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ABSTRACT 

The upwind-differencing first-order schemes of Godunov, Engquist-

Osher and Roe are discussed on the basis of the inviscid Burgers equations. 

The differences between the schemes are interpreted as differences between 

the approximate Riemann solutions on which their numerical flux-functions 

are based. Special attention is given to the proper formulation of these 

schemes when a source term is present. Second-order two-step schemes, 

based on the numerical flux-functions of the first-order schemes are also 

described. The schemes are compared in a numerical experiment, and recommen-

dations on their use are included. 

This work was supported under NASA Contract No. NASl-l4472 while the 
author was in residence at ICASE, NAsA Langley Research Center, Hampton, 
VA 23665. 





1. Introduction 

Upwind differencing, while trivial for a diagonalized hyperbolic system, 

is difficult to achieve when the difference scheme has to be written in 

conservation form. The oldest and most complicated version is due to 

Godunov [1] [2]; the increasing popularity of upwind differencing recently 

has lead to a variety of simpler implementation techniques. A review of 

these is given by Harten, Lax and Van Leer [3]. 

Among the recent additions to the family of upwind conservative schemes 

the method of Engquist and Osher [4] [5] is closest to the original Godunov 

scheme, while the method of Roe [6] [7] offers the greatest simplification 

In the present paper the differences between these schenes are discussed on 

the basis of the inviscid Burgers equation. The first-order accurate schemes 

are explained in Sections 2, 3, and 4 for the homogeneous equation; Section 6 

describes how to include a source term and Section 7 how to achieve second-

order accuracy in a two-step format. Their rendition of a stationary shock 

and a transonic expansion is discussed in Section 5 and illustrated in the 

numerical experiments of Section 8. Section 9 rounds off with recommendations 

regarding the application of these schemes to single conservation laws and 

systems of conservation laws. 

2. Godunov'sniethod 

Godunov's [1] [2] method for integrating a hyperbolic system of conser-

vation laws 

(1) 0, 

is a scheme in conservation form: 

(2) 
n+l n Inn n n} (u. - u.) I1t + {F(u. ,u.+l ) - F(u. l'u.) /l1x 
1 1 1 1 1- 1 

0; 
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here represents the average value at time in the computational 

zone centered on x. = iL'lx. 
1 

The numerical flux-function in the 

Godunov scheme is taken to be the flux value arising at xi+! in the exact 

solution of the initial-value problem with a piecewise uniform initial distri-

bution 

(3.1) 

That is, if 

n 
u. 

1 
x. - L'lx/Z < x < X. + L'lx/Z. 

1 1 

(3.2) u(x,t) = v(x/t;uL,uR) , 

is the (weak) similarity solution of the Riemann problem with initial 

values 

x < ° 
(3.3) u 

x > 0, 

then 

(4) 

For Burgers' equation in the inviscid limit, 

(5 ) 0, 

the similarity solution to the initial-value problem (3.2) is 

E 
~ x/t..s. ~ 

~..s. uR x/t u
L 

< x/t < u
R 

(expansion) u
R x/t > u - R 

(6.1) 

(6.2) {: ~ x/t < Us H~ +~) 
uL > ~ 

(shock) uR x/t > Us 
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For numerical reasons it is useful to distinguish in the formula 

for FG(uL'~) three cases: 

(i) fully supersonic/subsonic 

(7.1) 

(ii) transonic expansion 

(7.2) o 

(iii) transonic shock 

(7.3) 
u >u >O>u 

L S - - R 

u >O>u >u 
L- S R 

These cases are illustrated in Figures 1, 2 and 3. The references to a 

sonic speed ( = 0) arises from the use of (5) in transonic aerodynamics. 

In order to combine the formulas (7) in one compact algorithm, we 

follow Engquist and Osher by introducing 

(8.1) + max (u, 0) u -

(8.2) u - min(u,O) 

+ -u = u +u (8.3) 

(8.4) 

we then have 

(9) 
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t t 

Figure 1. Riemann solution: (x,t) diagrams for case (i), with 
uL>uR>O (a); uL<uR<O (b). 

t 

Figure 2. (x,t) diagram for case (ii). 

t t 

Figure 3. (x,t) diagram for case (iii), with Us > 0 (a); Us < 0 (b). 

x 
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3. The Engquist-Osher scheme 

The Engquist-Osher [4] [5] scheme for integrating (1) also has the 

conservation form (2) and tacitly assumes the initial-value distribution 

to be (3.1); its numerical flux-function is 

(10) 

uR 
FEO(uL,uR) = f(uL) + J A- (u)du 

u
L 

where the matrices A+(u) , A-(u) and /A(u) / are related to 

(11) A(u)= df/du 

by an extension of (8). For precise definitions and a description of the 

integration path used for the integrals in (10), see [5] or the 

review [3]. 

For Burgers' equation (5) the above recipe boils down to 

(12) 

u
R 

1(1 2 1 2) 1 f / / " "uL+"uR -" u du uL 

The integrals over u in (12) are defined in phase space, without 

reference to any mapping onto the (x,t) plane. We may, however, intro-

duce a mapping in the style of (3.2), namely, 
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t 

x 
Figure 4. Approximate Riemann solution in the Engquist-Osher scheme: 

(x,t) diagram for case (iii). The multi-valued solution 
at t = T is displayed in Figure 5. 

W 

(1) 
W=W = u 

L 

----------------~~----------------~x 

(3) 
w=w = u 

R 

Figure 5. Approximate Riemann solution at t = T. 
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(13) u(x,t) = w(x/t;uL'~) 

and consider w(x/t;uL,u
R

) an approximation to the exact solution 

v(x/t;uL,u
R

) of the Riemann problem (3.3). It follows that w is the 

following function of x/t: 

w uL x/t .:::. uL , 

(14) w x/t min(uL,uR) < x/t < max(uL,uR) , 

w u
R x/t 2. uR 

caution is required, since, for u
L

> u
R

' w becomes multi-valued in the 

domain u
L 

2. x/t 2. uR • Specifically, we have three branches 

(15 ) 

The picture associated with this case is that of an overturned centered 

compression wave or folded characteristic field (see Figures 4 and 5); 

in the exact Riemann solution (6) such a wave would be replaced by a shock 

discontinuity. 

The proper formula for FEO(uL,uR) in terms of w(x/t;uL,uR) , 

equivalent to (12), is 

(16) 

where the sum is taken over all branches present at x/t = 0 . 



-8-

In the cases distinguished earlier, (12) or (16) yields 

o , 

As indicated in [4], these formulas combine into 

(18) 1.( + 2 1.( - 2 
2 uL) + 2~) • 

The difference between the Godunov and Engquist-Osher schemes lies 

entirely in the treatment of a transonic compression (iii). The latter 

scheme is the simpler one, since it does away with one test, namely, a 

test for the sign of Us or for the maximum of !(u~)2 and !(u;)2 

4. Roe's method 

Roe's [6] [7] method for integrating (1) again has the conservation 

form (2) and employs the initia1~va1ue distribution (3.1). Its numerical 

flux-function is defined as 

(19) 

where w(x/t;~,~) is the exact solution of the Riemann problem (3.3) 

for the locally linearized system 

(20.1) o. 

The approximate Jacobian A(uL,uR) is constructed such as to satisfy 

the discrete version of (11) 



-9-

t 

u > 0 
R 

Figure 6. Approximate Riemann solution in Roe's scheme: (x,t) diagram 

for case (iii), with Us > 0, showing the expansion shock. 
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(20.2) 

For a scalar equation like (5), eq. (20.2) uniquely determines 

(21) 

thus, the Riemann problem for the linear equation (20.1) with (21) has 

the similarity solution 

(22) 

In all cases (i), (ii) and (iii) this yields 

(23) { t~ 
1 2 
2~ 

The difference with Godunov's method lies in the treatment of 

an expansion: where the exact Riemann solution, used in Godunov's method, 

would include an expansion fan, Roe's method puts in a so-called expan-

sion shock (see Figure 6). 

The numerical flux-function (23) deviates from the Godunov flux (7) 

only in case (ii), when the expansion is transonic. The computational 

simplification is, again, the elimination of one test. 

Rewriting (23) as an approximation to the Enquist-Osher flux (12): 

(24) 

we see that, for Burgers' equation, Roe's scheme is identical to the scheme 

of Murman and Cole [8], used in transonic aerodynamics. The latter is 
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known to occasionally yield numerical results that include a(physically 

inadmissibl~expansion shock. This is a direct consequence of the ad-

mission of an expansion shock in the underlying approximate Riemann 

solution. 

5. Steady-shock and sonic-point representation 

The fluxes in the schemes of Godunov and Engquist-Osher differ only 

on meshes where the data constitute a transonic compression; therefore, 

numerical results from these schemes differ only if a transonic shock, 

in particular, a stationary shock, is present. Likewise, the results of 

Roe's scheme will differ from those of Godunov's scheme only if a transonic 

expansion is present. 

For Burgers'equation (5), Godunov's scheme admits the following 

stationary discrete representation of a stationary shock connecting the 

states uL > 0 and ~ = -~ < 0: 

(25) 

U. 
1 

i 2. -1, 

i > 1. 

This is the only stationary distribution admitted by the scheme. 

The interior value indicates the sub-grid position Xs 

shock; by conservation we have, (see Figure 7a): 

(26:1) ~6x, 

or 

(26.2) 

of the 



u 

(a) 

Figure 7. 
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u 

Fitting a shock discontinuity to stationary discrete shocks 

yielded by the schemes of Godunov or Roe (a) and Engquist­

Osher (b). The numerical values ~ and uN represent the 

average value of u in the intervals (-!~x,!~x) and (!~x, 

f~x). A sub-grid distribution representing a shock transition 

from ~ to uR at Xs must have the same integral as the 

numerical solution. In case (a) the integrals from -~~x to 

!~x are compared, in case (b) from -!~ x to t~x. 
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A shock standing exactly on the boundary of a zone will be represented 

without any interior value. 

The Engquist-Osher scheme admits discrete steady shock-profiles 

with, in general, two interior states: 

(27.1) 

where ~ and ~ 

(27.2) 

u. ~ i 2. -1, 
1 

U o ~ ~ ~ ~ ~ 0, 

u. ~ o ~ ~ ~ -~, 1 

U i = -~ i 2:. 2, 

are constrained by 

222 
.1.1.1.. +..!.u = AlL 
2 1'1 2 N 2 L' 

Again, this is. the only stationary distribution admitted by the scheme. 

The pair of interior states indicates the sub-grid position of the 

shock; by conservation we have (see Figure 7b): 

(28.1) 

or 

(28.2) 

A shock standing exactly in the middle of a zone will be represented 

with only one interior value. 

The representation of a stationary shock by Roe's scheme is the same 

as by Godunov's scheme, at least for Burgers'equation. However, Roe's 

scheme also admits as a stationary solution the expansion shock 



I 

(29) 

u. 
~ 
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-~ > 0 

i 2.. -1, 

.i ~ O. 

The tendency of the scheme to produce such a discontinuity spoils the 

smoothness of the numerical solution near a sonic point. The other 

schemes do not have this problem. It is easily solved, any~lay, by intro-

ducing in the approximate Riemann solution (22) some spreading of the 

expansion shock. For Burgers'equation, Roe's scheme essentially will turn 

into Godunov's scheme; for a nonlinear hyperbolic system, however, it will 

still remain a simpler scheme. 

A transonic shock profile, steady or not, obtained with any of the 

upwind schemes, has the property that the interior zones can not influ-

ence the exterior solution. Inversely, in a transonic expansion computed 

with the Roe-Murman-Cole scheme, the zone with the value closest to the 

sonic value can not be influenced by the rest of the grid (see Figure 8). 

6. Inclusion of a source term 

When approximating the equation 

(30) ut + [f(u)]x = s(x) 

with any upwind scheme, it is not sufficient to add the source term to 

the right-hand side of (2); we must also change the initial-value distri-

bution implied in our numerical model. Instead of assuming that it is 

piecewise uniform, as in (3.1), we rather take it to be piecewise 

stationary, that is, 

(31.1) s(x) xi - ~x/2 < x < xi + ~x/2, 



(a) 

Figure 8. 
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t 

x 
L M R 

x 
L M R 

Two (x,t) diagrams showing the influence, through Godunov's 

scheme, of the adjacent zones on a zone inside a shock (a) 

and the influence, through Roe's scheme, of an almost sonic 

zone on the adjacent zones (b). In (a), the fluxes at the 

boundaries of zone M do not depend on ~; in (b) they 

depend only on ~. 
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I 

Figure 9. 
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u 

j - 1 j + 1 

~--I--S < 0 -+--~----+- S > 0 --+--:::::::.;j---c~ 0 

Stationary solutions of eq. (30) for some source term 

s(x). In each zone the heavy line traces the positive and 

the negative branch of the smallest continuous steady solu­

tion. The average value on these branches is indicated by 

the upper and lower boundary of the shaded area. If the 

average value in a zone falls in the range of the shaded 

area, a continuous stationary solution can not be realized. 
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with 

(31. 2) 

x. + !J.x/2 

1 f1 n 
!J.x u (x)dx 

Xi - !J.x/2 

This extension preserves a fundamental property of the homogeneous scheme, 

namely, that a zone-average can change only through the finite-amplitude 

waves entering from the zone boundaries. Moreover, if the numerical solu-

tion globally tends to a steady state, it will be the zone-averaged exact 

steady state almost everywhere (that is, provided that the scheme, like 

the three considered here, can render a shock transition in a finite 

number of zones). 

As before, the initial values on either side of a zone boundary become 

the arguments of the numerical flux-function. The full scheme reads 

(32.1) 

with 

(32.2) 

(33) 

X 1 

lfi~ 
Si - !J.x s(x)dx. 

For the inhomogeneous Burgers equation 

s(X) 

the initial-value representation must satisfy 

n 
s. , 

1 

(34) ![U
n

(X(i_!)+)]2 + f x s(x' )dx' 

xi _! 

Xi - !J./2 < x < Xi + !J./2 

under the constraint (31.2). This constraint, however, is not strong enough 

to define a unique distribution in each zone, since the distribution may 

(and, in some zones, must) contain a discontinuity. Uniqueness can be 

achieved by.selecting the distribution with, say, the weakest possible shock. 
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u 

j - 2 j - I j j+l j+2 

......... 

Figure 10. 

...... 

Examples of steady structure with a discontinuity, in 

the zones shown in Figure 9. A (steady) shock connects 

the upper and lower branch of the smallest continuous 

steady solution for the zone considered. In zone j 

two different possibilities are shown. 
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If we take ~x small enough to ensure that s(x) does not change 

sign more than once in any zone, the following algorithm for the piecewise 

construction of un(x) is adequate. First, determine for the zone under 

consideration the smallest continuous solution (see Figure "9). Let 
n w. 
1 

be the average value on the positive branch of this solution; then the 

stationary distribution inside zone i will be continuous if 

(35) > 

If this condition is satisfied, we search, iteratively, for the continuous 

distribution with the proper zone average. If it is violated, the sta-

tionary distribution will include parts of the upper and lower branch 

of the smallest continuous distribution, connected by a shock positioned 

so as to achieve the proper average value (see Figure 10). 

When using the upwind scheme to approach a globally stationary solution 

of (33), any zone containing a sonic point must be treated with special care, 

since the chance of numerically realizing the exact transonic structure 

without a shock is zero. Specifically, in order to prevent the zone-

boundary values from flipping sign, making global convergence impossible, 

smoothing may be introduced (see Figure 11). 

In a zone containing a stationary shock, no particular interior structure 

is needed to ensure global convergence, since the zone cannot influence its 

neighbors (see earlier Figure Sa). After convergence one may insert the 

proper structure by enforcing continuity across the zone boundaries (see 

Figure 12). 

In the numerical experiment of Section S we approximated the above 

procedure, in allowing only si to enter the zone-boundary values. 

Specifically, we used 
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u I 

o 
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o 
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VI 

. 
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VII 
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·0 I .. X x 

Figure 11. (a) A sequence of stationary structures close to the transonic expansion (graph IV), ordered 

by decreasing zone-average. Going from III to IV, and from IV to V, the slight change in 

zone-average causes one boundary value to flip its sign. (b) The solutions have been smoothed 

on the side where the shock occurs, so that the boundary values now vary continuously with the 

zone-average. The structures are not stationary but will allow convergence to the smooth 

transonic solution IV. 

I 
N 
o 
I 
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u 

k - 1 k + 1 

--4-------~L---~+_4_------_1--~-X 

Shock structure in a globally stationary solution. Global 

convergence of the zone averages to a steady solution con­

taining a shock has been obtained, say, with Godunov's 

scheme. For zone k containing the shock the scheme had 

adopted the structure (a), based on the smallest continuous 

steady solution for that zone. This may now be replaced 

by the stationary solution (b) that smoothly connects to 

the solution in zones k-l and k+l. 
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n 

u (x( .+.1.)-) 
1-2 + 
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In a zone that includes a sonic point the error in the boundary values 

is O(~x); elsewhere in the smooth part of the numerical solution it is 

0«~x)2) . 

The technique of computing the boundary values in a zone from a 

locally stationary solution can easily be extended to systems of conserva-

tion laws of the form 

(37) s(x). 

7. Second-order upwind schemes 

Any first-order upwind scheme for Eq. (30) can be changed into a second-

order method by first advancing the cell-boundary values, to be used in the 

. 1 f1 f· hid· . 1 1 t n+! = t n +2 'At. numer1ca ux- unctlon, to t e nterme late tlme eve ~u 

In obtaining these values, the interaction between cells can be fully ignored. 

This observation, due to Hancock [9], has led to a drastic simplification of 

second-order upwind schemes since these first were formulated for systems of 

conservation laws by Van Leer [10]. 

We assume that the initial values form a piecewise linear distribution 

(38) 
(8u)~ 

n 1 
u. + (x- x.) -A-

1 1 uX 

with 

(39) (8u)~ 
1 

n n n n 
ave(u·+l-u., u.-u. 1); 1 1 1 1-
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ave(a,b) is an averaging procedure to be specified later. We particularly 

need the initial boundary values inside cell i 

(40.1) un(.+~)_ = u~ ± !(ou)~. 
1-2 + 1 1 

These boundary values are now advanced to n-N-
t - by 

(40.2) n+! 
u(i±!)+ 

The full scheme becomes 

(41) 

The function ave(a,b) is chosen such that it tends tOI. !(a+b) if 

a and b are subsequent finite differences of a smooth solution, but tends 

to the smallest value where the solution is not smooth. Examples can be 

found in [11],[10]; we chose a refined formula due to Van Albada [12] 

(42.1) 

where 
2 

c 

ave(a,b) (b
2 

+ c
2
)a + (a2 + c2)b 

a2 + b
2 + 2c

2 

is a small bias of the order O( (fix) 3). 

The weighted averaging prevents central differencing across a discon-

tinuity in the solution or in its first derivative which would lead to 

numerical oscillations. It is an effective way of administering artificial 

dissipation wherever needed and nowhere else. By rewriting (42.1) as 

(42.2) ave(a,b) = -- } a+b (1- (a_b)2 } 

2 t a 2 + b2 + 2c2 

we see that, wherever the solution is smooth, the artificial-viscosity 

coefficient generally is of the order 2 o «fix) ). In a smooth extremum the 

coefficient grows to O(flx); the bias 2c
2 

in the denominator prevents a 

further increase of the viscosity that could lead to an undesirable clipping 

phenomenon (see [13, Appendix]). 
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With regard to Burgers' equation, an acceptable expression for the 

bias is 

(43) 2 
c 

233 (u - u ) (f1x) / (x - x ) max min max min ' 

where umax and umin are certain upper and lower bounds of the numerical 

solution, fixed a priori or determined at each time level, and x - x . max m1n 

is the length-scale of the problem. 

8. Numerical comparison 

The performance of the three schemes was tested on the basis of the 

periodic initial-value problem 

(44.1) (7f/2)sin[27f(x - ~)] 

(44.2) u(x,O) 0, 

(44.3) u(O,t) u(l,t). 

The solution tends to the steady state 

(45) u(x,oo) 
f +sin7f (x':" 0 

t -sin7f(x- ~) 

including a sonic point at x = ~ and a shock at x = Xs = ~ +!. For 

f1x we chose a value of 1/16; the zones were centered on x. = (i - -! ) llx , 
1 

i '" 1, ..• ,16. For ~ we chose D., tf1x, and !f1x, in order to achieve 

different sub-grid shock positions. The Courant-Friedrichs-Lewy condi-

tion on the timestep, based on the maximum characterisitc speed (=1) in 

the steady solution is 
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(46) < 1; 

accordingly we used ~t = ~~x or ~t = ~x. 

Table 1 shows the number of steps Ne 

verge according to the Ll - criterion 

16 

(4.7) 

i=l 
I nn-II u. - U. 

1 1 

it took the schemes to con-

< e, 

with e = IX 10-3 
or 1 x 10-6 , and ~t = ~~x or (for Godunov's scheme 

only) ~t ~x. When the time-step is doubled, Ne appears to be halved. 

The Ll-error Ee was evaluated with respect to the zone-averaged exact 

solution, for the smallest value of e. The sub-grid shock positions in 

Table 1 were calculated with aid of eqs. (26.1) and (28.1), approximately 

valid because the source term is small in the shock region. 

-6 The converged solutions for e = 1 x 10 are listed in Table 2; 

these are independent of ~t. The zone-averaged exact solution is given 

for comparison. For ~ t~x and !~x the error in the zone with the sonic 

point is comparable to the value in the zone, as anticipated with the use of 

Eq. (36). 

The results of Roe's scheme happen to be identical to those of Godunov's 

scheme; in particular, no expansion shock shows up. The reason is that, 

with the use of the boundary values (36), a sonic point in a zone is always 

moved to a boundary; in this case Roe's flux function (23) yields the same 

value (=0) as Godunov's (7.2). Furthermore, the initial average value in the 

zone ultimately containing the sonic point was close to the steady value 

to begin with. 

The results of the Engquist-Osher scheme are identical to the Godunov-

Roe results except for the expected spread in the shock profile for ~ = 0 
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NE: E 
E: 

Itx 
S 

-~)/f::.x 

f,/f::.x -3 1 x 10-6 E: = 1 x 10 E: = E: = 1 x 10-6 E:= 1 x 10-6 

G, R 

0 62 

t 68 

~ 52 

Table 1. 

EO G, R EO G, R EO G, R EO 

61 112 [55 ] 111 8.8 x 10-3 
4.6 x 10-2 

0 0 

66 138 [70 ] 136 9.6 x 10-3 
1.8 x 10-2 

.23 .26 

52 88 [42 ] 88 4.6 x 10-3 4.6 x 10-3 
~ 

Number of steps NE: till convergence, Ll-error EE:' and 

steady-shock position xs ' for the initial-value problem 

(44), solved with the first order schemes of Godunov (G), 

Engquist-Osher (EO) and Roe (R). Mesh: f::.x = 1/16, 

f::.t = !f::.x or f::.x (G only, numbers between brackets). 

1. 
2 



N 
E: 00 

ui ' ui 

i E,/f;.x = 0 E,/l':.x = i E,/l':.x = ! 

G, R EO exact G, R EO exact G, R, EO exact 

1 .13795 .13795 .097ffi .09778 .09778 .04899 e.~ e.~ 

2 .30373 .30373 .28982 .25516 .0"-516 .24259 .19321 .19478 
3 .477132 .47702 .47064 .'43185 .43184 .42687 .37899 .38207 
4 .63587 .63587 .63337 .59602 .59602 .59474 .5S021 .55468 
5 .77100 .77100 .77177 Ii 

.73869 .73869 .7?B?6 .70028 .70597 
6 .87889 .87889 .88e51 ~ .85357 .85357 .85635 .82344 .83013 
7 .95Z76 .95276 .95540 ~ 

.93631 .93631 .94003 .914% .92240 
8 .99044 .69352 .99359 .98329 .88033 .98759 .97132 .97921 
9 -.99044 -.69352 -.99359 ~ -.52996 -.42699 -.49739 .~ -.~ 

5 
113 -.95Z76 -.95276 -.95540 ~ -.%441 -.%441 -.96847 -.97132 -.97921 
11 -.87889 -.87889 -.88e51 P -.89927 -.89927 -.ge254 -.914% -.92240 
12 -.77100 -.77100 -.77177 ! -. ?CH:f? -. ?CH:f? -.00192 -.82344 -.83013 
13 -.63587 -.63587 -.63337 -.67047 -.67047 -.67048 -.70028 -.70597 
14 -.47702 -.47702 -.47064 I -.51616 -.51616 -.51328 -.5S021 -.55468 
15 -.30373 -.30373 -.28982 -.34426 -.34426 -.33S3S -.37899 -.38207 
16 -.13795 -.13795 -.097ffi -.16827 -.16827 -.14649 -.19321 -.19478 

Table 2. Converged numerical solutions and zone-averaged asymptotic solutions for the experiments 
-6 . 

of Table 1 with E: = 1 x 10 ,l':.t = ~l':.x. 

I 
I 

I 
N 
"-J 
I 
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and !~x. The sub-grid shock positions are slightly, but no significantly, 

more accurate than for the other schemes. Likewise, convergence with 

Engquist-Osher scheme is faster, but not significantly so. 

Better results (Tables 3 and 4) were obtained with the second-order 

versions of the schemes. Convergence was achieved in 10- 35% fewer steps 

than with the first-order schemes, and the local error near the sonic point 

is now of the same order as elsewhere outside the shock. 

The Engquist-Osher scheme still yields a shock structure with two 

interior zones. For the second-order Godunov scheme we checked that the 

use of algebraic averaging of differences 

(48) ave(a,b) !(a+b), 

causes the numerical shock to overshooot and undershoot. 

The results of Roe's scheme are practically, but not exactly, identi-

cal to the Godunov results, indicating a slightly different transient 

behavior. Again, the internal structure (36) in the zones, in combination 

with the particular choice of initial values, provides a safeguard against 

the occurrence of an expansion shock. 

In order to make the problem more challenging, we changed the initial 

values (44.2), for S 0, into 

i 1, ... ,8 
(49) 

i 9, ... ,16, 

including an expansion shock at x = 0. The results are listed in Tables 5 

and 6. Among the first-order schemes Roe's scheme now requires 30% more 

steps than the other schemes: apparently, the expansion shock is not so 

easily dissipated by Roe's scheme. Among the second-order schemes the dis-

crepancy gets worse: the results of Roe's scheme quickly converge to the 

wrong solution, including the full initial expansion shock. 
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N E (xS - 1j;) / !:::.x E: E: 

E,/!:::.x 

G2,R2 G2a E02 G2, R2 G2a E02 G2, R2 G2a E02 

0 75 

J. 89 4 

~ 79 

Table 3. 

76 75 1.4 x 10-3 3.1 x 10-2 2.9 x 10-2 0 0 0 

92 89 1.3x 10-3 2.2 x 10-3 4.7 x 10-3 .24 .19 .26 

79 79 1.3 x 10-3 1.7 x 10-3 1.3 x 10-3 ! J. ~ 2 

The quantities NE:' EE: and Xs (E: = 1 x 10-6) for the initial-value 

problem (44), solved with the second-order two-step schemes based 

on the numerical flux-functions of Godunov (G2, G2a), Engquist­

Osher (E02) and Roe (R2). In G2a the algebraic average (48) is 

used instead of (42.1). Mesh: !:::.x = 1/16, t = i!:::.x. 
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N 
E: 00 

u, , u, 
l l 

i E,//:::,x = 0 

G2 G2a R EO exact 

1 .09814 .09814 .09815 .If:i814 .09786 
2 .28976 .28967 .28976 .28975 .28982 
3 .47012 .46981 .47012 .47012 .47BE4 
4 .63242 .63201 .63242 .63239 .63337 
5 .77076 .76:03 .77076 .77086 .77177 
6 .87879 .88201 .87880 .87839 .88051 
7 .95647 .92357 .95648 .95804 .95540 
8 .98761 1.2ffi52 .98761 .76751 .99359 
9 -.98761 -1.2ffi52 -,98761 -.76751 -.99359 

10 -.95647 -.92357 -.95648 -.95804 -.95540 
11 -.87879 -.002e1 -.87880 -.87839 -.80051 
12 -.77076 -.76:03 -.77076 -.77006 -.77177 
13 -.63242 -.632e1 -.63242 -.63239 -.63337 
14 -.47012 -.46981 -.47012 -.47012 -.47~ 

15 -.28976 -.28967 -.28976 -.28975 -.28982 
16 -.09814 -.09814 -.09815 -.09814 -.09786 

Table 4. Converged numerical solutions and zone-averaged asymptotic 
-6 solutions for the expe~iments of Table 3, with E: = 1 x 10 , 

/:::,t = -Mx. 



i F,//::,x = i 

G2 G2a R 

1 .04916 .04917 .04916 
2 .24249 .24244 .24249 
3 .42635 .42610 .42635 
4 .59379 .59344 .59379 
5 .73871 .73726 .73871 
6 .85462 .85711 .85462 
7 .~ .91445 .94080 
8 .98172 1.15231 .98172 
9 -.49587 -.60164 -.49587 

10 -.96449 -1.01358 -.96449 
11 -.S{232 -.89318 -.90232 
12 -.80042 -.~7 -.80042 
13 -.66948 -.66£61 -.66948 
14 -.51252 -.51223 -.51252 
15 -.33603 -.33589 -.~3603 
16 -.1465e -.14649 -.14650 

Table 4 (continuation) 

N 
E 00 

ui ' ui 

EO Exact G2, R2, EO 

.04916 .04899 0.00000 

.24248 .24259 .19458 

.42639 .42687 .38160 

.59364 .59474 .55379 

.73933 .73976 .70492 

.85231 .85635 .82844 

.95106 .94003 .92282 

.95622 .98759 .97371 
-.47889 -.49739 .00000 
-.96440 -.96847 -.97371 
-.90235 -.ge254 -.92282 
-.80041 -.80192 -.82844 
-.66948 . -.67048 -.70492 
-.51252 -.513.....?S -.55379 
-.33603 -.33635 -.38160 
-.14650 -.14649 -.19468 

F,//::'x = ! 

G2a 

0.~ 
.19465 
.38141 
.55348 
.?e373 
. 83m 
.90418 

1.08877 
.tmae 

-1.08877 
-.90418 
-.83m 
-.7e373 
-.55348 
-.38141 
-.19465 

exact 

0.fBB3 
.19478 
.382e7 
.55468 
.7~B7 
.83313 
.92240 
.97921 

-.fBB3 
-.97921 
-.92240 
-.83313 
-.7r!f597 
-.55468 
-.382e7 
-.19478 

I 
I 

I 
W 
t-' 
I 



E,/t:.x 

G 

0 170 

Table 5. 
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N E 
E: E: 

R EO G2 R2 E02 R R2 

30 169 77 99 76 5.7 x 10-1 1.4 x 10 -3 

The quantities NE: and EE: (E: = 1 x 10-6) for the 

initial-value problem (44.1), (49), (44.3), solved with 

both first- and second-order upwind schemes. Scheme R 

converges to the wrong weak solution. Mesh: t:.x = 1/16, 

t:.t = -Mx. 



i 

1 
2 
3 
4 
::-
...) 

6 
7 
8 
9 

113 
11 
12 
13 
14 
15 
16 

Table 6. 
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NE: 00 

u. , u. 
l. l. 

R R2 exact 

1.00000 .139815 .09786 
1.03596 .28976 .28982 
1.09933 .47012 .47064 
1.17699 .63242 .63337 
1.25564 .77076 .77177 
1.32417 .87880 .88051 
1.37431 .95648 .95540 
1.40069 .98762 .99359 

-1.40069 -.98762 -.99359 
-1.37431 -.95648 -.955413 
-1.32417 -.87880 -.80051 
-1.25564 -.77076 -.77177 
-1.17699 -.63242 -.63337 
-1.09933 -.47012 -.47064 
-1.03596 -.28976 -.28982 
-1.00010 -.09815 -.09786 

Converged numerical solutions and zone­

averaged asymptotic solution for the. 

experiments of Table 5 with schemes 

Rand R2. Note the expansion shock 

in the results of R. Parameters: 

~ = 0, E: = 1 x 10-6 , ~t = !~x. 
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Finally, Tables 7 and 8 show the same quantitites as Tables 1 and 2 for 

experiements in which, in the first-order schemes, the source-term dependence 

of zone-boundary values was dropped. It took the schemes of Engquist-Osher 

and Godunov 15 - 25% more steps than previously to converge to a much less 

accurate solution. Roe's scheme is now unstable: it yields an expansion 

shock where a smooth transonic transition should be; the amplitude of this 

shock grows linearly with time. Tlie reason is that, across the zone that 

should contain the sonic point (say, zone j), we always have (see earlier 

Figure Bb) 

(sa) 
n n 

FR(u. l'u.) J- J 

so that the scheme reduces to 

(51) 
a 

u. + nLlts .. 
J J 

B. Recommendations 

For a scalar conservation law like Burgers' equation there seems to be 

little reason to abandon Godunov's first-order scheme in favor of the 

first-order Engquist-Osher scheme. The slight simplification in the flux 

calculation is accompanied by a degradation of steady-shock representation 

and no significant acceleration of the convergence to a steady state. The 

simplification achieved in Roe's first-order scheme is too drastic: the scheme 

can not be used "as is" near a sonic point. 

Both Godunov and Engquist-Osher schemes become appreciably more elaborate 

when applied to a nonlinear hyperbolic system like the one-dimensional Euler 

equations. The interpretation of the Engquist-Osher scheme as a Godunov-type 

scheme in which any shock in the solution of a local Riemann problem is replaced 

by an overturned centered compression wave, remains valid. This modification 



E,lf:..x 

0 

t 

fl. 

Table 7. 

N E (xS - fl.) /f:..x 
E E 

Gu Ru EOu Gu Ru EOu Gu Ru EOu 

135 - 135 6.0 x 10-2 
unstable 9.5 x 10-2 

0 - 0 

174 - 172 6.1 x 10-2 unstable 6.7 x 10-2 
.22 - .24 

103 4.7 x 10-2 -2 4.7 x 10-2 .l. .l. .l. 103 103 4.7 x 10 2 2 2 

The quantities N, E and Xs (E = 1 x 10-6) for the initia1-
E E 

value problem (44), solved with the first-order upwind schemes 

under the assumption of piecewise uniform initial values (3.1). 

(The label "u" in Gu, Ru, EOu stands for "uniform".) 

Mesh: f:..x = 1/16, f:..t = fl.f:..x. 



N 
E: 00 

u. , ui 1 

. 
i E,/6.x = 0 [,/6.x = t [,/6.x = ~ 

. 
Gu EOu exact Gu EOu exact Gu, Ru, EOu exact 

1 .19509 .19509 .09786 .13828 .13828 .04899 0.000[10 0.000(1(1 
2 .38268 .38268 .28982 .33330 .33330 .24259 .27324 .19478 
:3 .5557 cC"'C"C"- .47e64 .51176 .51175 .42687 .4b109 .38207 • -'_'-,_1. 

4 .70711 .70711 .63337 .66976 .66976 .59474 .62678 .55468 
c .83147 .83147 .77177 .80171 .80171 .73976 .76677 .70597 --6 .92388 .92388 .80051 .90266 .90266 .85635 .87646 .83013 
.., .981378 .98078 .9554e .96879 .96879 .94003 .95191 .92240 , 
8 1.~ .70711 .99359 .99759 .89488 .98759 .99035 .97921 
<3 -1.~ -.70711 -.99359 -.54359 -.44008 -.49739 .00000 -.00000 

10 
1 ' .J. 

12 , .... 
J.=' 
14 
<c .. _. 
lE. 

Table 8. 

-.90078 -.98078 -.9554e -.98796 -.98795 -.96847 -.99035 -.97921 
-.92388 -.92388 -.80051 -.94026 -.94026 -.902S4 -.95191 -.92240 
-.83147 -.83147 -.77177 -.85632 -.85632 -.80192 -.87646 -.83013 
-.70711 -.70711 -.63337 -.73932 -.73932 -.67048 -.76677 -.70597 
-.55557 -.55557 -.4~ -.59368 -.59368 -.51328 -.62678 -.55468 
-.38268 -.38268 -.28982 -.42473 -.42473 -.33635 -.46109 -.38207 
-.19509 -.19509 -.09786 -.Z3197 -.23797 -.14649 -.27324 -.19478 

Converged numerical solutions and zone-averaged asymptotic solutions for the experiments 

of Table 7. 

I 
I : 

J 
W 
0-
J 
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makes it possibl~ to compute FEO(uL,uR) 

must be determined iteratively. 

explicitly, while -'FC(uL,u
R

) 
C'" 

The Engquist-Osher scheme, on the other hand, requires two interior 

points in a discrete stationary shock [5], while Godunov's scheme probably 

requires only one (this has not yet been proven). 

For the Euler equations, however, Roe's more drastic simplification 

of Godunov's method will payoff, even though the scheme must be somewhat 

modified in order to reject (almost) stationary expansion shocks. Spreading 

the expansion waves in the approximate Riemann solution underlying the scheme 

will have the desired effect. 

The first-order schemes, when formulated as in Section 6, have the 

potential of achieving any desired order of spatial accuracy in a steady 

numerical solution. To what degree this potential can be realized for the 

Euler equations is at present not clear. Meanwhile, the second-order two-

step schemes, intended primarily for solving transient problems, outper-

form the first-order schemes in obtaining a steady solution for Burgers' 

equation. Some experiments for the Euler equations with both kinds of 

schemes are reported in [13]. 

All schemes discussed in this paper are explicit. vfuen using their numerical 

flux-functions in an implicit configuration, which may be desirable in approaching 

a steady state, the above recommendations do not automatically carryover. As 

noted by Engquist and Osher [4], the non-smooth dependence of 

its arguments in the case (iii) of a transonic shock, that is 

complicates the inversion of the implicit difference equations. 

FEO(uL,u
R
)€ C(l) in all cases (i), (ii) and (iii). 
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