

A series of measurements of heat capacity was performed next. 

DSC unit describe in part B was used to generate data. A baseline 

was established first and then a standard sample with known heat 

capacity was run. Finally, the resin samples were run and their heat 

capacities calculated. In Table 3, we summarize the calculated values 
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of Cp obtained from DSC data at different temperatures and times. 

Plots of heat capacity as a function of curing time with temperature 

as a parameter, are shown in Figure 8. A decrease in heat capacity 

with increased curing time was observed for every temperature. In 

Figure 9, we show heat capacity as a function of curing temperature. 

Solid lines connect sets of isochronal points obtained at different 

temperatures. It is interesting to note that the rate of heat capacity 

change increases as the curing temperature is increased. Finally, in 

Figure 10, we show the heat capacity for sample cured at 40°C for 

1.5 hr, in the range between 20° and 70°C. The corresponding 

equation is included on Figure 10. 

Next, heat capacity of the composite CCPc) was calculated using 

the equation: 

CPc = WfCPf + WmCPm 

where Wf and Wm are the weight fractions, and CPf and CPm heat 

capacities of the fiber and the matrix, respectively. Changes in CPc 

during cure are shown as dashed lines in Figures 8 and 10. The 

values of heat capacity and density of the fiber were obtained from the 

literature. 

Measurements of Density During Cure 

A series of density measurements were performed next. During 

the initial stages of cure, density of the liquid resin was measured 

with a hydrometer. In Figure 11, we show density of the resin as a 

function of curing time with curing temperature as a parameter. An 

abrupt increase in density occurs during gelation. In Figure 12, 
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changes in density are shown as a function of the extent of cure. 

We also calculated changes in the density of composite. A typical 

value of carbon fiber density obtained from the literature is pf = 1.80 

g/cm3 . Assuming that pf does not change during the resin cure in 

the temperature range between 20°C and 50°C I we proceeded to 

calculate the changes in composite density (pc) during cure. The 

following equation was used: 

Pc = PfVf + pmVm 

where Pf and Pm are densities I and V f and V m the volume fractions of 

the fiber and the matrix I respectively. Changes in Pc during cure 

are shown as dashed lines in Figure 11. 

Measurement of Thermal Conductivity During Cure 

Our initial studies have shown that the thermal conductivity of 

the resin increases with the extent of cure. However I we have not 

yet generated .absolute values because we are in the process of per­

forming an exact calibration of our equipment. 
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. TABLE 1 

Changes in Viscosity (I-', poise) as a Function of Curing Temperature and 
Curing Time 

Curing Temperature 
Curing Time hr. 26°C 40°C 50°C 

1.5 11.4 3.3 1.8 

2.5 4.4 3.1 

3.0 14.1 5.1 4.1 

4.0 7.3 11.8 

4.5 19.0 9.0 22.3 

5.5 17.1 100.2 

6.0 28.0 25.0 250 

7.5 44.2 150 gelled 

9.0 79.3 1,000 

12.0 350 gelled 

13.5 2,210 

15.0 5,950 

16.0 11,314 

17.0 gelled 



TABLE 2 

Changes in Extent of Reaction (a, %) as a Function of 
Curing Temperture and Curing Time 

Curing Time hr. 

1.5 

3.0 

4.5 

5.0 

6.0 

7.5 

8.0 

9.7 

14.0 

16.0 

4.1 

7.0 

13.9 

28.5 

31.3 

Curing Temperature 

15.0 

31.1 

50.4 

64.3 

68.3 

18.5 

70.2 

6 . 
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TABLE 3 

Changes in Heat Capacity (Cp, Call g , °C) at 20°C as a Function of 
Curing Temperture and Curing Time 

Curing Temperature 
Curing Time hr. 26°C 40°C 50°C 

1.5 0.7964 0.6203 0.5882 

3.0 0.7735 0.5768 0.5530 

4.5 0.7481 0.5333 0.4424 

6.0 0.6905 0.4563 0.3982 

7.5 0.6627 0.4088 

9.0 0.6350 

12.0 0.6175 

14.0 0.5980 

16.0 0.5792 
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TABLE 4 

Changes in Density (p, g/cm3) as a Function of Curing Temperature and 
Curing Time 

Curing TemEerature 
Curing Time hr. 26°C 40°C 50°C 

0.0 1.137 1.137 1.137 

1.5 1.139 

2.0 1.140 1.144 1.147 

3.5 1.148 

4.5 1.148 1.154 1.166 

5.0 1.152 1.159 

6.5 *1. 2222(gel) 

7.5 *1. 2233(gel) 

8.0 1.157 

9.0 1.158 1.167 

10.0 1.161 

12.0 1.163 

14.0 1.164 *1. 2205 (gel) 

16.0 1.165 *1. 2234( gel) 

18.0 *1. 2250( gel) 

22.0 *1.'Z268(gel) 

25.0 *1. 2283(gel) 

40.0 *1. 2168(gel) 

*measured with Density Gradient Column 

Other data obtained with Hydrometer. 
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