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FOREWORD
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Project Manager, Mr. Russell W. Claus.
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1.0 SUMMARY

The National Aeronautics and Space Administration sponsored a program to
select, incorporate and evaluate the best available finite difference scheme
to reduce numerical error in combustor performance evaluation codes. This
report describes the details of this study.

T@e combustor performance computer programs chosen for this study were the two
dimensional and three dimensional versions of Pratt and Whitney's TEACH code.

The criteria used to select schemes required that the difference equations
mirror the properties of the governing differential equation, be more accurate
than the current hybrid difference scheme, be stable and economical, be
compatible with TEACH codes, use only modest amounts of additional storage,
and be relatively simple.

The methods of assessment used in the selection process consisted of
examination of the difference equation, evaluation of the properties of the
the coefficient matrix, Taylor series analysis, and performance on model
problems, Five schemes from the Titerature and three schemes developed during
the course of this study were evaluated. This initial evaluation resulted in
the selection of the two most promising schemes, Quadratic Upwind Differencing
Scheme (QUDS) and Bounded Skew Upwind Differencing Scheme Two (BSUDS2), for
incorporation into 2D-TEACH for further evaluation. The accuracy and stability
of these schemes were assessed by using laminar and turbulent flow test cases.
These test cases, although two dimensional, contain important flow features
found in gas turbine combustors. During the evaluation, it was found that QUDS
was unstable and, hence, BSUDS2 was selected for incorporation into 3D-TEACH.
This scheme was further evaluated by using a 3D-test case, modeling of a jet
in cross flow.

This effort resulted in the incorporation of a scheme in 3D-TEACH which is
usually more accurate than the hybrid differencing method and never less
accurate. It is expected that overall improvement in'accuracy resulting for
complex flows will justify the increased cost of using this scheme. However,
this study can only be considered as a first step in the process of developing
the most suitable scheme for combustor performance codes. A.nuqber of
questions have been generated as a result of this work and it is expected that

answers to these questions will lead to further improvements in the accuracy
and stability of the BSUDS2 scheme.



2.0 INTRODUCTION
2.1 OBJECTIVES

The main objective of the NASA-sponsored Error Reduction Program was to

select, incorporate and evaluate the best available technique for the
reduction of numerical diffusion in a 3D combustor performance evaluation

code. The study focused on improvements in accuracy of computer programs of
the TEACH (for Teaching E11iptic Axisymmetric Characteristics Heuristically)
variety which were developed originally by Professor A, D. Gosman and
co-workers of Imperial College, London, (e.g. Ref. 1 ) and are in general use.

The need for such a program can best be appreciated by comparing the numerical
and exact solutions for the spreading of a passive scalar (dye in water for,
example) in a simple flow field, Fig. 2-1. The differencing scheme used for
this computation is the hybrid method which is used in almost all TEACH
combustor codes. It can be seen that even for this simple flow situation,
numerical (or artificial) diffusion generated by the differencing scheme
greatly smears the profile. MNumerical diffusion, especially in
three-dimensional versions of TEACH, can become so large as to obscure the
effects of the turbulance model in turbulent flow calculations. The accuracy
of these codes becomes dependent on the number and distribution of nodes used
in the finite-difference calculations; i.e., it is difficult to achieve a
"grid-independent" solution. The number and distribution of grid nodes varies
from user to user so that the results of parametric studies requiring more
than variations in boundary conditions are questionable. This places a major
restriction on the utilization of these codes for the design and development
of practical combustors. Hence, there is a requirement for improving the
accuracy of the differencing scheme presently embodied in these codes. This
problem is addressed by the current program.
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Convection and diffusion of a scalar step profile in constant property’
uniform inclined flow, cell peclect number, Pex = Pey = 60

Figure 2-1 Heed for Error Reduction



2.2 APPROACH

The strategy adopted in this study was to select a number of candidate schemes
and assess them for accuracy, solution stability, and overall
cost-effectiveness. The accuracy assessment included consideration of the
conservation and boundedness properties of the schemes, as well as
conventional Taylor series error analyses and application to test cases.
Solution stability was assessed heuristically by examining the properties of
the coefficient matrix which each scheme generates. Cost-effectiveness was
judged on the combined outcome of the foregoing assessments.

Based on this initial evaluation, two schemes were selected for incorporation
into Pratt and Whitney's two-dimensional combustor performance code, 2D-TEACH
(This computer program is the two-dimensional version of the three-dimensional
code, 3D-TEACH, described in detail in Appendix B). The stability, accuracy
and cost effectiveness of these two schemes were then examined by running a
number of laminar and turbulent flow test cases. These test cases demonstrate
typical flow features encountered in gas turbine combustors. '

The more suitable of the two schemes was then incorporated into Pratt and
Whitney's three-dimensional combustor performance code, 3D-TEACH (Appendix B).
The improvement in accuracy of this scheme was evaluated for a test case
modeling a row of jets in a cross flow and comparing the calculations against
both experimental data and calculations performed using the hybrid
differencing scheme.

2.3 ORGANIZATION

In Section 3 of this report a brief description of the sources of errors in
the present combustor performance codes, 2D- and 3D-TEACH, is given and
reasons fgr restricting attention in the present study to errors caused by the
differencing scheme are explained. In Section 4 the procedure for selecting
the two most promising schemes for incorporation into 2D-TEACH is described.
This procedure involves selection of a number of schemes from the literature
and gva1uating their cost effectiveness by assessing their accuracy,
stability, complexity, storage requirements and compatibility with 2D- and
3D-TEACH. In Section 5 implementation of the selected schemes into the TEACH
codes is detailed and in Section 6 a description of the two- and
three-dimensional test cases is given and the results of the computations are
discussed. In Section 7, concluding remarks are given and in Section 8
recommendations for future work are presented.



3.0 BACKGROUWD

An error reduction program in computational fluid mechanics faces the problem
of selecting which of several errors are to be reduced since there are many
sources of numerical error present in current design analysis codes. In this
section, these error sources are described and the reasons for concentrating
on errors due to the finite - difference method are given,

3.1 SOURCES OF ERROR IN PRESENT DESIGN CODES

The sources of error in present computer programs can be explained by
referring to Figure 3-1 showing the four major steps of a typical
computational procedure. In the following sections the errors introduced in
each of these steps will be discussed with reference to the structure and
models incorporated into the 2D and 3D-TEACH codes.

3.1.1 Assembly of Equations

In the first step, the governing partial differential equations are assembled.
These consist of the Navier-Stokes equations for mass and momentum
conservation, the energy equation, and the species transport equations
together with additional auxiiiary equations. The governing partial
differential equations can be regarded as exact. The auxiliary equations, such
as those used to represent various physical processes like chemical reaction,
turbulence generation, etc., are generally only approximations in part because
the relevant physical processes are known only approximately. In subsequent
steps, other approximations (e.g., the finite-difference representation of the
governing equations) introduce additional errors.

For example, the instantaneous value of a dependant variable, ¢ , in a
turbulent reacting flow is usually taken as the sum of a time-mean value and a
fluctuating value, a computational convenience, whose physical realism in
increasingly questioned. When this definition is introduced into the
Navier-Stokes equations and these are then time-averaged, further
approximations to simplify the resulting Reynolds-averaged equations are
introduced; specifically, fluctuations in laminar viscosity and density are
often neglected.

As another example, infinitely-fast reaction rates are often assumed so that
chemical reactions are represented by the one-step, irreversible reaction:

Fuel + Oxidant=Products (3.1)

In this case, the combustion rate is assumed to be controlled by the turbulent
mixing of eddies containing the reactants. From a chemical kinetics point of
view, this reaction scheme is extremely crude and is relevant only in
situations in which kinetics do not control the heat release rate,
Fortunately, most of the gas turbine combustor operating envelop is in this
category.



3.1.2 Physical Modeling

It has been established (Ref. 1 ) that a hierarchy of physical models exists.
This hierarchy consists of models for:

0 Turbulence

o Fuel-.Spray Vaprization and Distribution

o Combustion

0o Thermal Radiation
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Clearly, there is 1ittle advantage to paying the computational cost of using,
say, a radiation model of higher order accuracy than any of the models
preceding it in the hierarchy.

The Reynolds averaged and other equations contain terms such as p Ujuj and
P Usm where m is the mass fraction of chemical species "£". Modeling is

required to provide expressions for these correlations in terms of either

known or calculable quantities.

Reynolds stresses can consist of two parts - a shear stress and a normal
stress. The normal stress is obtained simply from the fluctuating dynamic
pressures, while Boussinesq's analogy is used to relate the shear stress to
the velocity gradient through an eddy viscosity u¢. Thus variable density
flow the Reynolds stresses can be expressed as:

- du; du . du - .
x5 X Xk (3.2)
where K is the turbulent kinetic energy and is defined as:
K= 1/2 (u™2 + v°2 4+ y°2)
The eddy viscosity, K¢ is obtained by dimensional arguments from the
Prandt]l- Kolmogorov definition,
2
C, K (3.3)

where
e = dissipation rate of K
The eddy viscosity is evaluated by means of transport equations for K and e.
using the familiar two-equation turbulence model.
Since the flow field is calculated using an effective turbulent eddy

viscosity, it is computationally convenient to base the turbulent heat and
mass transfer rates on effective thermal and mass eddy diffusivities.



In general, the eddy diffusivity is used to calculate the flux of a scalar by:
Rt 3
Yio T El (3.4)

where,

$p = scalar quantity such as temperature or species concentration
Tip= turbulent eddy diffusivity for ¢

The eddy diffusivity is found from the ratio of turbulent kinematic eddy
viscosity vt to the turbulent Prandlt or Schmidt number, ot, fore.

The turbulence model is a second order, mean-field closure to the equations.
For the eddy viscosity approach, the two-equation model is the most general
and sophisticated representation, and it is not computationally expensive.
Sophistication comes from the use of differential equations to describe both
the velocity scale and length scale to which the eddy viscosity can be
related, rather than relying upon an a priori length scale specification as
used in the mixing-length approach.

There are a number of limitations to the two-equations turbulence model. It is
well known that the assumptions used to derive the turbulence kinetic energy
dissipation rate (€) equation are somewhat arbitrary. More importantly, use of
the gradient diffusion idea itself has long been challenged. There are
objections to the assumption that the Reynolds stresses depend on only the
local mean rate of strain as well as to the assumption that the stresses are
proportional to the local rate of strain. The "constant" of proportionality
really depends on the ratio of local production and dissipation of turbulence
energy, and this ratio is not actually a constant. A further weakness is the
adoption of a single velocity scale at a point in the flow although it is
known that this scale can vary from point to point. The implication of a
single scale is that the turbulence is isotropic. Turbulent flows usually
posses some degree of anisotropy and some flows (e.g. flows with swirl or with
large streamline curvature in the streamwise direction) produce turbulence
that is highly anisotropic. The velocity and length scales have to be the same
order of magnitude as the mean field motion. This is only true for flows
dominated by simple shear forces; buoyancy forces, for example, have separate
scales. It is implied that the turbulent motions have a small scale compared
to that over which the concentration of a diffusing quantity changes
significantly, yet most of the larger eddies in a turbulent flow do not
satisfy this condition whether they are coherent or not. Thus, material can bhe
transported by vortical motion against the gradient of the scalar. Williams
and Libby (Ref. -2) have called this process "counter-gradient diffusion,"
while Spalding has used the more descriptive phrase "pressure-gradient
diffusion" (Ref. 3). By relying on local mean rates of strain consideration
of the effect of flow history on turbulence structure is lost.



It can also be appreciated that there are levels of approximation that are,
introduced into the averaging process that results in an enormous
simplification for turbulence modeling. Similar approximations must be used
for all the physical modeling used.

3.1.3 Computer Solution

When both the governing and auxiliary equations are assembled, they form a
simultaneous set of non-linear partial differential equations and algebraic
equations.

Numerical solution of the equation set is necessary. Conventional numerical
methods available to solve equation sets of these types can be broadly divided
into finite difference and finite element methods, although the dividing line
is not distinct. Finite difference methods have a considerable background in
the fluid dynamics area, and most solution approaches, including TEACH,
utilize finite differences.

The finite difference analog of the differential equations is obtained by
overlaying a computational mesh on the flow domain, and obtaining the basic
finite difference form of the partial derivatives for every node of the mesh
from a control volume approach- (Ref. 4 ). The finite difference expressions,
when substituted back into the differential equations, yield a set of
linearized, algebraic equations for every node of the mesh. Thus, there are as
many sets of equations as there are nodes in the calculation domain. These
sets, along with the boundary conditions for the problem, can then be solved
to give solutions for the entire flowfield.

The accuracy of a differencing scheme can be judged from the order of the
terms of an equivalent Taylor Series that have been retained in the expansion.
Unfortunately, the requirements of numerical stability are opposite to those
of accuracy with respect to these terms. Achieving a balance between accuracy
and stability can be particularly trying in the case of a chemically reacting
flow because of the coupled nonlinearities which exist between the chemical
and fluid mechanical processes. The spatial differencing of the convective
terms of the conservation equations in an Eulerian coordinate system can
result in numerical diffusion. Use of a higher order differencing scheme
eliminates or significantly reduces this diffusion. However, the use of
central-differencing method, for example, often produces oscillations in the
solution that have no physical significance (Ref 5 ). The use of an upwind
differencing, or donor cell, technique eliminates oscillations but introduces
a diffusion-like term into the difference equations. Thus, while "numerical
damping" suppresses oscillation, it leads to significant additional diffusion
of the convected parameter. For flows with combustion, these parameters might
be species concentration, temperature, etc. Unfortunately, diffusion of these
quantities is responsible in a physical sense for flame propagation.
Therefore, a severe restriction can be placed on the quality of quantitative
prediction (Ref. 6 ). :



It can be argued that use of upwind differencing in regions where convection
strongly dominates streamwise diffusion is reasonable since the local upstream
values of the field variables are swept downstream virtually unchanged,
whereas in high-diffusion regions the form of the relatively small convection
terms is not important. In regions where the two transport mechanisms are
comparable, a switch to more accurate central differencing for convection or
use of a suitably weighted combination of central and upstream differencing
can be used.

This somewhat narrow view of complex flows has led to the appearance and use
of a popular and successful hybrid central/upwind differencing scheme

(Ref. 7). This scheme is currently used in TEACH codes. The method uses
central differencing for convection and diffusion fluxes when the absolute
value of the Peclet number for the control volumes existing about grid nodes
is less than, or equal to, two: upwind differencing for convection fluxes and
neglect of diffusion fluxes is used otherwise. Peclet number defines the
relative importance of convective and diffusive transport and is numerically
equivalent to a cell Reynolds number, '

To use successfully the hybrid differencing scheme for complicated flows, care
must be taken in establishing the computational grid upon which the
calculations are performed. The approximations of the algebraic expressions
used to represent the partial differential equations becomes asymptotically
exact as the distance between the grid nodes is reduced. In the Timit, the
number of nodes can be increased until an asymptote to the solution of the
differential equations is achieved. In practice, this increase is limited by
computer storage and the cost of the calculation. However, it is not only the
number of nodes that are used in determining the accuracy of a solution which
is important, but also the distribution of those nodes within the flowfield to
be determined (Refs. 8, 9 ). This nodal distribution is important because
whenever curvature of the flow in the streamwise coordinate direction exists,
a truncation error arises in the solution (Ref. 10 ). In addition, there is
also a problem in multidimensional flows of streamline-to-grid skewness

(Ref. 11 ). With upwind differencing, these effects start to have a damaging
effect on solution accuracy when the Peclet number exceeds two.

It has been concluded (Ref. 1 ) that the hybrid finite differencing scheme,
although yielding physically realistic solutions in all circumstances,
introduces excessive numerical diffusion for many two-dimensional flows and
for all three-dimensional flows because presently available computer storage
is generally not sufficient to permit local adjustment of the grids as
described above. Thus, solution accuracy is presently controlled by the
numerics rather than the hierarchy of physical modeling.

3.1.4 Representation of Geometry

A drawback of the present calculation methods based on TEACH-type computer
programs is the lack of flexibility with respect to irregularly-shaped
boundaries for the calculation domain. Therefore, the geometry is
"discretized" to fit the coordinate system.



Figure 3-2 shows a typical modern, annular combustion chamber for an aircraft
gas turbine engine. To calculate flows in such a combustor using a TEACH code
meahs that curvilinear surfaces must be represented using "stair-steps."
Figure 3-3 gives a two-dimensional (axisymmetric) example of such a
representation.

ENGINE ¢

Figure 3-3 Stair-Step Representation of Actual Combustor Geometry
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The use of stair-step geometries has a number of implications: First, surface
areas are not correct. Thus, irrespective of physical modeling and numerical
accuracy, calculation of wall shear stress and surface heat transfer rates can
never be correct. Second, adequate representation of the geometry bounding the
flow to be calculated usually requires more computer storage than is available
on the present generation of computers. Mesh refining to control numerical
diffusion is not therefore possible, and the calculated flowfield may be
influenced incorrectly by the geometric representation.

3.1.5 Solution Algorithm

By their very nature, computational fluid dynamies (CFD) codes are large
consumers of computer resources. The cost of a CFD calculation depends on the
number of grid nodes, the number of equations to be solved at each node, and
the rate of convergence produced by the solution algorithm. Generally, the
number of nodes and equations are determined by the scope of the problem under
investigation. If the convergence rate is too low, considerations of cost and
economy may result in termination of the solution, even though the residuals
in the relaxation process might still be high. An arbitrary 1imit is thus
placed on solution accuracy by considerations of cost.

Low convergence rates in existing codes can occur, typically, if the
calculation domain is large and has several entering streams so that the
flowfield thereby contains a number of recirculation zones. In addition, an
increased number of grid nodes is necessary to resolve adequately all the flow
features. For such strongly elliptic flowfields, the weak coupling of the
momentum and continuity equations through the SIMPLE (Semi-Implicit Method for
Pressure-linked Equations) algorithm and the weakly implicit nature of the ADI
(Alternating Direction Implicit) matrix solution procedure can result in low
rates of convergence. In addition, such a flowfield can become physically
marginally stable, nonstationary, or bistable in character, producing
eddy-shedding, Coanda effects, separation, etc. A combination of entering
flows could exist for which the presumed steady-state solution does not exist.
The flow pattern may then change from iteration to iteration and the
convergence rate may become unacceptably low. For nonstationary flows,
divergence can result,

The equations to be solved can also present a convergence problem as, for
example in reacting flows with the chemistry modeled using "stiff" exothermic
reaction rate expressions. Similar problems arise in the turbulence equations
(Ref. 12) when the equations are solved iteratively and uncoupled. Under
such circumstances, severe under-relaxation is usually required to achieve
convergence and the time to achieve a solution becomes unacceptably high.

The finite differencing used to approximate the partial differential equations
generates the coefficient matrix for the equations. Matrix conditioning can
influence convergence. If the coefficient matrix is always diagonally

dominant, then any fast matrix solver may be used without difficulty. However,
if diagonal dominance is lost, then the ADI method tends to be unstable; if
the difference method produces negative coefficients, divergence usually
results. Therefore, the solution accuracy depends not only on the order of the
differencing scheme, but also on its compatability with the solution algorithm.

11



3.2 UTILITY OF PRESENT DESIGN CODES

From the above discussion, it appears that the numerical inaccuracies of
present design codes Timit their usefulness to the designer.

However, these codes are adequate for many engineering applications. The only
practical engineering alernative is to conduct numerous experiments verifying
a design. With the cost of fuel, materials and manpower increasing rapidly,
this alternative is becoming an increasingly expensive proposition. Hence,
even an approximate answer that eliminates some testing is acceptable.
Although these codes lack quantitative accuracy, their qualitative accuracy
has been demonstrated in a number of test cases. This qualitative accuracy
allows an engineer to conduct parametric studies with confidence, allowing
quick preliminary screening of design ideas. This ability is also useful in
diagnosing and solving development problems. Once the problem is simulated
with the code, it is then usually much quicker to develop an acceptable
solution by using the computer than a rig.

3.3 REASONS FOR CONCENTRATING ON THE DIFFERENCING SCHEME FOR ACCURACY
IMPROVEMENT

Several sources of error in the present design codes were described in Section
3.1. Although these codes are still useful for design purposes, improvement in
quantitative accuracy will increase their utility. The question then has to be
asked: how can the accuracy of these codes be improved. One strategy is to
develop a new generation of codes that eliminate the statistical description
of turbulence, introduce subgrid turbulence scaling and combustion models,
reduce numerical diffusion, use a body fitted coordinate system, and use a
faster solver than the ADI scheme. This strategy requires a long lead time
because most of the models are in the development stage. In addition, it takes
several years to turn a research code into a production code. This approach is
best suited for a university and several universities are already working on
different aspects of this strategy.

Another strategy to improve the present production codes in a relatively short
period of time is to work on only one aspect of the problem. This strateqy can
yield only a limited improvement in accuracy when compared to the potential
benefits of developing a new generation of combustor design codes; however, if
only mature models are incorporated into the calculation procedure, the
chances of success are large. It was shown in Section 3.1 that solution
accuracy is presently controlled by numerics rather than the hierarchy of
physical modeling. Hence, improvement in the differencing scheme is the first
area that needs to be investigated and, if successful, will have an immediate
impact on the accuracy of the code. There are several differencing schemes
available in the literature that have been tested by a number of investigators
and have shown promise in model problem studies of some simple flows. It is
thought that these schemes have reached a level of maturity that they can now
be tested in modeling more realistic flows. It was with these considerations
in mind that NASA sponsored the Error Reduction Program to select,
incorporate, and evaluate an improved-accuracy finite difference scheme in
3D-TEACH.
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4.0 SELECTION OF MORE ACCURATE FINITE-DIFFERENCING SCHEMES

Having established in the previous section that improvements to the present
finite-differencing scheme can yield significant benefits in the short term,
the task then is to develop such improvements. During the development process,
a number of constraints must be kept in mind:

1. The scheme is to be implemented in TEACH-type codes used to design gas
turbine combustors; these codes are operated by engineers who are not
necessarily expert in computational fluid mechanics. Hence, the scheme has
to be robust, require no attention from the user, and yield results that
are always physically plausible.

2. Since the selected scheme is to replace the hybrid scheme without any
other changes being made to the code, it is important that the selected

scheme be compatible with the other parts of the code such as the solution
algorithm.

3. The scheme should be capable of computing accurately flows of the type
that occur in a gas turbine combustor; thus, testing of candidate schemes
must include some model problem studies representing realistic flowfields.

Several improved finite-difference schemes were selected from the literature
and subjected to an initial screening process. Two schemes were then selected
that were believed to be capable of calculating realistic gas turbine
combustor flowfields, and were compatible with the present code. These two
schemes were then incorporated into the 2D version of the TEACH code. After
using the revised computer program to calculate several laminar and turbulent
flow test cases containing important flow features common to gas turbine
combustors, the more promising scheme was selected for use in the 3D version
of TEACH. The initial screening process and selection of the two most
promising schemes are described in this section.

4,1 CRITERIA OF ASSESSMENT

A scheme to be implemented into the present design codes should be not only
more accurate than the present hybrid difference scheme but it should satisfy
certain other criteria which are discussed below.

4,1,1 Mirror Differential Equation Properties.

Before any scheme is judged for accuracy, it is necessary to ensure that the
approximation to the discretized equation mirrors certain key properties of
the original differential equation. This discussion will be facilitated if a
general discretized form of the equation to be solved is derived. The
two-dimension form is presented, but similar remarks apply to the
three-dimension case.

A prototype transport equation for a genera1‘sca1ar entity, ¢, which may stand

for a velocity component, temperature, concentration, turbulence energy, etc,
can be written as:
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where p and T are the density and diffusivity, respectively, S is the Tocal
volumetric source (sink) rate and u and v are the velocity components in

directions x and y, respectively.

Integral forms of the above equations can be written for finite regions. If
one integrates Equation 4.1 over the region defined by the dashed lines in
Figure 4-1, one obtains:
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where w, e, s and n denote the four surfaces of the region.
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Figure 4-1 Region of Integration Defined by Grid Lines
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Since the majority of the schemes examined are based on the integral analysis,
(usually referred to as the "finite volume method" or "FYM", Ref 4 ) it will
be useful to assemble and examine a relatively general form of discretized
transport equation derived in this way. This analysis will follow the general
lines of Gosman and Lai (1982)(Ref. 13 ). In the FVM, attention is focussed on
the integrals of Equation 4.2, those on the left-hand side of which represent
total transports by convection and diffusion through the cell face in
question. If the transport through the w face is denoted by F. then:

yn
= Y
e fsrd | (4.3)
Ye W

which may be written, using'the Mean Value Theorem (MVT) of the differential
calculus, as:

38 ,
F, = [Coud) - (,I,‘BXA)W] Ay (4.4)
where the subscript w now denotes an average along the cell face and

AY = ¥n-¥s is the face "area". A more compact and convenient expression is
obtained through further use of the MVT to give:

= ag
Fu = Oy T8 (530, (4.5)

where C,, = (pu)yay is a convection coefficient; Cy, and I}, are obtained
by suitable averaging of the p, u, and I'fields.

It is at this stage that the major approximations are introduced, the purpose

of which is to relate dy and (2ag/3sx)y to g values at the grid intersec-
tions or "nodes", which are labeled in the point-of-compass fashion as F, M,

S, and W in Figure 4-1. Here it is assumed that gy is defined in terms of
nodal values @4 by:
i
= 4.6
)] an éi (4.6)

L}

where the 04\1;, are weighting factors and denotes surmation over
specified nodes in the vicinity of w. In a similar way (a¢/ax%ﬂw111 be

approximated by:
AN i i
(3;>w = (%Lﬁ Bt B - %_f By~ di) /8% (4.7)

where the g, are further weighting factors, wh and w- denote Tocations
to the right and left of the cell face, respe§t1ve1y, qnd AX = Xp-Xy.
Insertion of the above expressions into Equation 4.5 finally yields:

F 2C 3 ol g, - d (z, 8 j g. - »_8 _9.) (4.8)
wooTwE W wwiw1-1w*w*]

where dy =T, ay/ax
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