
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 



1^ Lr

fC

`r[

S
C

L
G
Q

-979

The (	 Late University

METEUROLOGICAL FACTUkS IN

EARTH-SATELLITE PROPAGATION

Curt A. Levis
Edward K. Damon
kuan-ti irj Lin

Albert E. Weller, III

Thr Ohio State University

Electrddence bboratory t
Deport"m of EI90ricol Enginer ► inp

Columbus, Ohio 4121

sdsj,I^Yry

Final Report 713656-4
Contract No. 956013

March 1984

Tnis wcr i, ras performed for the Set Propulsion Laboratory
California Institute of Terhnoloyy,

sponsored by the Nationa' Aeronautics and Space Administration
under Cortract NAS7-100

(N1S1-CR-17576 0+) METE030LOGICAL FACTORS IN	 N65-27089
Is IRT H-SATisLLI TS P FQ PAGATION F inal ,-Repot t,
12 mar. 1581 - 3v Jun. 1e83 (Ghio State
uuiv. , Colustus.)	 71 p HC Au4 /f"IP AC 1	 Unclas

CSC',. 20 G3/32 21245

--- _^r)4



r

2.
PAGE

4. -Title- and subtitle

METEORULOGICAL FACTORS IN EARTH-SATELLITE PROPAGATION

7. AuthoNs)

C.A. Levis, Z .K. Damon, K. Lin, and A.E. Weller, III
9. Per/omnln[ Organization Name and Address

The Ohio State University ElectroScience Laboratory
Department of Electrical Engineering
Columbus, Ohio 43212

12. Sponsoring Organization Name and Address

Jet Propulsion Laboratory
California Institute of Technology

Padadena, California

15. 3upplamanlary Not.s

3. R.rrp.ant s Acce,110n No
i

S. Report Date

Marsh_ 11184
6.

[. Performing Organuallon R.pl. No

ESL 7136b6-4
10. Project/Task/Work Unit No

11. Contracl(C) or Grant(0) No

(C)

(G)	 956U13

13. Type of Report 6 Per.od Covered
Final

3/12/81 -_6/3
9
/830

14..  

10. Abstract (Limit 200 word q	-

A 5-meter paraboloidal antenna operated at 28 GHz showed gain changes of

2 dB due to rain. While precise estimation of the corresponding angle-of-arrival
changes is difficult, they appear to have been on the order of U.02 degrees.

The attenuation at 28.6 GHz inferred from radiometry agreed well with that
measured simultaneously over a satellite/earth link at the same frequency. The
radiometers so calibrated have been used to add to the available site-diversity
data base using a 9 km baseline.

An improved empirical model of site diversity gain was obtained by applying
regression techniques to available published data.

A brief review of the literature has led to suggestions for two experimental
programs, one dealing with multi-frequency radiometry and the other with the

effects of the stochastic properties of precipitation on wide-band data
transmission.

17. Document Analysis o. Destrlptars

i
1

I

L

Propagation	 Attenuation
EHF	 Bandwidth
Satellite Communications 	 Radiometer

b. IdentlRers/Open-End.d Terms

C. COSATI Field/Group	 —	 —	 --- -- —

10. Availability Statement

s.—e

Precipitation

-_- 19. Security Class (This Report)	 21. No of Pages --
Unclassified	 65

20. Security Clan (Thh Pala) 	 22. Price
Unclassified

(Formerly NT)S-35)

I
	 Department of Commerce

—	 _': V w... - f,	 \. — . 7



IV

n

TABLE OF CONTENTS

Page

I.^

L.

f^l

LIST OF FIGURES iv

SECTION I:	 INTRODUCTION 1

SECTION II:	 THE GAIN DEGRADATION EXPERIMENT 3

A. The Experiment 3

U. Data Reduction 91

C. Results 11

SECIIUN III:	 THE PATH-DIVERSITY EXPERIMENT 17

A. The Experiment 17

B. Theoretical	 Considerations 20

C. Results 23

SECTION IV:	 A PATH-DIVERSITY MODEL 3U

SECTION V:	 RADAR RESULTS 31

SECTION VI:	 A NEW DATA ACQUISITION SYSTEM 39

SECTION VII:	 PROPAGATION SURVEY AND EXPERIMENT PLANNING 42

A. Introduction 42

U. Global	 Estimates of Attenuation 42

C. Bulk Attenuation Experiments 44

D. Stochastic Effects of Precipitation 47
on Satellite Communications

SECTION VJI:	 CONCLUSIONS 57

SECTION IX:	 REPORTS 59

SECTION X:	 NEW TECHNOLOGY 61

REFERENCES 62

iii

PRECEDING RAGE 13LANK NOT FILMED

t



LIST OF FIGURES

^l

l

^^ I
	

f

^1.

^I

Page

4

b

7

8

12

13

14

1b

18

19

2'2

24

27

U

Figure 1.	 Gain-Degradation Experiment Concept.

Figure 2.	 Experimental Facility.

Figure 3.	 Relationship between phase-front degradation
and anyle-of-arrival	 changes.
(a)	 macroscopic view.
(b)	 enlargement of part	 (a).

Figure 4. Gain degradation enhancement due to mispointiny.

Figure 5. Gain changes during convective rain.

Figure 6. Gain changes during periods of no precipitation.
(a)	 During heavy overcast.
(b)	 During a temperature inversion near

sunrise on a clear morning.

Figure	 7. Probability density distribution histogram of
relative gain changes for May 1932.

Figure 8. Probability density distribution histogram of
relative gain changes for June-August 1982.

Figure 9. 28.b6 GHz radiometer block diagram.
(a)	 Radio-frequency circuits
(b)	 Processor

Fiyure	 1U. Locations of the two diversity sites.

Figure	 11. Radiometer calibration scatter plot.

Figure	 12. Temporal	 plots of the equivalent attenuation
from a satellite to the two radiometric
sites.

Figure	 13. Cumulative single-site and joint attenuation
statistics for 224 operational	 days out of the
284-day period 8 August 1982 to 20 May 1983.

PJ

L,

iv



Page

Figure 14. Site diversity gain vs, 	 single-site attenuation. 28

Figure 15. Comparison of equivalent 28.56 GHz attenuation
as calculated from 28.6 GHz radiometric and
3.064 GHz radar data. 	 Date:	 April	 13, 1983. 35

Figure 16. Same as Figure 16. 	 DATE:	 12 November 1982. 36

Figure 17. Same as Figure 15.	 DATE:	 15 December 1982. 38

Figure 18. Data acquisition system. 41

Figure 19. Permanent stations for LES-8/9 (from Ref.	 26). 45

Figure 2U. Signal	 "pulses" received from the ATS-5
satellite as a result of its	 rotation. 53

E Figure 21. Strip-chart record of Comstar D/4 28.6 GHz
r beacon signal, showing amplitude
l

^i

I.

scintillations. 55

l'

f
t,

Ci

r
r

v



9
H

SECTION i

INTRODUCTION

This report describes experimental	 and theoretical	 studies

performed over the time period March 12,	 1981 to June 30, 1983 as part

of a NASA research program on earth-satellite propagation.

One experiment measured the apparent change in gain of a 5-meter

(diameter) paraboloidal	 reflector antenna due to precipitation at 28.6

GHz.	 A second experiment evaluated the utility of using two earth-

station sites to increase the reliability of satellite communications

relative to single-site operation at the same frequency. 	 Part of this

study involved the validation of using radiometry as an experimental

I
tool	 instead of direct	 signal transmission.	 This was accomplished, in

part, by comparing radiometrically inferred signal 	 attenuation against

that actually measured directly between a satellite-borne beacon and our

receiver.	 Another approach was to measure the precipitation rate along

t

the satellite-earth path with a meteorological 	 radar, calculate the

attenuation to be expected along the earth-satellite path, and compare

(! this with the attenuation inferred from the radiometry.

The results of these experiments are statistical 	 in nature, and

reliable unattended operation is required to achieve the almost

L!

continuous operation desirable for gathering the statistics. 	 The data

acquisition system in use for approximately a decade became increasingly

unsatisfactory for this purpose, and it has been replaced with a more

reliable system.

1

I



2

In connection with the path diversity study, a literature search

was performed and used to form a mathematical model for path-diversity

gain by regression analysis.

Finally, attention has been given to the remaining problems that

may be anticipated with future satellite communications systems, with a

view to formulating experiments that may be useful to resolve potential

difficulties. The effect of phase scintillations on the transmission of

data at high data rates in relatively short bursts, as for example in a

time-division multiple access (TUMA) mode, appears particularly worthy

of attention at this time. The use of multiple-frequency radiometry to

predict bulk attenuation also appears worthy of investigation.

The results of the rese-irch under this contract are reported in

annual reports, of which this is the second and final one, and in

technical reports which summarize completed tasks in more detail. A

listing of reports issued under this contract will be found in Section

IX. Part of the work begun under this contract is being continued under

Contract No. 956528. Reports being prepared under the successor

contract are also listed there.
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SECTION II

4	 { THE GAIN DEGRADATION EXPERIMENT

^ d A.	 The Experiment

li A proposed method of overcoming the attenuation due to rain is to

use antennas with more gain and therefore larger apertures. 	 A possible

difficulty with this approach is that the gain of large antennas may not

li be realized fully during rain periods because of the perturbation of the

k[rr
phase front arriving at the antenna by scattering from the hydrometeors.

P-1 One experiment therefore consisted of measuring the degradation of the

gain of an antenna having a diameter of 5 meters. 	 The signal	 source for

this experiment was the Comstar D/4 geo-synchronous satellite beacon at

I

l

28.56 GHz.	 This satellite was launched on 11 March 1981 and was slowly

moved to its permanent location, where it arrived in May 1981. 	 Data was

obtained on an essentially continuous basis from May 14, 1981 to

(
September 1, 1981 at which time the beacon was turned off. 	 The

`-' satellite location, viewed from Columbus, Ohio, was at an azimuth of

[I
236.4° and an elevation of 25.60 .	 The experiment consisted of switching

a single receiver every thirty seconds between a 5-meter (diameter)

^i Cassegrainian paraboloidal	 reflector antenna and a focal-point-fed

paraboloid of 0.6 meter diameter located on the same axis in front of
rt

Li the Cassegrainian subreflector.	 Figure 1 shows a block diagram and

Figure 2 a photograph of the experiment. 	 The gain of the small	 reflector

antenna would be expected to be affected only slightly by variations

3
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Figure 2. Experimental Facility. The closest antenna structure is the
gain-deyradation experiment consisting of 15' and 2' coaxially
mounted antennas. The 30' antenna immediately behind belongs
to the meteorological radar. The more remote of the twu

antennas atop the trailer belongs to the "local" 28.56 GHz
radiometer of the site-diversity experiment; the closer une

pertains to a 8.5 GHz radiometer. The antenna atop the mast

at right belongs to an X-band radar used for observing the
path of storms and precipitation.
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of the arriving phase front; in effect, the experiment therefore compares

the gain of the larje antenna with that of the small 	 antenna used as a

standard.

is
The experiment	 is,	 in concept,	 similar to one performed by Arnold,

Cox,	 and Hoffman at hell	 Laboratories [1], but with an important

distinction.	 In the hell	 Laboratories experiment, the antenna computer-
. ,

tracked Ole satellite quite precisely, while the antennas in our

experiment Idere adJusted to the best of our ability to point at the

average	 location of	 the satellite in	 its diurnal	 motion.	 This was	 j

p necessitated in part because our antenna mount was not sufficiently

robust	 to allow tracking during heavy weather; k th the pointing fixed 	 j

I
for substantial	 time periods, a mechanicO 	 shim could be bolted in place	 f

to remove the load from the gears. 	 However, there are compensating

l	
(,advantages,	 as will	 be	 shown.	 (	 ,,

To first order, a phase-front disturbance due to precipitation	
ll

appears as a change in angle-of-arrival. 	 This	 is	 illustrated in

Figure 3, where Figure 3(a) 	 shows a "crinkled" phase front	 and Figure 3(b)1

an enlargement of a portion of it. 	 locally it appears that the phase

[

( 1

front	 is	 still	 nearly plane, but that 	 the normal, which indicates the	 k.^

direction of arrival,	 has changed.	 The effect of this on two antennas,

one of which is pointed precisely at the signal	 source while the second is

mispointed slightly,	 'is	 shown in	 Figure 4.	 For small	 angle-of-arrival	 l

changes the effect is very slight for the pointed antenna and considerably

larger for the mispointed antenna. In other words, mis-pointing the

antenna makes the experiment more sensitive.

6
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ENLARGED IN (b)

(a)

(a) macroscopic view. Dashed line shows undisturbed
wavefront, solid line disturbed wavefront. The

circled portion is shown enlarged in (b).

INDICATED

( b)

(b) Enlargement of part (a). For the part of the
front within the circle, the direction of arrival
appears to have changed, as indicated by the arrows
normal to the wavefronts.

Figure 3. Relationship between phase-front degradation and angle-of-
arrival changes.
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Figure 4. Gain degradation enhancement due to mispointing. The antenna
pattern is shown in both parts as a polar graph, with the
undisturbed incidence direction of the signal shown by the
dotted line and arrow. The incidence direction for angle-of-
arrival change a is shown by the solid line and arrow. The
gain change, shown by the line segment with two arrows, is

larger for the mispointed antenna.
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H
B.	 Data Reduction

rr^
	 In interpreting the experimental results, care must be shown to

remove several experimental artifacts. The first of these is a slow

signal variation due to the diurnal motion of the satellite source.

Because of its regularity, it ran be removed by computation. The

effectiveness of the algorithm used for this purpose was verified by

applying it to clear days, when the diurnal motion was the only likely

source of apparent gain variation. As a result, the residual errors due

(i	 to this cause can be estimated confidently as less than 0.2 dB. The

L4^	 second difficulty arises from the fact that the recoiver is switched

t

between the two antennas:	 they are not sampled simultaneously. 	 The

advantage is,	 of course, that use of a single receiver makes the

experiment insensitive to receiver-gain drift.	 On the other hand,

allowance must be made for the non-simultaneous sampling. 	 This was

accomplished by first comparing the signal 	 from the large antenna with a

value obtained for the same time from polynomial 	 interpolation of

^$ adjacent values for the small	 antenna,	 and then reversing the procedure,

i.e., comparing the adjacent 	 small-antenna signal with the interpolated

signal of the large antenna for the same instant. 	 If the two

differential	 gain values agreed within 0.2 dB, the latter was used as

the correct value.	 Discrepancies arose very in i ,equently,	 in fact

generally only when the fading was so severe that the receiver lost lock.

In case of such a discrepancy, the particular sample was discarded.

E
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Great care must be taken to prevent precipitation particles from

adhering to the antenna and, if this should occur, to avoid interpreting

the resulting signal variations as propagation effects. The surfaces of

the reflectors, the cover of the feed-horn for the large antenna, and the

exterior of the waveguide feed for the small.antenna were coated with

Silibond, a hydrophobic material. Two spray tests were conducted, one

early in the experiment and one after its termination, to see whether the

signal strength could be changed by wetting the antennas. Both had

negative results. Nevertheless, on one occasion a sudden decrease in the

signal from the small antenna made the operator suspicious, and it was

found that a small drop blocked the end of the feed of the small antenna.

On another occasion, after the 28.6 GHz radiometer had become operational

at the same site, it was found that after a particular point in time

during heavy rain the radiometric data no longer agreed with the small

antenna signal but did agree with that of the large antenna. Evidently,

for just the right drop size, the combined effects of the hydrophobic

material, gravity, and surface tension were such that a drop could be

suspended in the feed opening of the small antenna. Since we were unable

to reproduce the condition by spray-testing, it must have been a rare

occurrence. Nevertheless, the entire data set was re-examined in

conjunction with rain-gauge data showing local rain, and with available

radar and radiometer data. Any data which might have been due to

blockage of the small antenna feed were eliminated. It became quite

evident that the great majority of observed relative gain change events

were not due to wetting of the antennas or feeds. It should be noted in

)f^	 f

d

i

^I

i^
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li	 this connection; that gain changes were observed occasionally at times not
i

I1	

associated with ;:ny precipitation, sometimes under conditions of heavy

overcast, and sometimes associated with temperature inversions under

clear-sky conditions.

C.	 Results

1

A few examples of observed gain variations are shown in Figures 5 	 !

and 6. In each case, the graphs labeled "Mean" show the signals received

on the two antennas, and the graph labeled "Gain Difference" shows the

difference in the relative gains after correction for the diurnal awtion.

A positive gain difference indicates a loss of gain of the large antenna,

f

i.e., a direction-of-arrival shift away from the antenna axis. Heavy

convective rain was observed during the events of Figure 5, while no

I	
precipitation occurred during those of Figure 6.

When the attenuation statistics for each antenna are computed on a

[j	 monthly basis, it is found that those for June through August are quite
i

ff
	 consistent, but that those for May differ substantially. The reason

l	 becomes apparent upon examining the original data: in May the satellite

had just been placed in its permanent position, which was still being 	 1

"fine-tuned", and our antenna was not pointed well toward the "average"

I.1	
satellite position.

r1	

The probability density distribution of observed gain changes is

l(	 shown in Figure 7 for May and in Figure 8 for June through August 1982.

During June to August, the median level of the antenna directivity

ll

	 ;
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Figure 7. Probability density distribution histogram of relative gain
changes for May 1982. Positive gain changes mean a loss of
gain of the large antenna.
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pattern at which the signal was received appears to have been

approximately -3 W. A 2 dB gain change at this level corresponds to a

direction-of-arrival change of 0.02 0 . Thus, our data does not seem

inconsistent with the Bell Laboratories experiment [1]. It does appear 	 'I

to be inconsistent with a previous angle-of-arrival experiment conducted	

fat this Laboratory [2].

The data processing has continued under the successor contract. It

now appears that the gain-statistics can be translated into more
a^

meaningful angle-of-arrival statistics, from which the gain changes for
i

arbitrary antennas can be predicted. In this form the statistical

difference between May data and later data appears to vanish, as might be 	
E

expected. This part of the data reduction is just being concluded and

will be included in a technical report,, which describes this experiment

in much more complete detail.	 Ll

^j

I
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SECTION III

THE PATH-DIVERSITY EXPERIMENT

A. The Experiment

A second task under the contract was to instrument two identical

radiometers at 28.56 GHz, to calibrate at least one instrument by

operating it for some time in conjunction with the gain-degradation

experiment which monitored the transmission from the Comstar D/4

28.56 GHz beacon, and then to obtain diversity-reception data by means of

the two radiometers over as long a time period as possible. The timing

of this task was paced by the expected availability of the U/4 beacon,

which ceased operation on 1 September 1981, only 5 1/2 months after the

start of the contract. The short availability period of the beacon was,

of course, what had led to the decision for a radiometric experiment in

the first place: the time was deemed long enough to calibrate the

radiometric measurement against a direct transmission measurement, but it

was clearly not sufficient to obtain long-term statistical data.

A block diagram of the two radiometers, which were substantially

identical, appears in Figure 9. One was located at the main satellite-

communications site of the ElectroScience Laboratory, and the other near

the University Airport (Donn Scott Field) with a separation of

approximately 9 km, as shown in the map of Figure 10. A leased telephone

line brings the signals from the remote (airport) site to the main site

for recording on magnetic tape. A more detailed description of the

experiment appears in the first annual report [3].

H
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Figure 10. Locations of the two diversity sites.
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B.	 Theoretical Considerations

A radiometer measures directly the sky brightness, not the 	 ')

attenuation (or extinction) of a plane or spherical wave. The 	 i

attenuation can only be inferred from the sky brightness. When the

hydrometeors are sufficiently small compared to a wavelength, scatter{

from them is much less important than absorption. Under these

circumstances, the attenuation can be obtained from the brightness

temperature by
k

A = 10 10910 [Tm/(Tm - Tb)]	 (1)^
where Tb denotes the sky brightness temperature, Tm a weighted mean

temperature which can be estimated and which is in the viciWy of

270-280 K for most conditions, and A is the equivalent attenuation over

the atmospheric path in decibels. This expression neglects scattering
i

and is therefore suspect at 30 GHz for moderate or heavy rain because the

scattering and absorption cross sections, averaged over reasonable drop- 	
(l

size distributions, become comparable in magnitude [4]. Calculations to	 [1 1

estimate the resultant er y ;;r have been made by Zavody [5] using a

multiple-scattering technique and by Tsang, et. al. [6] and also by

Ishimaru and Cheung [7] using radiative transfer calculatons. The
i

results depend not only on frequency and rain rate, but also on the

viewing angle, cloud layer thickness, and temperature profile, as well as

the rain-drop distribution model. They are, therefore, not easily

interpreted in general terms. In general, they indicate that near

a

t
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I
vertical viewing the beam is "brightened", i.e., more energy is scattered

into the beam than out of it, while at very large angles from the

vertical the beam is "darkened". The calculations by Tsang, et al., show

that for a I kin thick layer of 12.5 mn/hr. rain at 30 Gfiz the two effects

nearly balance near 650 from the vertical, which is the viewing angle of

our experiment. The effect is rather broad: for the same rain at 94 GHz

the angle at which no brightening or darkening occurs is about 58 0 0 and

for 1-km thick cloud at 94 GHz, it is about W. Thus, there exists a

theoretical basis for hoping that Equation (1) may be used for our

experiment.

It should also be said that the experimental community has exhibited

considerable faith in the use of this equation [8,91. It was used in

interpretation of experiments concurrent with measurements on the CTS

satellite with good results (101.

In the present case, the local radiometer was operated concurrently

with the gain-degradation experiment. Both antennas were pointed at the

Comstar D/4 beacon. A substantial amount of data was obtained during two

rain events occurring in duly and August 1982 totalling over 5 hours with

widely varying attenuation. The results of this calibrAtion are shown in

the scatter plot of Figure 11, where a mean temperature of 280 K has been

employed in Equation (1). The points at the top represent data points

when the receiver lost phase-lock. The reason for the lone point below

the aggregate is not known. It is clear that statistics generated from
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A more detailed technical report on the site-diversity radiometry

( 1

	

I^	
experiment is planned on the successor contract. It will include data

obtained after June 30, 1983, and also it will consider other definitions
I

of diversity gain. It appears to us that the present definition has two

	

I!	

drawbacks. First, it presupposes instantaneous switching in its

	

!	 i^
Implementation, i.e., the switching must be accomplished and significant

switching transients must have disappeared in a time much lest than that

required to transmit one bit. At proposed information-transmission rates
9

of many hundred megabits per second, this poses a significant problem. 	 t

Secondly, the switched antenna approach utilizes only the performance of

the best antenna, not the best signal-to-noise ratio available from the

combination of all antennas. Optimum post-detection linear combining of	 j

the signals would have neither of these disadvantages. We intend to	
lf
f i

	

^..I	 compare the two methods for the signals of this experiment. 	 I

i,

P.
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SECTION IV

A PATH-DIVERSITY MODEL

Part of the work on this contract entailed a literature-search of

path-diversity experiments, both direct and radiometric, and the

development of an empirical model from these data. The model is

summarized in the previous annual report [3] and given in detail in a

technical report and in the open literature [121.
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SECTION V

RADAR RESULTS

A meteorological radar operating at 3.064 GHz was used as a

supplemental data source in all the experiments described above, but on a

limited basis. The radar was pointed in the same direction as the other

antennas, i.e., toward the location of the Comstar D/4 beacon in August

1982, see Figure 2. The radar reflectivity factor Z observed by the

radar was converted to equivalent attenuation coefficient (d8/km) for

each range-resolution cell of 150 meters along the path by means of the

equation

-(ba/bz)	 (ba/bz)
ai = as az	 Zi

where

ai is the specific attenuation of the i th cell,

Zi is the reflectivity of the i th cell,

az, bz are the constants of the power law relationship for
reflectivity at 3.064 GHz, and

a a, ba are the constantsof the power law relationship for rain
attenuation at 28.56 GHz.

Equatlon (2) is derived from the approximate power laws [13]

bz

Z i = azRi	 ,	 (3)

ba

ai = aaRi	 (4)

where

R i is the rain rate of the i th cell.

(2)
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I
The total attenuation at 28.56 GHz was then obtained by integrating along

the path between the ground and the melting layer, as shown by the bright

band on the radar returns. Typical plots of the total equivalent

attenuation over the path at 28,6 GHz obtained by use of Equation (2) are

plotted in Figures 15 to 17. The three parts of Figure lb represent one

continuous event on 12 April, 1983. During most of the time the

radiometer recorded an attenuation of approximately 1 dB above that of

the radar. Approximately 0.5 dB would be expected on a 25.6° elevation

path for gaseous absorption on the basis of a Standard U.S. Atmosphere

profile [141. Since the relative humidity is likely to be above that of

such a profile during a precipitation event, the observed 1 dB is deemed

to be in good agreement. At times the radar-inferred attenuation

approaches and even exceeds the radiometrically inferred value, as for

example in Figure 15(c) at time 35 minutes. Usually this is associated

with a sudden change, sometimes the disappearance, of the bright band.

This makes it difficult to estimate the melting layer accurately. In

Figure 16 between 60 and 100 minutes the radiometrically inferred

attenuation exceeds that calculated from the radar by approximately 8 dB.

While the precise value depends on the value of Tm used, it is clear that

the radiometer sees a much greater equivalent attenuation than the radar

for this period. The event is a convective storm in mid-November. Such

occurrences usually are caused by the mixture of intruding moist air

masses from the Gulf of Mexico with cold arctic air from Canada. Often

sleet is observed at ground level, and it is likely that sleet-like

hydrometeors exist at higher altitudes even when they are not observed on

32
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the ground. The transformation of the radar reflectivity data to

equivalent 28.6 GHz attenuation is based on the characteristics of water

droplets and would not be expected to hold in such cases. The effect is

definitely not an artifact of the experiment, such as a water droplet in

the 28,6 GHz local radiometer feed, since the remote radiometer observed

attenuations quite in line with those of the local radiometer and also

much greater than those obtained from the radar. Figure 17 corresponds

to a snow event. Again the radar-inferred attenuation, which is "in the

noise" in this case, is too low.
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SECTION VI

A NEW DATA ACQUISITION SYSTEM

C^
	

The data acquisition system in use at the beginning of the contract

period was built around a LSI-2 minicomputer and Pertec Model

FT 6840A-9F-45 magnetic-tape drive which were becoming increasingly

I^	 unreliable and difficult to maintain. The ideal solution would have been

to buy a modern mini-computer based system with enough redundancy to

ensure reliability, e.g., a pair of DEC 11/23 systems with associated

tape drives. The finances of the contract and of the University in a

period of severe retrenchment precluded such an elegant solution.

The problem was solved by building a new system around a Hewlett-

Packard Model 21166 minicomputer and Model 2U2 option 79706 magnetic tape

drive which were donated to the University. The ElectroScience

Laboratory already owns several HP 2116 minicomputers which have been

found to be highly reliable. They come with an excellent diagnostic

software package which helps isolate problems when they do occur. Also, 	 i.

we have a complete spare HP-21166 minicomputer and most of the interface

cards; we are trying to acquire the few for which we do not have

duplicates. On the negative side, the HP-2116 is no longer supported by

Hewlett-Packard service, and we still have only one reliable magnetic-

tape unit. However, we are looking into the possibility of interfacing a

magnetic disk unit for emergency data storage. Most of the software for

0
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the system was written in FORTRAN for clarity and ease of modification.

This was, of course, not feasible for the software drivers for peripheral

devices; these were written in HP Assembler language.

The program is designed to service the experimental inputs on demand

from the experiments, but also to allow the operator to exercise control.

This is achieved by a simulated multi-tasking; control is transferred at

frequent intervals (on the order of a second) between two subroutines.

The SAMPLER subroutine gathers data, formats it into logical records,
'I

and causes these to be written to magnetic tape. The USER subroutine	 1

searches for tole-type inputs from the operator and causes the system 	 Fl

response to be modified accordingly. For example, it may define now

inputs to be sampled by the SAMPLER, in effect placing new experiments
:I

Into the data stream; it [nay cause the system status and certain data

from the remote site to be displayed; it may be used for diagnostic 	 Li

purposes.	
!
!,

The system is housed in a standard rack (Figure 18), which allows 	 !^

easy interchange between the computer currently in use and the back-up 	 {'

unit in case of failure. It has been in operation for several months

with no major problems. It constitutes a M.Sc. thesis and will therefore

be documented in complete detail, but the documentation was not entirely 	 it

complete at the end of the contract and will be completed under the

successor contract. 	
Ll

1.J	 '
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SECTION VII

PROPAGATION SURVEY AND EXPERIMENT PLANNING

A. Introduction

A task under the contract was to study past experiments to determine

areas where more experimental work is needed and to formulate an initial

proposal for a flight experiment. After initial consideration, two areas

of potential interest were identified. The first deals with the

prediction of bulk attenuation due to precipitation on a global basis;

the second with the effect of precipitation as a stochastic medium on

high-data rate signals.

B. Global Estimates of Attenuation

Bulk attenuation is, of course, the dominant effect of precipitation

on earth-satellite signals at frequencies above 10 GHz. By "bulk"

attenuation we mean attenuation which persists over time periods much

longer than a typical message unit, in contradistinction with stochastic

properties which imply changes over time periods comparable with a

typical message unit. Bulk attenuation has received by far the most

attention of any propagation effect at EHF for earth-space paths so far,

and rightfully so. A bibliography of experiments in this area would be a

substantial undertaking in itself. Space diversity has been a small

subset of experiments dealing with bulk attenuation; thus, the biblio-

graphy given for space diversity experiments in our report on the space

42
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diversity model [12] would be a small subset of a bibliography on bulk

	

1	 attenuation measurements.

	

C^	 As a result of this body of experimental data, several methods for

	

L.1	

predicting attenuation statistics have evolved [15-23]. Some of these

	

1	 are based on climate models from which precipitation statistics are

CJ
deduced, either explicitly or implicitly, and attenuation statistics are

rr
	 then calculated by use of an assumed rain drop-size distribution. Others

l.^	 allow the input of local precipitation statistics directly. Such methods

fi	 are very useful in overall planning, e.g., in frequency and orbit

I)	 coordination on an international basis, but they are often inadequate for

planning specific links. 	 The reason is that the link performance depends

not on a regional	 climate but on the local microclimate of the earth

stations.	 Microclimates can vary greatly over relatively short

distances, primarily due to orographic effects or the presence of large

bodies of water.	 For example, the precipitation statistics of the

(j
tJ

Erie-Buffalo region may be expected to differ substantially from those of

the Youngstown-Warren region, and those of Asheville, NC from those of

Charlottesville, VA, 	 because of the influence of Lake Erie in one case

and of the Great Smoky Mountains in the other. 	 Such differences are not

always well	 documented evert in developed nations, but in many parts of

the world applicable data are scarce indeed. 	 There also exist
LI

substantial questions on the applicability of the commonly used rain-drop

size distributions to tropical 	 and monsoon regions.	 Finally, none of the

current predictive methods take account of ice, e.g., snow, graupel,

sleet, or hail.	 As shown by Figure 17, significant attenuation can
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result from snow at 3U GHz. It should be noted that ice is frequently
	

^I

present at higher altitudes even when it is not present at the ground; it

is almost always present in convective storms.
	

I'I

	 i

C.	 Bulk Attenuation Experiments

i,	 IFor these reasons it appears to us that it would be useful to 	
;I

develop instrumentation for measurements at many geographical locations, 	

i1which would allow better prediction of attenuation on earth-satellite

links. A direct satellite measurement is precluded because beacons at
	

'1	 E
EHF are not sufficiently available, and especially not in the less 	

ll

	 I

^I

developed regions. We propose therefore instrumentation based on

multi-frequency radiometry, with a flight experiment to calibrate the 	

^lmethod as the Comstar D/4 28.56 GHz beacon was used to calibrate the

radiometric experiment reported in Section III of this report.*

The central point here is that the effects of scattering and

absorption are different at different frequencies. Thus, it should be

possible to separate out the effects of water and various ice forms by

simultaneous radiometric observation at several frequencies. Also, with

respect to liquid water, observation at relatively high frequencies

(e.g., 30 GHz) are most useful for light and moderate rain but tend to

saturate for heavy rains, for which lower frequencies can give better
	

H
information. Thus it will take several radiometers at different

frequencies to obtain information which might be used to predict the

performance of satellites in all frequency bands for a given location.

*This idea was first suggested to us by Dr. Nathaniel E. Feldman of the
Aerospace Corporation.
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l
What has been proposed, then. is a system of radiometers which could

be used at many geographic locations to collect the precipitation

information for predicting satellite-link attenuation performance at any

frequency of interest.	 Radiometers require relatively small 	 antennas and

i
can be constructed relatively simply and inexpensively; thus deploying

if
many such systems on a world-wide basis is a distinct possibility. 	 In a

sense, the intent here is to explore the meteorological troposphere

analogously to the exploration of the ionosphere by means of widely

distributed ionospheric sounders	 in the early 1960's.
1

l!
l Substantial theoretical	 and numerical work will	 be required to

!j
validate this concept and to determine the frequencies at which the I

radiometers should operate.	 Also,	 verification against actual 	 satellite 4

l7 data will be needed.	 For this purpose we would propose multi-frequency £

C

i beacons which might be piggy-backed on satellites for other primary

J
purposes, as was done, for example, with the Comstar satellites. 	 These

beacons would not need to be operative over time periods longer than a

few months, although extended operation would, of course, be desirable.

It should be noted that th^,.re exists at present at least one set of

satellite sources which might be used to guide the development of such a

system through some preliminary experimentation. 	 These are the LES-8 and

(1 LES-9 satellites which have the capability to transmit at 38.0 and i

36.8 GHz, respectively [24-26]. 	 Their geostationary-radius

ecliptic-plane orbits make them visible from most of the continental

r, United States for much of the time, with substantially varying elevation
IuI i

angles	 (see Figure 19).	 Their lifetime is expected to extend at least to

rj

^j

1988 or 1989.
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Figure 19. Permanent stations for LES-8/9 (from Ref. 19).
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0
D.	 Stochastic Effects of Precipitation

a e	 e	 ommun ca	 ons

1.	 Rain as a Turbulent Medium

At frequencies above 15 GHz the diameter of a typical 	 raindrop

becomes comparable to the wavelength, and in this frequency domain water

is a lossy medium.	 As a result,	 both absorption and scattering become

significant, and there is substantial 	 attenuation	 (or extinction) due to

rain.	 Since raindrops are in continual 	 motion due to wind and the {

dynamics of cloud physics, 	 rain is a spatially and temporally random

G1	 medium, in other words, a turbulent medium. 	 Investigations of rain

effects have, in the past, focused primarily on the averaged effects. The

averages are taken over seconds or minutes, 	 i.e., periods which are much

larger than the time scale typical	 of atmospheric effects or that of

information-symbol	 duration.	 In part, this procedure was justified

s	 because the average or bulk attenuation is, of course, a very important

consideration.	 In part, however, the emphasis on the steady part of the

signal seems due to the fact that averages are both easier to measure and
3

[t^	 to calculate than the statistical 	 properties.	 The misinterpretation, as

it seems to us, of such averaged measurement and calculation results has

led to a false sense of security that the time-varying effects,

especially the phase scintillations, will	 not affect satellite

communications systems seriously until 	 attenuation is already so

excessive that other effects are immaterial.	 `{
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2.	 Systems Implications of the Randomness of Rain

Some confusion may arise out of the use of the term "averaged" in

the discussion to follow. An average over a period of many symbol

durations and also over a time period which allows the raindrop

positions to change appreciably may require only a fraction of a second.

To put it graphically, in terms of a typical strip-chart record,

"average" does not imply a level line drawn through the "middle" of the

trace; rather, each point on the chart is itself an average as far as a

communications system would be concerned. Since many experiments in

this frequency range have been performed with CW beacons rather than

with actual communications systems, this point is not always appreciated

even by propagation experimenters.

The expectation that scintillation effects will be of minor

importance, even for systems employing high data rates and wide

bandwidths, seems to be based primarily on a lack of appreciation for thl

role of averaging in available theories and in experiments. A few

examples will be given. Although phase-modulated system designs are by

far more prevalent, the propagation of pulses will also be considered

here, since data on phase modulation is scarce and amplitude and phase

scintillations are related.*

^f

l^

II
i

iji

For example, for clear-air turbulence, Tatarskii showed that the
log-amplitude x and phase S have structure functions related by

D
X
 (p)+ DS (p) = 0.73 C2 k 2 L ps13 . While the same precise law would not

be expected to hold for rain, the derivation shows that the

interrelationship between amplitude and phase statistics is a general
property [5].
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An early paper by Crane [27] is sometimes cited as evidence that

the atmosphere can "support a bandwidth" of several Gigahertz at carrier

frequencies above 10 GHz [28]. The paper deals with coherent pulse

^.	 transmission through rain, where "coherent" is defin-i in the paper as

the average of an infinite number of identical pulses. In the next

a	 section, it will be shown that such an average of man yy pulses is indeed

II	 highly resistant to degradation by atmospheric scintillations, but that
``
	 the individual pulses are not. Since a reasonable communication system

C

i

^	 depends on one pulse, or at most a very few, to communicate an

information bit, the interpretation of Crane's results in terms of

(f	 available system bandwidth should be approached very cautiously, in our

view. It should be noted that the paper in question modeled the rain as

a lossy and dispersive, but time-and space-invariant medium; thus, the

[

t
{	 very model precluded the calculation of scintillation effects which may

f	
affect the "supported bandwidth".

More recent theoretical treatments are based on statistics [29,30],

11	
but they are also not fully adequate representations for estimating

communications performance. To understand why, we need to contrast the

state of the art of rain calculations with that of similar calculations

for clear-air turbulence.

In the clear-air turbulence case, the departure point is the

r{	 structure function, a measure of the spatial correlation of the
L..1

refractive index [31]. By similarity theory it was shown that this

function has a 2/3 power-law, corresponding to a one-dimensional

spatial spectrum obeying a -5/6 power law [32]. This spectrum enters
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jinto the calculation of the statistical properties of the signal

propagating through the medium. From a physical viewpoint, the power

law discloses that clear-air turbulence involves eddies with a

continuous size distribution, but that the effects of the larger eddies

predominate in the atmosphere, with profound effects on the "graininess"

in time and space of the received signal.

In contrast, little is known about the structure of rain, and

rather severe assumptions are required to obtain analytical solutions.

Thus, one paper models rain as a collection of drops of uniform size

falling with uniform velocity, with the position of each drop quite

uncorrelated with that of other drops [33]. None of these assumptions is

representative of the physical situation: thA drop -size distribution is

known to be more or less exponential [24-36], the velocity is known to

depend on the drop size [37], and common experience indicates a marked

degree of spatial correlation: if it is raining hard at one location,

it is quite likely to be raining hard a few meters away. These comments

should not be taken as a criticism of the theory or the paper; at the

present state of the art, such crude assumptions are quite necessary in

order to obtain any solutions at all. The problem arises when these

results are taken by system designers as reliable predictors of actual

system performance.

Experimental results are also in need of careful interpretation.

Since wide-band satellite signal sources at EHF have been scarce, some

experiments have utilized a satellite signal consisting of a carrier and

phase-coherently generated sidebands and ground-based receivers which

E
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- AC.

detected these signals phase-coherently [38,39]. The phase dispersion

is then calculated from the relative phase differences measured in the

various sideband channels relative to the carrier; bandwidths on the

order of 1 GHz have been reported. However, it shoul%1 be noted that

the receivers in these experiments integrated the signals over a period

on the order of a second, It is not clear how this result should be

related to a system which has a bit-rate of, say, 10 8 per second.

Substantial phase variations on a time-scale comparable to many bit

durations might well average to small variations over the period of a

second. In other words, in the absence of good information on the

spectra of scintillations due to rain at EHF, it seems risky to base

estimates of their effects on measurements which average over periods on

the order of a second.

3.	 Evidence of Systems Effects Due to Rain Turbulence

First, we shall now examine experiments which directly address the

points raised in the preceding section.

The ATS-5 satellite failed to despin; consequently, its 15 GHz 	 {

beacon antenna beam swept across the Earth surface. An Earth-based

receiver, therefore, perceived the signal as a train of pulses with the

pulse shape determined by the satellite antenna pattern. In order to

recover information on the pulse distortion due to scintillations, the

following procedure was used at The Ohio State University [40]. First,

ILff	sets of 40 consecutive received pulses were superimposed in time and

0	 averaged to recover the undistorted pulse shape. This shape turned out
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1 

to be indeed independent of meteorological 	 conditions.	 The result was

i
then subtracted from each pulse to yield the distortion of that pulse

due to amplitude scintillations. 	 Figures 20a to 20c show both the 	
{

averaged pulses and samples of the individual	 pulses	 for clear air,	 ;}

clouds, and hard rain,	 respectively.	 The averaged pulse is hardly

affected by the rain, but the distortion of the individual 	 pulses by
t

amplitude scintillations 	 is evident.	 The deviations are much larger	 'f
^i

than can be accounted for by a simple decrease in signal-to-noise ratio,

E,	 Thus, the experiment corroborates Crane's theoretical 	 demonstration that	
I

the "coherent"	 (averaged)	 pulse is highly resistant to degradation, but 	 (^

f
it also demonstrates that this should not be taken to imply that

individual	 pulses, which carry information, will 	 not be degraded
t

severely.

An interesting experiment, which bears on the bandwidth experiments

discussed above, was performed on a ground link in the Washington, D.C.

area in 1967-68 [41].	 The frequency of transmission was stepped in

a	 discrete amounts about a center frequency in the 27-40 GHz range. 	 From

the correlation of the amplitudes received at the various frequencies, a 	 J

bandwidth of at least 6 GHz was inferred for the medium. 	 Data was then,

transmitted over the same path utilizing UPSK modulation with a 31-bit

pseudo-random sequence at a rate of 50 Megabits/second. 	 It was found

that the measured bit-error rates greatly exceeded those predicted for aj

signal	 in Gaussian noise and that the dependence on carrier-noise ratio

was similar to that predicted for a signal 	 in the presence of a weak

scattered component.	 The existence of such effects at a 50 Megabit/sec
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rate casts doubt on the applicability of the "averaged" 6 GHz bandwidth 	
E

measurement.

The presence of increased amplitude scintillations during rain is

familiar to many propagation experimenters at EIiF. Figure 21 shows a

strip-chart record of amplitude during a rain event; the source was the

28 GHz beacon aboard the Comstar D/4 satellite, and the data was

recorded at The Ohio State University. Unfortunately, quantitative

digital sc'ritillation data were not taken. This is true of many

experiments. The reason is the amount of data required to obtain valid

statistical information for a wide variety of rain conditions. In order 	 {^

to end up with a reasonable data volume to be processed, it is customary

to average over time periods on the order of a few seconds prior to

recording, and the scintillation data is lost in the process.

If phase scintillations of significant amplitude do occur, a

knowledge of their spectra under various meteorological conditions will

be as important as a knowledge of their stativt1cs because the

strategies for overcoming their effects depend strongly on the spectra.

	

	 [l
L.l

For example, if the spectra are highly concentrated toward low

frequencies, it should be possible to track the propagation phase

changes with a phase-locked loop provided the signal is available

continuously. On the other hand, in a time-division multiple-access

(TDMA) system, it may be necessary to reacquire phase for each trans-(

mission. Therefore, the spectrum of the phase scintillations will be an 	 J

important factor in deciding to what extent the reacquisition can be^ j
i

accomplished by local phase memory (e.g., a stable oscillator) and to
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what extent the system must depend on other means, such as the trans-

mission of a known code preamble for the purpose of phase reacquisition.

To summarize, there exists substantial evidence that scintillation

effects are real, and that system designs may be risky if they are based

on theoretical and experimental information which does not take

scintillations into account.

4. Preliminary Suggestions for an Experiment

It appears to us, therefore, that a valuable flight experiment

would be one in which a known digital bit-stream is transmitted from a

satellite and received at earth stations which know the code and

therefore can measure the bit-error characteristics, both for continuous

reception and for reacquisition simulation purposes. The detailed

definition of such an experiment has not progressed beyond this bare

concept so far. The performance of the two ongoing experiments, which

were linked to the time, of availability of the Comstar D/4 beacon, and

the analysis of the data from these experiments were deemed to have

priority.

n
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H
SECTION VIII

CONCLUSIONS

I^	
Definite gain changes (up to 2 dB) were observed in the gain

degradation experiment. These were magnified by the inevitable

mispointing of a non-tracking antenna; they would have been observed at

best marginally with a tracking antenna. Translated into equivalent

angle-of-arrival variations, these were on the order of 0.02 degrees.

if	
Attenuation inferred from radiometry showed good agreement with that

measured directly over an earth-satellite link at 28.6 GHz for summer
i

convective rain. The satellite link was not available for other types of

precipitation. Attenuation inferred from single-polarization radar

measurements agreed well with that inferred from radiometry for

convective rain for which a well-defined bright band was observed. Good

agreement could generally not be obtained un?er other rain conditions and

f	 in the presence of sleet and snow.

A significant amount of site-diversity data at 28.6 GHz has been

added to the available data base. Alternative definitions of diversity

gain are being explored for maximum utility with potential system

implementations.

A survey of the site-diversity experimental literature has yielded

an improved empirical model by means of linear regression techniques.

A new data acquisition system was required for the ongoing

f	 experiments, has been completed, and is operating satisfactorily.

u
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1

A necessarily brief survey of the very extensive literature on

earth-satellite link experiments has led us to propose two areas for

experimentation. The first is the development of a radiometrically

based instrument for evaluating potential earth-station sites.

Satellite sources would be utilized to guide this investigation and

verify its results. The second deals with the statistics and spectra of

phase scintillations.

^I
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SECTION IX

REPORTS

The following reports have been distributed under this contract.

1. Hodge, D.B., An Improved Empirical Model for Diversity

Gain on Earth-Space Propagation Paths. [12]

2. Levis, C.A. et. al., Meteorological Factors in Earth-

Satellite Propagation: Annual Report, March 12, 1981

to March 31, 1982. [3]

3. Pigon, Brett, A. and Levis, C.A., Radiometrically

Inferred Attenuation at 28.6 GHz: Calibration and

Initial Results. [11] 	 {

Some of the work begun under contract 956013 has been continued under

contract 956528. Technical reports reporting on this work and in the

process of preparation are:

1. Lin, K.T. and Levis, C.A., Angle-of-Arrival Variation

Observations Over an Earth-Satellite Path at 28.6 GHz,

2. Weller, A.E., III and Levis, C.A., A Data Acquisition

System for Earth-Satellite Propagation Experiments,

r	 -
I
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3. Leonard, Richard E. and Levis, C.A., Calculation of

the Mean Path Temperature in Radiometrically Inferred

Attenuation, and

4. Lin, K.T., Levis, C.A. and Damon, E.K., A Radiometric

Path -Diversity Experiment at 28.6 GHz.
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!	 SECTION X

NEW TECHNOLOGY t

The following may constitute new technology:

Title: Site-diversity receiver utilizing post-detection

optimum linear combining of the diversity signals

l^	
Innovator: Curt A. Levis

`	 Y

Where reported: This report, page 29	 } f,

s

l}

l î
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