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ABSTRACT 

Compact finite difference schemes for hyperbolic and convection-

diffusion equations are presented and their relationships to box schemes 

are described. A simple modification of the mesh ratio 6t/6x is shown 

-to make a previously described non-dissipative scheme for the hyperbolic 

problem dissipative. The dissipative scheme for the convective-diffusion 

equation is formally second order accurate for all values of the local 

cell Reynolds number. Applications to nonlinear problems are described. 

This -report was prepared as a result of work performed under NASA 
Contracts No. NASl-l4472 and NASl-l5810 at ICASE, NASA Langley Research 
Center, Hampton, VA 23665. 





Introduction 

This paper describes implicit finite difference schemes for two 

closely related classes of mixed initial-boundary value problems in one 

space dimension. 

Part I treats the hyperbolic problem: 

(la) U + AU = 0, 0< x < 1, 0< t< T 
t x 

with the initial and boundary conditions 

U = UO, t = ° 
(lb) BOU = go' x = 0 

BIU = gl' x = 1. 

Here A is a nonsingular (r x r) matrix with k positive and .Q. 

negative real eigenvalues while BO is (k x r) of rank k and 

BI is (R.. x x) of rank .Q., k + R.. = r. The boundary conditions are 

assumed to be dissipative, i.e. for every vector satisfying the homo

geneous boundary conditions then (_l)x+l U' A U ~ 0 for x = 0,1. 

Note that the differential equation in (1) is the nonconservative 

form of the system Ut+Fx(U) = ° where A = gradF. 

Part II treats· the scalar convective-diffusion equation (v> 0) 

(2) .ut+au -vu =0, x xx O<x<l, O<t<T, 

which we write as the system 

(2a) 

u - v = 0; x 

with W = (u,v)', initial and boundary conditions are 
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0 
t = 0 u = u , 

(2 b) BOW = go' x = 0 

BlW = gl' x = 1, 

where BO.Bl are both (1 x 2). We also assume that homogeneous boundary 

c~nditions result in the inequalities x+l ( -1) ( au - vv) u ~ 0, x = 0, 1. 

We are interested in demonstrating the following: 

a) the dissipative implicit finite difference schemes described 

below allow the related nonlinear conservation forms of (1) and (2) to be 

treated in their nonconservation forms; numerical evidence for this asser-

tion is provided below. 

b) for the linear hyperbolic equation dissipation can be restricted 

to affect amplitude modulation while phase errors will be affected only 

by the CFL number; it is ,thus possible to control pre or post oscillations 

at a discontinuity by the choice of the mesh ,ratio A = ~t/~x. 

c) for the convective-diffusion equation the scheme is second order 

accurate fo~ all values of the "lo,cal cell Reynolds number" (I a l6.x) / (2v). 

A conunon feature of, the schemes developed for both classes of these 

problems is that they are equivalent to box schemes (Keller IS]) and may 

be solved by the algebraic methods described by Keller in [6] (c.f. 

[2], [4], [8]). Such compact schemes for mixed ini~ial boundary value 

problems avoid boundary extrapolation techniques which are generally '_ 

required to make noncompact schemes algebraically determined and which 

can be an important source of errors. 

. The following notation will be employed: 

n n n n n+! n-i / 
°xui (u . +! - u. ~) / ~x, °tUi= .(u. - u. ) ~t, 

1 1- 1 1 

(3) 
n n n n { n+! + n-!)/2 

~xUi = CUi+! + u i _!)/2, ~tUi = ui u i . 
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Clearly, 

c(uv) = ~(u)c(v) + ~(v)c(u) 

so that 

I. The Hyperbolic Problem 

1.1 A Non-Dissipative Scheme. 

In order to make this paper self-contained as well as to motivate the 

extension to be described below this section reviews a treatment of the 

system U + AU = 0 when A is symmetric and constant which has been 
t x 

given elsewhere (Rose [11]; also see Wendroff [121, [13]). 

Consider the scheme 

(a) 

(1.1) 
(b) 

c U~ + Ao U~ = 0 
tl. Xl. 

n 
~ U •• 

X l. 

Under the conditions just indicated this scheme provides a convergent approxi-

mation to (1) as the following sketch of an "energy" argument shows: multiply 

n 
(I.la) by ~tUi and employ (I.lb) to obtain 

o~«U~)'U~) + Ac «Uni)'U~) = o. 
L: l. l. X l. 

Summing on i, setting 

(U~) 'U~ Llx, 
l. l. 

i 
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and noting that the boundary conditions (lb) were assumed to be dissipa-

tive, there results 

(L2) 

This estimate implies that the solution of (1.1) converges to the solution 

of (1) for all values of the mesh ratio A 6t/6x, 6x + O. A closer 

examination also shows that the scheme (1.1) is non-dissipative. 

(L3) 

where 

The solution of (1.1) may be obtained by one of the following methods: 

(i) Two-Step Method 

(a) Eliminate u~+! from (1.1) to obtain 
1. 

n_.l.. 
= U. 2, 

1. 

The difference equations (1.3) present a two-point algebraic boundary value 

problem which is solvable (Keller £6]) under the boundary conditions described 

in (1) with the initial conditions given by 

(b) with U~ so ~etermined, explicitly solve (Lla) or (LIb) for 

(ii) One-Step Method (Box Scheme A) 

Instead of employing the explicit step (b) eliminate 

from (1.1) to obtain 

(1.4) 

,. 
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Next replace n by n+l in (1.4) and then eliminate un+! from (1. 3) 
i 

and (1.4) to obtain 

(1. 5) LU~+i _ 
1. 

This algebraic system is similar to (I.3) and is solvable for by 

the same method. Its relationship to a box scheme is evident from the 

fact that the values occurring in (1.5) are associated with the vertex 

points of a computational cell centered at (i,n+!). The implementation 

of this scheme involves first employing step (a) in (i). 

(iii) One-Step Method (Box Scheme B) 

Equation (LIb) is identically satisfied by introducing new 

¥ariables V such that 

and 

n 
2U .. 1 

1."'2 

2U~+! 
1. 

V~+l + V~-l 
1. 1. 

Substitution in (1.1) then yields a box scheme for values centered at (i,n). 

This form of the box scheme method is essentially that developed by ,Keller 

[51 and will not be discussed in further detail in this paper. 

Considered separately from (i) the box scheme formulations tend to ob-

scure the existence of the simple energy estimate (I.2). However, the box 

scheme formulation has advantages for the analysis of other questions. Thus, 

an expansion of the operator LU~+i immediately results in a truncation error 

estimate which is proporational to (~x)2 while an analysis of the amplifica-

tion matrix in (1.5) also shows the scheme to be non-dissipative and, hence, 

will be of limited use in treating discontinous solutions. The following 

section describes a simple modification of (1.1) which yields a dissipative system. 
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1. 2 A Dissipative Scheme· 

Instead of (1.1) consider the scheme 

(a) 

(1.6) 

(b) 
n n = ~ U. + aAo U. x 1 X 1 

with (J > O. 

Assuming again that A is symmetric and constant, and suppressing 

indices, the energy expression resulting from (I.6) is now 

o=! I {Ot(U'U)+AO (U'U)} + (J I (0 AU)'(o AU), x x x 

so that 

(1.7) 

Clearly this system is dissipative, i.e., when (J > 0 the inequality in 

(1.7) holds unless Un is constant. 

Let 

E: '" 2(J/~x 

and 

(1. 8) 

The following solution methods now result: 

(i) T~o-Step Method 

a) 
+ n+ n n-! 

R+(A )Ui+! + R_(A )U i _! jO: U. 
1 

("-:., 

. (1.~) 

b) o n n 
t U! + AOxU i O. 
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(ii) One-Step Method 

(1.10) 

Thus (1.9) and (1.10) result from (1.3) and (1.4) by appropriately 

increasing or decreasing the parameter A. If ~ = U~ - U, where U is 
~ ~ 

the solution of the differential equation in (1), the estimate of trunca-

tion error using (1.10) is 

so that the parameter a = s6x/2 gives rise to an artificial viscosity term 

proportional to U xx 

1.3 Amplification and Phase Error 

Consider the scalar equation u t +aux ::;; 0 where a > O. Initial data 

given by u
O = exp(i8x) are transformed by (1.6) into v = P exp[i(8x-I/J)] 

while the differential equation carries 
o 

u into v' = exp[i8(x- a6t)]. 

Eq. (1.10) shows that 

(1.11) < 1, 

while 

(1.12) arc tan(aA tan(8/2». 

Thus Ipi < I for s > 0, i.e. (1.6) is dissipative for a > O. 

For aA = 1, I/J 8. Since tan ex cf> > ex tan cf>, 0 < ex < 1, then I/J < 8 

for 0 < a A < 1; similarly I/J > 8 for a A > 1. Thus the wave velocity of 
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the wave solution of the differential equation according as the CFL 

number is the difference equation has the same relationship to that 

of less than, equal to, or greater than 1. 

In the non-scalar case an analysis of the amplification matrix 

associated with (1.10) yields an inequality similar to (1.11). This 

observation also implies the convergence of the scheme (1.6) since it 

is, clearly,consistent with the differential equation (1). 

1.4 Numerical Experiments 

The preceding discussion concerned the case A = constant. For 

nonlinear problems, A A(U) and it is natural to apply (I.6) in 

which the coefficient A is determined by U~. Because (1. 6) is 

equivalent to an artificial viscosity method it may be expected that 

the dissipative scheme (I.6) will converge to the physical weak solution 

of the nonlinear conservation system Ut + Fx(U) = O. 

In one dimension the nonconservation form of the Euler equations 

for inviscid fluid flow is described by 

where U =,(p, u, p) , (p = density, u = velocity., ,p = pressur,e) and 

A =(~ 
p 

o ) (1.13) u p-1j 
,0 yp ',U i 

(y = 1. 4). 

"The results of several numerical experiments with~Riemann problems 

employing the two-step method (1. 9) w;ll'lbe ;presented here. 

Figure 1 illustrates the numerical density profile of a shock 

travelling to the 'right with speed 0.979 which results from the initial 

conditions 
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x<O x>O 

P = 0.313 0.219 

u = 0.3 0.0 

p = 0.166 0.1 

The indicated values of p and u on the left and p on the right were 

used to supply boundary conditions. The dissipation factor in (1.9) was 

£ = 0:15 and ~x = .01. The value A = 1.04 in Figure la approximates 

the situation in which the average value of the CFL numbers before and 

after the shock'was 1. The smoothness of the transition across the shock 

and the fairly accurate tracking of the correct shock position (indicated 

by the vertical line) are evident. Figure lb illustrates the result of 

increasing the CFL number on both sides of the shock (A = 1. 3) while in 

Figure Ie the average CFL number was reduced (A· 0.7). The post shock 

oscillation when A = 1.3 and the preshock oscillation when A = 0.7 

which was evident in the figures may be interpreted as the influence of 

the CFL number on the wave velocity as discussed in 1.3. 

Figure 2 illustrates the p, u, p profiles resulting from the initial 

conditions 

x<O 

p = 1.0 

u = 0.0 

p 1.0 

x>O 

0.125 

0.0 

0.125 

The analytical solution,represented in the figures by the continuous line, 

yields a shock with speed 1.822 and a contact with speed 0.878. The calculated 

values at time = 2.4 with ~x = 0.1, A = 0.6, and a dissipation factor of 

£ = .125 yielded results in fairly good agreement with the exact solution. 

The relative error of the shock speed was estimated to be 3% and the relative 
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error of the total energy was calculated to be 0.3%. The value 

A = 0.6 chosen results in an average CFL number ~ I through the shock 

zone. In this experiment the matrix A in (1.1) was estimated by 

A~ = ![A(U~+i)] + i[A(U~_!)]. 

In both of the above experiments the dissipative factor £ was 

kept constant for all points. 

II. Convective-Diffusion Equation 

11.1 Difference Scheme 

A motivation for this scheme will be given in the Appendi~. 

Consider the scalar convective-diffusion equation in the form 

described by (Za), i.e. 

(II. I) 

Let 

u + au - VV = 0 
t x x 

u - v = o. x 

6 = a/::'x/2V, 

so that lei is the local cell Reynolds ',number • 

Also let 

p(6) = -2 e ' le,coth e -1) , 

(11.2) 

q(6) = 6p(6) .• 

Thefollowing approximations to p and q, ,will be convenient: 

(i) 

(ii) 

1 e 1 < 3 

1 e 1 > 3 

p '\, 1/3, q '\, 6/3 , 

1 p '\, 1 6 1-, :9 '\, s gn e - I / 6 • 
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The proposed scheme for treating (11.1) is: 

a) n n - \)0 vn 
0 °tUi + aOxui = x i 

(II.3) b) n /).X 2 n n 
llxui (y) p ° v. = lltUi x 1 

c) 
n (6x) n n 

° u. + q o v. = II v.' 
X 1 2 x 1 X 1 

For convergence 6x ~ 0 in which case the coefficients of p and 

q in (11.3) may be neglected. For lei large, however, the term in-

volving p and q can provide important corrections to the scheme. 

The difference equations (11.3) are clearly consistent with the 

differential equation (2). The convergence of the scheme for /).x ~ 0 

when a = constant, is most easily shown by employillg the following "energy" 

argument: neglecting the terms in (11.3) which involve p and q and 

suppressing the indices (i,n), multiply (II.3a) by lltU and then employ 

(II.3b,c) to obtain 

Assuming tbe boundary conditions satisfy the dissipative inequalities 

related to (2) as described in the introduction, summation over the 

spatial index then yields 

(I1.4) 

where 

(The inequality in (II.4) is, strict unless n 
u. 

1 
is constant). This implies 

the convergence of solutions of (11.3) to the solution,of (2) as /).x ~ 0 for 

all values of the ratio A = 6t/6x. 
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11.2 Solution Methods 

The solution method described earlier for hyperbolic systems has 

~ direct extention to the equations (11.3). It will be convenient to 

introduce the vector W = (u,v)T and the matrices 

and 

= ~[(l±a>..) 
R± ;I 

±l 

:.... .l.[(l =+= a>..) 
S± - 2 

±l 

=+=(\1>,,+~xp)l 
_ ~x(l =t. q) 

± (VA- 2" P, ) !::"x 1 
_ ~x(l =+= q) 

The following solution methods result: 

(~) Two-Step Method 

By eliminating the term n+! u ' 
i in (rI.3a,b) ~here res~lt~ 

(II. 6) 

This is an algebraic tw~.,..point poundary val4e prpblem which is solvable 

under the boundary conditions (2b) and the ,initial values 

n+! determined, uimaybe obtained explicitly frpm(II. 3). 

With wn. . 

(ii) One-Step Method (BoK-Scheme) 

n-! By eliminating the term u. in equations (II.3a) and (II.3b) 
J. 

and then relabeling the index n the following .bQx scheme results: 
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(II. 7) 

The truncation error, as estimated from this expression, is 0(~x2) 

for all values of the local cell Reynolds number lei. 

11.3 Numerical Results 

The solution u = cos (x - t) exp (-vt) of ut + Ux = vUxx = 0 was 

computed at t = 4rr using 11.3 for V = 10-2 and the values 

~x = rr/20, rr/40, rr/80. The Ll norm of the numerical errors as a function 

of A = ~t/~x are given in the following table: 

~x A = 0.5 A = 1.0 A = 2.0 

rr/20 1.7x 10-3 0.5 x 10-3 9.3 x 10-3 

rr/40 0.3 x 10-3 0.27 x 10-3 2.5 x 10-3 

rr/BO 0.8 x 10-4 0.07 x 10-3 0.6 x 10-3 

The results confirm the assertion made earlier that 11.3 is second order 

accurate. Similar results were obtained using the L2 norm. 

Figure 3 indicates steady-state boundary layer profiles (t = lO) for 

ut + au - Vu = 0 with boundary conditions u(O) = 1, u(l) = 0 and x xx 

initial condition ·u(x,O} = (I-x); (11.3) was employed with ~x = 1/20 and 

A = 1. The exact solution is indicated by the solid curves. The numerical 

results indicate fairly close agreement with the exact solution in the 

neighborhood of x = 1. 

Figure 4 describes results for Burger's equation u
t 

+ (u2/2)x = vU
xx 

with u(x,O) =- 1 for x < 0.5 and u(x,O) = 0 for.x > 0.5 for 

V = 10-2 , 10-3 at time t = 1.0 using (11.3) with ~x = 1/50 and 

A = 1.0; the vertical line indicates the position of the shock for the 

limiting value V = o. 
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Figure 5 illustrates the solution of Burger's equation at time 

t = 2.0 (steady-state) with boundary condition u(O) = 1, u(l) = -1 

and initial condition u(x,O) = l-2x. The maximum value of the local 

cell Reynolds number was R = 112.23. 
c 
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Appendix A 

The Underlying Approximation Method 

The schemes described in this paper have their origin in a common 

approximation method. 

Divide the fundamental solution domain V 0 <x < 1, 0 < t < T 

uniformly into M· N rectangular cells each of area 

typical cell with center point (x., t ) 
1 n let 

fj,xfj,t. 

vertical and horizontal sides as indicated in Figure 6. 

n* T. 2 
1 

n n. 
1 

Figure 6 

n 
a .. 1 

1'2" 

If 

denote its 

There are thus a total of (M+ l)N + (N+ l)M sides of which 0 2(M+ N) 

lie on the boundary of V and 2MN - (MorN) lie interior to V. 

is a 

Consider first the equation Ut + AUx = O. If un±! 
i 

are the average 

values of 

(A.I) 

on the sides n+.l. -2 
T. , 

1 
of 

n n. 
1 

then the 0 MN conditions 

will imply that Gauss' theorem holds on the union of any contiguous set 

of cells. Suppose now that the global solution is approximated by_functions 

which are solutions .of the linear differential equation in each cell each of 

which depends. say, upon a. parameters, i. e., if 00 11 .12,. • • ,~ are 

linearly independent solutions in a ~ell. we let 
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a 
(A.2) U z I·.ti~.' 

i=l 1 

If a = 2 the mixed initial-boundary value problem (1) may be 

approximated as follows (c.f. [10]): set 11 = I, 12 = (xI- tA); 

then the parameters ~l' ~2 

four average values n +l.. 
U.- 2 

1 

will be determined by any two of the 

and associated with the sides of 

n ni " Elimination of the parameters yields two relationships between 

these values one of which is expressed by (A.l) and the other by 

(A.3) 
n 

= II U •• 
X 1 

There thus result 2MN conditions for the 2MN + (M+ N) average 

values. By imposing the boundary and initial conditions in (1) a 

determined system of equations results. As we have shown through the 

use of an energy argument, when A is synnnetric and constant this 

approximation method converges in an L2 norm for smooth solutions. The 

numerical results presented earlier indicate that the dissipative 

scheme based upon a modification of this method provides accurate 

approximations to nonlinear problems as well. 

For the scalar equation . u
t 

+ aux - vUxx = 0 similar arguments 

show that, if V .= ux ' then 

(A.4) 

is a necessary condition that Gauss' theorem hold in terms of the boundary: 

data of cells. Employing (A.3) with a = 3 and the elementary solutions 

!£1 = 1 

(A.S) 12 (x - at) 
" 

1.3 = e 
ax/v 
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an elimination of parameters yields the scheme (11.3) which is a determined 

algebraic system under the initial-boundary values given by (2b). Again, 

the energy argument given earlier establishes the convergence of this approxi-

mation scheme when a is constant. 

Both schemes employ an approximation basis which consists of wave 

solutions of the form 

¢(S,y) = exp[S(x-yt)], 

where y is the wave velocity. In the hyperbolic case y = A and the 

polynomial basis (l,xI - tA) results by setting ¢l = ¢ (O,A), ¢2 = ¢S (O,A). 

For the convective-diffusion equation the dispersion relationship 

y = a - vS holds. In addition to the polynomial solutions (l,x-at) 

the function exp(ax/v) provides another linearly independent solution 

for which y = 0 when S = a/v. The basis (1, "exp(ax/v» is composed 

of solutions of the steady~state equation au - vu = 0 x xx and the method 

described above can be used to directly provide a difference scheme for " 

" the time-indpendent problem. The result is described by the two equations 

(II.3a) and (II. 3c) in which the term is set equal to zero. This 

same basis can be used to construct a Green's function on each overlapping 

subinterval [xi_l,xi +l ] having its singularity at x = xi' 

xi _l < xi < xi+l' a technique which leads to a positive definite tridiagonal 

difference scheme for Sturm-Liouville problems as shown in [91. An equiva-

lent point of view has been iridependently developed and applied to similar 

singular perturbation problems which arise from steady-state problems (for 

example, c.f. [1], [3], [71, [10]). In this sense the methods described in 

this paper appear to provide the appropriateextention of such Green's 

function techniques to time-dependent problems. 
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For the convective-diffusion equation a polynomial approximation 

basis also results by taking 

Q>l = Q>(O,a) = I 

Q>z Q>S(O,a)=x-at 

Q>3 = ! Q>SS(O,a) = !(x- at)Z +v t. 

The difference scheme which is the consequence may be obtained from (11.3) 

by setting p = q = 0. In view of earlier remarks this basis can be ex

pected to provide an accurate approximation only when the cell Reynolds 

number lei is small. 

r 
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Concluding Remarks 

This paper has described related implicit difference schemes·for 

treating hyperbolic systems of equations and the scalar convective 

diffusion equation both of which share a common approximation rationale 

as well as a common solution technique. Numerical evidence indicates that 

both schemes can be employed to treat nonlinear problems. The accuracy 

of approximation to the dissipative hyperbolic problem is proportional 

to an artificial diffusion parameter cr while the approximation to the 

convective-diffusion is second order accurate and is independent of the 

value of the local cell Reynolds number. For both schemes conventional 

energy estimates are available when the coefficients are constant. 

One important limitation of this study is its restriction to one 

dimensional problems; in another paper we will indicate how multi-dimensional 

problems may also be treated. 
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of the CFL number upon pre- ~nd post- oscillations (Scheme I.6). 
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Figure 2. A comparison of the numerical and exact solution of a Riemann 

problem; the shock speed exhibits a relative error of 3% 

(Scheme 1.6). 
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