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INTRODUCTION 

Turbulence (or chaos) is one of the oldest and most difficult open problems in 

physics. Although the subject of this review is turbulence in the field of fluid 

dynamics, the problem of turbulence pervades many other fields; e.g., cosmology, the 

structure of the universe. At one time or another, it has occupied the minds of 

many of the great physicists, particularly in the early part of this century. The 

problem is so difficult that it has even defied the formulation of a consistent and 

rigorous definition. In this paper, we shall review the history of the subject and 

point to recent developments, as well as postulate future directions. To avoid 

merely enumerating a succession of isolated research events and accomplishments, the 

review will be presented in a context of the interactions between observations, 

theoretical ideas, and the modeling of turbulent flows. The context needs further 

elaboration, but first a few comments are in order regarding a basic premise of the 

review. 

The basic premise is that turbulence can be understood within the framework of 

the continuum assumption of fluid dynamics. Accepting the premise implies accepting 

that the Navier-Stokes equations are a complete mathematical description of fluid 

flows, and hence, capable of describing turbulent flows. There are some experimen

tal facts that might shed doubt on the validity of the assumption. For example, 

small amounts of long-chain polymers in water have a significant effect on turbulent 

properties, even though the polymers are dispersed and have dimensions significantly 

smaller than the dissipation scales of turbulence. Additional recent developments 

also may raise questions regarding the continuum assumption. Although it needs 

constant re-examination, the continuum assumption has formed the basis for the study 

of turbulence over its entire formal history. With precautions and reservations 

duly noted, the assumption will be accepted as the basis for this review as well. 

Acceptance of the Navier-Stokes equations also may raise criticism on mathematical 

grounds, inasmuch as existence has not been proven for solutions of the three

dimensional initial-value problem. Although no examples are known, the possibility 

cannot be ruled out that solutions become singular, especially at Reynolds numbers 

representative of fully-developed turbulence. This would imply that additional 

principles need to be introduced to ensure a complete theory. We shall proceed as 



if this is not the case. Lanford [1J has compiled an excellent list of the presup

positions entailed by adoption of the Navier-Stokes equations as the framework for 

understanding turbulence. 

To aid in the discussion, the context of interactions between observations, 

theoretical ideas, and modeling is illustrated in figure 1. First, let us define 

the terms: The term "observations" here includes not only empirical data from 

observations of the physical (real) world, but also empirical data from observations 

of computer simulations representing solutions of the full Navier-Stokes equations 

(hence the above-mentioned need for the continuum assumption) or other suitable 

simulations to be noted later. The term "theoretical ideas" is used here to denote 

the realm in which observations are transformed into (normally nonmathematical) 

idealizations or conceptualizations: e.g., the concept of a continuum or of an 

incompressible fluid. Conceptualizing or theorizing is vital to the study of turbu

lence, as it is to the study of any scientific discipline, but it represents both a 

positive and a negative aspect. On the positive side, it is essential that theoret

ical ideas be postulated, both to further the mathematical steps which follow, as 

well as to provide hypotheses against which to cast the observations. Theoretical 

ideas literally provide "a way of seeing." It is this aspect that also may be 

negative, for a way of seeing may color or bias our observations. These two aspects 

of the realm of theoretical ideas will surface as major pOints in the discussions to 

follow. Finally, the term "modeling" is used to denote the realm in which theoreti

cal ideas are placed within a formal system by means of mathematics. 

Information flows back and forth between each of the three realms. For exam

ple, observations typically lead to a theoretical idea which provides a basis for 

both new observations and a mathematical model. The mathematical model can be 

tested against observations and also provides implications against which to test the 

theoretical idea. Observations used to test the model can also lead to changes in 

the model. Once the study of a discipline has begun, it is difficult to tell in 

which of the three realms it originated. It is clear, however, that the role of 

theoretical ideas is a very powerful one in that it shapes our approach to the other 

realms in the sense of dictating "a way of seeing." (On this important pOint, see 

also Liepmann's essay [2J, to which our own views are much indebted.) In this 

review, we shall try to show how the "way of seeing" has influenced the study of 

turbulence, first, by examining the subject in an historical context, and second, by 

examining recent developments. Finally, some future developments will be 

postulated. 

HISTORICAL PERSPECTIVE 

Observations of turbulence are as old as recorded history. The Bible, for 

example, contains several references to turbulence or chaos. Leonardo da Vinci was 
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intrigued by turbulence, as his sketch reproduced in figure 2 (circa 1500) [3J 

indicates. But, the modern scientific study of turbulence dates from the late 1800s 

with the work of Osborne Reynolds. In reviewing the subject from that date to the 

present, one is struck by the appearance of three distinct movements, each of which 

(despite some overlap), can be characterized by a definite point of view with a 

reasonably well-defined beginning. The earliest of these, which has a strong nonde

terministic flavor, will be referred to as the statistical movementj the next, which 

is predominantly observational, will be referred to as the structural movement; and 

the most recent will be called the deterministic movement. The three movements, 

with a few key events noted, are sketched in figure 3. 

Statistical Movement 

As noted above, Osborne Reynolds' observations of transition in pipe flow in 

1883 [4J mark the beginning of the scientific study of turbulence. Illustrative 

results of a repetition of Reynolds' experiments [5J are shown in figure 4. 

Reynolds' observations led him to decompose the velocity field into a mean flow plus 

a perturbation. Considering the perturbation flow either too complicated or incom

prehensible, he time-averaged the Navier-Stokes equations on the basis of the decom

position and arrived at what are today called the Reynolds-averaged Navier-Stokes 

equations [6J. The averages of products of the perturbation terms appear in the 

mean-flow equations as (what are now called) Reynolds stresses. Reynolds' view that 

the perturbations (and hence, the observations of the flow's chaotic structure), 

were unpredictable or incomprehensible in detail was not merely the result of obser

vations, but was a view that would find support in the generally accepted world-view 

of the time in which turbulence or chaos was considered synonymous with disorder 

(the term used in Webster's dictionary) or unpredictability (nondeterministic) or 

incomprehensibility. This viewpoint, which is formalized in the statistical theory 

of random perturbations, was bolstered by the success of the statistical mechanics 

approach to the kinetic theory of gases (e.g., Jean's book on the topic [7J). The 

statistical point of view gained even further support by the great success achieved 

in theoretical physics on the introduction of quantum mechanics. 

The statistical view of turbulence (a theoretical idea) had two principal 

effects: First, it encouraged focusing further observations of the flow on means 

and various averages. Second, because the Reynolds-stress terms consisted of aver

ages of products of perturbation quantities, it suggested that the extension 

required to complete the modeling had to involve the next higher moment, requiring 

in turn an even higher moment, and so forth, leading, of course, to the celebra~e: 

problem of closure. The closure problem has proven so formidable in modeling that, 

in the face of practical exigencies, it has been more or less set aside in favor of 
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phenomenological modeling. The latter has had considerable success in the practical 

realm, but has had essentially no impact in the realm of theoretical ideas. 

The emphasis on observations of means and various averages led to significant 

development in instrumentation, particularly with regard to hot-wire anemometry. 

Development of the laser in the 1960s made possible the introduction of laser

doppler velocimetry (LDV), heralded as a great new tool in the study of turbu

lence. But nothing fundamentally new in the way of theoretical ideas has yet 

resulted from its introduction. Our contention is that the principal impediment is 

the statistical viewpoint itself; the use of the tool was prescribed too narrowly in 

accordance with its perceptions. 

There is an extensive body of literature on the mathematical study of turbu

lence within the statistical theoretical framework. Included is not only the work 

of Reynolds, but that of Taylor, von Karman, Heisenberg, Kolmogoroff, Loitsianskii, 

Kraichnan, to mention only a few. The book by Hinze [8J contains an excellent 

summary of this work. Summaries of more recent work can be found in Monin and 

Yaglom [9J and in the contribution to this conference by Pouquet [10J. 

Kolmogoroff's "five-thirds law" [11J, formulated for the statistical regime consist

ing of "locally isotropic turbulence," is an example of a particularly successful 

result of theoretical analysis within the statistical framework. It is successful 

in part because it ignores the regime of scales where most of the energy resides in 

most turbulent flows, and where the nature of the source of the turbulence is still 

evident. Even in the regime to which it ostensibly applies, the "five-thirds law" 

has been criticized on the basis that the turbulence is not truly isotropic, but 

intermittent. Hence, the law needs to be corrected for the nonspace-filling nature 

of turbulence [12J. Its blindness to these structural facts is precisely the disa

bility of the statistical theoretical idea. 

In our view, the principal shortcoming of the statistical approach is that the 

introduction of the statistical idea (predicated on a nondeterministic theoretical 

basis) at such an early stage of the study inhibits the interactions which otherwise 

would occur between observations, theoretical ideas, and modeling. The consequence 

is a paucity of imagery or structure about which to conceptualize. Our argument is 

not that statistical or averaging methods should have no role in the study of turbu

lence, but only that their introduction at the beginning of the study tends to 

stifle the flow of information and prevent conceptualization. Historically, this 

Situation, coupled with the difficulties arising from the closure problem, encour

aged the introduction of a line of research having an even more detrimental effect 

on theoretical ideas: phenomenological modeling. 

Boussinesq's replacement of the molecular viscosity coefficient in the Navier

Stokes equations by a turbulent viscosity coefficient (eddy viscosity) in 1877 C13] 

and Prandtl's subsequent modeling of that term by means of the mixing-length idea in 

1925 [14J had the effect of discouraging further theoretical ideas. First, 

Boussinesq's introduction of the eddy-viscosity concept entailed an inextricable 
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confounding of flow properties and material properties. Second, introduction of the 

mixing-length idea through analogy with ideas from the kinetic theory of gases 

inadvertently gave the impression that a powerful and consistent statistical 

approach had been established. The widespread adoption of these ideas in modeling 

the equations governing turbulent mean flows broke the link with the framework of 

the original Navier-Stokes equations, so that ideas from the latter framework con

cerning, e.g., new structures arising out of instabilities, became more or less 

irrelevant to turbulence studies. It was in this sense that adoption of the eddy

viscosity and mixing-length ideas effectively discouraged further theoretical 

ideas. Despite their great success in practice, the eddy-viscosity and mixing

length ideas, in fact, have serious shortcomings. The eddy-viscosity idea, for 

example, raises difficult conceptual problems which are, in effect, artificial, 

being the consequence of the nonphysical confounding of flow and material proper

ties. Additionally, the conditions justifying the mixing-length idea rest on the 

assumptions of kinetic theory (small units traveling relatively long distances 

between interactions), and these conditions are not completely fulfilled by the 

properties of turbulent eddies. A more thorough review of phenomenological models 

and their application can be found in [15J, and in papers at this conference by 

Launder [16J and W. C. Reynolds [17J. 

In the 1940s and 1950s, observations increasingly pointed to the structural 

content of turbulence. There was increasing evidence of intermittency, for example, 

and the realization that vorticity tended to concentrate in localized intervals of 

space and time (e.g., Batchelor and Townsend [18J). But the power of the statisti

cal viewpoint--the ruling theoretical idea of the period--was sufficient to shape 

even the perception of the evidence of structure. An example is Landau's influen

tial description of the origins of turbulence [19J. The study of laminar instabil

ity of flow past a flat plate had led to the discovery of the Tollmien-Schlichting 

waves and their measurement by Schubauer and Skramstad [20J. Although their occur

rence was a deterministic, perfectly predictable event, in 1944 Landau postulated 

that turbulence was the result cf an indefinitely large sequence of such events, and 

hence, in effect, unpredictable in detail. 

The example illustrates how a ruling theoretical idea may shape our approach to 

the realms of observations and modeling in the sense of dictating "a way of 

seeing." Our severest criticism of the statistical movement is that it has resulted 

in a structureless theory having little power of conceptualization. 

Structural Movement 

This movement is dominated by observations. Early experimentalists studying 

turbulence noticed that their observations were not entirely in keeping with the 

purely nondeterministic statistical viewpoint. Observations of Tollmien-Schlichting 

5 



waves as evidence of initial instability in a transitional flow [20J have already 

been mentioned, as have been the observations of Batchelor and Townsend [18J regard

ing nonuniformities of vorticity in homogeneous isotropic turbulent flows. From the 

late 1950s to the present, a virtual flood of observations has been published con

cerning the structures that occur in turbulent flows. The following are outstanding 

examples: (1) The turbulent spot, first reported by Emmons [21). Figure 5, taken 

from the work of Cantwell, Coles, and Dimotakis [22), is illustrative of this struc

ture in turbulence. More recent detailed measurements have brought out additional 

structural features [22). (2) Structures in wall-bounded shear flows, first 

observed by Kline and Runstadler [23). Figure 6 illustrates their appearance 

[2~). (3) Structures in turbulent free shear layers, investigated extensively 

by Roshko [25) and others (cf. fig. 7 from [5J and [26J). Cantwell [27) has pub

lished an excellent review of these experimentally observed turbulent structures. 

The structural movement has also included observations of computer simulations 

of turbulent flows. Examples are the results of Rogallo [28) for homogeneous 

isotropic turbulence, and those of Moin and Kim [29) for turbulent channel flow. A 

simulated hydrogen-bubble observation of the latter flow [30) is shown in figure 6, 

where it is compared with the already noted experimental observation of Kim, et al., 

[2~). The use of computer simulations has a deterministic character inasmuch as, 

strictly speaking, the computations are based on deterministic equations. However, 

many of the early analysts of these simulations adopted the same classical statisti

cal methodology as that employed by the experimentalists. That is, for the most 

part, they measured only means and various averages. Some experimentalists were 

actively trying to measure and characterize the structures they were observing by 

developing a measurement methodology that reflected both the presence of coherent 

structures and their apparently random occurrence. These included conditional 

sampling techniques such as the method developed by Blackwelder and Kaplan [31), and , 
the proper orthogonal decomposition method developed by Lumley [32,33]. The methods 

differ in the degree of subjective bias imposed by the experimenter, with the latter 

method having essentially none. Computer simulations of turbulent flows also have 

been analyzed by the same methods (e.g., [33] and [3~]). Although they admit the 

presence of coherent structures, all of these methods contain the implicit assump

tion that the occurrence of structures is governed by random (and, thus probably 

incomprehensible) events. Full realization of the possibility of a deterministic 

and comprehensible chaotic flow behavior does not yet seem to have occurred within 

the structural movement. 

The principal contribution of the structural movement has been the recognition 

of the presence and importance of structures in turbulence. Dryden [35] had recog

nized the possibilities in an early review (cf. Roshko's attribution [25J) as the 

following quotation makes clear: "It is necessary to separate the random process 

from nonrandom processes. It is not yet fully clear what the random elements are in 

turbulent flow." Despite its promise, the structural movement to date has had two 
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could be translated into formal mathematical models. The prevailing viewpoint 

remains one of unpredictability or indeterminism, in which the coherent structures 

are conceived as having been sprinkled about randomly in time and space. In addi

tion, the structures that have been observed cannot be fitted easily into the sta

tistical models currently in use. Landahl [36J (cf. also his contribution to this 

collection [37J) is one of the few theoreticians who have attempted to incorporate 

structures within a compatible statistical model. Bushnell (cf. [38J, this collec

tion) has been instrumental in finding ways to use structural observations practi

cally to improve aircraft performance. The second shortcoming is the Achilles' heel 

of the structural movement: the jungle of observational detail, lacking the order

ing hand of theory. The difficulty stems from the unassimilated mixture of random 

and deterministic elements in the generally accepted "way of seeing" the coherent 

structures. While the structures are assumed to be randomly distributed in time and 

space, each occurrence is assumed governed by a locally deterministic cause (e.g., a 

local instability). A consistent, overall theory has been lacking which has the 

possibility of assimilating the random and deterministic elements into a single 

viewpoint allowing, e.g., deterministic chaos. 

In summary, the structural movement has demonstrated the presence and impor

tance of structures in turbulence, but so far, has not resulted in new theoretical 

ideas having the power to abet modeling. The principal criticism is precisely the 

inverse of that of the statistical movement: in place of theory without structure, 

the result to date has been structure without theory. 

Deterministic Movement 

This is the most recent movement, although its origins date from the pioneering 

essays of Poincar6, the principal one bearing the title "On the Curves Defined by 

Differential Equations" [39J. The particular way of seeing inspired by Poincare, 

strongly geometric as expressed in the language of topology, became known as the 

qualitative theory of differential equations. The field was advanced by the 

research of Andronov and his colleagues [40J who introduced the useful notions of 

"topological structure" and "structural stability." From the same line stems bifur

cation theory, showing how structures may change with changes in conditions. The 

comprehensive review of Sattinger [41J demonstrates the extraordinary range of 

scientific disciplines in which bifurcation theory now plays a role. Applications 

to hydrodynamics are exemplified by the works of Joseph [42J and Benjamin [43J. 

Taken together, "nonlinear dynamical systems" is perhaps the best descriptive ti tle 

for this body of theory. Its origins and some of its philosophical implications are 

traced in a recent interesting essay by M. W. Hirsch [44]. 
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For the purposes of this review, dedicated to turbulence studies, the determi

nistic movement will be dated by the work of Lorenz in 1963 [45] and that of Ruelle 

and Takens in 1971 [46]. Lorenz discovered, via numerical computation, that a 

simple dynamical model of a fluid system yielded flow properties having bounded 

aperiodic behavior in time of a form apparently so chaotic, yet deterministic, that 

(in current terminology) it is said to indicate presence of a "strange attractor" 

(see fig. 8). Sparrow's book [47] contains a thorough study of the Lorenz equations 

(see also a thoughtful review of the book by Guckenheimer [48]). Unaware of 

Lorenz's results (but expert in the theory of dynamical systems), Ruelle and Takens 

independently proposed strange-attract or behavior as a model for turbulence, and 

argued via mathematical analysis that the turbulent state would be reached after the 

fluid system had undergone a finite and small number of bifurcations. A more acces

sible and updated account of the Ruelle-Takens thesis, fittingly first presented at 

a symposium honoring the mathematical heritage of Poincare, recently has been pub

lished by Ruelle [49J. An example of a fluid .system typifying the sequence proposed 

by Ruelle and Takens is the Taylor-Couette flow shown in figure 9 [50J. Within the 

same period (1967) Mandelbrot [51J posed the idea of non-space-filling curves (which 

he had named fractals) as a model for explaining intermittency in turbulence. Also 

during this period ideas were proposed for handling problems involving rapid transi

tions in the important scales of structures, directed particularly towards applica

tion to phase transitions in solids (cf., e.g., Wilson and Fisher [52J). This 

methodology goes by the name of "renormal1zation group theory"; its relevance to 

turbulence studies has been noted by several authors (e.g., Siggia [53J). 

The above account notes the principal elements of the deterministic movement; 

they will be discussed in greater detail in the next section. Here, their histori

cal significance will be touched on briefly to complete our historical perspec

tive. First, the work on strange at tractors has shown that chaotic behavior can 

occur in even simple deterministic systems (as few as three nonlinear ordinary 

differential equations). Second, deterministic chaotic behavior can occur after 

just a few bifurcations of a dynamical system. (Other routes to deterministic 

chaotic behavior involving, e.g., period-doubling, are possible as well, 

cf. [54J.) Third, the ideas underlying bifurcation theory, strange attractors, 

fractals, and renormalization group theory provide a rich body of imagery, contain

ing a considerable potential for conceptualization of turbulence structures. Taken 

together, the first and second pOints offer the possibility that chaos or turbulence 

in fluid dynamics can be understood as a state of a simple deterministic system. 

The third point suggests a basis for the construction of models. 

Viewed from the framework of observations, theoretical ideas, and modeling 

already described, the impact of the deterministic movement can be summarized as 

follows: It has provided a basis for new observations, as exemplified by the work 

of Swinney and his colleagues on Taylor-Couette flow (fig. 9 and [50]). It has 

provided an impetus for mathematicians to return to the Navier-Stokes equations 
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themselves as a basis for modeling turbulent flows (e.g., Temam, et al., [55]) as 

well as simpler systems that exhibit chaotic behavior. Finally, the extensive 

studies of the Lorenz equations have shown the synergistic power of the computer 

when computational studies are carried out in conjunction with general mathematical 

theory. This is the eloquent point of Guckenheimer's review [48] of Sparrow's book 

[47J. The shortcoming of the movement (if what follows can be called a shortcoming 

for so new a movement) is that the effort to date has focused on simple systems; 

and, in fluid dynamics, principally on the mechanisms of transition. The applica

tion of current ideas to fully-developed turbulent flows has not yet been seriously 

undertaken, nor is it clearly evident yet that the understanding which has been 

gained can be converted into successful models for turbulent flows of practical 

interest. On the latter point, and to offset potential criticism from researchers 

focusing perhaps too exclusively on the ultimate goal of predictive power, we can do 

no better than cite the following from Hirsch's essay [44J: "The end result of a 

successful mathematical model may be an accurate method of prediction. Or it may be 

something quite different but not necessarily less valuable: a new insight. " 

RECENT DEVELOPMENTS 

Our account of the deterministic movement took note of four recent developments 

which need further elaboration. These are bifurcation theory, strange attractors, 

fractals, and renormalization group theory. As indicated earlier, bifurcation 

theory and strange attractors emerged as part of the study of dynamical systems that 

·originated with Poincare. The study of fractals has roots in a number of areas, 

e.g., the study of Brownian motion and the meteorological studies of Richardson. 

Mandelbrot's book "The Fractal Geometry of Nature" [56] contains an excellent dis

cussion of these origins. Finally, the study of phase transitions in condensed

phase matter was a principal source of inspiration for renormalization group 

theory. Each of these developments can be considered only briefly here; there are 

entire papers devoted to them elsewhere in this collection (cf. the contributions of 

Spiegel [57J, Mandelbrot [58J, and McComb [59J). Although they are often treated 

separately, and the perspective each brings to the subject is important, it is 

becoming clear that they cohere, and together offer the possibility of reflecting 

the greater part of many of the complex and chaotic processes in nature. 

Bifurcation Theory 

Generally speaking, bifurcation theory is the study of equilibrium solutions of 

nonlinear evolution equations and how they change with changes in the parameters of 

9 



the problem. In fluid-dynamic applications, we are interested in equilibrium solu

tions of evolution equations of the form 

(1) 

where U is the velocity vector and A is a parameter (e.g., Reynolds number, 

angle of attack, Mach number). An equilibrium solution is taken to mean the solu-
~ 

tion to which U(t) evolves after the transient effects associated with the initial 

values have died away. Equilibrium solutions may be time-invariant, time-periodic, 

quasi-periodic, or chaotic depending on conditions. 

Changes in equilibrium solutions can occur at two levels. The first occurs as 

a result of instability in equation (1). As the parameter ~ is varied, a critical 

value ~ can be reached beyond which the original solution becomes unstable. New 
c 

solutions, called bifurcating solutions, appear, some of which may be stable, and 

some unstable to small perturbations. By stable and unstable we mean the follow

ing: If a small perturbation of the solution decays to zero as t ~ m, the solution 

is said to be asymptotically stable; if the perturbation grows, the solution is said 

to be asymptotically unstable. Stable branches of bifurcating solutions can be 

either local or global. A bifurcation solution is said to be local if it can be 

mapped onto the original solution without cutting the solution space; if it cannot, 

the bifurcation solution is said to be global. In addition, the bIfurcation can be 

supercritical or subcritical, as illustrated in figure 10. In a supercritical 

bifurcation (shown by the pitchfork bifurcation), there is at least one branch of 

stable bifurcating solutions that is continuous with the original solution at the 

bifurcation point ~c' Thus, for a small change in ~ across ~c' there is a 

stable bifurcating solution that is O(~) close to the original solution such that 

as ~ - ~ ~ 0, ~ ~ O. 
c This is not the case for a subcritical bifurcation shown on 

the right of figure 10. Here, for a small change in ~ across ~c' there is no 

branch of stable bifurcating solutions that is continuous with the original 

branch. This type of bifurcation normally leads to hysteresis behavior because the 

critical point for the upper branch in the case shown does not occur at the same 

value of ~c as it does for the lower branch. The symmetrical bifurcation curves 

shown in figure 10 often result from idealized problems. In practice, there is less 

enforced symmetry, or there is a boundary condition, or a scale that was suppressed 

in the idealized problem. When these are brought into consideration, the idealized 

bifurcation diagram may undergo an unfolding. This is illustrated in figure 10 with 

the pitchfork. The idealized pitchfork has the following form (to leading order) 

3 2 
~ - ~~ = ~(~ -~) = 0 , 

whereas the general (unfolded) bifurcation to this order has the form 

~3 + a(~)~2 + b(~)~ + c(~) = 0 . 
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For the case shown in figure 10, a = 0, and b represents the effect of a small 

imperfection. Bifurcation in the case of Taylor-Couette flow between rotating 

cylinders has this form, in which the c term is the result of including ends in 

the concentric cylinders, rather than treating the idealized problem in which the 

ends are at plus-and-minus infinity. The first stage of the (idealized) Taylor

Couette flow problem typifies a common type of bifurcation in which an original 

time-invariant equilibrium solution is replaced at the bifurcation point by another 

time-invariant equilibrium solution, in this case one describing the Taylor vor

tices. A second type of bifurcation is the "Hopf" bifurcation in which the original 

time-invariant equili bri um sol ution is replaced by a branch of stable equili bri um 

solutions which are time-periodic solutions. The Hopf-type of bifurcation is common 

in aerodynamics, for example, the Karman vortex street in the wake behind a circular 

cylinder for Re > Rec = 50. A third type of bifurcation of great interest occurs 

when a quasi-periodic equilibrium solution is replaced by a bounded aperiodic solu

tion having chaotic properties. Taylor-Couette flow for RIRc - 23.5 [50] illus

trates this type of behavior. It is suggested that this behavior indicates the 

presence of a strange attractor--the subject to be treated in the next section. 

The second level at which changes in equilibrium solutions occur focuses on the 

class of equilibrium solutions that is time-invariant. Here, we concentrate atten-
... ... 

tion on the singular pOints in the equilibrium flows where U ~ O. With Ut ~ 0 in 

equation (1), we can recast equation (1) to directly describe particle trajectories 

or streamlines: 

...... ... 
U X

t 
= G(X,A) (4) 

... 
where X is the spatial coordinate of the fluid element. Here, as A crosses 

A , a singular point may bifurcate into multiple singular points, or a new pair of 
c 

singular points may appear, or a pair disappear. However, bifurcation at this level 

need not imply nonuniqueness in the governing flow equations. Equilibrium solutions 

may remain stable and unique on either side of AC' The bifurcation of singular 

pOints in the flow will be referred to as structural bifurcation. All structural 

bifurcations are global in the mapping sense described earlier. Structural bifurca

tions in fluid flows are described with examples in [60]. 

The general topic of bifurcation theory has received considerable attention in 

the past few years with development of an extensive body of literature. Examples of 

this genre of work are given in [41,61,62]. 

Strange attractors 

The recognition that bifurcation to a bounded aperiodic solution can occur, 

indicating presence of a strange attractor, represents a significant step in the 
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study of turbulence. Strange attractors appear in forced dissipative systems and 

can occur with relatively small nonlinearities (cf. the Lorenz system in fig. 8). 

The following account is an attempt to give a more geometric sense to the term. 

First, we need to introduce some additional terminology. By the state of a 

fluid-dynamic system, we shall mean a complete specification of the velocity field 

at an instant in time. The space of all states is the state space. The term orbit 

will refer to a solution of the differential equations determining pOints in state 

space (i.e., the Navier-Stokes equations), regarded as a curve in state space, and 

the solution flow will refer to the motion on the state space that advances each 

point along its respective orbit~ The term equilibrium solution that was intro

duced earlier in connection with bifurcation theory, represents the long-term behav

ior of a solution flow after transients have died away. Time-invariant equilibrium 

solutions can be represented as fixed points in state space. Time-periodic equilib

rium solutions can be represented as closed paths (i.e., circles) in state space. 

Equilibrium solutions having two incommensurable periods are representable on tori 

(called 2-tori) in state space. These orbits are called at tractors if orbits start

ing sufficiently close to them converge to them. Convergence in this sense is 

equivalent to the notion of asymptotiC stability introduced earlier. 

Whereas the Landau theory of turbulence [19] supposed that tori of increaSing 

dimension (n-tori) would succeed each other in an indefinite sequence of supercriti

cal bifurcations, Ruelle and Takens [q6] argued that beyond a 2-torus, a "strange 

attractor" would appear on the next bifurcation. Lanford [1] has presented a useful 

qualitative description of how a model strange attractor might succeed a 2-torus. 

His description is reproduced in figure 11. The solution flow shown in part (a) is 

primarily in the direction of the arrows around the torus with relatively small 

transverse motion. Plotted against time, a solution would appear as noisily 

periodic. Parts (b), (c), and (d) show successive intersections of a set of solu

tion curves that undergo squeezing and stretching (b), rotation (c), and folding (d) 

in one circuit of the torus. Four iterations of this "return mapping" produce the 

complex layered structure shown in (e). As Lanford has noted, the separate 

phases (a)-(d) would occur simultaneously in real examples. In fact, the outcome 

depends only on the nature of the mapping which takes a point in the cross-section A 

into the next place where the solution curve through that point recrosses A. This 

mapping is called the return mapping or the Poincare mapping. One assumes that the 

sequence of return mappings has a limit, and the limit is representative of the 

strange attractor. It must have the following characteristics: First, solutions 

"phase-mix" (cf. Joseph [Q2]). Unlike periodic or quasi-periodic functions, the 

strange attractor has an autocorrelation function which decays rapidly in time. 

This is a property shared by all observations of turbulent flows. Second, the 

strange attractor has a sensitive dependence on initial conditions. Solutions which 

start out even infinitesimally close together must eventually depart from each 

other. In Lanford's description of a model strange attractor (fig. 11), it is the 
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stretching property that ensures the eventual departure of adjacent solutions. 

Finally, each member of the set of solutions comprising ~he strange attractor occu

pies zero volume in state space. It is this characteristic that forces the strange 

attractor to have noninteger dimensionality, or, in Mandelbrot's terms [63J, fractal 

measure. In Lanford's model attractor, the folding property (d) gives rise to a 

multilayered structure that does not occupy any volume, and it is this property that 

accounts for the attractor's noninteger dimensionality. It is also this property 

that manifests itself in terms of intermittency. 

For a more comprehensive study of the various connections between strange 

at tractors and turbulence, the reader is referred to Lanford's review articles 

[1,64J. Ott's review [65J of strange at tractors in a dynamical systems framework 

has an excellent section on the connection with fractal dimensionality. The connec

tion as a possible property of solutions of the incompressible Navier-Stokes equa

tions was apparently first aired by Foias and Temam [66J, and has been recently 

sharpened [67,68J. The formulation of appropriate measures and dimensional descrip

tions of strange attractors is a subject of intense current interest [69-71J. 

Fractals 

The fractal idea as a description of turbulence precedes that of the dimension

ality of the strange attractor and, in the geometric form put forward by Mandelbrot 

[56J, has considerable conceptual power. Hence, it will be in that context that 

fractals and fractal dimensionality will be briefly described. A fractal curve is a 

curve that is everywhere continuous but nowhere differentiable. An example of a 

fractal curve is the Brownian motion of a particle. Lest one choose to disregard 

the fractal idea too quickly, one should recall that the Navier-Stokes equations can 

be considered an ensemble average over a set of Brownian-motion curves. To illus

trate these curves and their properties, two examples have been selected. These are 

shown in figure 12. The simplest example is the Koch curve. This curve is con

structed by the following recursive procedure: take a line one unit long and divide 

it into three equal segments. Remove the center segment and replace it with two 

equal segments to form a hat (see fig. 12). This process is repeated recursively on 

each of the new segments that are formed at successive steps. Now the length of the 

resulting curve increases without limit as the number of repetitions (n) increases 

without limit, but the curve does not fill up any space. Only a line with apparent 

texture reiults. Another way to think of this is to take three of these Koch curves 

and form an equilateral triangle. Now note that we have a finite area enclosed (an 

island) by a perimeter (coastline) that is infinitely large. This pOint is well 

described in Mandelbrot's book [56J in the chapter entitled "How long 1s the Coast 

of Britain?" The following question arises: Is there a way to form a relationship 
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between the line length and the unit of size at any point in the iteration? There 

is, and it is as follows: Let 

L = s~ (5) 

where L is the length of the line and s is the length of the element used to 

construct L. Hence, for the Koch curve we have 

M· W-rr 
or 

i.n 4 
1.1 '" 1 ---i.n 3 

Now ~ can be interpreted as the difference between the Euler dimension (DE) of the 

element (s), which in this case is 1, and the dimension of the line L, which is 

called the fractal dimension (Of). Hence, 

or, for the Koch curve, Of = i.n 4/i.n 3 which is about 1.28. Note that if 

Of = DE' the length of the line does not depend on the size of the unit of construc

tion, which is what one expects for smooth curves. 

A better example, and one more closely related to turbulence, is the second 

example in figure 12, namely, that of a surface. One may think of this surface as a 

surface of vorticity. It is distorted in a recursive manner as follows: Divide the 

unit square into nine small squares; now, remove the four corner squares and the 

center square and replace them by building a small square box over the open squares 

(center box down for convenience). With each of the 29 sides of the new figure, 

repeat the process. The surface becomes more and more distorted with each step, and 

the actual surface area increases without limit as the number of iterations (n) 

increases. Hence, the surface in two dimensions becomes more and more distorted, 

but never fills up space in three dimensions. In a manner similar to that used for 

the Koch curve, the fractal dimension is found to be i.n 29/i.n 9 + or about 

2.54. Now, this is a rather simplistic model for a sheet of vorticity that has been 

distorted into a parcel of turbulence because of instabilities. Even though the 

model is simplistic, it is true that a hot wire passing the distorted sheet would 

exhibit intermittency. The observations that high-Reynolds-number turbulent flows 

exhibit intermittency go back to a paper by Batchelor and Townsend [18J. These 

authors noted that in high-Reynolds-number homogeneous turbulent flOWS, the vortic

ity was not distributed uniformly but was concentrated on sheets or other localized 

regions of space. Attempts have been made to derive a fractal dimension for this 
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turbulence based on higher-order statistical information. Values between 2.0 and 

3.0 have been derived. However, the reduction of information on the higher-order 

statistics to a fractal dimension requires specification. of a topological form of 

the turbulence, and this step has led to considerable disagreement. Mandelbrot [56J 

suggests that reasonable topologies bound the value of the fractal dimension between 

2.5 and 2.7. In a recent attempt to establish a basis for these values, Chorin [72J 

calculated the distortion of a vortex tube using the Euler equations. That calcu

lation showed that the vorticity contracted (in an L2 norm sense) to a fractal 

dimension of about 2.5, in reasonable agreement with the lower bound postulated by 

Mandelbrot. 

Renormalization group theory 

As noted earlier, the concept of the renormalization group has its roots in the 

study of condensed phase matter, in particular, certain crystal problems. The 

concept behind it is easiest to understand in that context. An example is shown at 

the top of figure 13. Here, a portion of a square lattice of molecules (dots) is 

shown on the top left. The interactions of four of the molecules are computed, so 

that they can be replaced by a supermolecule (X) which has the combined property of 

the four. Then, four of the supermolecules treated together form a still larger 

supermolecule and so on. One seeks scaling properties of the system that become 

invariant with repetitions of the process, so that only a small number of recluster

ings may be required. A more detailed description of this process can be found in 

the paper by Wilson and Kogut [73J. The idea has been used by Feigenbaum et al. 

[74J in a novel way that calls attention to the universal scaling numbers for 

period-doubling. The idea has been used by Siggia [53J as follows: A fluid

dynamics problem with turbulence is being solved computationally by the use of 

finite-difference methods. In order to conserve computational time, a coarse grid 

is preferred. In that case, a subgrid turbulence model is required to handle the 

dissipation that occurs below the resolution of the grid. At the bottom of 

figure 13, a way to develop this subgrid turbulence model is sketched by means of a 

scale description. A problem 1s set up where the large-scale structures are 

forced. A fine grid is used so that dissipation by the subgrid scales is not impor

tant. A slightly coarser grid is then used with a dissipation term chosen so as to 

keep the midscales unchanged. The problem is repeated with a still coarser grid and 

dissipation term that, again, keeps the midscales unchanged. Several repetitions of 

the process should suffice to reveal the existence of a dissipation-scaling relation 

such as d - sY, where d is the dissipation, s is the grid size, and Y an 

exponent to be determined. This is a simple numerical application of a renormaliza

tion group idea. Another example is presented by McComb ([59J, in this collec

tion). Additional attempts should be forthcoming. 
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FUTURE DIRECTIONS 

In our view, future directions for the study of turbulence will reflect the 

recent developments of the deterministic movement, together with statistical ele

ments and structural observations that are consistent with the deterministic 

approach. In a previous paper [60J, the authors suggested a framework for studying 

nonlinear problems in flight dynamics. That same framework is proposed here as 

being suited to the deterministic approach to the study of turbulence. The frame

work has four premises involving the elements structure, change, chaos, and scale: 

(1) All flows have structure. 

(2) Structures change in systematic ways with changes in parameters. 

(3) Some changes lead to a special class of structures, chaos. 

(4) Structures have various scales. 

The premises allow the following interpretation of observations: Flow structures 

are interdependent. Changes in structures occur in discrete ways at definite and 

repeatable values of parameters. Chaos in fluid systems can occur after a finite 

number of bifurcations (discrete changes). Chaos is deterministic and can be repre

sented by a strange attractor of finite dimensionality. Finally, the various scales 

of turbulence interact (a restatement of the observation that the structures are 

interdependent). 

Taken together with a corresponding set of mathematical ideas, the four prem

ises form a strong theoretical framework (a way of seeing) for the understanding, 

and (potentially) the modeling of turbulent flows. The premises of the theoretical 

framework are: 

(1) Structures are describable in topological terms. 

(2) Changes in structure are describable by bifurcation theory. 

(3) Chaos is describable by the theory of strange attractors and fractals. 

(4) Scales are describable by group theory ideas. 

Where this body of theory will lead in the modeling of turbulent flows is not 

yet completely obvious. However, at least the following seems likely: (1) Some 

form of averaging of the Navier-Stokes equations probably still will be required. 

Whatever its form, the averaging will be carried out such that: (a) it allows the 

representation of at least the major structural and subcritical bifurcations that 

occur both in the outer flow (away from boundary layers) and within the turbulence 

itself, and (b) it incorporates chaotic information. (2) The chaotic portion of the 

problem probably will be modeled by a finite-dimensional strange attractor along the 

lines of current developments in dynamical systems theory. Progress here hinges on 

the formulation of appropriate measures of the strange attractor which will allow a 

rational finite-dimensional representation of its essential nature. The representa

tion will be driven by the mean flow and, in turn, supply information to the mean

flow equations to be used in forming the Reynolds stresses. This is where 

renormalization-group theory ideas will be required to resolve only the essential 
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scales of the problem. Topological ideas will be used to replace the formerly 

ubiquitous "turbulent eddies" (and the currently, perhaps equally nonspecific, 

"small-scale chaotic structures") by a concise and descriptive grammar of structural 

forms. 

The ideas which have been discussed perhaps can be illustrated more clearly by 

examples. Two flows have been selected to illustrate some of the ways in which flow 

properties change with changes in the governing parameters. Our purpose here is 

twofold: First, to demonstrate the extent to which descriptions based on the lan

guage of the proposed theoretical framework are compatible with observations; and 

second, to demonstrate some of the principal structural features of flows which we 

believe should be capturable by a mathematical model constructed according to the 

prescription above. 

The first example is that of the two-dimensional cylinder immersed in an incom

pressible crossflow that is uniform and steady far upstream (fig. 14). The main 

parameter is Reynolds number (Re). We examine a sequence of flows as Re is 

increased from very low values (Re < 7) to values of the order of 106• Sketch (a) 

in figure 14 depicts the regime resulting from a Hopf-type bifurcation occurring at 

Re 50, in which the previously steady flow is replaced by a time-periodic flow 

(cf. [75J). As Re is increased by increments, at least two additional bifurca

tions occur, leaving the wake with a quasi-periodic large-scale structur~ and with 

chaotic small-scale structures superposed on the free-shear layers (sketch (b». 

The small-scale structures work their way forward in the wake as Re increases, 

until they are in the vicinity of the separation pOints on the cylinder. At a 

definite and repeatable value of Re (Re = 3.5xl05 [76,77J) an antisymmetric inter

action occurs having opposite effects on the separation pOints, which leaves the 

~ flow asymmetriC and disrupts the previously quasi-periodic form of the wake 

flow (sketch (c». As has been documented in [77J, this event has all of the char

acteristics of a subcritical bifurcation, including hysteresis, inasmuch as the 

return to a symmetric mean flow with reduction in Re from higher values occurs at 

a lower critical value of Re than had the onset of asymmetry. With a small fur

ther increase in Re, a second interaction restores the symmetric character of the 

mean flow (sketch (d». This event also involves the hysteresis with reduction in 

Re from above, characteristic of a subcritical bifurcation. Finally, at suffi

ciently high values of Re (sketch (e» the chaotic structures have moved forward of 

the separation pOints, rendering the boundary-layer flow on the cylinder turbu

lent. A periodic structure reasserts itself in the wake, now with a new fundamental 

period reflecting the scale of the chaotic structures characteristic of both the 

boundary layer and the free-shear layers. The example confirms first that descrip

tions based on the language of the theoretical framework are in fact compatible with 

observations. Starting with the onset of flow separation at Re· 7 (describable as 

a structural bifurcation, not shown in fig. 14), the onset of each of the flows 

sketched in figure 14 can be described as either a subcritical bifurcation or a 
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structural bifurcation of the mean flow, occurring at a definite and repeatable 

critical value of Re. Second, with regard to computations, the example suggests 

that a mathematical model capable of capturing the sequence of important bifurca

tions will have to acknowledge the existence of small-scale chaotic structures and 

how they may interact with large-scale periodic structures. 

The second example is that of a two-dimensional airfoil immersed at zero angle 

of attack in a compressible flow that is uniform and steady far upstream 

(fig. 15). The main parameter here is free-stream Mach number (Mm)j we examine a 

sequence of flows as Mm is increased in the transonic speed range, with Reynolds 

number (Re) held fixed. The value of Re is supposed sufficiently high to maintain 

a turbulent attached boundary layer over the major part of the airfoil at the lowest 

value of Mm. In sketch (a) of figure 15, Mm is low enough so that no shock waves 

develop. As M~ increases, shock waves develop (sketch (b)) but the boundary-layer 

flow remains attached. An additional increment in Mm strengthens the shock waves 

and the boundary-layer flow separates behind the shocks but remains essentially 

steady except for the presence of small-scale chaotic structures. This is a' struc

tural bifurcation of the mean flow (sketch (c)). A further incremental change in 

Mm results in a large-scale periodic fluctuation, originating in the separated-flow 

regime and akin to vortex-shedding. It is describable as a Hopf-type bifurcation, 

and observations [78J have shown it to be subcritical (sketch (d)). Finally, with 

another increment in Mm' the large-scale periodic fluctuation vanishes and the flow 

returns to an essentially steady separated structure (sketch (e)). This event is 

also describable as a subcritical bifurcation, involving hysteresis. 

Extensive studies of the phenomenon have been carried out both experimentally 

[78J and computationally [79J for a biconvex airfoil. The computations, initiated 

by Levy [79J, were based on the Reynolds-averaged Navier-Stokes equations with 

closure achieved by means of a phenomenological (mixing-length) turbulence model. 

Computational results were able to capture essential features of the bifurcations, 

including the critical values of Mm signalling both the onset and the termination 

of periodic fluctuations as well as the form and frequency of the fluctuations 

themselves. The computational results were not sufficiently accurate, however, to 

demonstrate the subcritical nature (i.e., the presence of hysteresis) of the 

bifurcations. 

Levy's computational results are extremely encouraging in that they demonstrate 

that even rather simple modeling of the averaged Navier-Stokes equations may be 

sufficient to capture essential features of important bifurcations. Improvement of 

the modeling to enable capturing, e.g., the subcritical nature of bifurcations, 

would appear to hinge on the successful implementation of the second part of the 

prescription outlined earlier. In particular, as we have noted in the first exam

ple, the model must be capable of acknowledging more fully the effect of interac

tions between small-scale chaotic and large-scale periodic structures. 
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MODELING 

OBSERVATIONS 

------------...... ~ THEORETICAL IDEAS ... 

Fig. 1. Observations, theoretical ideas, modeling, and their interactions. 

I' 

Fig. 2. Very early observations of turbulence--sketch by Leonardo da Vinci, circa 

1500. 

26 



STATISTICAL MOVEMENT 

O.REYNOLDS 

~t~ ______ ~t~ ____________________________________ ~. ____________ __ 

1880 1900 

STRUCTURAL MOVEMENT 

SCHUBAUER AND 
TOLLMIEN SKRAMSTAD 

+~------+~-------------------..----
DETERMINISTIC MOVEMENT 

1920 1940 

RUELLE AND 
LORENZ TAKENS 

t t 

1960 1980 

Fig. 3. Three movements in the history of turbulence research: statistical, struc

tural, and deterministic. 
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Fig. 4. First systematic study of turbulence--a repetition of O. Reynolds' 1883 dye 

experiments (from [5J). 
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Fig. 5. Top and side views of Emmons turbulent spot (from [22]). 
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Fig. 6. Structures in turbulent wall shear flows (from [30J). 
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Fig. 7. Coherent structures in turbulent free shear layers (from [5J). 
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Z = xV - bz 

Fig. 8. The Lorenz attractor. 
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Fig. 9. Stages in Taylor-Couette flow with increasing Reynolds number R; 

Rc = critical R for onset of Taylor instability (from [50J). 
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Fig. 1'. Qualitative behavior of a model strange attractor. 
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Reynol ds number. 
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with increasing Mach number. 
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