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EFFECT OF WEAR ON STRUCTURE-SENSITIVE MAGNETIC PROPERTIES OF	 I

CERAMIC FERRITE IN CONTACT WITH MAGNETIC TAPE

Kazuhisa Miyoshi and Donald H. Buckley
National Aeronautics and Space Administration

Lewis Research Center
Cleveland, Ohio 44135

and

Kyuichiro Tanaka
Kanazawa University, 2-40-20, Kodatsuno,

Kanazawa, Japan

ABSTRACT

Wear experiments and electron microscopy and diffraction studies were

conducted to examine the wear and deformed layers in single-crystal Mn-Zn

(ceramic) ferrite magnetic head material in contact with magnetic tape and the

effects of that contact on magnetic properties. The crystalline state of the

single-crystal magnetic head was changed drastically during the sliding

M
cc	 process. A nearly amorphous structure was produced on its wear surface.v
N

W	 Deformation in the surficial layer of the magnetic head was a critical factor

in readback signal loss above 2.5 dB. The signal output level was reduced as
i

applied normal load was increased. Considerable plastic flow occurred on the

magnetic tape surface with sliding, and the signal loss due to the tape wear

was approximately 1 dB.

INTRODUCTION

NASA will conduct scientific experiments through 1995 on shuttle flights

and will build a chemical research laboratory aboard the agency's planned

space station scheduled for the early 1990's. Some of the experiments will

involve basic organic, or carbon-based, chemistry research for thinner, more

durable magnetic tapes and defect-free crystals to meet critical needs in the

computer and communications industries.
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NASA Lewis Research Center has expended considerable effort in

tribological studies of the adhesion, friction, and wear of newly developed

magnetic tapes as well as commercially available magnetic tapes in contact

with ceramic ferrites (Refs. 1 to 11). A fundamental understanding of the

tribology and mechanics of the magnetic head-tape interface is crucial for the

future of the magnetic recording industry. In most magnetic recording and

playback devices, a magnetic head (slider) records by sliding or intermittent

contact with a magnetic tape to achieve high density and high resolution.

Only slight wear of the magnetic head and tape may render the recording

process unreliable. The magnetic head and tape must therefore have good wear

resistance and low friction.

Furthermore the mechanical sliding or intermittent contact frequently

develops deformed layers on the surfaces (Refs. 12 to 14). The deformed

layers seriously affect the magnetic and electrical properties of the

materials. Structure-sensitive magnetic properties (permeability, coercivity,

and loss factor) usually reach their worst values in the deformed layer.

These deformed layers produce a signal loss in the short-wavelength output of

practical recording systems. However, a limited amount of systematic

fundamental research has been conducted to determine the influence of deformed

layers on adhesion, friction, and wear as well as their role in the dynamic

recording/readback (playback) process of recording systems (Ref. 12).

This investigation was conducted to examine the wear and deformed layers

in single-crystal Mn-Zn ferrite (ceramic) magnetic heads and magnetic rapes

and to determine the effect of wear on their magnetic properties.

MATERIALS

The single-crystal Mn-Zn ferrite (69.8 wt % Fe 2 0 3 , 22.6 wt % MnO, and

7.6 wt % ZnO), an as-grown crystal, is a ceramic semiconductor.	 In Mn-Zr

ferrites the (110) planes in the (170) direction exhibit the greatest
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hardness (Ref. 4). Therefore the magnetic head was oriented with its din-Zn
i

ferrite (110) surface nearly parallel to the sliding interface and its

(100) surface perpendicular to the sliding direction (Fig. 1(a)). 	 The

orientation Was determined with the back-reflection Laue method. The (100)

and (110) surfaces were oriented to an accuracy of ±1°. The magnetic gap

was 115 pm wide, the width of the recorded track, and 0.7 pm long.

The magnetic tape used in this investigation had a layered structure

(Fig. 1(b)):	 a magnetic layer of -f -Fe 2 0 3 powder, binder, and lubricant;

r	 and a polymer-base film (polyethylene terephthalate) backing.	 It was 23 pm

thick and 12.7 mm wide. The t , ro tapes used in this investigation differed in

the binder and lubricant material.

APPARATUS

The apparatus used in this investigation was a modified commercial

two-head, helical-scan video tape recording system (Fig. 2 (Ref. 15)).	 The

two video heads were exactly opposite each other on the Crum. A measurement

microscope and a tape-tension-measuring device were mounted in the system.

The measurement microscope measured the head displacement from the drum

surface and the head wear and provided a surface profile of the head.

The 12.7-mm-wide magnetic tape was wound around the drum at a 190 0 wrap

angle and traveled helically at 0.19 m/s at an angle of 2°50' on the drum

surface. The tape tension was controlled by a tension arm. The final tape

tension was three times greater than the initial tape tension. The.tape

tension was used to vary the normal load applied to the head-tape contact.

The normal l oad could also be controlled by displacing the head radially

from the drum surface (Fig. 2(b)). The applied load and friction force were

proportional to the tape tension and the amount of head displacement to

displacements of 150 pm. At displacements above 150 pm the tension increased

at a slightly higher rate with further increases in head displacement.
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The head rotated in the opposite direction to tape travel. The head speed

was 11 m/s.

EXPERIMENTAL PROCEDURE

Sliding Friction Experiments

Two sets of experiments were conducted with magnetic tapes in sliding

contact with magnetic heads. In the first set of experiments both the head

and the tape were in motion, that is, the head rotated at 11 m/s opposite to

the direction in which the tape traveled at 0.19 m/s. In the second set of

experiments the head moved at 11 m/s, but the tape was stationary. All

experiments were conducted in laboratory air at room temperature.

Surface Contour and Wear Measurement

An optical interference microscope was used to examine the end-view

contour (A-A) of the sliding surface of the magnetic head (Fig. 3). The

side-view contour (B-B) and wear measurement of the magnetic head were

determined as follows (Fig. 3): An optical microscope was used to examine the

side of the magnetic head and to photograph it at a magnification of 600

before and after the sliding friction experiments. Small scratches or dents

on the side of the magnetic head were used as standard markers. Lines

parallel to the front end, the rear end, or the magnetic ga p of the head and

extending through the standard markers were drawn on the photomicrographs.

The distances between the standard markers and the sliding surface of the

magnetic head (X 1 , X 2 , X 3 ,	 Xn 1 ,
 
X n ) were then measured.	 The .

amount of wear reported herein was obtained by averaging the distance X 1 to

x  from seen or eight measurements.

Signal-Output Level

The effect of wear on the electrical characteristics of magnetic head-tape

contacts in the recording system was examined by using the experimental setup

illustrated in Fig. 4.	 First, a string of alternating sine waves with a
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nonfrr!quency-modulated 3-MHz signal at a recording current of 60 mA was

supplied and recorded on the magnetic tape via the magnetic head. The signal

was then read back via the magnetic head. The readback signal was amplified 8

and 500 times through a built-rr rotary transformer and preamplifier,

respectively. The readback signals were monitored by an oscilloscope at a

sweep speed of 2 ms/cm and at a sensitivity of 0.02 V/cm during the sliding

friction experiments.	 Readback sign-il levels (in decibels) during sliding

were defined by D = 20 log (G n /G 1 ), where G 1 is the standard reaoback

signal (in volts) and G  is an arbitrary readback signal (in volts).

RESULTS AND DISCUSSION

Friction Between Head and Tape

Sliding friction experiments were conducted with a magnetic tape in

contact with a magnetic head at an initial tape tension of 1.25 N and at a

head displacement of 122 um in laboratory air. Although the friction force

increased linearly as the tape tension or the head displacement increased, it

was of the order of 0.01 N.	 That is, the friction force was directly
i

proportional to the normal load applied to the magnetic head and tape. The

coefficient of friction was approximately 0.22.

Tape Wear

Sliding friction experiments were conducted to examine the tape wear

behavior with a magnetic head at an initial tape tension of 0.49 N and a head

displacement of 168 pm in laboratory air. Sliding action produced visible

wear tracks on the magnetic tapes. Scanning electron photomicrographs were

taken of the as-received surfaces of the tapes (tapes 1 and 2) and of the wear

tracks on the tapes (Fig. 5). The head passed the same track on each tape

18 000 times; the tapes were stationary.

The as-received surfaces of tapes 1 and 2 were similar, but their wear

tracks were quite different. The scanning electron photomicrographs clearly
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reveal some plastic flow of binder on tape 1 but considerable flow on tape 2.

The wear track of tape 2 consisted primarily of the binder, which flowed over

the magnetic particles. The nature of the binder and the lubricant obviously

control the plastic flow behavior of the magnetic tape (Ref. 10). Plastic

flow of the binder and lubricant can affect wear and cause a signal loss in

the recording/playback process. These subjects are discussed later.

Head Wear

Composed largel!, of oxide particles, the magnetic coating layer of

magnetic tape bears a certain resemblance to emery, a familiar abrasive

(Fig. 5). Therefore the sliding of a magnetic tape on a ferrite head abrades

the ferrite (Ref. 4).

The wear of the magnetic head was linearly proportional to the sliding

distance and to the head displacement. The specific wear rate, defined as the

wear volume of ferrite removed in an unit distance of sliding at an unit

normal load applied to the head, was of the order of 10 -7 to

10 -8 mm3 A m. The specific wear rate for the magnetic head in contact

with tape 1 was seven times g r eater than that with tape 2. In other words,

tape 2 was less abrasive than tape 1. The low abrasiveness of tape 2 was

related to the ability of the binder to flow, as anticipated. The binder of

tape 2 flowed easily and covered the oxide particles during sliding.

The wear surface of the ferrite head revealed a large number of

plastically deformed grooves formed primarily by the plowing action of the

oxide particles held in the magnetic tape (Ref. 14). The grooves were formed

in the sliding direction of the head. The width of these grooves was almost

the same as the diameter of the oxide particles (<0.1 pm).

To investigate the crystalline state of the wear surface of the magnetic

head, reflection electron diffraction patterns (Fig. 6) were obtained from the

wear surface and the etched surfaces. The etching was done with hydrochloric
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acid at 50±1 °C. The initial tape tension was 0.2 N, and the sliding distance

was 60 km. The broad arc in electron diffraction pattern of the wear surface

indicated formation of a nearly amorphous surface during sliding. The surface

etched to depth of 0.1 um from the wear surface had an enlarged streak spot

pattern. The streaking indicated a large amount of plastic deformation. Line

defects can cause streaking in diffraction patterns. The surface etched to a

depth of 0.3 pm had a relatively sharp spot pattern without streaking.

Furthermore the surface etched to a depth of 0.6 pm had Kikuchi lines,

consisting of pairs of black and white parallel lines, which are an indication

of the bulk crystalline structure of the ferrite head.

Since the magnetic tape was thin and flexible, the contour of the wear

surface of the magnetic head was affecicd by tape tension and head

displacement. End-view contours of the wear surfaces of magnetic heads at the

magnetic gap (Fig. 7) were determined with an optical interference

microscope. The contours were measured from interference fringes on the

photomicrographs at a magnification of 600. The as-polished magnetic head

with a lapping tape (Al 2 0 3 , number 2000) contacted magnetic tape 1 at an

initial tape tension of 0.64 N for a total sliding distance of 550 km. 	 Both

the magnetic head and the magnetic tape were in motion. Figure 7 clearly

reveals that the radius of curvature of the wear surface decreased with

increasing head displacement.

In wear experiments to determine the side-view contours, the as-polished

magnetic head with a lapping tape (Al 2 0 3 , number 2000) contacted magnetic

tape 1 at a tape tension of 0.64 N for a total sliding distance of 97C km.

Both the magnetic head and the magnetic tape were in motion. Figure 8 clearly

indicates that much more ferrite was removed from the front sliding surface

area of the head than from the rear. Higher contact pressure was applied to

7
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the front than to the rear. Therefore the contour of the wear surface

reflects the pressure distribution on the sliding surface.

Effect of Wear on Magnetic Signals

U e wear experiments described in the preceding sections did not consider

the effect of wear on the recording process. To determine signal losses

related to tape and head wear, the following experiments were conducted.

Tape wear - First, the magnetic head was run against magnetic tape 1 with
e

i	 a desired initial tape tension and head displacement for —40 km. The sliding

S
surface of the head conformed well to the magnetic tape, and it nad a properly

developed deformed layer. Then the tape was replaced with a new recorded tape
s

(11 m long), and the signal was read back with the magnetic head at the

desired initial tape tension and heal displacement.

The standard readback signal G 1 was taken at the first 500 sliding

passes of the head over the recorded track if the new tape. Signals were also

^t
read back continuously during multipass sliding of the head over the same

track on the tape. The tape was stationary. The signal amplitude decreased

with repeated passes of the head over the same track (Fig. 9). Th , signal

loss increased with increasing head displacement (Fig. 9(a)).	 Tape tension,

however, had almost no effect on signal loss (Fig. 9(b)).	 The reduct'on of

signal output level was due to the tape wear disrussed earlier. The deformed

layer and the contours of the magnetic head did not vary markedly during

Y	 multipass sliding on the recorded tape.

Experiments were then conducted to determine readback signals as a

function of the number of repeated passes of the recording tape. Both the

recording tape and the magnetic head were in motion. The signal losses

increased with the first few passes but became constant after five passes

(Fig. 10). Tape tension and head displacement had almost no effect on sig

loss. Again the signal losses were primarily due to medium wear.
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Head wear - To determine the effect of head wear on signal losses, the

magnetic head was run agaiost magnetic tape 1 with a desired tape tension and

head displacement for a sliding distance of 60 km. The sliding surface of the

,aagnetic head conformed to the magnetic tape, but the head had a deformed

layer, as mentioned earlier. The sliding surface of the magnetic head was

therefore etched to a depth of approximately 0.1 um in order to remove the

residual deformed surficial layer from the wear surface. A new recorded tape

(11 m long) was then run =-d the standard signal G 1 was read back. The

tionrecorded tape (230 m lanj) was repeatedly t-aveling, approximately 20 times

Its length, for a total sliding distance of 140 km. The head displacement was

198 pm and the initial tape tension was 0.20 N. 	 During the sliding experiment

the 11-m-long recorded tape was replaced several times. It was played back

and forth in order to read back signals G 	 at various stages of the

experiment. The resulti are presented in Fig. 11.

The readback signal amplitude decreased rapidly as the sliding distance

increased to approximately 40 km (Fig. 11). 	 It remained low and constant

after 40 km. The development of a deformed layer and tape wear were the

primary factors controlling signal loss. 	 The signal losses due to the tape

wear estimated from Fig. 10 were 1 dB or less, as indicated in Fig. 11. 	 On

the other hand, the signal losses due to deformation in the surficial layer of

the magnetic head were approximately 3 dB (Fig. 11).

The signal amplitude decreased rapidly with increasing slidin g, distance to

60 km (Fig. 12).	 The signal output loss increased with increasing tape

tension and head displacement, that is, with increasing the applied normal

load to the head.	 Typical examples of electron diffraction patterns were

taken of the etched surface of the ma g netic head before each sliding experiment

and of the wear surface of the magnetic head after 60 km of sliding at a head

displacement of 198 pm and an initial tape tension of 0.20 N. The electron

9

r^

t^



-------	 - - - '	 - -	 -- -- - (mil

Im

diffraction patterns (Fig. 13) clearly indicate that the crystalline state of

the magnetic head changed drastically during the sliding process. Sliding

action developed a nearly amorphous structure in the surficial lay,-r of the
t

single-crystal Mn-2n ferrite head. Thus deformation in the surficial layer of

the magnetic head is a critical factor in readback signal loss above 2.5 dB.

CONCLUSIONS

The following conclusions are drawn from wear experiments and electron

microscopy and diffraction studies of single-crystal Mn-Zn ferrite magnetic

heads in contact with magnetic tapes:

1. The crystalline state of a single-crystal magnetic head is changed

drastically during the sliding process. A nearly amorphous structure can be

produced on the wear surface of a single-crystal Mn-7ii ferrite magnetic head.

2. Deformation in the surficial layer of t1 , e magnetic head is a critical

factor in readback signal loss ai)ove 2.5 dB. 	 Signal output level decreases

with increasing applied normal load.

3. Considerable plastic flow occurs on a magnetic tape surface with

sliding, and the signal loss due to tape wear is 1 dB or less.
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(0.7 p m LENGTH) SLIDING

SURFACE

THROAT
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WINDINGS

i 110}

115 p m

MAGNETIC
CORE —^—

(a) Magnetic recording head (single-crystal Mn-Zn ferrite).
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-FILM BACKING
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(b) Magnetic tape.

Figure 1. - Schematics of magnetic head and tape.
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Figure 3. - Schematics of end and side views of magnetic head.
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Figure 7. - End-view contours (lateral cross section A-A of wear surface of
magnetic head at magnetic gap).
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(a) Head displacement, 51 um.

(b) Head displacement, 152 µm.

Figure 8. - Side view contours (longitudinal section B-B) of sliding
surface of magnetic head.
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iai As-etched surface before run.

(b) Wear surface after 04)-km run.
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Figure 13. - As-etched surface and wear surface of
magnetic head in sliding contact with magnetic
tape.
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