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FOREWORD
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1.0 SUMMARY

The National Aeronautics and Space Administration sponsored a program to
select, incorporate and evaluate the best available finite difference scheme
to reduce numerical error in combustor performance evaluation codes. This
report describes the details of this study.

T@e combustor performance computer programs chosen for this study were the two
dimensional and three dimensional versions of Pratt and Whitney's TEACH code.

The criteria used to select schemes required that the difference equations
mirror the properties of the governing differential equation, be more accurate
than the current hybrid difference scheme, be stable and economical, be
compatible with TEACH codes, use only modest amounts of additional storage,
and be relatively simple.

The methods of assessment used in the selection process consisted of
examination of the difference equation, evaluation of the properties of the
the coefficient matrix, Taylor series analysis, and performance on model
problems, Five schemes from the Titerature and three schemes developed during
the course of this study were evaluated. This initial evaluation resulted in
the selection of the two most promising schemes, Quadratic Upwind Differencing
Scheme (QUDS) and Bounded Skew Upwind Differencing Scheme Two (BSUDS2), for
incorporation into 2D-TEACH for further evaluation. The accuracy and stability
of these schemes were assessed by using laminar and turbulent flow test cases.
These test cases, although two dimensional, contain important flow features
found in gas turbine combustors. During the evaluation, it was found that QUDS
was unstable and, hence, BSUDS2 was selected for incorporation into 3D-TEACH.
This scheme was further evaluated by using a 3D-test case, modeling of a jet
in cross flow.

This effort resulted in the incorporation of a scheme in 3D-TEACH which is
usually more accurate than the hybrid differencing method and never less
accurate. It is expected that overall improvement in'accuracy resulting for
complex flows will justify the increased cost of using this scheme. However,
this study can only be considered as a first step in the process of developing
the most suitable scheme for combustor performance codes. A.nuqber of
questions have been generated as a result of this work and it is expected that

answers to these questions will lead to further improvements in the accuracy
and stability of the BSUDS2 scheme.



2.0 INTRODUCTION
2.1 OBJECTIVES

The main objective of the NASA-sponsored Error Reduction Program was to

select, incorporate and evaluate the best available technique for the
reduction of numerical diffusion in a 3D combustor performance evaluation

code. The study focused on improvements in accuracy of computer programs of
the TEACH (for Teaching E11iptic Axisymmetric Characteristics Heuristically)
variety which were developed originally by Professor A, D. Gosman and
co-workers of Imperial College, London, (e.g. Ref. 1 ) and are in general use.

The need for such a program can best be appreciated by comparing the numerical
and exact solutions for the spreading of a passive scalar (dye in water for,
example) in a simple flow field, Fig. 2-1. The differencing scheme used for
this computation is the hybrid method which is used in almost all TEACH
combustor codes. It can be seen that even for this simple flow situation,
numerical (or artificial) diffusion generated by the differencing scheme
greatly smears the profile. MNumerical diffusion, especially in
three-dimensional versions of TEACH, can become so large as to obscure the
effects of the turbulance model in turbulent flow calculations. The accuracy
of these codes becomes dependent on the number and distribution of nodes used
in the finite-difference calculations; i.e., it is difficult to achieve a
"grid-independent" solution. The number and distribution of grid nodes varies
from user to user so that the results of parametric studies requiring more
than variations in boundary conditions are questionable. This places a major
restriction on the utilization of these codes for the design and development
of practical combustors. Hence, there is a requirement for improving the
accuracy of the differencing scheme presently embodied in these codes. This
problem is addressed by the current program.

1.0¢=
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Convection and diffusion of a scalar step profile in constant property’
uniform inclined flow, cell peclect number, Pex = Pey = 60

Figure 2-1 Heed for Error Reduction



2.2 APPROACH

The strategy adopted in this study was to select a number of candidate schemes
and assess them for accuracy, solution stability, and overall
cost-effectiveness. The accuracy assessment included consideration of the
conservation and boundedness properties of the schemes, as well as
conventional Taylor series error analyses and application to test cases.
Solution stability was assessed heuristically by examining the properties of
the coefficient matrix which each scheme generates. Cost-effectiveness was
judged on the combined outcome of the foregoing assessments.

Based on this initial evaluation, two schemes were selected for incorporation
into Pratt and Whitney's two-dimensional combustor performance code, 2D-TEACH
(This computer program is the two-dimensional version of the three-dimensional
code, 3D-TEACH, described in detail in Appendix B). The stability, accuracy
and cost effectiveness of these two schemes were then examined by running a
number of laminar and turbulent flow test cases. These test cases demonstrate
typical flow features encountered in gas turbine combustors. '

The more suitable of the two schemes was then incorporated into Pratt and
Whitney's three-dimensional combustor performance code, 3D-TEACH (Appendix B).
The improvement in accuracy of this scheme was evaluated for a test case
modeling a row of jets in a cross flow and comparing the calculations against
both experimental data and calculations performed using the hybrid
differencing scheme.

2.3 ORGANIZATION

In Section 3 of this report a brief description of the sources of errors in
the present combustor performance codes, 2D- and 3D-TEACH, is given and
reasons fgr restricting attention in the present study to errors caused by the
differencing scheme are explained. In Section 4 the procedure for selecting
the two most promising schemes for incorporation into 2D-TEACH is described.
This procedure involves selection of a number of schemes from the literature
and gva1uating their cost effectiveness by assessing their accuracy,
stability, complexity, storage requirements and compatibility with 2D- and
3D-TEACH. In Section 5 implementation of the selected schemes into the TEACH
codes is detailed and in Section 6 a description of the two- and
three-dimensional test cases is given and the results of the computations are
discussed. In Section 7, concluding remarks are given and in Section 8
recommendations for future work are presented.



3.0 BACKGROUWD

An error reduction program in computational fluid mechanics faces the problem
of selecting which of several errors are to be reduced since there are many
sources of numerical error present in current design analysis codes. In this
section, these error sources are described and the reasons for concentrating
on errors due to the finite - difference method are given,

3.1 SOURCES OF ERROR IN PRESENT DESIGN CODES

The sources of error in present computer programs can be explained by
referring to Figure 3-1 showing the four major steps of a typical
computational procedure. In the following sections the errors introduced in
each of these steps will be discussed with reference to the structure and
models incorporated into the 2D and 3D-TEACH codes.

3.1.1 Assembly of Equations

In the first step, the governing partial differential equations are assembled.
These consist of the Navier-Stokes equations for mass and momentum
conservation, the energy equation, and the species transport equations
together with additional auxiiiary equations. The governing partial
differential equations can be regarded as exact. The auxiliary equations, such
as those used to represent various physical processes like chemical reaction,
turbulence generation, etc., are generally only approximations in part because
the relevant physical processes are known only approximately. In subsequent
steps, other approximations (e.g., the finite-difference representation of the
governing equations) introduce additional errors.

For example, the instantaneous value of a dependant variable, ¢ , in a
turbulent reacting flow is usually taken as the sum of a time-mean value and a
fluctuating value, a computational convenience, whose physical realism in
increasingly questioned. When this definition is introduced into the
Navier-Stokes equations and these are then time-averaged, further
approximations to simplify the resulting Reynolds-averaged equations are
introduced; specifically, fluctuations in laminar viscosity and density are
often neglected.

As another example, infinitely-fast reaction rates are often assumed so that
chemical reactions are represented by the one-step, irreversible reaction:

Fuel + Oxidant=Products (3.1)

In this case, the combustion rate is assumed to be controlled by the turbulent
mixing of eddies containing the reactants. From a chemical kinetics point of
view, this reaction scheme is extremely crude and is relevant only in
situations in which kinetics do not control the heat release rate,
Fortunately, most of the gas turbine combustor operating envelop is in this
category.



3.1.2 Physical Modeling

It has been established (Ref. 1 ) that a hierarchy of physical models exists.
This hierarchy consists of models for:

0 Turbulence

o Fuel-.Spray Vaprization and Distribution

o Combustion

0o Thermal Radiation
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Clearly, there is 1ittle advantage to paying the computational cost of using,
say, a radiation model of higher order accuracy than any of the models
preceding it in the hierarchy.

The Reynolds averaged and other equations contain terms such as p Ujuj and
P Usm where m is the mass fraction of chemical species "£". Modeling is

required to provide expressions for these correlations in terms of either

known or calculable quantities.

Reynolds stresses can consist of two parts - a shear stress and a normal
stress. The normal stress is obtained simply from the fluctuating dynamic
pressures, while Boussinesq's analogy is used to relate the shear stress to
the velocity gradient through an eddy viscosity u¢. Thus variable density
flow the Reynolds stresses can be expressed as:

- du; du . du - .
x5 X Xk (3.2)
where K is the turbulent kinetic energy and is defined as:
K= 1/2 (u™2 + v°2 4+ y°2)
The eddy viscosity, K¢ is obtained by dimensional arguments from the
Prandt]l- Kolmogorov definition,
2
C, K (3.3)

where
e = dissipation rate of K
The eddy viscosity is evaluated by means of transport equations for K and e.
using the familiar two-equation turbulence model.
Since the flow field is calculated using an effective turbulent eddy

viscosity, it is computationally convenient to base the turbulent heat and
mass transfer rates on effective thermal and mass eddy diffusivities.



In general, the eddy diffusivity is used to calculate the flux of a scalar by:
Rt 3
Yio T El (3.4)

where,

$p = scalar quantity such as temperature or species concentration
Tip= turbulent eddy diffusivity for ¢

The eddy diffusivity is found from the ratio of turbulent kinematic eddy
viscosity vt to the turbulent Prandlt or Schmidt number, ot, fore.

The turbulence model is a second order, mean-field closure to the equations.
For the eddy viscosity approach, the two-equation model is the most general
and sophisticated representation, and it is not computationally expensive.
Sophistication comes from the use of differential equations to describe both
the velocity scale and length scale to which the eddy viscosity can be
related, rather than relying upon an a priori length scale specification as
used in the mixing-length approach.

There are a number of limitations to the two-equations turbulence model. It is
well known that the assumptions used to derive the turbulence kinetic energy
dissipation rate (€) equation are somewhat arbitrary. More importantly, use of
the gradient diffusion idea itself has long been challenged. There are
objections to the assumption that the Reynolds stresses depend on only the
local mean rate of strain as well as to the assumption that the stresses are
proportional to the local rate of strain. The "constant" of proportionality
really depends on the ratio of local production and dissipation of turbulence
energy, and this ratio is not actually a constant. A further weakness is the
adoption of a single velocity scale at a point in the flow although it is
known that this scale can vary from point to point. The implication of a
single scale is that the turbulence is isotropic. Turbulent flows usually
posses some degree of anisotropy and some flows (e.g. flows with swirl or with
large streamline curvature in the streamwise direction) produce turbulence
that is highly anisotropic. The velocity and length scales have to be the same
order of magnitude as the mean field motion. This is only true for flows
dominated by simple shear forces; buoyancy forces, for example, have separate
scales. It is implied that the turbulent motions have a small scale compared
to that over which the concentration of a diffusing quantity changes
significantly, yet most of the larger eddies in a turbulent flow do not
satisfy this condition whether they are coherent or not. Thus, material can bhe
transported by vortical motion against the gradient of the scalar. Williams
and Libby (Ref. -2) have called this process "counter-gradient diffusion,"
while Spalding has used the more descriptive phrase "pressure-gradient
diffusion" (Ref. 3). By relying on local mean rates of strain consideration
of the effect of flow history on turbulence structure is lost.



It can also be appreciated that there are levels of approximation that are,
introduced into the averaging process that results in an enormous
simplification for turbulence modeling. Similar approximations must be used
for all the physical modeling used.

3.1.3 Computer Solution

When both the governing and auxiliary equations are assembled, they form a
simultaneous set of non-linear partial differential equations and algebraic
equations.

Numerical solution of the equation set is necessary. Conventional numerical
methods available to solve equation sets of these types can be broadly divided
into finite difference and finite element methods, although the dividing line
is not distinct. Finite difference methods have a considerable background in
the fluid dynamics area, and most solution approaches, including TEACH,
utilize finite differences.

The finite difference analog of the differential equations is obtained by
overlaying a computational mesh on the flow domain, and obtaining the basic
finite difference form of the partial derivatives for every node of the mesh
from a control volume approach- (Ref. 4 ). The finite difference expressions,
when substituted back into the differential equations, yield a set of
linearized, algebraic equations for every node of the mesh. Thus, there are as
many sets of equations as there are nodes in the calculation domain. These
sets, along with the boundary conditions for the problem, can then be solved
to give solutions for the entire flowfield.

The accuracy of a differencing scheme can be judged from the order of the
terms of an equivalent Taylor Series that have been retained in the expansion.
Unfortunately, the requirements of numerical stability are opposite to those
of accuracy with respect to these terms. Achieving a balance between accuracy
and stability can be particularly trying in the case of a chemically reacting
flow because of the coupled nonlinearities which exist between the chemical
and fluid mechanical processes. The spatial differencing of the convective
terms of the conservation equations in an Eulerian coordinate system can
result in numerical diffusion. Use of a higher order differencing scheme
eliminates or significantly reduces this diffusion. However, the use of
central-differencing method, for example, often produces oscillations in the
solution that have no physical significance (Ref 5 ). The use of an upwind
differencing, or donor cell, technique eliminates oscillations but introduces
a diffusion-like term into the difference equations. Thus, while "numerical
damping" suppresses oscillation, it leads to significant additional diffusion
of the convected parameter. For flows with combustion, these parameters might
be species concentration, temperature, etc. Unfortunately, diffusion of these
quantities is responsible in a physical sense for flame propagation.
Therefore, a severe restriction can be placed on the quality of quantitative
prediction (Ref. 6 ). :



It can be argued that use of upwind differencing in regions where convection
strongly dominates streamwise diffusion is reasonable since the local upstream
values of the field variables are swept downstream virtually unchanged,
whereas in high-diffusion regions the form of the relatively small convection
terms is not important. In regions where the two transport mechanisms are
comparable, a switch to more accurate central differencing for convection or
use of a suitably weighted combination of central and upstream differencing
can be used.

This somewhat narrow view of complex flows has led to the appearance and use
of a popular and successful hybrid central/upwind differencing scheme

(Ref. 7). This scheme is currently used in TEACH codes. The method uses
central differencing for convection and diffusion fluxes when the absolute
value of the Peclet number for the control volumes existing about grid nodes
is less than, or equal to, two: upwind differencing for convection fluxes and
neglect of diffusion fluxes is used otherwise. Peclet number defines the
relative importance of convective and diffusive transport and is numerically
equivalent to a cell Reynolds number, '

To use successfully the hybrid differencing scheme for complicated flows, care
must be taken in establishing the computational grid upon which the
calculations are performed. The approximations of the algebraic expressions
used to represent the partial differential equations becomes asymptotically
exact as the distance between the grid nodes is reduced. In the Timit, the
number of nodes can be increased until an asymptote to the solution of the
differential equations is achieved. In practice, this increase is limited by
computer storage and the cost of the calculation. However, it is not only the
number of nodes that are used in determining the accuracy of a solution which
is important, but also the distribution of those nodes within the flowfield to
be determined (Refs. 8, 9 ). This nodal distribution is important because
whenever curvature of the flow in the streamwise coordinate direction exists,
a truncation error arises in the solution (Ref. 10 ). In addition, there is
also a problem in multidimensional flows of streamline-to-grid skewness

(Ref. 11 ). With upwind differencing, these effects start to have a damaging
effect on solution accuracy when the Peclet number exceeds two.

It has been concluded (Ref. 1 ) that the hybrid finite differencing scheme,
although yielding physically realistic solutions in all circumstances,
introduces excessive numerical diffusion for many two-dimensional flows and
for all three-dimensional flows because presently available computer storage
is generally not sufficient to permit local adjustment of the grids as
described above. Thus, solution accuracy is presently controlled by the
numerics rather than the hierarchy of physical modeling.

3.1.4 Representation of Geometry

A drawback of the present calculation methods based on TEACH-type computer
programs is the lack of flexibility with respect to irregularly-shaped
boundaries for the calculation domain. Therefore, the geometry is
"discretized" to fit the coordinate system.



Figure 3-2 shows a typical modern, annular combustion chamber for an aircraft
gas turbine engine. To calculate flows in such a combustor using a TEACH code
meahs that curvilinear surfaces must be represented using "stair-steps."
Figure 3-3 gives a two-dimensional (axisymmetric) example of such a
representation.

ENGINE ¢

Figure 3-3 Stair-Step Representation of Actual Combustor Geometry
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The use of stair-step geometries has a number of implications: First, surface
areas are not correct. Thus, irrespective of physical modeling and numerical
accuracy, calculation of wall shear stress and surface heat transfer rates can
never be correct. Second, adequate representation of the geometry bounding the
flow to be calculated usually requires more computer storage than is available
on the present generation of computers. Mesh refining to control numerical
diffusion is not therefore possible, and the calculated flowfield may be
influenced incorrectly by the geometric representation.

3.1.5 Solution Algorithm

By their very nature, computational fluid dynamies (CFD) codes are large
consumers of computer resources. The cost of a CFD calculation depends on the
number of grid nodes, the number of equations to be solved at each node, and
the rate of convergence produced by the solution algorithm. Generally, the
number of nodes and equations are determined by the scope of the problem under
investigation. If the convergence rate is too low, considerations of cost and
economy may result in termination of the solution, even though the residuals
in the relaxation process might still be high. An arbitrary 1imit is thus
placed on solution accuracy by considerations of cost.

Low convergence rates in existing codes can occur, typically, if the
calculation domain is large and has several entering streams so that the
flowfield thereby contains a number of recirculation zones. In addition, an
increased number of grid nodes is necessary to resolve adequately all the flow
features. For such strongly elliptic flowfields, the weak coupling of the
momentum and continuity equations through the SIMPLE (Semi-Implicit Method for
Pressure-linked Equations) algorithm and the weakly implicit nature of the ADI
(Alternating Direction Implicit) matrix solution procedure can result in low
rates of convergence. In addition, such a flowfield can become physically
marginally stable, nonstationary, or bistable in character, producing
eddy-shedding, Coanda effects, separation, etc. A combination of entering
flows could exist for which the presumed steady-state solution does not exist.
The flow pattern may then change from iteration to iteration and the
convergence rate may become unacceptably low. For nonstationary flows,
divergence can result,

The equations to be solved can also present a convergence problem as, for
example in reacting flows with the chemistry modeled using "stiff" exothermic
reaction rate expressions. Similar problems arise in the turbulence equations
(Ref. 12) when the equations are solved iteratively and uncoupled. Under
such circumstances, severe under-relaxation is usually required to achieve
convergence and the time to achieve a solution becomes unacceptably high.

The finite differencing used to approximate the partial differential equations
generates the coefficient matrix for the equations. Matrix conditioning can
influence convergence. If the coefficient matrix is always diagonally

dominant, then any fast matrix solver may be used without difficulty. However,
if diagonal dominance is lost, then the ADI method tends to be unstable; if
the difference method produces negative coefficients, divergence usually
results. Therefore, the solution accuracy depends not only on the order of the
differencing scheme, but also on its compatability with the solution algorithm.

11



3.2 UTILITY OF PRESENT DESIGN CODES

From the above discussion, it appears that the numerical inaccuracies of
present design codes Timit their usefulness to the designer.

However, these codes are adequate for many engineering applications. The only
practical engineering alernative is to conduct numerous experiments verifying
a design. With the cost of fuel, materials and manpower increasing rapidly,
this alternative is becoming an increasingly expensive proposition. Hence,
even an approximate answer that eliminates some testing is acceptable.
Although these codes lack quantitative accuracy, their qualitative accuracy
has been demonstrated in a number of test cases. This qualitative accuracy
allows an engineer to conduct parametric studies with confidence, allowing
quick preliminary screening of design ideas. This ability is also useful in
diagnosing and solving development problems. Once the problem is simulated
with the code, it is then usually much quicker to develop an acceptable
solution by using the computer than a rig.

3.3 REASONS FOR CONCENTRATING ON THE DIFFERENCING SCHEME FOR ACCURACY
IMPROVEMENT

Several sources of error in the present design codes were described in Section
3.1. Although these codes are still useful for design purposes, improvement in
quantitative accuracy will increase their utility. The question then has to be
asked: how can the accuracy of these codes be improved. One strategy is to
develop a new generation of codes that eliminate the statistical description
of turbulence, introduce subgrid turbulence scaling and combustion models,
reduce numerical diffusion, use a body fitted coordinate system, and use a
faster solver than the ADI scheme. This strategy requires a long lead time
because most of the models are in the development stage. In addition, it takes
several years to turn a research code into a production code. This approach is
best suited for a university and several universities are already working on
different aspects of this strategy.

Another strategy to improve the present production codes in a relatively short
period of time is to work on only one aspect of the problem. This strateqy can
yield only a limited improvement in accuracy when compared to the potential
benefits of developing a new generation of combustor design codes; however, if
only mature models are incorporated into the calculation procedure, the
chances of success are large. It was shown in Section 3.1 that solution
accuracy is presently controlled by numerics rather than the hierarchy of
physical modeling. Hence, improvement in the differencing scheme is the first
area that needs to be investigated and, if successful, will have an immediate
impact on the accuracy of the code. There are several differencing schemes
available in the literature that have been tested by a number of investigators
and have shown promise in model problem studies of some simple flows. It is
thought that these schemes have reached a level of maturity that they can now
be tested in modeling more realistic flows. It was with these considerations
in mind that NASA sponsored the Error Reduction Program to select,
incorporate, and evaluate an improved-accuracy finite difference scheme in
3D-TEACH.
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4.0 SELECTION OF MORE ACCURATE FINITE-DIFFERENCING SCHEMES

Having established in the previous section that improvements to the present
finite-differencing scheme can yield significant benefits in the short term,
the task then is to develop such improvements. During the development process,
a number of constraints must be kept in mind:

1. The scheme is to be implemented in TEACH-type codes used to design gas
turbine combustors; these codes are operated by engineers who are not
necessarily expert in computational fluid mechanics. Hence, the scheme has
to be robust, require no attention from the user, and yield results that
are always physically plausible.

2. Since the selected scheme is to replace the hybrid scheme without any
other changes being made to the code, it is important that the selected

scheme be compatible with the other parts of the code such as the solution
algorithm.

3. The scheme should be capable of computing accurately flows of the type
that occur in a gas turbine combustor; thus, testing of candidate schemes
must include some model problem studies representing realistic flowfields.

Several improved finite-difference schemes were selected from the literature
and subjected to an initial screening process. Two schemes were then selected
that were believed to be capable of calculating realistic gas turbine
combustor flowfields, and were compatible with the present code. These two
schemes were then incorporated into the 2D version of the TEACH code. After
using the revised computer program to calculate several laminar and turbulent
flow test cases containing important flow features common to gas turbine
combustors, the more promising scheme was selected for use in the 3D version
of TEACH. The initial screening process and selection of the two most
promising schemes are described in this section.

4,1 CRITERIA OF ASSESSMENT

A scheme to be implemented into the present design codes should be not only
more accurate than the present hybrid difference scheme but it should satisfy
certain other criteria which are discussed below.

4,1,1 Mirror Differential Equation Properties.

Before any scheme is judged for accuracy, it is necessary to ensure that the
approximation to the discretized equation mirrors certain key properties of
the original differential equation. This discussion will be facilitated if a
general discretized form of the equation to be solved is derived. The
two-dimension form is presented, but similar remarks apply to the
three-dimension case.

A prototype transport equation for a genera1‘sca1ar entity, ¢, which may stand

for a velocity component, temperature, concentration, turbulence energy, etc,
can be written as:
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where p and T are the density and diffusivity, respectively, S is the Tocal
volumetric source (sink) rate and u and v are the velocity components in

directions x and y, respectively.

Integral forms of the above equations can be written for finite regions. If
one integrates Equation 4.1 over the region defined by the dashed lines in
Figure 4-1, one obtains:
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where w, e, s and n denote the four surfaces of the region.
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Figure 4-1 Region of Integration Defined by Grid Lines
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Since the majority of the schemes examined are based on the integral analysis,
(usually referred to as the "finite volume method" or "FYM", Ref 4 ) it will
be useful to assemble and examine a relatively general form of discretized
transport equation derived in this way. This analysis will follow the general
lines of Gosman and Lai (1982)(Ref. 13 ). In the FVM, attention is focussed on
the integrals of Equation 4.2, those on the left-hand side of which represent
total transports by convection and diffusion through the cell face in
question. If the transport through the w face is denoted by F. then:

yn
= Y
e fsrd | (4.3)
Ye W

which may be written, using'the Mean Value Theorem (MVT) of the differential
calculus, as:

38 ,
F, = [Coud) - (,I,‘BXA)W] Ay (4.4)
where the subscript w now denotes an average along the cell face and

AY = ¥n-¥s is the face "area". A more compact and convenient expression is
obtained through further use of the MVT to give:

= ag
Fu = Oy T8 (530, (4.5)

where C,, = (pu)yay is a convection coefficient; Cy, and I}, are obtained
by suitable averaging of the p, u, and I'fields.

It is at this stage that the major approximations are introduced, the purpose

of which is to relate dy and (2ag/3sx)y to g values at the grid intersec-
tions or "nodes", which are labeled in the point-of-compass fashion as F, M,

S, and W in Figure 4-1. Here it is assumed that gy is defined in terms of
nodal values @4 by:
i
= 4.6
)] an éi (4.6)

L}

where the 04\1;, are weighting factors and denotes surmation over
specified nodes in the vicinity of w. In a similar way (a¢/ax%ﬂw111 be

approximated by:
AN i i
(3;>w = (%Lﬁ Bt B - %_f By~ di) /8% (4.7)

where the g, are further weighting factors, wh and w- denote Tocations
to the right and left of the cell face, respe§t1ve1y, qnd AX = Xp-Xy.
Insertion of the above expressions into Equation 4.5 finally yields:

F 2C 3 ol g, - d (z, 8 j g. - »_8 _9.) (4.8)
wooTwE W wwiw1-1w*w*]

where dy =T, ay/ax
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The discrete analogue of the integral transport Equation 4.2 is obtained using

Fy from above and analogous formulae for the remaining F's and substituting
into the equation:

Fw-Fe+Fs-Fn+Su = 0-

Before this is done it will be useful for illustration purposes to specify a
particular set of participating nodes, as this will allow the properties of
the resulting equation to be more readily perceived. Here one chooses, for the
w face, the "nearest-neighbor" set SW, W, NW, S, P and N (see Figure 4-1)
which, together with analogous sets for the remaining three faces give rise to
the "compact" nine-point molecule illustrated in the Figure 4-1. The resulting
equation, when arranged into a substitution formula for ép, runs:

apdp =g a;8; + 3y (4.9)
where X denotes summation over all eight nearest neighbors of P and:
W , ,
- P _ P P _ p p p
ap = Ceae Cwaw + Cnan Csas + deBe + dwsw (4.10)
W W W W W W
a, = (C o +dg)+ (Cgag - C a - d 8, - dgBg) (4.11)
E E E E E E
ap = (—Ceae + dese) * (Cgay - Cn“n -dB. - dsss) (4.12)
NW nw NW MW
= Cwtw - Cpon A8y T 4By (4.13)
NE NE NE
ayp = -Caag - Cha, * dn gy (4.14)
and
YnpXe
s = f ﬁ dxdy (4.15)
u
Ys X

Several points about the above expressions are noteworthy. Firstly the "a"
coefficients contain contributions from the fluxes from more than one cell
face: for example, the ay coefficient contains, in the first brackets,
contributors from F, and, in the second brackets, quantities relating to the
intersecting faces s and n. Secondly, there are no obvious bounds on the
coefficients: they may be positive, negative or zero. The significance of
these observations will be explained below.

Having derived the general discretized form of the transport equation, the
requirements that this equation has to meet to mirror the differential ]
equation can be established. These requirements are discussed in the following

sections.
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4,1.1.1 Conservation

Equation 4.1 is, as already noted, an exact statement of the conservation of ¢
principle over the cell volume. Solutions of the discrete version (Equation
4.9) will obey this principle provided that the weighting factors o and g are
uniquely defined at the cell boundaries, rather than at grid nodes for the
reason that only the former practice will ensure that the fluxes are
continuous across the cell boundaries.

4.1.1.2 ’Boundedness

It is well known that, in the absence of sources, solutions to Equation 4.1
will 1ie within bounds given by:

min'(¢B) < # <max (dg) (4.16)

where gg denotes the boundary distribution. Sufficient conditions for the
discrete solution to obey this "boundedness" principle are that:

0 the coefficients ap and aj must all have the same sign, here taken
without loss of geRera]ity to be positive, i.e.,

ap, aj > 0 (4.17)

0 the central coefficient must be the sum of its neighbors, i.e.,
ap =z 3y (4.18)

These ensure that when Su = 0, ¢p is simply the weighted mean of the
neighboring 4, so no extraneous extreme can be produced.

Thg above conditions lead to further constraints on the weighting factors,
which may be summarized, by reference to those relating to F,, as follows:

o they must be non-negative, i.e.
aws By > 0 (4.19)

o the ay must sum to unity, i.e.

o =1 (4.20)

;
w v
0 the 8y must obey the resolution:
i i
Z_B _=12, 8

W

= f + (4.21)

w .

Inspection of the coefficient definitions (Equations 4.10 - 4.14) reveals that
obedience to the constraints of Equations 4.19 to 4.21 is not in itself
sufficient to ensure that the conditions of Equations 4.17 and 4.18 will be
satisfied. Infringement may occur from either the convection contributions
(since the convective coefficients are unconstrained as to both magnitude and
sign, apart from the overall mass continuity requirement) or from the
diffusion contributions.
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4,1.,1.3 Transportation

The directional properties exhibited by fluid transport phenomena are
well-known and are signaled in Equation 4.1 by the fact that3 fgr S = 0, the
equations become hyperbolic and streamlines become characteristics as the
Peclet number, p v L/T , (where L is a typical length scale) tends to )
infinity. The implication for the discretization is that there are dgma1ns_of
influence and dependence requirements to be observeq at each mesh point which,
simply stated, entail that at large Peclet numbers 1nformat1oq should be
propagated along streamlines in the direction of.the flow. Fa31ure to observe
this requirement can give rise to unstable solutions (nqnphys1ca1
oscillations) because the coefficients can become negative.

4,1,2 Accuracy

Accuracy is the primary requirement of any scheme that proposes to reduce
numerical diffusion. The scheme should be at least as accurate as the hybrid
scheme in all situations, and more accurate in most situations. '

The evaluation of the relative accuracies of different schemes is not a
straight forward task. The ultimate test of a numerical scheme should be based
on its ability to accurately calculate real flows. In the present context
these flows should be of the type that occur in a gas turbine combustor.
Unfortunately, such flows are complex, so analytical solutions are not
available for comparison. Measurements in these flows are subject to large
experimental inaccuracies. Moreover, these flows are turbulent, which means
that the solution accuracy is clouded by the turbulence model being used.

Traditional means of evaluating accuracy of numerical schemes are available.
For example, Taylor series analysis will give the order of the accuracy of any
scheme. Since this analysis is only accurate in the 1imit when mesh spacing
tends to zero, it is by no means clear that a higher-order scheme will
necessarily yield results that are more accurate than a lower-order scheme on
a mesh of finite size. Comparing solutions against model problems also has
lTimited generality because model problems may not be able to represent
adequately all the characteristics of the class of real flows for which the
numerical scheme is to be developed.

The performance of a number of different numerical schemes can be evaluated by
applying them to a single computational cell for different test cases. This
method allows different schemes to be assessed quickly against each other, but
has 1imited value because the conclusions are valid only for the particular
test cases studied.

It is clear that any one approach alone is not sufficient to assess the
accuracy of proposed schemes, and care should be taken in drawing general
conclusions from any such single comparison. In this study, all of the above
methods of accuracy assessment have been used in selecting the most accurate
scheme.
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4.1.3 Stability

Stability of a numerical scheme means that the computations using the scheme
should be able to converge to a solution. The stability of a numerical scheme
is, however, also related to the type of solution algorithm being used. For
example, the present algorithm (an Alternating Direction Implicit-ADI- method
using a Tridiagonal Matrix Algorithm-TDMA) requires that the coefficient
matrix formed from the differencing be diagonally dominant. Any alternative
differencing scheme for reducing numerical diffusion which generates a
coefficient matrix in which this dominance is lost will be unstable if the
present solution algorithm is used, regardless of the overall stability of the
finite differencing used. However, a more robust solution algorithm in place
of the ADI method may be able to converge to a solution with the same set of
difference equations.

4.1.4 Economy

Any scheme, if it is to be used in production versions of present computer
codes, should be economical to use when computing realistic flow problems.
Economy is understood to mean that the computing time required when using the
scheme should not be prohibitive. A scheme that yields a marginally more
accurate solution but requires significantly greater computer time would not
be cost effective. Computer codes requiring large computing times, usually
increase the time required to complete a job; consequently, regular usage of
the code is inhibited.

4,1.5 Variable Storage Requirements

Although the memory of present-day computers is extremely large, the number of
variables required to be stored for a computer program that solves the
equations for a two-phase turbulent, reacting, radiating flow using
curvilinear coordinates can be very large, especially if the flow is
three-dimensional and the geometry is complex. The storage capacity of even
modern computers can be easily exceeded in such cases. Since the memory
required is the product of the number of variables stored, the number of nodes
in the mesh, and the number of nodes in the computational molecule, there is a
trade-off between the variable storage requirements of a new scheme and the
increase in accuracy that is achieved by using it.

With a more accurate scheme, a relatively coarse mesh may be used to achieve
better accuracy compared to the existing scheme with a fine mesh. Therefore, a
more accurate scheme may reduce the overall memory requirements even though
the number of nodes in the computational molecule to be stored may have been
increased.

4,1.6 Compatibility With Present Codes

If a scheme is compatible with the present program it requires less ti@e to
incorporate it into the code. The present study was limited to deve19p1ng
improved finite-difference schemes for TEACH-type codes. Therefore, it was
essential that the proposed scheme be able to converge with the present
solution algorithm.
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4,1.7 Complexity

A simple scheme takes less time to incorporate into a code than a complex
scheme. However, this is a one-time expense, and a complex scheme which is

more accurate, economical and stable than a simple scheme is always to be
preferred.

4,2 METHOD OF ASSESSMENT

It is clear from the above discussion that a differencing scheme has to meet
several criteria before it can be considered for incorporation into the
present design codes. It is also clear that traditional Taylor series analyses
are not sufficient to assess the suitability of a given scheme. In this study,
both model problem calculations and examination of the properties of the
difference equations have been used to supplement the Taylor series analyses.

As explained in the previous section, examination of the weighting factors
shows whether a certain discretized form is conservative or not. Inspection of .
the coefficients reveal whether the discretized equation satisfies the
boundedness and transportational properties of the differential equation being
approximated. Examination of the coefficient matrix gives a good indication
whether it will be amenable to solution by the ADI method presently used in
the design codes. As is well known, ADI methods work best when the coefficient
matrix is diagonally dominant.

Model problem studies, in addition to assessing the accuracy of a given
scheme, are useful in estimating its stability, cost effectiveness, complexity
and variable storage requirements.

4.2.1 Limitations of Method of Assessment

The method of assessment described above is more general and informative than
use of the Taylor series analysis method alone. Two Timitations of the method
of assessment should be noted, however. First, schemes more compatible with
the present solver (the Alternating Direction Implicit method using a
Tridiagonal Matrix Algorithm) have an advantage over those schemes that are
less compatible; in principle, these schemes should be judged independently of
the solver.. Second, the model problems used herein usually demonstrate the
performance of a scheme for highly idealized flows possessing only a single
flow complexity; these simple flows are used because analytical solutions are
available. However, the practical performance of each scheme can only be
assessed by computing more realistic flow situations.

In the next section, difference equations for the candidate schemes will be

derived and their suitability will be assessed by examining the properties of
the resulting equations.
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4.3 DESCRIPTION AND PRELIMINARY SCREENING OF CANDIDATE SCHEMES

The following candidate schemes were assessed for incorporation into present
design codes of the TEACH type.

Agarwal Differencing Scheme (ADS)

Quadratic Upwind Differencing Scheme (QUDS)
Skew Upwind Differencing Scheme (SUDS)
Cubic Spline Schemes (CSS)

Glass and Rodi Hermitian Scheme (GRHS)

Flux Blending Schemes

O O W N
s o & o o o

In the following sections the candidate schemes will be described. The
descriptions will be brief for the most part, since many of the schemes are
well known and have been presented elsewhere. The less-familiar flux blending
approach will be developed in more detail. For the sake of brevity and ease of
understanding, the equations will be presented for the special circumstances
of flows in which u, v, p and T are uniform and positive, S=0, and the
computing mesh is square with spacing a. The evaluation of the candidate
schemes for their boundedness, transportation, and conservation properties
will also be discussed in this section. Any improved accuracy scheme must
satisfy these criteria for it to be considered as a candidate for
incorporation into computational fluid mechanics codes.

4,3.1 Central Difference Scheme (CDS)

By way of illustration, and for later reference, the properties of the
familiar CDS will be examined in the 1ight of the framework described in
Section 4.1.

The non-zero weighting coefficients for this are:

a&:a‘d’:l/z
(4.22)
P _ W _
By = By = 1
and likewise for aq, 8o etc. These give
where:
1 1 _ 1 1 4 23
aw=cw(?‘+-f),as—cs(-z+r‘) (4. )
€ €s

21



1 1 1 1
=z pe) qy=Cp gy )
n

Qy = gy = Ay = agp = 0

In the above equations, Pew= Cw/dw'

These show that the scheme is conservative, but bounded only for Pej < 2.
The cause of the latter limitation is failure to obey the transportation

requirement (i.e., use of downstream ¢ values in the convective flux
approximation).

For a one-dimensional probiem, ¢p can be obtained by using equation 4.23.
The result is:

‘Sp [(7 - 1) éE + (—2- 1) é] : (4.24)
4.3.2 Upwind Difference Scheme (UDS) |

In this scheme the g are identical to the above, but the a are given by the
following expressions:

aw={1,cw>,o}
w )0,C <0
ap={o,cw>,o}
wo|l,C, <0

and the coefficients have the form:

(4.25)

ap = Eai

a, = d, [1+5 (|pe [+ Pe )]
ap = dg [1 +-% (|Pey | = Peg)]
ay =d [1+5 (|pe, | - Pe)]
ag = dg [1+ % ( Pe | + Pes)]
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This scheme is seen to be both conservative and unconditionally bounded. Until
recently it and the familiar Hybrid Differencing Scheme (HDS), which is an
amalgam of CDS and UDS, were the only known schemes to possess these
properties. The inaccuracy of these schemes at large Peclet numbers is well
known, and the schemes that will be described in the following sections are
intended to improve on this aspect. As will be seen, some of these schemes, in
attempting to improve the accuracy, lose the essential qualities of the UDS
and HDS schemes, namely conservation and boundedness.

4.3.3 Agarwal Differencing Scheme (ADS)
This scheme, which was developed by Agarwal (Ref. 14 ) employs the extended

nine-point computational molecule shown in Figure 4-2, The scheme is of the
finite-difference variety and evaluates the derivatives in the following way.

Convective Terms - These are expressed via Taylor series as:

() = (ou) BE B (5% 4°
P Ny TPy ngp%— (4.26)

in which (a3¢/ax3)p is approximated in an upwind fashion by:

. 33¢ . ¢E - 3¢p + 3¢w = ﬂww
u> o: 3 = 3
ax A
(4.27)
. a3¢ N ¢EE - 3¢E + 3¢p - ¢w
u< o: 3 = 3
3x A
giving:
2 ¢. +38 ~64 +6 for uw> 0
E W WW ?
pu(—§§>p= (g%)F) P (4.28)

Diffusion Terms - These are evaluated in the usual central difference fashion,
giving:

M=), *r{—=" (4.29)
X A

23



WW W

Figure 4-2 Extended Nine-Point Computational Molecule

Approximation of the y derivatives in a 1ike fashion gives, after assembly,
the following expressions for the non-zero coefficents of the discretized
transport equation, for u, v> o:

1
aE=--3-Cp+d
ay = Cp +d

1 (4.30)

an, = -—-C
W~ "6 7p

1

== C_ + 2d

% =27

where Cp = (pu)p o and d =T/A

The following are comments on the ADS scheme.

1. This scheme is non-conservative, since Equation 4.27 does not guarantee
continuity of convective flux between adjacent pairs of mesh points.

2. It is also not unconditionally bounded, because certain coefficients are
either negative or can become so in some circumstances.
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Concerning the latter point, Table 4-1 gives the form of the coefficients for
one-dimensional transport in terms of the ratio Pe = ¢/d, and their limiting

values (after normalization by ap) when this Earameter tends to infinity.
Also given is the absolute sum £a1/a , which is a measure of the

diagonal dominance of the coeff1c1ent matrix. Similar information is provided
for the other schemes examined.

TABLE 4-1

ONE-DIMENSIONAL COEFFICIENTS AND THEIR LIMITING VALUES FOR INFINITE PE

LIMIT PE - oo
SCHEME | aww ay ag 3EE ap [aww/ap| awl/ap | ag/ap | agg/ap | Lle/apl
ADS —%; Pe+1 -%§+1 0 % -3 2 -% 0 2]
auos | el zmey (e, | o el | x| 3| oo | o | a2
gggg 0 %upmfpa+1 %npq—pm+y 0 2+ |Pe| 0 1 0 o 1
gls)gl 0 % (?29.5-1) g(._P_TJ,}) 0 1 ) w -~ ) o

In the present instance it is clear that the negative coefficients are not
insignificant in comparison to the positive ones and, moreover, the matrix is
far from diagonally dominant. The expectation is therefore that problems of
"nonphysical oscillations" and numerical 1nstab111ty may arise in generating
solutions for this scheme. Since this scheme is not conservative and

unbounded, it does not seem to be a promising scheme and was not considered
further,

4.3.4 Quadratic Upwind Differencing Scheme (QUDS)

This scheme, which was proposed by Leonard (Ref. 15 ), is derived via the
finite volume approach. It approximates the diffusion operator using
conventional central differencing but uses upstream - biased quadratic
1nterp01at1on to approximate the convective operator. For example, the term
(pu)yady is evaluated as follows:

(ou),, s 8, = (4.31)
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The presence of the negative coefficients in the above is noteworthy, for it
illustrates the point made earlier about the possibility of these arising when
higher-order interpolation is employed. The adoption of these practices for
the remaining terms gives, for (u,v)=0, the following non-zero coefficients:

3

aE=--8CX+d \
7

aw =7 Cx + d

a, =2 Cy+d (4.32)
N~ 8 >

,aww = - CX/8

aSS=—Cy/8

a =2 (C.+C) +4d
P8 x vy /

where:
CX = (pUA)w = (puA)e
Cy = (pUA)n = (PUA)S

The following are comments on the QUDS scheme.
1. As already noted, this scheme is conservative.

2. However, it is not unconditionally bounded, as is indicated by the above
and Table 4-1 which also shows that it departs further from diagonal
dominance than the ADS in the large Pe 1imit. Although this scheme is
unbounded in its present form, it can be bounded using the bounding
schemes to be described later. Hence this scheme will not be eliminated at

- present,

4.3.5 Skew Upwind Differencing Scheme (SUDS)

This is a finite volume scheme which was developed by Raithby (Ref. 16 ) and
employs the compact nine-point computational molecule illustrated in Figure
4-1. In this scheme, the convective flux is obtained by employing upwind
differencing along streamlines. The streamline direction is defined at each
boundary by the velocity direction (Figure 4-3). The convected ¢ is obtained
by back-projection of this vector until it intersects a grid 1ine and then
interpolation at the intersection point, the interpolation practice varying
according to the sector in which the vector lies. By way of illustration, in

the example of Figure 4-3, if the intersection lies between W and SW, linear
interpolation is used. Thus:

a = min (1, Cy/2 CX)
O’.&:l-a‘svw
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Figure 4-3  Control Volume for Skew Upwind Differencing for West Face of

Control Volume and Positive Velocity Components

The above practices give rise, for the particular flow directions shown in

Figure 4-3, to the following non-zero coefficient expressions:

ay = d+C oo -C,a
g =d

a,=d+C a2 -C a
aN = d,

ag, = C, o+ c, o
ap =2 a,

W
n

)

(4-33)
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The following comments concern the SUDS scheme.
1. This scheme is conservative for reasons already explained.

2, It is not, however, unconditionally bounded because the net convective
contr1but1ons to ay and ag can be of either sign. This condition is a
consequence of the f1uxes leaving through the n and e cell faces being
linked to @y and dg, respectively.

3. The scheme reduces to the UDS when the mesh and flow are aligned, so in
these circumstances it is bounded.

On the basis of the second comment it can be expected that the solutions

produced by SUDS may exhibit "nonphysical oscillations" and may be difficult

to obtain due to the matrix not being diagonally dominant. Although this
scheme is not unconditionally bounded it will be retained for further accuracy

$va1uation because it can be bounded by the bounding schemes to be described
ater.

4.3.6 Cubic Spline Scheme (CSS)

The adjective "spline" will be used here to denote schemes based on assumed
interpolation formulae whose coefficients are linked to nodal values of ¢ and
one or more of its derivatives, (' = m) and (4'' = M). A particular scheme
will be examined briefly, namely the Cubic Spline Scheme (CSS), which has been
employed by Rubin and Graves (Ref. 17 ), Vacca, Werle and Polak (Ref. 18 ) and
Kumar (Ref. 19 ), among others. A cubic spline:

3
S=2a; (x - X )

i=0
in the interval xj_1 < X < Xj, is a polynomial function which is
continuous in 4, m and M suc% that:
(x. - X) (x - x: 1)
i I R 1.2 5 4.34
' = MJ._1 — Mj 3 ( )
and hence, by integration
(x;x0% (k- %y )
+
SeWMa—m "N
(4-35)

2 Xi;=X 2 X-X.
A J A j-1

where A = Xj-Xj_1 . The M; in the above equation are unknown, but can be
related to %he ¢ by requiring continuity of M at the matching of two

splines, to g1ve
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6
MJ._1 + 4Mj * Myeq = ;7 (¢j-1 - 2¢j + ¢j+1) (4-36)
A similar derivation provides the following 1ink between the mj and dj.

3
mi_q + 4 m, + Miyg =3 (¢j+1 - ¢j-1) (4-37)

The above, along with the functional relation between @45, M;i and mj
obtained by applying the differential equation to be solved at the nodal
points, i.e.,

f (¢j, ms > Mj) =0 (4-38)

produces three coupled sets of equations in the three unknowns. The resulting
block 3 x 3 tridiagonal matrix requires in general an inversion procedure for
solution, so the properties of the equations and the results they will produce
are not so readily analyzed as were the earlier schemes considered here.
However, the example application described below is a useful exception to this
rule.

We consider the solution by the CSS of the 1-D convection-diffusion equation
(designated in Tlater sections as test Case 0D1) for which the governing
differential equation is, in the present notation:

PeA
—Lm, - M = 4-39
T M- My =0 ( )
where Pe, = oua/T" is a Peclet number. This equation can be used to eliminate
the Mj from Equation 4.36, thus: .

Ter

6
A (mj—l + 4mj + mj"']..) =X2' (¢j+1 '2 éj + ¢j_1) (4.40)

The mj can now be eliminated by combining Equations 4.37 and 4.40 to yield:

Pe ,d. - 6.
A ("3t j-1)
5 - ¢j+1 + ¢j-1 -2 ¢j (4-41)

or, in the "compass" notation and after rearrangement:

1 PeA 1 PeA

The above equation is identical to Equation 4.24 which was produced by three-
point centered differencing.
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The properties of the CDS are well-known and have been reviewed in Section
4.3.1. Briefly, the scheme is second order, positive and bounded provided that
Pey <2. Above this value, diagonal dominance is Tost, "nonphysical
oscillations" occur, and the accuracy generally falls below that of Tower
order schemes. The available evidence about the CSS falls within this pattern;
it should be noted that, in nearly all applications reported in the 1iterature
where the scheme has been successfully applied, the cell Peclet number Pe,
zag)been at or below the critical Tevel in regions with steep gradients (Ref

It would appear that the CSS is unlikely to be useful in the
convection-dominated circumstances of interest in the present study; in some
cases, it may be disadvantageous. Similar comments are Tikely to apply to
higher order centered splines, the common deficiency being infringement of the
transportation property. For convection-dominated flows, it may be useful to
introduce the notion of an upwind-biased spline, as has been done in a
preliminary way by Kumar (Ref. 19 ), but this is a matter for future research.
No further consideration will therefore be given to the CSS in the remainder
of this report.

4,3.7 Glass and Rodi Hermitian Scheme (GRHS)

This scheme, developed by Glass and Rodi (Ref. 20), uses a cubic
interpolation polynomial instead of a cubic spline. This polynomial can be
written in the following form in two dimensions.

4

b= T (ab +a .m

(4.43)
j=q1 11 Xy X, 1 * ay,imy,i ¥ axy,i )

| .
XYy, i

where the a's are cubic polynomials in x and y, and my, my, and My

denote ag/ax, ad/ay and 32g/axsy, respectively. This interpolation formula
is employed in an explicit, time-marching method of characteristics
calculation of convection whose essential features are Tisted below.

1. At each new time level, the characteristic line (i.e. particle path)
passing through each grid node is traced back to the previous level from
knowledge of the velocity field.

2. The value of ¢ at the intersection point of the characteristic with the
old time level plane is determined using Equation 4.43 for each cell. This
value is used to evaluate the convective flux.

3. The values of g3, mj and Mj appearing in Equation 4.43 are
determined at each mesh point by solving transport equations for them;
those for Mj being derived through differentiation of the ¢ transport
equation. ,
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The novel character of this method complicates evaluation and comparison with
the other schemes considered here. Also, this time-marching scheme is not
gompatib]e with the present steady-state formulation. It is acknowledged by
its qeve1opers to be non-conservative (although they show that if the mesh is
sufficiently fine to give good accuracy in 4, the conservation errors are also
small). It is also not unconditionally bounded, but there is no obvious reason
why the coefficients in Equation 4.43 cannot become negative. In addition, the
usual stability limits on an explicit method apply, e.g., in one dimension:

ust Ipe 1
T<1’?<—2-' (4.44)

The accuracy of the method, for the test cases examined by its developers, is
markedly superior to those of CDS and UDS with which they were compared. It
required about twice as much computing time as CDS and UDS on a given mesh,
but on a time-for-given-accuracy basis it would undoubtedly prove better.
These, however, were explicit calculations which invariably require
substantially more time to reach the steady state than do implicit methods.
The utility of the approach for the present purposes then depends on whether
it can be implemented implicitly. This matter is beyond the scope of the
present study, so the GRHS was also excluded from further consideration here,

4.3.8 Schemes Generated by Flux Blending

A1l of the otherwise desirable schemes that have been studied in this section
suffer from the defect that the coefficients generated by these schemes are
not unconditionally positive. Negative coefficients are not desirable from
stability and boundedness considerations.

Hence, a method is needed that would either make the coefficients uncondition-
ally positive or at least modify them so that the solution obtained remains
within bounds. It is apparent that in the absence of this method all of the
schemes studied so far will have serious flaws. There are only a few such
methods available in the literature. A. D. Gosman (consultant to this program)
and his co-workers at Imperial College, London, have been working on what are
called Flux Blending Schemes. These schemes will be described in detail below.

4,3.8,1 The Flux Blending Strategy

The concept of flux blending was prompted by the "Flux Corrected Transport”.
(FCT) technique developed by Boris and Book (Ref. 21 ) and others, in the
context of explicit time-marching techniques. The approach adopted here for
implicit steady-state calculations was developed by Gosman and Lai (Ref. 13 )
and Gosman and Peric (Ref. 22 ) and differs from FCT in several important
respects. It operates as follows: in the assembly of a flux-blended scheme,
the flux F at each cell boundary is expressed as the weighted mean of a
bounded (but perforce "low order") scheme, FL and an unbounded, but higher
order scheme, FH, thus:

Foy M+ (1oy) F- (4.45)

Here vy, the blending factor (0<y<l) is uniquely defined at the cell boundary
in question, so that the blended scheme is conservative. The other important
requirement on vy is that it should be as Targe as possible, within the over-
riding constraint that the solution should be properly bounded.
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Two alternative strategies have been developed for ensuring that the Tast
named requirement is fulfilled (or nearly so). These strategies are listed
below.

a) Strategy 1 - This strategy operates by choosing y so as to suppress
negative coefficients in the blended scheme: this, as was demonstrated
earlier, is a sufficient condition for a bounded solution. This is the
approach used by Gosman and Lai (Ref. 13 ).

b) Strategy 2 - This strategy, which was developed under the present
contract, ensures that when negative coefficients occur, their
contribution to the solution is below the level which would cause it to be
out of bounds. This approach is more akin to the original FCT.

Each of these strategies has its advantages and disadvantages which are best
brought out by examining the properties of some specific flux-blended schemes.
Three of these will now be described, namely BSUDS1, which is a blend of the
UDS and SUDS schemes based on strategy 1; BSUDS2, which blends the same

schemes using strategy 2; and BQUDS, which uses the latter strategy to blend
the UDS and QUDS.

4,3.8.2 The BSUDBS1 Scheme

It is not difficult to show that if the UDS and SUDS fluxes are blended in the
manner just described, the resulting non-zero coefficients for (u, v>o0) are:

W W
q=d*+C o (1+y, O = Ty - Tn Cy ®n )
aE=d

S S
aS—d'l'Cy(l-YSaS)-Yecxae

’ (4.46)
aN=d .
SW SHW

Ay = Ty Ox @y t Y Cy %s
ap:Zai : )

where the a are defined as before. Note that for the present,

Ye = Yy = Yx and yq = vg = vy. The above coefficients bear a
close similarity to those of ¥he parent SUDS scheme, (c.f. Equation 4,33) but
it is clear that in the present case it is always possible to avoid negative
coefficients through appropriate specification of the v's.

The determination of the appropriate y field is however a non-trivial matter,
for inspection of the expressions for ay and ag (the only coefficients

which could become negative in the present circumstances) reveals that the
values are interdependent; i.e. ay and ag contain both yyx and yy as do
certain of the other coefficients.
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What has in fact emerged is an optimization problem of the following kind.
Maximize the object function:

F(v) = v * v (4.47)
subject to the constraints that:
0<vyxl (4.48)
- - - .49
ay = leg - Fivy 5 - 957,90 (4.49)

where Y1,i and y2_i are the weighting factors appeqring in a ga(ticular
coefficiént aj and (ej - fj v1, i), and gj are positive quantities
deducible from the definition of that coefficient. For example,

Cw

=d+Cx, fw:Cx (1"(1&); gw=c‘yaH)

Lai Ref. 23 used the 'Simplex' optimization method for this purpose and
derived the following expressions for the optimum y.

- Pt _ - (4.50)

Ty = Y1,i T 1
Cx
1, if Pey> 2Cy/(Cx - Cy) and 1 < T < 2
Y = Yop? = y (4.51)
X 2,1 2(1/Pe. *+ 1 - k) otherwise
y y
where: K =

y min (1, cx/2 Cy)

The follow are comments on the BSUDS1 scheme.

1.

This scheme is conservative, has positive coefficients, and is
unconditionally bounded.

In contrast to the FCT method, it operates only on the coefficients and
makes no explicit reference to, or requires knowledge of, the solution
bounds.

Because the resulting coefficient matrix is unconditionally diagonally
dominant, numerical stability problems are minimized.

It has, however, two disadvantages: firstly, the positive coefficient
requirement can be argued to be overly-stringent (i.e. it is a
"sufficient" rather than a "necessary" condition for boundedness) and may
Tead to excessive blending of the Tow-order scheme; and secondly, it is
only applicable when the computational molecules of the low and high order
schemes coincide at those nodes where the Tatter produces negative
coefficients. (In this respect the UDS and SUDS schemes are well-matched,
for SUDS has positive coefficients at all but the principal nodes N, S, E
and W). These disadvantages are overcome (at the expense of others) by the
second blending strategy, which will now be described.
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4,3.8.3 The BSUDS2 and BQUDS2 Schemes

As mentioned earlier, Blending Strategy 2 relaxes the positive coefficient
requirement and replaces it with one of adherence to estimated bounds on g.
This gives rise to two distinct problems; one being to determine the bounds in
a sufficiently general way, and the other to work out the appropriate v
values. This latter aspect will be dealt with first, on the assumption that
the bounds are known.

The y calculation is iterative and starts from an initial prescription of
unity values everywhere. In the first stage of each iteration the y values at
all boundaries of a particular cell are taken to be equal when it is first
considered. This allows the coefficients of the difference equation to be
expressed in the following general way in the first iteration:

a. = a,' + ya,'' (4,52)

1 1 i

' [ _ ' 1
( a;' * vy ay ) ¢p = a;'ds ty a; 8. (4.53)
where aj' contains those terms not depending on vy, and vyaj'' contains the
remainder. Let the solution to Equation 4,53 for given g; be ¢p and let

the known lower and upper bounds, one of which will be 1mposed if g, lies
outside them, be @i, and By, respect1ve1y It is then easy to shoa that

if:

a) 4> ¢ then

p” “max
) a,'" - aXa.'sd.
y = max]E'; 2 LI (4.54)
285 8 " Prax 3y
b) ¢p< ¢min then
(Zh 'é -4 a, '
Y=g 2: "‘E‘QE 5 (4.55)
min

if ¢ is within bounds, y is simply left unchanged at the prevailing level.

It should be noted that these equations are valid only in the absence of
sources and will be modified when sources are present (see Section 5.1.5).

The foregoing procedure produces a field of y's which is non-unique, for in
general, two values will have been calculated for each cell face. This is
resolved in a second stage simply by taking the minimum of the two values in
the knowledge that this is a "safe" practice, i.e., it will a1ways maintain
the bounds. This completes the iteration, after which (aj'')™ is replaced

by (vaj '')ym-1 (where m is the iteration counter) in preparat1on for the

next cycle

34



There remains the non-trivial matter of how dpjn and gpax are to be
determined. This is the subject of continuing research, but quite encouraging
results have been obtained by requiring that 4 should be separately bounded by
the prevailing neighboring #; along each grid Tine passing through P, In the
model problem studies, this produces two estimates for the bounds, viz.,

(¢

(¢m1n, max)2

and the practice is to calculate ¢ via Equations 4.56 and 4.57 for both and
then take the minimum value. There are other alternatives to this scheme and
this formulation is the one which was found useful for model problem studies.
For the two and three dimensional codes, this formulation is replaced by
another method of computing bounds on ¢p (see equations 5-54 and 5-55).

min, max)1 = Min, max (8, 4,) (4.56)

i

min, max (gy, ¢S) (4.57)

The application of this blending practice to SUDS and QUDS (for which the UDS
has been used as the Tower order scheme) is now a straightforward matter of
deducing the appropriate expressions for the a;' and a;''. This has been

done and is summarized in Table 4-II.

TABLE 4-11

COEFFICIENTS OF BQUDS AND BSUDS2 FOR THE CASE OF
POSITIVE RADIAL AND AXIAL VELOCITIES

SCHEME " COEFFICIENTS (u >0, v>0)
ag aw aN ag age aww SNN ags
dw + C ds + C
BAQULo | de - g 7eCe 2 v w1 dn — g YnCn 2 ° S1 o B Js' YwCw o] - l8 7sCs
- §'1wa + §78Ce - §7SCS + §7ncn
SCHEME COEFFICIENTS (u >0, v>0)
ag ‘ aw aN as aNE aNw 3sE- asw
dw + Cw dg + Cg oW
wCwa +
BSUDS2 de ~YwCw (1 —u\x) dn - v5Cs {1 _as) 0 o o :v'ywC \ZSW
s
- 'Yncn"xv ~ veCeq s
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Comments

1. The advantages of this blending procedure are that it is capable in
principle of producing conservative and bounded solutions for any
high-order scheme which is itself conservative, i.e. the "overTapping
molecule” structures of the strategy 1 do not apply.

2. There are however several disadvantages as compared with strategy 1:

a) The difference equations are now non-linear (i.e. the aj's depend
on the g's through y) even when the parent differential equation is
not. Therefore, the cost and complexity of obtaining solutions
increases. On the other hand, in many practical calculations the aj
are not constants anyway.

b) The solution is only guaranteed to be bounded when the final result
is obtained, so precautions must be taken to avoid the adverse
consequences of overshoots at intermediate stages (see Appendix A-5).

c) The coefficient matrix will not necessarily be diagonally dominant
(although whatever lower-order blending is performed will increase
diagonal dominance) so numerical stability problems may still arise.

d) The uniqueness of the solution cannot be guaranteed due to the
non-Tinearity of the equations and somewhat arbitrary although
logical method of estimating the bounds. Studies thus far suggest
that this is not a serious problem in practice.

Thus far, attention has been focused on the conservation and boundedness
properties of the schemes chosen for evaluation. Based on this preliminary
screening, three schemes, namely the ADS, the CSS and GRHS, were excluded from
further evaluation; possible defects (negative coefficients) were identified
in certain of the others. Recognition of these defects led to the development
of flux blending schemes and these have been described in detail.

4.4 ACCURACY EVALUATION

This section contains a discussion of the accuracy evaluation of the remaining
schemes.The consequences of the defects identified in the schemes in the
previous section will also become apparent. The flux blending strategies will
also be applied to some of the chosen schemes and their effect on the
accuracy, stability and boundedness of these schemes will be studied by
calculating some test cases.

4.4.17 Truncation Error Analysis

The formal Taylor Series Truncation Errors (TSTEs) of the schemes chosen in
the previous section for further evaluation will now be presented and
discussed. Since it is the accuracy of representation of the convective terms
which is the critical issue, these TSTEs have been evaluated for the Timiting
case of purely convective transport. To facilitate interpretation of the
results in terms of their numerical diffusion implications, the flow has been
chosen to be uniform and parallel.
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The truncation error expressions are given in different forms in Tables 4-III
and 4-IV, For obvious reasons no entries appear for schemes based on the flux
biending strategy 2, i.e. BSUDS2 and BQUDS2, but it can be assumed that the
associated TSTEs will be strongly biased towards the higher-order component of

the blend. Evidence to this effect can be seen in the TSTE for BSUDSI,
discussed below. Although ADS has been eliminated from consideration, it is
included in this discussion because it turns out to be the most accurate
scheme based on TSTE analyses and reinforces the argument against using only
Taylor series analyses for accuracy evaluation.

TABLE 4-I1I

TRUNCATION ERRORS FOR THE CONVECTIVE TERMS OF THE UDS, SUDS, BSUDS1, QUDS AND
ADS FOR A UNIFORM FLOW AND SQUARE MESH: CARTESIAN COORDINATE VERSIONS

SCHEME TRUNCATION ERROR
UDS 1oa(udPe, 220
2 x2  ay?
2 2 2
SUDS JmAPi£+vig+m(l+gi,¢;k=mm1p1
2 ax2 6y2 2 axay 2v
2 2 2
BSUDS1 1oa o8, 978, 5, 0%
2 ax2 ay2 oxdy
QuDs _ a2 [Uf’g “y a3¢]
24 ax 6y3
4 4
ADS _ a3 [,8 6, %
12 ax4 8y4

The entries of Table 4-III express the TSTE's in the original Cartesian
coordinates (x, y) and the corresponding velocity components (u, v) in which
they were derived. However it is more instructive to transform them into the
"streamline" coordinates (s,n), where s and n are measured along and normal to
the streamlines, respectively. Table 4-IV contains the transformed versions,
certain terms of which are singled out for attention by enclosing them in
square brackets. These forms involve derivatives in the streamline direction
which, in the present convection-dominated circumstances, will be negligible
in the absence of sources, thus, it can be argued, it is the remaining terms,
involving cross-stream derivatives, which are the principal source of error,
(provided of course that the TSTE is truly representative of the error, a
point which will be discussed later).
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According to Table 4-1IV the hierarchy of the various schemes is as follows: 1)
UDS, SUDS and BSUDS1-1st order; 2) QUDS - second order; 3) ADS- third order,
where the "order" refers to the exponent on the mesh spacing a. If, as in many
finite difference analyses "order" is erroneously taken to be synonymous with
"accuracy", then the ADS would stand out as superior to the other schemes and
the UDS, SUDS and BSUDS1 would be collectively dismissed as having the same
Tow accuracy. This interpretation is now widely recognized as being misleading
and evidence to support this view will be given here '

°

TABLE 4-1V

TRUNCATION EXPRESSIONS OF TABLE 4-III, TRANSFORMED INTO (s, n)
STREAMLINE COORDINATES

SCHEME TRUNCATION ERROR
2 32 324
uDs 2 p|V|A{\/—2—- sin(26) sin{n/4+0) 0% + [(cos39+sin39) —-—4’- + sin(26)(sinB ~cos6) ¢ ]}
2 2 an? ds? : 9sdn
. 2 2
sSUDS 2 pjvia { YV sin 20)icos6—2sin(6K) % + [cos39+sin36+ sinfsin{20) (;—m ‘__a i
2 2 anZ 3s2
! .2
+ (sinf26) (sinB-cosBH-2sin8 cos(29)(%+K) M ] } : K = min (1,-;——3—)
dsdn
1 24 a2
BSUDS1 - Piv|A \-/2—— sin(268) sin(m/4-0) 6___‘2 + [(cos39+sin39+sin9 sin(20) =
2 2 an2 982
. . 324, .
((sin(ze) (sinf —~cos8)+2sinf cos(20) 2e0m
: 3 3 234 ]
pull I 1 334 to+sint 222 _ 3 snue 0 4 2 sinzen 22
QuDs 24 Plv| A2 {T sin{40) -a?’- + l:(cos 8+ sin 9‘). ) > sin T 7 Beon2
. 344 ' 344 . ) 3%
ADS :;—; pivi A3{% 8in 20 (sin3 6 + Acos3 U] 2t Ecos36 + sin3g) 53_44; 2 sin(26)sin3 § — cos39) 3s3an
- 244 20 P
+-g- slnz{29)0039+ sing) 52 802 + sin? {20) (cosf — sing) PP
It is those TSTE's which contain second derivatives,

onventional to interpret
e.q. a§¢/ax2, 226/0y2, a2¢/ang

with the "real
analogy allows

ratio:

rn um
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as being diffusion-like, by qnalogy )
" diffusion terms in the full transport Equation 4.1. This
a numerical diffusion coefficient T pym to be defined as the

(4.59)



and evaluated for schemes having TSTE's of this kind. These comprise the
first-order UDS, SUDS and BSUDS1. Table 4-V gives the numerical diffusivity
formulae, which are all of the general form

Tpym = ° lv] f(e) (4.59)

TABLE 4-v

NUMERICAL DIFFUSIVITY EXPRESSIONS FOR UDS, SUDS AND
BSUDS1 IN STREAMLINE COORDINATES

SCHEME Thum

ubDS \/szA ]_\7|sin(26)sin(w/4+6)

SUDS %pA Vlsin(28)[cos(6) — 2sin(6K)]; k = min (1 5_”;)

BSUDS1 ‘/szA IV|sin(28)sin(r/4 — 6)

where |v| = (u2 + v2)1/2 and o = tan-1 (u/v) are, respectively, the

magnitude of the resultant velocity and the angle which it makes with the
mesh. The function f(e) is dimensionless and is plotted in Figure 4-4 for each
of the schemes mentioned. The plot is terminated at ¢ = 45 because the
functions are all symmetrical about this angle. It can be seen that i) the
levels and variations of T'p produced by the three schemes are quite
different, indicating that t eir "order" is an incomplete indicator of their
relative performance; ii) the SUDS is substantially better than the UDS, and
BSUDS1 is between the two, but strongly biased towards the former; and iii)
whereas Tpyy for the UDS increases monotonically from zero at e = 0 to a
maximum at e = 45°, the other schemes have their maxima at intermediate angles
and have zeros at the two extremes. On the basis of these results and the mode
of operation of BSUDS2 it can be conjectured that it would probably fall
between SUDS and BSUDS1.
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Figure 4-4 Comparison of Numerical Diffusivities for Discretization Schemes

As a final comment, it should be noted that, while the TSTE's of the ADS and
QUDS are not diffusion-1ike and therefore do not permit the evaluation of a
Thums it is not correct to imply that they will not produce numerical
smearing or other unfavorable effects; this will be shown in the test cases
described in Section 4.4.3.

4.4,2 Description of Test Cases for Accuracy Assessment

The test cases chosen here to evaluate the discretization schemes are ones for
which it is possible to obtain exact solutions to the governing equations. The
cases fall into two classes according to whether they are one- or
two-dimensional. Within the latter there is a further sub- division according
to whether "single-cell1" or "field" calculations are performed. In the
first-named kind, a single computational molecule is considered and is
analyzed using the difference equation by inserting the exact analytical
values for the neighboring ¢ and comparing the result with the exact #. The
fact that an algebraic formula is obtained for the ¢ error is convenient for
analysis, but the approach has the disadvantage of not showing the error
propagation and accumulation effects that often occur in practical
calculations. Hence, "field" tests, in which calculations are performed over a
representative computing mesh with the exact values imposed at the boundaries
only, were also included.
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In this section, all of the test cases are described. Results of the model
problem studies based on these test cases are discussed in Section 4.4.3.
Unless otherwise stated, these test cases pertain to situations in which o, u,
v and are everywhere uniform (which means that the flow is everywhere
uniform and parallel). The computing mesh has square cells of side a. It
should be noted that most schemes were not applied to all test cases: Table
4-VI shows the various combinations examined.

TABLE 4-VI

SUMMARY OF THE COMBINATIONS OF DISCRETIZATION SCHEME AND
TEST CASE EXAMINED

Model problem

Scheme |OD1| OD2 | OD3 | TDF1|TDF2 | TDF3 | TDF4 | TDS1(TDS2
QuDps | v | v | v | w | v | v | v | v
SUDS v | v | [ | v | v
BSUDS1 v v | v |
BSUDS2 v | v

BQUDS |~ | ~ v |

UDS v v | v | v |

4,4,.2,1 One-Dimensional Cases

These represent solutions to the one-dimensional transport equation.

2
dd__ 1 dd _ o (4.60)
. Pe gxel

where x* = x/L, Pe_ = oul/T , S* = SLpu and L is a characteristic Tength.
The following test cases were examined:

(a) Convection and diffusion in absence of source, Test Case (opl).
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nge S* = 0 and the boundary conditions ¢ = 0, 1 at x* = 0, 1 are imposed to
give:

exp (PeLx*) -1
exp (PeL) -1

(4.61)

(b) Convection with no diffusion and linear source, Test Case (0D2).

This is similar to case 0Dl above, but the source S* is now a piecewise-linear
distribution. This test case was also employed by Leonard (Ref. 15 ) in his
presentation of the QUDS scheme. The exact solution is of the form;

*

*
)2 , for x > x v (4.62)

+ * * + *
g = ¢o a(x - xo) b (x - x o

(o]

where x* is the starting point of the source and a and b are constants linked
to its level and gradient.

(c) Convection with no diffusion and plane source (0D3).

For this case Pe is assumed to be infinitely large, S*=1 at x*=0.2 and is zero
elsewhere, and ¢ = 0 at x*=0. The solution is:

4.4,2.2 Two-Dimensional Cases

For these test cases, solutions are obtained to the two-dimensional transport
equation, '

2 2
of 28 38 .38
pU X + pv -5—)-,- - T (ax + ;2-) =0 (4.63)

for the different circumstances described below. These cases will be denoted
by "TD" with a suffix S or F to indicate whether they were used for single
cell or field evaluations, respectively.

(a) Convection in Absence of Diffusion

Three cases are considered for the convection of a prescribed distribution ¢
(n), where n is the coordinate normal to the streamlines. In two of the cases
the flow is uniform and parallel, Figure 4-5, but in the third case, the
streamline pattern corresponds to irrotational plane stagnation flow (Figure
4-6) in which the ¢ are found to be rectangular hyperbolae, i.e.

g = xy (4.64)
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7

Figure 4-5 Uniform and Parallel Flow

/’—

Figure 4-6 Inviscid Plane Stagnation Flow

In all cases the exact solution is simply 34/3S = O where S is the streamline
coordinate: thus on each streamline ¢ is constant and equal to its initial
value.

(1) Single Cell Calculation of Convection of a Gaussign Distribution in
Uniform Flow (TDS1) - Here #{n) = exp (-1/2 (na*)¢) where a* = /o,
o is the standard deviation of the Gaussian, and n is measured from
the streamline passing through node P, Figure 4-7,

(ii) Field Calculation of Convection of a Step Function in Uniform Flow
(TDF1) - In this case

¢(n)=0,f0rn<n5
(4.65)
1, forn> ng

where ng denotes a selected reference streamline.
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(i11) Field Calculation of Convection of a Square Wave Function in

Irrotational Plane Stagnation Flow (TDF2)

g(n) =1 for ng] < n < ng2

(4.66)
= 0 otherwise

where ng1 and ngo denote reference streamlines.

(b) Field Calculations of Convection and Diffusion of Initial Step Profile in
Uniform Flow (TDF3)

NwW
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Figure 4-7 Single Cell Calculation of Convection of a Gaussian Distribution

This case is similar to TDF1 but now cross-stream diffusion is allowed to

modify the initial step profile as it proceeds downstream. The exact solution
1

is:

g(a, n) =~% [1+ erf E% n (Pe/Ai?]]

where erf is the error function.

(c) Scalar Transport in Jet Flow Field (TDF4)

In this particular case the flow field is non-uniform, being that of a self-
preserving laminar plane jet. The associated velocity field and the
corresponding self-preserving scalar field, for the case where the jet is
initially "heated", are given by Schlicting (Ref. 24) and will not be quoted
here. In tne test calculations the exact velocities are imposed throughout the
grid in such a way as to ensure that the discrete mass conservation

requirement is obeyed at each cell; the exact ¢values are imposed at the
boundaries in the usual fashion.

44



(d) Sjng]e Cg]] Calculation of Convection and Diffusion of ¢with Initial
Linear Distributions (TDS2)

In this case the Tinear ¢ distributions are imposed at the boundaries. The

solution for ¢p 1s given by Castro (Ref. 25) and is in the form of an
infinite series.

4.4,3 Results of Test Cases

The yesu]ts of some of the test calculations will now be presented under the
headings of the different schemes which have been tested. In many instances
@he predictions of the UDS are included to provide an indication of the
improvements which have been achieved.

4.4.3.2 The QUDS and SUDS

The QUDS results for the single-cell test Case TDS1 (convection of a Gaussian
distribution) will be examined first: they are displayed in Figure 4-8a,
showing ¢p plotted against the angle between the flow and the grid, for
various values of the ratio a* of the mesh spacing to the standard deviation.

Evidently at any given a* there is agreement with the exact solution (given by
¢p = 1, for a11°e) at e = 0, but a finite and increasing error emerges for
angles up to 45 , indicating that numerical smearing is occurring. The UDS
results of Figure 4-8b show similar behavior, but the errors are considerably
larger.The single-cell test case results for SUDS are shown in Figure 4-8c.
This figure indicates maximum error levels comparable to those obtained using
QUDS, but they occur for SUDS at angles of around 15 . This is in contrast to
QUDS which gives large errors at the larger angles. The latter behavior is in
conformity with the numerical diffusivity characteristics displayed earlier in
Figure 4-4,

(a) QUDS (b) UDS
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Figure 4-8 Comparison of QUDS, UDS and SUDS for Test Case TDSI



Figure 4-9 shows a plot of the error with a* and indicates that the error
decreases more rapidly for the QUDS than it does for the UDS as the mesh is
refined. The slopes of the lines are 3 and 1, respectively, in conformity with
the indications of the TSTE analysis of Table 4-III for the UDS but not
apparent1y for QUDS which the analysis indicates to be second order; for a

gss1an distribution, the leading error term for QUDS is zero (i.e.

¢3/3x3 = 0) whereas the next highest term in the error series is non
zero Note also that the 1ine representing SUDS in Figure 4-9, has the same
slope as that of QUDS (the fact that it 1ies below the QUDS resu1t is of
Tesser significance, since it is merely due to the SUDS error being small at
the flow angle 30° for which the results are plotted) indicating that in the
present instance SUDS behaves 1ike a third order scheme. This apparent
conflict with the truncation error analysis can be explained by the fact that
leading terms of the error series are in the present case small in comparison
to the higher order ones. The results of Figure 4-9 show the inadequacy of

using truncation error analysis alone in determining the accuracy of various
schemes.

HDS or UDS

104T

-2
10~ Bsubs1

E = (¢exact "‘4’)
. A¥
10-3
SuUDS
10-4 1
0.1 1.0

A*

Figure 4-9 Error as a Function of Mesh Spacing for Test Case TDS1 for
Various Schemes for Flow Angle of 30°
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For the field calculations, Figure 4-10 shows the QUDS predictions and exact
solutions for the convection and diffusion of a step profile (Case TDF3) for
an overall Peclet number of 50 and for various e. The results are displayed in
terms of the ¢ profiles along the vertical mid-plane of a @ x 9 grid and show
the much-reduced smearing error of QUDS as compared with UDS as e is increased
(it is nonetheless finite and increases with e). Also shown are the
undesirable undershoots and overshoots of the higher-order QUDS scheme.
Examination of the SUDS field calculations for Case TDF3, also shown in Figure
4-10, confirms the general characteristics already described but also
illustrates the fact that, 1ike QUDS, this scheme can produce unbounded
behavior when ¢ gradients are steep: in this instance the peak excursions of
the two schemes are comparable. QUDS would better preserve the slope of the
exact solution at angles up to 30° but beyond this SUDS is clearly superior.
Indeed, a general trend can be noted in which a given scheme either produces a
bounded solution of reduced slope or an unbounded solution of correct slope.

Figure 4-10 Comparison of QUDS and SUDS Schemes for Test Case TDF3

A similar evaluation applies to the results for infinite Peclet number (TDF1)
when SUDS results (Figure 4-11) are compared with the QUDS results (Figures
4-12). However, at larger angles the SUDS profiles exhibited more severe
oscillations than those generated by QUDS.
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Figure 4-11 SUDS Calculations for TDF1 for Various Flow Angles
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The comparisons for the convection of a square wave in a irrotational
stagnation flow field (TDF2) are shown in Figure 4-13 in terms of the ¢
profile across the outlet boundary of the calculation domain, which is
identical with the inlet distribution. The QUDS predictions are considerably
better than those of the UDS but exhibit significant undershoots and
overshoots. The SUDS predictions for Case TDF2 can also be seen in Figure 4-13
and compared with the QUDS results in the diagram. On balance there is little
to recommend either scheme: both reproduce the square wave to a similar
extent, albeit without maintaining the proper bounds. SUDS maintains the wave
amplitude better while introducing a phase error (the prediction is shifted to
the left relative to the exact solution) whereas the reverse is true with the
QuUDS.

1.21
' —-— UDS
1.0 —s— SUDS
) —o— QUDS
—o— Exact
0.8
0.6
d) .
0.4
0.2
0 %ﬁ“
-0.2 1 .
0.0 0.5 1.0
Y

irrotational stagnation point flow — Scalar profile transport

Figure 4-13 Comparison of QUDS and SUDS Schemes for Test Case TDF2

The results obtained using QUDS and SUDS to compute the scalar transport in a
laminar jet flow (TDF4) are shown in Figure 4-14, where the profiles along the
vertical mid-plane are plotted. In this case the QUDS solutions remain within
expected bounds (probably due to the smoothness of the ¢ profile) and are more
accurate than those of the UDS at both angles; however, QUDS e§hibits
substantial diffusion-l1ike errors at the largest angle (e = 45 ). SUDS, like
QUDS, maintains the proper bounds because the 4 gradients are less severe. In

familiar pattern, QUDS is better at small angles and SUDS is better at large
angles.
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Convection and diffusion of a Scalar distribution

Figure 4-14 Comparison of QUDS and SUDS Schemes for Test Case TDF4

The comparison of QUDS and SUDS can be summarized in the following manner:
both schemes suffer from boundedness problems when conditions with regard to
the cell Peclet number, flow angle relative to the mesh, and gradients in ¢
are large. QUDS is more accurate for smaller flow angles while SUDS is more
accurate for larger flow angles.

4.4.3.3 Flux-Blended Schemes

In this section the performance is examined for BSUDS1 (which was derived by
blending UDS and SUDS to maintain positive coefficients) and for BSUDS2 and

BQUDS2, (where the blending criterion is the preservation of Tocal bounds on
the solution).

(a) One-Dimensional Tests

Since in one-dimensional flow, the UDS and SUD are identical, calculations
were performed only using BQUDS2 and the results are displayed in Figures 4-15
(Case OD1) and 4-16 (Case 0D2). In both cases, it can be seen that
oscillations have been suppressed and the proper bounds maintained; moreover,
these results were obtained with steep gradients in the dependent variable.

(b) Two-Dimensional Tests

A comparison of the BSUDS2 and BQUDS2 solutions for TDF1l of Figure 4-17 shows
that both exhibit similar characteristics as those exhibited by BQUDS2 for the
one-dimensional test cases. The tendency in all cases is to maintain the
proper bounds without introducing excessive numerical diffusion; this is
indicated by the fact that in flow regimes where the original QUDS and SUDS
solution were within bounds (Figures 4-11 and 4-12), those solutions are
virtually unchanged except from some "rounding" of the profile corners. Again
BQUDS2 seems to be more accurate at small angles whereas BSUDS2 is more
accurate at large ones.
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Figure 4~16 Comparison of Bounded and Unbounded QUDS Schemes for
Test Case 0D2
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The performance of BSUDS2 and BQUDS2 for model problem TDF2, Figure 4-18, is
similar to their unbounded counterparts, Figure 4-13, except that the
unrealistic over and undershoots have been suppressed.

—a—UD
—e— BSUDS2
—o— BQUDS2

—O— Exact

Irrotational stagnation point flow — Scalar profile transport

Figure 4-18 Comparison of BSUDS2 and BQUDS2 Schemes on Test Case TDF2

The performance of the alternative blending approach, as embodied in BSUDS1,
will now be examined. In this instance results are available for the two
single cell cases and are included for Case TDSI in Figure 4-9 and the
accompanying error plot of Figure 4-10. According to the first two figures the
BSUDS1 errors 1ie between those of the UDS and SUDS, with a bias in Figure 4-9
towards the latter as expected from the numerical diffusivity analysis (Figure
4-1). Results for TDS2 are similar and are not shown.

The field calculations for Case TDF3 appear in Figure 4-19 and confirm that
BSUDS1 does not exhibit the SUDS overshoots. It has been found that the
BSUDS1 solution tends to 1ie closer to SUDS than to UDS, especially at the

larger o, due to the fact that the negative coefficients of SUDS reach their
peak magnitudes at the smaller angles.

The BSUDS1 calculations for the jet case (TDF4) they diffgred very'11tt1e from
those of SUDS at all angles, presumably because the negative coefficients of
the latter contribute 1ittle to the solution due to the smaller gradients
there. These calculations are not shown.
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Figure 4-19 Comparison of SUDS and BSUDS1 Schemes on Test Case TDF3

It is concluded that the bounding schemes can suppress overshoots and
undershoots successfully. The loss in accuracy, or increase in numerical
diffusion, for Bounding Scheme 2 seems to be negligible for the test cases
considered. Bounding Scheme 1 does introduce numerical diffusion but it is
stiTl far more accurate than UDS. BQUDS2 seems to be more accurate at small
flow angles whereas BSUDS2 seems to be more accurate at large flow angles.

4.5 STABILITY

Within the context of the present tests, no instability problems were
encountered with the SUDS and BSUDS1 schemes. For the latter, this behavior is
expected since the associated coefficient matrix is always diagonally
dominant. Although the SUDS matrix does not possess this property, the
departures were evidently not so great as to prevent convergence. However, it
should be noted that other users have reported such problems. Some problems
were overcome by using better grids and modifying under-relaxation factors.

Convergence problems were encountered during the development of Bounding
Scheme 2. These instabilities were traced to the failure to insure that, for a
given set of blended coefficients, a reasonable approximation is obtained for
the corresponding ¢ field; otherwise, the method of estimating the local
solution bounds cannot operate properly. This problem, which should really be
attributed to the properties of the equation solver employed rather than to
the discretization method, was solved by arranging an inner iteration cycle in
which, for given coefficients, the residual error of the ¢ solution was always
reduced to a preset level. Once this was done, no further problems were
encountered.

54



The calculations using the QUDS scheme were prone to instability, whether the
Tridiagonal Matrix Algorithm (TDMA) or the Pentadiagonal Matrix Algorithm
(PDMA) were used in the ADI solution procedure. No such problems were
encountered in 1D calculations with PDMA since it then acts as a direct
solver. It was found that the instabilities could be suppressed through the
use of conventional under-relaxation (typical factors being 0.5-0.6) but, as
will be seen in the next section, the rather large number of iterations
required suggests that stability is still marginal. BQUDS2 also suffered from
this problem, but to a slightly lTesser extent.

An important implication of the foregoing findings is that better solution
algorithms are needed for QUDS-type schemes to make them fully cost-effective.
It was hoped that the PDMA might provide the answer, since it uses for all of
the ¢ values along a grid line to which it is applied. That this expectation
was not realized may be due either to the fact that linkages also exist on two
neighboring 1ines on each side or to the occurrence of negative coefficients
at the principal and outlying nodes. It is interesting to note that the more
stable SUDS generates a more compact 9-diagonal matrix; although negative )
coefficients may occur, these occur only at the principal nodes.

4.6 COST EFFECTIVEMESS

The measure of cost effectiveness of the schemes used here is examined in
terms of their computing time and storage requirements, however, since current
trends in computer technology indicate that increased storage is becoming more
plentiful and inexpensive, the emphasis in the cost-effectiveness calculation
is on computing time.

Strictly speaking, the comparison between schemes should be on an equal
accuracy basis, i.e. tests should be performed on each scheme with different
grids to obtain a pre-specified level of error. However because this is time-
consuming and also because the differences between the predictions of the
"higher order" schemes on a given grid are generally much smaller than those
between any other scheme and UDS, the results for calculations using the same
grid will be compared. This comparison gives only a first estimate of the cost
of using alternative schemes regardless of accuracy. Additional cost
information is provided for the schemes incorporated into the 2D and 3D
versions of TEACH for the more realistic test cases discussed in Section 6.

4,6.1 Computing Times

A representative set of computing times is shown in Table 4-VII, These pertain
to calculations for Case TDF2 on the 9 x 9 grid, and were obtained on a CDC

Cyber 174 machine: however it is not the absolute times which are of interest,
but rather their relation to the baseline figures for UDS which are also shown.

Table 4-VII shows the following: (i) the time required for a single assembly
of all coefficients, Teoeffs (11) the time required for a single application
of the ADI solver, Tgglyer, this turns out to be almost the same for both
TDMA and PDMA versions; ?iii) the total number of outer iterations performed,
Nouter, Which is also equal to the total number of coefficient assemblies;
(1v§ the total number of inner iterations performed, Nj nep, Which is equal
to the total number of ADI passes; and finally (v) the total CPU time,
excluding compilation and initialization. It should be noted that Mjpnep and
Noutep are identical for all but the BSUDS2 and BQUDSZ schemes; for these
two, 1t was necessary to ensure that the inner Toop be executed to a preset
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re§idua1 tolerance rather than for a preset number of ADI sweeps (specified as
unity for all other schemes).
TABLE 4-VII

COMPARISON OF COMPUTING TIMES AND NUMBER OF ITERATIONS
REQUIRED FOR CALCULATIONS OF CASE TDF2 ON 9 X 9 MESH

Schome |assambly| Spive’ | Noof | Mo of | Py
time
UDS 1.0 1.0 1.0 1.0 1.0
SUDS 7.0 1.0 1.0 1.0 1.5
QUDS 6.0 - 1.0 14 - 20 14 - 20 10 - 15
BSUDS1 8.0 1.0 1 1 15
BSUDS2 8.0 1.0 2-3 5-6 4-5
BQUDS2 7.5 1.0 7-13 65-160 | 32-69

* Inefficiency of BQUDS2 is due to the solver (TDMA
which is not compatable '

Some interesting general features emerge from this table. Firstly, the
variations between the coefficient assembly times for "higher-order" schemes
are small in relation to the increase over the UDS figure, the ratio over the

latter being in the range 6-8. Secondly, Tcoeff and T lver are roughly
the same, excluding those for the UDS; and tﬁ1rd1y, Qﬁg and BQUDS2 clearly

require substantially more outer iterations than the others.

Turning now to detailed comparisons, it is clear that SUDS and BSUDS1 are the
most cost-effective for the present applications due to the smaller number of
iterations (inner and outer) required; the CPU time increase over that for UDS
is only 50 percent. The additional cost of the first flux-blending procedure
is evidently insignificant.
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The next most cost-effective method is BSUDS2, which requires 3 times the
SUDS/BSUDS1 CPU time, due to the increased number of jterations required for
convergence; however, BSUDS2 is measurably more accurate than SUDS or RSUDS2.

QuUDS and BQUDSZ are considerably more expensive, requiring respectively 2-3
and 6-14 times the BSUDS2 CPU time. The additional expenditure is due to the

increased values of Mgoutep. For BQUDS2, there is the additional cost due to
the substantial level of Njpner-

It should be emphasized that, although the results in Table 4-VII are

represe?tative‘of the present tests, the poor performance for QUDS, BOUDS2 and
BSUDS2 is due in large measure to the unsuitability of the solvers employed.

TABLE 4-VIII

SUMMARY OF ADDITIONAL STORAGE REQUIREMENTS
OVER THOSE OF THE UDS

SCHEME NO. OF ADDITIONAL QUANTITIES STORED
2D ARRAYS

SubDsS 4 anwr 8sw- aNE’ AsE

QuDSs 4 3ww- 8gs- 8NN+ 3EE

BSUDS1&2

BQUDS 2 6 AS ABOVE, PLUS vg/w AND vq/s

4.6.2 Computer Storage

For 2D applications, none of the schemes examined generates unacceptable
additional storage requirements over those of UDS. Table 4-VIII indicates the
number of additional two-dimensional arrays required. In the case of SUDS and
QUDS, the increase is equal to the number of additional "neighbor"
coefficients, i.e., 4. The flux blended versions require two additional arrays
to store the y values for each coordinate direction. Assuming that there is a
choice between savings in CPU time, code complexity and savings in storage,
savings in CPU time, code complexity will take precedence.
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4.7 COMPLEXITY AND COMPATIBILITY WITH EXISTING TEACH METHODOLOGY

The evaluation of complexity is necessarily subjective, but if the schemes

examined were so ranked, they might appear as follows, with complexity
increasing from left to right:

ADS .
ups, SuDS , BSUDS1, BSUDS2
QuDps BQUDS?2

In no case can it be said that any particular scheme is difficult to
comprehend and implement, although the possibilities for error are obviously
greater as one moves away from the simplicity of UDS. Perhaps the major
pitfalls Tie in the imposition of the boundary conditions, which require
particular care with schemes Tike QUDS, SUDS and their bounded counter parts.
This difficulty is common to all higher-order schemes.

Concerning compatibility with TEACH, it is sufficient to note that all of the
tests reported herein were performed with versions of this code employing the
same basic methodology. Some minor problems were encountered, such as those
due to the extra row of external nodes at boundaries when QUDS and BQUDS2 were
implemented, but these were more tedious than difficult. Of course, the
solvers which have been employed are not particularly well suited to QUDS, but
the modular structure of the code readily allows a better solver to be used.

4.8 PROGNOSTICATIONS FOR THREE DIMENSIONAL CALCULATIONS AND OTHER CONSIDER-
ATIONS

Before the final evaluation is made it is important to consider two further
aspects which have not been examined in detail in the studies described thus
far, namely:

(a) The suitability of the various schemes for three-dimensional app1ications.
(b) Experience of application of the schemes to flow field calculations.

Both the SUDS and QUDS (and bounded versions thereof) have computational
"molecules" of equal size in 2D, i.e. each comprises 9 nodes: in 3D, the SUDS
molecule increases to 27 nodes, whereas the QUDS size is only 13 nodes. Thus
QUDS possesses a nearby two-fold advantage in coefficient assembly time and
storage requirements.

Also, it should be noted that Bounding Scheme 1 is inapplicable to the SUDS in
3D, due to the fact that the coefficients of the non-principal, or "corner"
nodes, may become negative. (Bounding Scheme 2 is of course still applicable).

Relatively few applications have been reported using SUDS and QUDS in flow
field calculations. Fewer still have been made using BSUDS1 and none using
BSUDS2 or BQUDS2.
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The studies of greatest relevance here are those of Castro (Ref. 25 ),
Leschzeiner and Rodi (Ref. 26 ), Han, Launder and Humphrey (Ref. 27 ),

Leschzeiner and Launder (Ref. 28 ) and Lai (Ref. 23 ). Their findings may be
summarized as follows:

i) No major problems were reported in solving the SUDS-based equations, but
difficulties were encountered in obtaining solutions when QUDS was used.
The exception is the recent work of (Ref. 27 ) where a particular
arrangement of the coefficient matrix was found which produced stable ADI
solutions in comparable numbers of iterations to those for the UDS
calculations of the same problem.

ii) The accuracies of the SUDS and QUDS results were similar in most
instances, with the notable exception of the test problem of laminar flow
in a square cavity with a sliding wall. Here SUDS was scarcely better
than UDS, whereas QUDS was markedly superior to both.

iii) BSUDS1 has been shown by Lai (Ref. 23 ) and Benadecker et al (Ref. 29 )
to perform satisfactorily as regards convergence and to be markedly more
accurate than UDS (again with the exception noted in (i) above).

The poor performance of SUDS referred to in paragraph ii) was attributed by
Lai (Ref. 23 ) to the failure of this scheme to account properly for the
effects of pressure gradients, which act 1ike "sources" in the momentum
equations and are particularly important in the cavity problem. This
deficiency, which did not appear to manifest itself in other problems
involving strong pressure gradients, arises because SUDS tries to preserve
velocity, rather than total pressure, along streamlines.

4.9 CONCLUSIONS

1) Of the schemes examined, BSUDS2 and BQUDS2 appear to offer the most
promise for 3D applications. ,

2) The cost-effectiveness of QUDS and BQUDS2 is currently impaired by the
lack of an efficient and reliable solver. Once a suitable solver is found,
then the accuracy and compactness of the 3D computational molecule of
these schemes is 1likely to render them superior to SUDS and its
derivatives.

3) The ADS, although of higher formal order than SUDS and QUDS, is
non-conservative, and has been rejected for this reason.

4) Spline schemes of the conventional centered variety 1ike the CSS appear to
be susceptible to severe overshoot problems and are also non-conservative.
For these reasons they are not recommended at their present stage of
development. Similar comments apply to the GRHS Hermitian scheme.

5) The flux-blending strategies for eliminating overshoots seem ideally

suited for implicit calculations and are Tikely to see further development
and application.
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4,10 SELECTION OF TWO DIFFERENCING SCHEMES

No scheme seems to have emerged from this evaluation with a clear-cut margin
of superiority over the others. SUDS offers a more favorable matrix structure
from the solver point of view, especially when bounded as in BSUDS1/2. On the
other hand, it has not performed well in isolated instances and it does
generate a large computational molecule in 3D.

QUDS has performed well in flow field applications as regards accuracy
(although it too produced some isolated poor results in the present scalar
transport tests). Further, it has the compelling attraction of a comparatively
small 3D molecule. Although the basic scheme can produce significant
overshoots, it seems amenable to bounding by the flux blending strategy 2. The
main argument against QUDS is the lack of a wholly suitable solver.

Both QUDS and SUDS, bounded and unbounded, show a flow angle dependence
regarding their accuracy. QUDS seems to be more accurate at small angles
whereas SUDS has a greater advantage at large angles. It should be noted that
either of these two schemes will be an improvement over the hybrid
differencing scheme at any angle.

Thus, SUDS and QUDS were selected for evaluation in the two-dimensional
version of TEACH. Although it was desirable to implement them with flux
blending, it was not essential for testing these schemes in realistic flows as
required in this contract. The unbounded version of QUDS was selected since it
could be coded relatively quickly in TEACH and permit extensive testing of the
method. BSUDS1 and BSUDS2 were also selected since they offered accuracy
improvements comparable to those obtainable using QUDS, nonphysical
oscillation could be avoided using flux-blending, and the computational
molecule was reasonably compatible with the current solver. Based on the
results of the test cases, it was anticipated that BSUDS2 would be more
accurate than BSUDS1. It has been noted, however, that BSUDS1 is not suitable
for use in the 3D-TEACH code.
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5.0 DERIVATION OF SELECTED SCHEMES FOR TEACH

In this section, the details of the derivations for the two improved
finite-difference methods incorporated into the two-dimensional version of
TEACH are presented. In Section 5.1, the derivation for the skew-upwind
differencing scheme using the second bounding method (BSUDS2) is given. In
Section 5.2, the derivation for the Quadratic Upwind Differencing Scheme
(QUDS) is given. BSUDS2 was also selected for use in the three dimensional
version of TEACH. The extension of the material in Section 5.1 for use in the
3D-TEACH computer program is presented in Appendix j.

5.1 THE BOUNDED SKEW-UPWIND DIFFERENCING SCHEME

In this section, the bounded skew-upwind differencing scheme is described.
First, a brief review of the flux form of the equations of motion is
presented. Second, a detailed description of the finite-difference form of the
flux contribution to a representative face of a typical control volume is
given; the derivation of the flux contributions to the other faces is then
outlined. Third, the resulting coefficients for the finite-difference
equations representing the total flux (and sources) are presented. Fourth, the
results of applying the boundary conditions are shown in a manner consistent
with the foregoing flux representation. Fifth, the bounding scheme for the
coefficients is detailed.

5.1.1 Flux Form of the Equations of Motion’

The equations of motion for both laminar flow and (time-averaged) turbulent
flow can be written in similar fashion for all of the dependent variables:

(5.1)

+

3 1 3 (. 6.4y=2 (r 32),1 3 828
o (Pue) + fx g7 (eve) = ('¢ ax) r0 3r (r¢f ar )* 5o

where s = 0 for two-dimensional (planar) flow and s = 1 for axisymmetric flow.
The variable ¢ represents any of the dependent variables (e.g., the velocity
components u, v, w, mixture fraction, turbulence kinetic energy and turbulence
energy dissipation). The exchange coefficient, rg, represents the sum of _
both laminar and turbulent contributions and is interpreted as the effective
viscosity for ¢ = u, v, w, the effective diffusivity for ¢ = mixture fraction,
etc. Sy is a generalized source term.

Equation (5.1) is integrated over a control volume appropriate for each
dependent variable 4 and, after some manipulation, the finite-difference )
equivalent form of Equation (5.1) is obtained. The control vglumes are dgf1ned
using an orthogonal grid formed by the intersection of coordinate lines in
both the axial and radial coordinate direction. For planar (two:dimens1ona1)
problems, a unit thickness and uniform properties in the direction normal to
the plane of the grid are assumed. The intersection of the grid Tines form the
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grid nodes at which all flow properties except the axial (u) and radial (v)
velocities are calculated; i.e., all scalars and the tangential velocity
component (w) for swirling flows. The axial velocity is calculated using a
second grid with grid nodes located midway between the scalar grid nodes in
the axial direction and coincident with the scalar grid nodes in redial
position. The radial velocity is calculated using a third grid with grid nodes
Tocated midway between the scalar grid nodes in the radial direction and
coincident with the scalar grid nodes in axial position. Directions in the
grids are identified as north, south, east and west. The grid system for the
scalars is shown in Figure 5-1. The positions of the u and v storage locations
(grid systems) relative to the scalar grid are shown in Figure 5-2.

- GRID NODE STORAGE LOCATION

FOR SCALARS ()
RADIAL DIRECTION
/— GRID LINE v
7
Y e o) e ———
N " X DIRECTION
—% l——‘"’—‘" ®- - ¥ GRID LINE
an
Wl w P e
—H . —~—y e ——— @ ——— » —

f Vi O A

L L V VELOCITY STORAGE LOCATION
U VELOCITY STORAGE LOCATION

Figure 5-1 Grid System for Scalars
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Figure 5-2  Storage Locations for Axial (U) and Radial (V) Velocities
Relative to Scalar (¢) Grid System
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Control volumes for each scalar and the tangential velocity are defined by
planes located midway between the scalar grid nodes, as shown in Figure 5-3.
Normal velocity components, therefore, 1ie along the boundaries of the control
volumes. Generally, boundaries for the u or v control volumes include scalar
grid-lines and are not necessarily located midway between velocity grid lines.

I-2 I-1 1 141 1+2
J+2
Mg N L2 J+1
n
D
! |
W | ) E
W, P Te J
I i
| I
[T B
s
- e @< o= e 2]
$
J-2

Figure 5-3  Scalar Control Volume

The finite-difference form of Equation (5.1) is derived by integrating this
equation over the appropriate control volume. For the scalars and the
tangential velocity component, the grid systems defined above provide some
computational convenience. Since the u and v velocities are stored midway
between the scalar grid nodes, the convective fluxes from the north, south,
east and west faces can be calculated without recourse to averaging any of
these velocities. Also, the pressure gradient driving the flow can be computed
without averaging pressures.

In performing the integration over the control volume for each term in
Equation (5.1), the mean-value theorem is employed and the source term js
linearized in the vicinity of the center of the control volume (point P).
After some manipulation, the finite-difference form of Equation (5.1) is
obtained.

63



Cpde = Cyly * Cnbn = Cg = Pg (¢E - ¢P) " (¢P ) ¢w)

(5.2)
+ Dy (0 = ¢p) = Dg (0 = 6g) + (5 + Spop)
where Cp, Cy, etc. are "convective coefficients" as defined below
. = (pu), 2,
Cy = (oviy 2y
(5.3)

Cy = (pu), &
Cs = (Ov)s as

and ap = ag, ay = ag are the areas of the faces of the control volume.

The "diffusion" coefficients are given by

a (5.4)

and)(Ax)e is the distance between points P and E, etc. (e.g., see Figure
5-3).

It is important to note that Equation (5.2) applies to all of the dependent
variables although the appropriate grid must be used in each case to define

the geometric parameters used in the calculation. Also, Equation (5.2) applies

to all of the difference procedures considered in the program since each
scheme is simply an alternative method for defining (interpolating for) the
dependent variable at the faces of the control volume (e.g., fe, By, On>
#s). However, the diffusion terms are always represented by centraY
differences.
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It is convenient to define a total flux for each face of the control volume as
the sum of a convective flux and a diffusive flux such that:

(5.5)
Fo - Fu+ Fo~ Fg = 8, % Sp%
where
Fe = Cpte - Dp (op = ¢p)
Fy = Cyoy — Dy (o = ¢)
(5.6)

Fp = Cyé = Dy (oy = 6p)

Fg = Cgé, = Dg (¢P - ¢S)

. . . . . d to
In the following section, the skew differencing procedure will be use
calculate the values of the dependent variables at the faces of the control
volume. As a result, Equation.(5.5) will include not only the values of # at
the "normal." or main. arid node locations (E. W. N, S and P) but also at the
corner locations (NE, SE, NW, and SW). The finite-difference form for Equation

{5.5) will be shown to be:

- ¢
Apdp = Apop + Ao, + Agd * AL+ A bur * Agpfse
(5.7)
* ANW¢NW * Asw¢sw * SU P¢P

5.1.2 Calculation of the Fluxes

Recall that the equation of motion, Equation (5.1), can be written in terms of
fluxes to each face of the control volume, Equation (5.5). In this section, a
procedure will be described to calculate fluxes, Fes Fws Fp, and Fg.

The derivation of F,,, the flux to the west face of a typical scalar control
volume, is given in detail. The derivation of the other fluxes and of the
fluxes for the u and v velocity components are outlined.

Consider the control volume shown in Figure 5-4. At present, it is assumed
that the velocity vector is oriented as shown; i.e., the u and v components
are non-negative. The flux to the west face is given by:

Fw = Cw@w - Dw (¢P - ¢'w) (5.8)
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Figure 5-4 Control Volume for Skew-Upwind Differencing for West Face of
Control Volume and Positive Velocity Components

For central-differencing (CD), the value of the dependent variable at the west
face, @y, is given by 1linear interpolation between 4 at the W and P grid
nodes.

v = (1 - aw) by * °W¢P

(5.9)
where the interpolating factor is
Xy - Xy
0.w~‘ XP - xw ‘ (5.10)

In the 2D-TEACH computer program, o« = 0.5 for each face of the control volume
for each scalar variable and the tangential velocity component since the
control volume faces are located midway between scalar grid nodes. For the
axial and radial velocity components, however, the o for each face may assume
other values. The central difference form of the flux at the west face is then:

Fy .
CD
Dw = [Pew (1 - aw) + 1 ¢w + (uwpew - 1) ¢P (5511)
where the Peclet number at this face is given by:
Pe = C,/Dy, (5.12)

W
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The upwind difference (UD) form for the flux at the west face is obtained by
setting ay to zero and neglecting the diffusion term:

Fump

S = By, o (5.13)

Equation (5.8) is also the starting point for the skew upwind differencing
{SUD} scheme. The value of # at the west face of the control volume, #, is

W
determined by extrapolating the velocity vector upstream to the point w' which
lies alon

the grid T1ine connecting the west and southwest nodes (see Figure
5-4) to give-

0 (1= 1) 4y K, dgy [5.14)

where the skew interpolation factor is the ratio of the vertical distance
between w' and S5W to the vertical distance between W and SW:

1 Yo omx
e .15
k"'i'll“.n.y (5.158)
For very large flow angles [skewing)l relative to the coordinate directions,
ky will exceed unity and w' will be defined in terms of & at the 5K and 5

nodes, However, it i1s known that this approach can yield negative coefficients

at the corner nodes (NW, 5W, NE, 5E) which can in turn produce oscillations in
the solution, To assure that the coefficients for the corner nodes are
non-negative, then:

W
K, = max [l.ﬂ- lz ]il%x;) ({5.186)

The use of absolute values in Equation (5.16) permits this equation to be used
to define ky for all velocity components at the west face.

In his original development of the skew upwind differencing approximation,
Raithby (Ref. 11} assumed that éy = #é,. Thus,

F
i,

—n—— '_H_i'ur o I.':p = 'phlj [5-1?]
W
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It is desirable to use the central difference procedure for small values of
the grid Peclet number and the skew upwind differencing method for large
values of the grid Peclet number. It is also desirable that these two
fnrmu1atlun5 produce a continuous tramsition at the transitTnn Peclet number,
which in the present case is:

oy, (5.18)

For the scalar grid system used in the 2D-TEACH computer program, Pe* = 2. At
the transition Peclet number, the central difference result (Equation 5.11) fs:

Fuep ¢,

[ R —

“w {5.19)

while the skew upwind differencing method (Equation 5.17) yields:

D, 8 (5.20)

Moting the definition given by Equatien (5.14}), it is clear that these two
results are not equal.

The fluxes at the transition Peclet number can be made equal by noting
(contrary to the assumption made by Raithby) that 8, and #y' are related
by:

PR & ¢ {E-I?l]'
Pu T.-._(ﬂ-)h 0B + ., .

so that Equation (5.17) becomes

F""ET.I'II:I

L2 5 (5.22)
B Fedu ™ rtui Hs)h, b - L4 )




Writing the central difference result in terms of the flux definition,
Equation 5.8, then:

F”cn

by " Fegty ” (4 - (5.23)

Clearly, these two fluxes will be equal at the transitfon Peclet number if a
correction, Pey (a/as)yss, 1s added to the skew upwind differencing
flux, Equation 5.17, to obtain:

Fu

LA I -
S .y, g, P (,ai;] bs - Loy = &) (5.24)
Dy v

The derivative (ag/as)y can be computed by:

B Sy e (5.25)
s Ls

Then, using Equation (5.9}, (5.14) and (5.18), Equation (5.24) becomes

*
—_—- P,:“q,u - ‘.’,E",‘,“I " P..H'.'J L (g - igu} (5.26)

At the transition Peclet number, the fluxes calculated by central differencing
(Equation 5.19) and skew upwind differencing (Equation 5.26) are equal.

It will be recalled that the above result for the skew upwind differencing
flux at the west face of the control volume was derived for non-negative
values of the axial and radial velocities. Similar results can be derived for
other combinations of u and v by consistent application of the process leading
to Equation (5.26). The result is a general expression for the flux as
calculated using skew upwind differencing:

FH‘
SUD

=p. [o rh;+{1-n}i]
n“ By

W W
= APy, = P,“‘.i Ky ["u { by =0 fgy - (1 -0) IIIm-r}

- u - X - — ¥
+ (1 u“} { ¢p = o, tg (1 o, ¥ }} (5.27)




The parameters, off and off, are switches that indicate the direction
of the components of the local flow velocities.

u:-% (“'I%F) (5.28)

v Vig

u“-%(“m) (5,29)

Each of these parameters has a value of unity if the velocity component is
positive (or, by convention, non-negative) and zero 1f it 15 negative. The
transition Peclet number is now given by the geperal result.

i
P"H - 1 {5.30)

u
o~~~ FH?

In the hybrid differencing procedure, the more accurate central differencing
formulation (Equation 5.11) is used when the Peclet number is less than the
transition value while the Tess accurate, but stable, upwind differencing
result (the generalization of Equation {5.13))

Fu.
i | u o, 5.31
D Pe, [o 0, * (1 -0 4] (5.31)

is used when the Peclet number is greater than the transition value,
Originally, it was believed that a similar hybrid procedure could be developed
for skew upwind differencing with Equation {5.11) used for Pe ¢ Pe* and
Equation (5.27) used for Pe » Pe*. However, this approach proved to be
unworkable since some of the coefficients derived from this hybrid formulation
for use in Equation (5.7) could be negative. As an alterpative, a flux
blending scheme (to be described in Section 5.1.5) is used in which a weighted
average of the upwind differencing and the skew upwind differencing fluxes is
used, The weighting (blending) factor, v, is chosen in such a way as to assure
boundedness. The bounded skew-upwind differencing (BSUD) flux is defined by:

(5.32)
F,

= TFugrp * (1= W) Fug
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with the weighting factor restricted to the range, 0 < Ay < 1. As a
consequence of this definition:

F,
¥psuD u u *
= =y [a1h1 ¢, + (1 - qﬂl ool = (g = Pe ) ok,
l": {*u'”:*su' (- o) *h""}
u ¥ (5,33)
+ il-vnw} { bp o5 b - (1 - Oy) iﬂ} ]

Finally, a bounded skew hybrid differencing (BSHOD)} formulation can be defined
ds:

F“BSHD
Dy

= duPu * (1= 0) R (5.34)

where Ay 15 permitted to assume only two values: Ay = 1 for central
differencing (Pe < Pe*) and A= O for bounded skew-upwind differencing

(Pe > Pe*)., Equations (5.33) and (5.34) are the basic working relationships
used to determine the flux at the west face of the control volume, The
contributions of the flux to each of the coefficients in Equation (5.7) can be
immediately identified by using Equations (5.33) and (5.34) in Equation (5.5).

Equatfons analogous to Equation (5.33) can be derived for the other three

faces of the control volume in exactly the same manner as employed abowve.
However, the results can be obtained by inspection as follows.
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The east face flux fs obtained by translating the nodal subscripts eastward
such that:

West Subscript East Subscript
W becomes P
P becomes E
W becomes 5
NW becomes H
5 becomes SE
H becomes NE

O0f course, the lower case subscript "w" becomes "e.”

The south face flux is obtained from the west flux (Equation 5.33) by rotating
the nodal subscripts counterclockwise through 90 degrees.

West Subscript East Subscript
W becomes 5
SH hecomes SE
HW becomes W
5 hecomes F
;] becomes W
u becomes oV
1 -gU becomes l-g¥
oV becomes l - g¥
1 - oV becomes ol

The north face flux is derived by translating the south flux result northward.

South Subscript North Subscript
5 becomes P
P becomes M
SE becomes E
SW becomes W
E becomes NE
W becomes W

The results of the manipulations are summarized in Tables 5-1 through 5-III.

1



TABLE E-1I
DEFIMITION OF BOUNWDED SKEW HYBRID DIFFERENCIMG FLUXES

West

WESHD

East

F
EBSHD _
D eFecp * (1 - A Fegan

South

F
SEHSHD

(1=23,F

kel 8" "SRESUD

*
ECD

Morth

MRSHD
- lﬂrﬁcn + (1 - 3,) F“nsun



74

TABLE 5-11
CENTRAL DIFFERENCING FLUXES
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il
-
i
I

dg) * 1 ] o+ ( asPe, '1}“’1=
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TABLE 5-111

BOUNDED SKEW-UPWIND DIFFERENCING FLUXES
West

F,
YBSUD _ u u 2
Duy P‘H [qw ¢H AT qw} ¢P] - {PEH - PE“} Tﬂhw

1]
o
W

- u o v W
(1 uH] l bp ~ 9 g = (1 = qw} ¢HI ]

v v
by~ uu dsw - (1 = uu} W I

*

East

Fe
BSLD *
= P [n: bp * (1- nz} ¢gl - {PEE = PH¢} Yeaka

g -

k

(1= u:} | b = ﬂ: bgp = {(1- u:} ¢HE| ]

bp - u: By - (1= d:] ¢Hl

+

South

F
SESUD

L
Peg [o) ¢ + (1 - ag) 4,1 - (Pe, - Peg) ¥k,

ﬂ?
]

+|:1-—|:::II¢P-{1-:F:‘.I¢-E—U:%|]

u u
4’5'{1'“,3*55'“5*51.4'

Horth

F
RS
—Bslh Pe_ [cr: #p * (1 - cl:} uﬁ“] - (Pp_u = P:I-:‘} Tnkn

’a: |¢P - (1 -ﬂ:J¢E -ﬁzﬁw

v s oy u
+ (1 ﬂn} l $, - (1 un} by = o ﬁﬂul ] -



5.1.3 Calculation of the Coefficients for the Finite-Difference Form of the
Equations of Motion

The finite-difference form of the equations of motion, (e.g., Equation (5.7))
can be derived directly from the flux information presented in Tables 5-I
through 5-I11 and the sign conventions determined from Equation (5.5). The
resulting expressions will contain the unknown blending factor, y. The
blending strategy requires that the terms in the equations for the
coefficients most responsible for producing negative coefficients be isolated
so that appropriate values for y can be determined. Furthermore, the
coefficients for the control volumes adjacent to the physical boundaries of
the flow may require modification to incorporate the effect of the boundary
conditions. Thus, to simplify manipulation and medification, some additional
notation will be defined,

Let the center of the control volume [point P) be located at the Ith axial
position and Jth radial position. The flux contributions (the components of
the total flux) to the east face are denoted as E1(I,d), E2(I,J), E3(I,J) and
the flux contributions to the north face are denoted as N1(I,J) HEEI,JE,
N3(1,J). These flux contributions are defined as follows.

Central Differencing

EL(I,J) = Dp - agle
e2(1°0) = ei(1,d5 % ce (5.35)
EHII,J} = ﬂ

Mi{I,d) = D4 - apl

N2(1.d) = E?[I.S? ¥ o (5.36)
HE{I,J:I s 0

Bounded Skew-Upwind Differencing

[ 3 l-'l_
EL(LI) = (0¥ - 1) ¢
E2(1,7) = El(LD) + (5.37)

ENI,I) = kylcp - F:;DE}

N1(1,J) = {u: = 1) ¢
B2(1,J) = N1(1,J) + cy (5.38)

RI(1,J) = klcy - p;;nuj



The use of central versus bounded skew-upwind differencing is determined by
the value of the Peclet number at each face. The parameters Cg, Dp, ag,

Kas + - . are local values; the subscripts (I,J) have been omitted in the
interest of readability. The corresponding flux contributions at the west face
are given immediately by EL1{I-1,d4), E2(I-1,J), E3({I-1,J) and the flux
contributions at the south face are W1{I,J-1), M2(I,J-1), N3(I,J-1).

The coefficients of the finite-difference form of the equations of motion may
then be defined in terms of these flux contributions. The results are
presented in Table 5-IV. The coefficient Ap can be shown to be equal to the
sum of the other eight coefficients when use is made of the mass continufty
restriction:

Cg -Cy *Cy-C=10 (5.39)

The boundary conditions {Section 5.1.4) and the blending scheme {Section

5.1.5) can be applied directly to the flux contributions so that the results
shown in Table 5-IV are general.

5.1.4 Boundary Conditions

The boundary conditions are applied to the flux contributions as defined by
Equations {5.35) through (5.38) so that the set of coefficients (e.g., Table
5-IV) for each dependent variable is the same throughout the computational
domain. This consistency simplifies the application of both (1) the algorithm
for solving the set of simultaneous equations for each variable and (2) the
bounding procedure [see Section 5.1.5).

5.1.4.1 Scalars

A typical control volume for a scalar variable is shown in Figure 5-5 (which
is based in part on Figure 5-1). It will be recalled that the axial velocities
are stored midway between the scalar gridlines in the axial direction;
therefore, the axial velocities are stored at the midpoints of the east and
west faces of the scalar control volume. Similarly, the radial velocities are
stored at the midpoints of the north and south faces of the scalar control
volumes.

The extreme physical boundaries of the flow are located midway between the
most extreme gridline and its nearest neighboring gridline in each direction.
The gridlines are numbered from I=1 through I=NI in the axial direction and
from J=1 through J=NJ in the radial direction, Thus, the interior nodes are
numbered from I=2 through NI-1 in the axial direction and from J=2 through
MJ-1 in the radial direction. In the following discussion, the boundary
conditions are applied to the various faces of the contrel volume for an
interior node (I,J), as shown in Figure 5-5, to produce modified east-west
flux contributions (E1, E2, E3) or north-south flux contributions (M1, M2, N3)
for use in calculating the coefficients of the finite-difference equations for
the scalars (e.g., Table 5-1V). In the process of introducing the effects of
the boundary conditions for the interior nodes, it will be seen that some of
the flux contributions at adjacent nodes are also affected.
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TABLE 5-1¥
CO-EFFICIENTS OF THE FINITE-DIFFEREHCE EQUATIONS

Ay(1,3) = B2(1-1,3) - v, [0 B3}, ;

v, u
+ 7y [(1 - un} - Hj]I,J—l

¥y u
o [ o, o W3lp ;4

Ap(1,3) = EX(1,J) + v, [(1 - u:} E3 ]I’J "y [{1 = n:]{l - U:} Hj]I,J-

1
v u
Tn[ﬂll (1 - UIJ:I HS]I r":
] _— -_ v - L v
Ag(1, 1) = W2(1,3-1) - v, lan H”I,J-l + vy [(1 ”;j 3 EH]I-LJ
u v
Yo 1o, o B31, 5
W u v
Ag(1,3) = BI(I,J) + v, [(1 - unl H”I,J + v [(1 - uE‘Hl = :!:E]l 513.11_1:‘J
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Yo [ﬂe (1 utﬁ I:ii-]L_1

u v u v
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NOTE: The blending factors yy, ve., vg and yp are the factors
appropriate for the (I,J) node as determined by the procedure discussed
in Section 5.1.5.
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There are four types of boundary to be considered:
(1) specified wall,
(2) specified inlet,
(3} axis of symmetry,
(4} unspecified opening.

The application of these boundary conditions to modify the flux contributions
used to determine the finite-difference coefficients for a node (I-1,J) having
a physical boundary on the west face of {ts control volume will be described
in detail. The modifications to the coefficients due to the other physical
boundaries are similar and will be summarized.

West Boundary

For the specified wall boundary condition, the velocity normal to the wall at
the west boundary (the west face of the control volume for the node (I,J)) is
rero; velocity components im the radial or tangential direction may be nonzero
{e.g., a moving wall), The zero normal (u) velocity, which for this case is
stored at the axial location of the west boundary, results in the use of the
central difference formulae for the flux contributions, E1, E2 and E3, for the
west face of the node (I,J). These flux contributions are computed and stored
as east face contributions for the node {I-1,J), see Equation (5.35).
specifically, for a specified wall located at the west face of the control
volume for the node (I,J):

E1({1I-1,J) = DE{I-1,J)
E2{1-1,4) = E1{I-1.3) (5,40)
E3(1-1,J) = 0

For a specified wall, the value of the scalar at the wall may be either known
(e.g., turbulence kinetic energy = 0) or unknown (e.g., temperature). Since
the varfation of the scalar from its wall value to the value at the node (I,J)
is generally non-linear, it is prudent in every case to decouple the wall
values from the system of equations. The influence of the wall can be
reflected by using appropriate wall functions to compute the source terms for
the scalars. From Table 5-1Y, it can be seen that the known or unknown wall
values of the scalar can be excluded if the coefficients Ay, Agy, Ay

are zero for the node (I,J). These coefficients depend upon the values of:

a) E2 (I-1,d)

b) E3 (I-1,J)

e} M3 (I,J) - M3 at the north face of the control volume for node
(1,3}

d} M3 (I,J-1) - N3 at the south face of the control volume for node
(1,J)

Inspection of the coefficients 1isted in Table 5-1V indicates that M3(I,J) fis
excluded automatically unless the axial and radial velocities are positive at
the north face, and M3(I,J-1)} is excluded unless the axial velocity is
positive and the radial velocity is megative at the south face of the control
volume for the node (I,J).



The necessary modifications can be summarized as follows.
E1{1-1,0} =

W19} = 0 ;
N3(100-1) = 0 (5.41)

It follows immediately from Equation (5.40) that:

E2(I-1,J)
E3(I-1,d)

0
0 (5.42)

and therefore, Ay, Agy, and Ayy will be zero for the node (I,J).

For a specified opening, the value of the scalar is known at the west face of
the control volume for the node (I,J). In general, the cell Peclet number fs
greater than the transition value whenever the buundﬂry represents a specified
opening. Therefore, the flux contributions El, E2 and E3 at the mode (1-1,J)
are computed using the skew upwind differencing formulae, Equation (5.37).
However, since the boundary is coincident with the west face of the control
volume for the node (I,J), there is no skewing of the flow at this face and,
therefore, E3(I-1,J) is set to zero.

The determination of the coefficient for the node (I,J) also requires the
computation of the north face and south face flux contributfoms, N3(I1,J) and
NW3(1,J-1), respectively. Since the specified opening is coincident with the
west face of the control volume for the node (I,J) and since this face is
located midway between the nodes (I-1,J) and (I,J), it is necessary to double

the value of the skewing interpolation factors used to compute M3[I,J) and
N3(I,J-1); 1.e.,

kp = max {2*kp, 1.0}
ke = max (2%kg, 1.0) (5.43)

where the values of kn and kg on the right-hand side of Equation (5.43)
are calculated in accurdance HTth the normal distance between gridlines I-1

and I.

If the west face of the control wvolume for the node (I,J) is an axis of
symmetry, then the flux normal to this face is zero. By definition, the
unknown values of the scalar at the nedes (I-1,d) and (I,J) are equal; the
gradient of the scalar normal to the axis vanishes. Thus, an axis of symmetry
1z mathematically identical to a specified wall boundary condition with zero
gradient (source) at the wall. The modifications to the flux contributions are
given by Equations (5.42) and (5.43).

For an unspecified opening, 1t 15 assumed that (1) the flow is exiting through
the opening, (2) the streamlines are parallel in the vicinity of the opening,
and (3) the cell PecTet number exceeds the transition value. Determination of
the coefficient Ay, Agy, and AE for the node (I1,J) requires the

calculation of the f1ux contributions E2(I-1,J), E3(1-1,d), W3(I,J) and
MW3(I,d-1). By the third assumption, the skew upwind differencing formulae,
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Equations (5.37) and (5.38), are used. By the second assumption, E3{I-1,J),
N3({1,J) and N3(I,J-1) are zero, By the first assumption, the flow direction
switch oY at the node (I-1,J) is zero so that E2{I-1,J) 15 zero. Thus these
assumptions are equivalent to:

E2(I-1,d) = D
E3(1-1,d) = O

N3(I,J) =0 (5.44)
N3(I,J-1) = O

and it follows that Ay, Agy, and Ayy for the node (I,J) vanish. Thus,
the unknown values of the scalars at the unspecified opening are decoupled
from the system of eguations.

It 1s seen that the modifications to the flux contributions for the specified
wall, axis of symmetry, and unspecified opening boundary conditions are
identical and, therefore, the coefficients Ay, Agy, and Ayy for the node
(I,d) vanish for these boundary conditions.

East Boundary

If the east face of the control volume for the node (I,J) 1s a physical
boundary, it is necessary to modify the flux contributions E1{I,J), E3(I,d)},
M3(I,J) and M3(I,J-1) used to determine the coefficients A, A%E. and
A¥E for the node )1,d). For reasons similar to those given in the discussion
of the west boundary, in the case of the specified wall, axis of symmetry, or
unspecified opening boundary conditions, it is necessary that:

E1(I,d)
E3(1,Jd)
M3(I,d)
N3(I,d-1

0
0 (5.45)
0

= 0 W

0

so that Ai, Agp, and Ayp for the node (I,J) are zero. For the specified
opening, it is sufficient that:

ES{INJ} = ﬂ
kp = max (2*k,, 1.0) (5.46)
kg = max (2%kg, 1.0])

The last two conditions guarantee that the flux contributions N3(I,J) and
N3(I,J-1) are calculated correctly.



South Boundary

If the south face of the control volume for the node (I,J) is a specified

zﬁ11. an axis of symmetry, or anm unspecified opening, then 1t 95 necessary
at: h

N2(I,d-1) =0
N3(I,J-1) = O
E3(I-1J) = DO (5.47)
E3(I,d) = 0
so that the coefficients Ag, Agy. and Agg vanish. For a specified
opening, it is necessary that:
N3(I,d-1) =0
Ky = max {2%k,, 1.0) (5.48)
ke = max (2%kg, 1.0)

The last two conditions assure that E3(I-1,J) and E3(I,J) are computed

properly.
Horth Boundary

If the north face of the contrel volume for the node (1,J) represents a
specified wall, an axis of symmetry, or an unspecified cpening, then it is
necessary that:

0 (5.49)

=an oo

so that the coefficients Ay, Ayy. and Ayg vanish. For a specified
opening, it is necessary that:

N3(I,J) = O : \
= max (2%ky,, 1.0} 5.50
E:: max EE*E:;, 1.0}

The last two conditions guarantee that E3(I-1,J) and E3(I,J) are calculated
correctly.

5.1.4.2 Axial Velocity

A typical control volume for the axial velocity, u, 15 shown in Figure 5-6,
The indices I and J refer to the scalar grid system, The index I' refers to
the axial velocity grid system; note that this index varies between I's2 and
Nl. The east and west faces of the axial velocity contrel volumes are
coincident with the vertical scalar gridlines. The axial storage locations of
physical boundaries are the same as the axial locations of the axial
velocities; the inverse is, of course, not true. The radial Tocations of the u



velocity and scalar control volumes are fdentical. The radfal velocity, v, is
stored (effectively) at the corners of the u-velocity control volume. The
system of simultaneous equations for the axial velocity field describes the
axial velocity distribution from I'=3 to HI-1 and J=2 to MJ-1. However, the
coefficients for this system of equations require the determination of some
flux contributions along the gridlines 1'=2 to I'=NI-1 and J=1 to J=NJ-1.

(B) BTCRAGE LINE FOR FHYSICAL BOUNDARY
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Figure 5-6 Scalar and U-Yelocity Grid Systems Showing U-Velocity Control
Volume MNear Physical Boundaries



West Boundary

If a physical boundary is located to the west of the axfal velocity control
volume for the node (1',J), then the physical boundary s located along the
gridline, I'=1. If the physical boundary represents either a specified wall or
an axis of symmetry, then u(I'-1,J) is zero; if it represents a specified
opening, then u{I'-1,J)} is a known, specified value. If the physical boundary
represents an unspecified opening, then it is assumed that the velocity
u({l'-1,d) is known from the previous iteration using a special procedure
described below. In every case, it is seen that the axial velocity is known at
the node (I'-1,d). Therefore, the axial velocity at the west face of the
control volume for the node (1',J) can be computed in the same manner as is
used for any axial velocity interior node.

The radial velocities for the west face of the control volume are stored at
the corners of the axial velocity control volume (see Figure 5-6). Therefore
the radial velocity at the center of the west face can be interpolated
directly from these data. Thus, one can obtain the values of u and v and the
flux contributions can be computed using Equation (5.35) or (5.37) in the
usual manner. Thus, it is seen that the application of the boundary conditions
at the node (I1,J) requires no modification to the computation of E1, E2 and E3
provided that the correct axial velocities are stored at the pode (1'-1,J).

In the discussion on scalar variables, it was stated that, at an unspecified
opening, it is assumed that (1) the flow is exiting through the opening, (2)
the streamlines are parallel in the vicinity of the opening, and [3) the cell
Peclet number exceeds the transition value. These assumptions are also made
for the determination of the axial velocity at an unspecified opening. It is
possible to estimate the axial velocity at the node (I1'-1,J) using these
assumptions together with the mass conservation restriction for the total mass
flow rate and a relationship for the axial velocity distribution at an
unspecified opening based upon the second assumption and comservation of
radial momentum. Since this procedure is not peculiar to the bounded skew
hybrid differencing procedure but is part of the general procedures used for
all finite-difference schemes in the TEACH computer program, it will not be
described in this section. The procedure produces an estimate for the axial
velocity at the node (I'-1,J) for the unspecified opening boundary condition
using the solution obtained from the previous iteration.

East Boundary

If a physical boundary is located {mmediately to the east of the axial
velocity control volume for the node (I'J), then the physical boundary is
located along the gridiine, 1'+l. The varicus boundary conditicns affect the

value of the axial velocity wu(I'+l,J) in a manner similar to that described
for the west boundary.
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South Boundary

The radial positions of the scalar and axial velocity grid systems are the
same. Therefore, if the south face of the axial velecity control volume for
the node (1',J) is also a physical boundary, then the modifications of the
flux contributions are similar to those made for the scalar with a physical
boundary along its south face, Equation (5.47) or (5.48), In the present case,
the storage location for the radial position of the axial velocity is always
coincident with the radial position of the axial velocity control volume.
Therefore, the skewing interpolation factors, ky and kp, are always

increased in accordance with Equation (5.48).

If the physical boundary at the south face of the axial velocity control
volume represents a corner, then in accordance with the definition of the
location of the physical boundaries relative to the scalar grid system, the
corner extends to the midpoint of the south face. Therefore, the axial (Ug)
and radial [V} velocities used at this face to compute the flux
contributions are determined from a weighted average of velocities for the
specified wall and an appropriate flow boundary condition.

North Boundary

If a physical boundary is located along the north face of the axial velocity
control volume for the node (I',J), then the boundary conditions are used to
modify the flux contributions in a manmer similar to that used for the south
boundary. The treatment for a corner is also similar.

5.1.4.3 Radial Velocity

A typical control volume for the radial velocity, v, in the vicinity of the
physical boundaries 15 shown in Figure 5-7, The indices I and J refer to the
scalar grid system. The index J' refers to the radial velocity system; note
that this index varies between J'=2 and WJ. The axial location of the v and
scalar control volumes are identical. The axial wvelocity is stored
(effectively) at the corners of the v-velocity control volume. The system of
equations for the radial velocity field describes the radial velocity
distribution for I=2 to MI-1 and J'=3 to NJ-1. However, the coefficients for
the system of equations require the determination of some flux contributions
along the gridlines I=2 to NI-1 and J'=2 to NJ-1.

Because of the symmetry of the notation describing the axjal and radial
velocity distribution, the modifications to the parameters used to compute the
flux contribution coefficients of the finite-difference equations for the
radial velocity follow immediately from the discussion of the scalar and axial
velocity boundary conditions.

5.1.4.4 Tangential Velocity

The axial and radial locations of the gridlines for the tangential welocity,
w, and the scalars are identical. It then follows that the boundary conditions
are treated in a similar manner so the modifications discussed earlier in the
case of the scalars apply to the tangential velocity as well.
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5.1.5 The Bounding Scheme

The calculation of the bounded skew-upwind differencing fluxes and, therefore,
the determination of the coefficients to the finite-difference form of the
equations of motion, require that the blending factor, v, be determined. The
blending factor specifies the respective contributions of the flux computed
using skew and upwind differencing. For example, at the west face of the
typical control volume, Equation 5.32) states:

F
"'::Lrn " YFugy + (1 - WFuy (5.51)

The coefficients including the local blending factor are listed in Table 5-1IV,

It is possible to show that the corner coefficients (Asy, Asp, Py,
Ayrp) are unconditionally non-negative. For example, c-:rnsfder the coefficient

Asy:

L]
Mg (1,30 = vy L90E3), ) 5 * vy Loy 5 (5.52)
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Both v, and ye are restricted to the range 0 ¢ v ¢ 1. If both the axial

and rayial uefucities at the west face of the control volume are positive,
then both u%uand od at this location are unity; in any other case,

either {or both) are zero. For positive u and v velocities, the flux
contribution E3(1-1,J) at the west face is positive. Therefore, the west face
flux contribution to Agy is always non-negative. The same reasoning, when
applied to the south face, leads to a similar conclusion. Therefore, Acy 1s
unconditionally non-negative. The other corner coefficients are treated in the
came manmner.

Now, consider the four main coefficients (Ay, Ag. Ag, Ay). From Table
5-1V:

A(I, 2} = E2(1-1,3) = [uzﬁill,lij

W
+ v [(1=07) oTw3l, | (5.53)

v
~ T [“uE:HJII.J

From the definitions of the flux contributiens, Equations (5.35) through
(5.38), it 1s evident that:

(1) E2(I-1,J) is positive if the axial velocity is positive and it {s
zero otherwise;

(2) oY and E3 at the west face (I-1,J] are positive if the axial
velocity is positive but off is zero if u is negative;

(3) from the definitions of E2 and E3 and the fact that yy, < 1, it is
therefore concluded that the first two terms in Equation (5.53) must
yield a non-negative result;

(4) the third term is zero unless u is positive and v is negative at the
south face, in which case, it 1s negative;

(5) the fourth term is non-positive because the term within the brackets
is always non-negative.

Therefore, it is possible that the coefficient Ay 15 negative.



It is desirable that all of the coefficients of the finite-difference form of
the equations of motion {Equation (5.7)) be non-negative for in this case the
value of the dependent variable # at the node P is simply a weighted average

of the values of # at the surrounding nodes exclusive of the somewhat

complicating effects of local sources. A bounding scheme is a procedure to
Timit the values of the coefficients of the finfte difference equations in
such a manner as to produce this ?hysical1y realistic result. Its principal

computational advantage is to exc

ude under- and overshoots of the solution

during the iterative procedure. These oscillations can produce severe
numerical instability.

The bounding procedure used herein is based upon the following seguence.

(1) For each iteration, the solution for the distribution of the dependent

variable ¢ 1s obtained using the blending factors y determined during the

previous fteration; the blending factors are set to unity for the first
iteration.

(Z) For each point P in the variable field, the maximum and minimum values for

(3)

g are determined from the neighbors:

wmax_:m-“ {¢HJ ﬁSI 'F'El ﬂ'w: ':'HEl I=Ir.I-H-l ﬂsup IFEE:I (5.54)

F‘m_I":TI'I'iﬂ {'FH: ﬁE: ";'EJ ':"Hn PHEI w“”' ﬂE_H" 'PSE} {555]

It should be noted that the effects of sources are not included explicitly
in calculating ﬁma or #nip since the explicit result is difficult to
perform while avu1ﬁing duuﬂle counting of the source effect. However, the
effect of sources on the neighbors is accounted for implicitly because the
difference equations being solved include these sources. In any case, the
results obtained will be no worse than to force the use of upwind
differencing by making vy = 0 at the node where a peak in the profile of
the variable being considered is occurring.

It should also be poted that one or more @ may be excluded from the
determination of #pay or #pip when the control volume under
consideration is adjacent to certain types of physical boundaries. For
example, 1f the x-axis is an axis of symmetry, then gg is excluded since
it is identical to ip and 1ts use could yield an inappropriate range of
permissible values.

If Bpin < #p < ﬁﬂl:* then the local value of the blending factor is
unaltered from its current value. However, if dp is outside of this
range, then a new value of y must be determined. For this purpose each of
the coefficients in Table 5-IV is written in the form:

A=A +YA, k=N, 5, NE, SE . . . (5.56)
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(4]

where it has been assumed that the blending factors for each of the faces
of the local control volume are equal. Then Eguation (5.7) can be written

a5t
' : : T Ag +8
b (A ¢ YIAL =50, =T A4 Y A (5.57)

Mow, if #p < fpin. then from this equation,

.| 0

"l':" i =TT
bmin TAp = I Apdy

but if dp > Bpay, then

T Ads — :
< DAtk - tpay I Ak + 8, + Sdny (5.58)

tmax T A - D AS

Y

Of course, in practice the value of v is determined by use of the
appropriate equality for Equatien (5.58) or Equation (5.59).

In this fashion, the local value of y(I,J) 15 determined. The coefficients
in Table 5-IV are then recomputed using the blending factors and the new
distribution of @ is determined. For each face of the control volume at
the point (I,J), there are two values of y as determined for the two
control volumes sharing the common face. Thus, a sufficient condition for
assigning Tocal values of the blending factors is given by:

Y, = ®in [y (1-1,2), v (1,3))
IT# = min [y (L,J), v (1+1,0))
b min [y (1,3-1), ¥ (1,7)]
Y, = min [y (L), v (1,341)]

(5.60)



This procedure for determining the blending factors effectively 1imits the
value of the dependent variable range to values of its principal neighbors.
However, it is s5ti11 possible that some of the main coefficients will be
negative, More restrictive schemes can be formulated (e.g., blending strateqgy 1)
that guarantee that all coefficients of the finite-difference equations are
non-negative but these procedures achieve this result by reducing the blending
factor toward zero; the greater relative contribution of upwind differencing

in this case produces larger amounts of numerical diffusion. Thus, the
selection of a blending scheme represents a comoromise between the undesirable
effects of numerical instability and numerical diffusion.

5.2 THE QUDS DIFFERENCING SCHEME

In this section, the QUDS (for Quadratic Upwind Differencing Scheme) is
described. This finite differencing method was developed by Leonard (Ref. 30
and 31) and is based upon interpu?ating for the value of the dependent
variable at each face of the control volume by using a second-degree
(quadratic) polynomial biased toward the upwind direction as discussed below.
The interpolated value is used to calculate the convective term in the
governing equation for the dependent variable while central differencing is
used to approximate the diffusion term. Mo bounding procedure was used with
QuUDS in the current program,

5.2.1 Flux Form of the Eguations of Motion

It will be recalled from the discussion of the skew-upwind differencing scheme
that the flux form of the governing equation is:

Fo~FytFy=Tg® 8" 5% (5.61)
where the fluxes are calculated using:

Fe = Cple = Dglig - &

F,, = Cyq¥, - nHI¢P — ]

Fn = Cyfn - Dylén - ¢p)

Fg = Cgg — Dgley = dg)

(5.62)

Then using gquadratic interpolation for ds, ﬁﬁ, fn. #; and referring to
Figure 5-8, it can be shown that the fin?te- ifference form of Equation (5.61)
fs:

Aoty = Bt + Mgy + Pydy + Agds + Apptee + Pvhaw * Paatn (5.63)
+ Rggtgs + 5y * Spip
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5.2.2 Calculation of the Fluxes
In this section, the calculation of the values of the dependent variable at
the faces of the control volume shown in Figure 5-8B 1s described. The
derfvation of F,, the flux at the west face of a typical scalar control
volume, is given in detail. The derivation of the other fluxes is outlined.
Recall that the flux to the west face is given by:

Fu = Gt = Dylop = o) (254}

In its original form, QUDS required the use of a general second-degree
polynomial for the calculation of ®, (see Ref. 31):

b = Cg * O)% + Cgx? + cay + e¥% + coxy (5.65)

However, it is argued in Ref, 31 that it is generally unnecessary to consider
interpolation in the transverse direction so that for ¢  (and, similarly
for dal:

5 Z
4 = Cn + CiX + C
e (5.66)

while for g, or d.:

¢ = Cp + ¥ + Coy2
Lo E (5,67}
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Figure 5-8 Control Yolume for the QUDS Scheme
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In calculating ¢y, the mathematically equivalent but more convenient
gquadratic form is used,

¢ =g, oplx - xp) + eplx =) ix - Hagh 6861

Consider the situation for positive axial wvelocity u in which case the values
of @ at the grid nodes P, W and WW are used to evaluate cg, c1, and cp;

that is, the calculation of @, designated dy, in this case, is biased

toward the upwind node at Xyy. Then:

bW~ bp hatp  frtp | Kar¥p) et
¢:r=¢p+ XX m..;-*‘ﬁ'*[ﬁ“y“_xp] AP ¥ {5.69)

For the case when the axial velocity 1s negative, the coefficients in Equation
(5.68) are calculated using the values of 4 at the grid nodes W, P and E (that
fs, biased upwind from the west face) so that:

. ) )
oo TR (X)) *'I"‘Eﬂ:"dﬁwdﬁE el (5.70)
“" % XX, XeXp " Ko | XKy

Defining a flow velocity direction switch in the same manner as that used in

the bounded skew-upwind differencing procedure, the value of § at the west
face becomes:

+ - T
b, = uﬂ b F AL o) *w (5.71)

The value of @ at the other faces of the control volume is calculated
analogously. For the east face, the values of # at the grid nodes W, P and E
are used when the axial velocity is positive and the values at the grid nodes
P, E and EE are used when the axial velocity is negative. Since the
interpolation for the south and north face is formally identical to that for
the west and east face, respectively, the expression for g (or #,) can be
obtained directly from #, (or #e).

5.2.3 Calculation of the Coefficients for the Finite-Difference Form of the
Equations of Motion

The finite-difference form of the equations of motion (e.g., Equation (5.63))
can be obtained by inserting the expressions for da, fy, #s, and gy
into Equation (5.62) and applying Equation (5.61). From equations 1ike (5.68)

and (5.70), it can be seen that all ‘1' i £ P, occur as the difference
between #; and ﬁp. Hence, the coefficient of p in Equation (5.63)

bacomes:

R £ i o + e -1
5 -da it S Tl e S (5.72)
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However, the mass continuity restriction requires that:

Cg-+Cy-C=0 (5.73)

50 that:

(5.74)

The equations for the coefficients of Equation (5.63) are presented in Table
5-¥. It should be noted that these coefficients are expressed as much as
possible in a manner consistent with that used for the bounded skew-upwind
differencing method. The mneumonic devices used in implementing QUDS into
TEACH differ from the current nomenclature because implementation of QUDS was
initiated prior to the derivation of the equations for BSUDSZ,

5.2.4 Boundary Conditions

In QUDS, boundary conditions are applied directly to the finfte-difference
coefficients 1istd in Table 5-V. There are four types of boundary conditions
used in the present anmalysis: -

(1) specified wall,

(2) specified inlet,

(3) axis of symmetry

(4) unspecified opening.

The discussion presented in this section relias heavily on remarks made
earlier in Section 5.1.4 for the bounded skew-upwind differencing procedure.

.2.4.1 Scalars

When calculating for the flux on a face of a control volume, adjustments are

made if this face is near a boundary. For the west face, adjustments are made
for the situations shown in Figure 5-9,

i ——E o

w w;: e |E WWlww W] w a |E W w Ee E
: P a P p E
Case 1: West face Case 2: Weast-sest face Casa 3: East face boundary,
boundary boundary, flow flow negative
positiva

Figure 5-9 Axial Velocity Boundary Condition Application



Ay = CGall-m + Dy - Gea, (e 22w

TABLE 5-¥
COEFFICIENTS OF THE FINITE-DIFFEREMCE EQUATIONS FOR QUDS
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These boundaries can be any of the following types: a) Specified opening, b)
Unspecified opening, c) Specified wall, and d) Axis. Separate treatment *s
required for each of these types. In the following sections, these boundaries
are considerad for each of the cases described above.

Case 1

If the boundary is a specified wall, axis, or an unspecified opening, the
nodes W and WW are decoupled from the system of equations and the influence of
the wall is incorporated into the finite-difference equations using the source
terms; hence, Ay and AHH are set equal to zero. For a specified inlet, the
value of 4 is known and is effective at the west face, hence, Ayy is set

equal to zero. However, because central differencing is used, Dy (the
diffusion through the west face), is calculated as if ¢ was located a full
node away. Therefore, one extrapolates to get @, from dy, dp, and #g.

The resultant extra terms are incorporated into the source terms.

Case 2

The wast face for the west node {s coincident with a boundary and the velocity
on the west face 1s eastward. In this case, the value of dyy must be
approximated. For an axis of symmetry, this value should be the same as @y.
For an unspecified opening, the assumption that the flow is parallel to the
gridlines in the region of the opening again suggests that @ at the west-west
node should be set equal to ®at the west node. For a specified wall, the

Py node is set equal to ®y because for scalar variables the gradient

1HH§ near the wall is assumed to be zero. For a specified opening, the known
value on the boundary is used, and an extrapolation can be used so that dyy
is a function of dyy. dy, and dp. In all cases, the resultant extra

terms are Tncorporated into the source terms.

Case 3

For flow westward through the west face when the east face is a boundary, the
approximation for ®, uses ®¢ at the east node rather than on the east

face. For an axis of symmetry, unspecified opening, or specified wall, the
treatment is analogous to Case 2 and 9 is set equal to de. For a

specified opening, an extrapolation of dy, dp, and dg is used to

approximate #.. As in case 2, all resultant extra terms are incorporated

into the source terms.

Since the computational molecule used in QUDS is more extensive than that used
for SUDS, there are a number of additional special cases that must be
considered in modifying the coefficients of the finite-difference equations in
the vicinity of the boundaries. These modifications are too tedious to examine
here, and the interested reader should consult the computer program developed
during this effort.
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5.3 COST OF QUDS AHD BSUDS2

In Table 5-VI, the CPU time required to assemble the coefficients of the
finite-difference equations relative to that required when using the hybrid
differencing method are shown for BSUDS2 and OUNS as implemented in the
2D-TEACH computer code used in this contract. BSUDS2 requires considerably
more CPU time to assemble coefficients than does QUDS. Since OUDS is
unbounded, its coefficients can be calculated as needed {i.e., "in 11ne"). For
B5UDSZ, these coefficients must be computed and stored prior to application of
the bounding strategy; then, the coefficients must be bounded in a process
that requires nearly as much CPU time as that required for computing them in
the first instance., S5ince the solver requires only about 30 percent of the
total CPU time for any of the schemes, the total cost of using BSUNSZ is
nearly twice that of QUDS. These time requirements do not include the effact
of the time required to achieve a converged solution using hybrid, bounded
skew, or quadratic differencing. This effect varies from problem to problem.
In some cases, QUODS required more iterations to achieve convergence; in other
cases, BSUDSZ required more iterations, In general, both BSUDSZ and QUDS
required more iterations to converge than did hybrid differencing. In Section
& detailed convergence information for all test cases js given.

The storage requirements for BSUDSZ and QUDS are also different {(Table 5-¥II),
B5UDS2 requires 20 extra two-dimensional storage arrays where QUDS requires no
additional arcays, in part because BSUDSZ was hounded whereas (QUDS was not,
Howewver, BSUDS2 can also be programmed in such a way as to require less
storage, but only at the cost of reduced speed and increased complexity of the
code, Since 2D-TEACH is a large code, the percentage increase in storage is
not significant.

In 30-TEACH, BSUDSZ also requires twice as much CPU time as does hybrid
differencing per iteration. Since the number of coefficients which have to
assembled in 30 are three times as many as 20D-TEACH, it can be seen that
3D-TEACH has been coded much more efficiently than has 2D-TEACH. The storage
requirements of BSUDSZ are increased significantly when compared to ZD-TEACH;
that is 53 additional 3D-storage arrays are required. Since 3D-TEACH analyzes
less physically complex flows (apart from flow dimensionality) than 2D-TEACH
analyzes, the storage requirement goes up by a factor of two.
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Scheme
HYBRID
BUSDS2
QuDs

B3UDS2
Quos

TABLE 5-VI
COST OF IMPROYED ACCURACY

Time
Coefficient Assembly Time Solar
Literation x node) [iteration x node x sweep
1.0 * (0.07m sec) 1* (0.015m sec)
2.3 1
1.3 1

*Normalized to HYBRID

TABLE 5-YII
COST OF IMPROVED ACCURACY

Storage
Number of Extra Storage Increase
Arrays Used {percent)
20 13
0 0



6.0 DISCUSSION OF TEST CASES

Two classes of test cases were used to demonstrate the accuracy improvement of
the computer programs used in this contract. The first class consists of a set
af highly idealized cases for which the exact results are known. This class
was used (1) to verify that the computer programs were substantially free of
pregramming errors and (2) to determine by numerical experiment the properties
of selected mathematical features of the program. This first class of test
cases was used in conjunction with the model problem studies and is described
in Section 4.0, The present discussion is limited to describing the results
obtained using the second class of test cases,

The need for the second class of test cases arises because in the first type
of problems the flow field was assumed to be uniform and properties such as
density and viscosity were constant. In addition, the mesh was uniform and
cell aspect ratio was unity, lone of these conditions exists when amalyzing
real combustor flows; hence, conclusions reached after running the first class
of problems can become invalid when real combustor flows are calculated. It is
therefore essentfal to check the selected schemes in situations which are
simple encugh in geometry to be modeled exactly by ZD-TEACH and 3D-TEACH and
yet be representative of 3D-combustor calculations. In addition to satisfying
the above criterion, these test cases have to meet the conditions used to

select bench mark experiments suitable for verifying CFD codes (Ref. 1). These
conditions are Tisted below.

1) Minimum necessary flow dimensionality. For the two dimensional version of
TEACH, experiments 1n which the flows can be represented as two-dimensional
were selected. Three-dimensional flow situations were used only when
specifically testing the three-dimensional versfon of the program.

2) Well-behaved flows. Flows in which instabilities, periodicity, or changes
in gross behavior occur as flow conditions change were avoided. For example,
flows were not used in which the location of reattachment points of separated
flow regions could undergo significant shifts as Peynolds number 15 changed
over the range of interest,

3) Known boundary conditions., Experiments were selected for which entrance
{and exit) flow profiles could be specified as completely as possible. For
turbulent flows, initial profiles of turbulence intensity and integral lenqgth
scale were sought,

4) Extensive instrumentation. Attempts were made to find flow mapping
experiments 1n which nonintrusive techniques were used to characterize flows
throughout the chamber volume,

As the test cases selected originally were run using hoth the baseline and
revised versions of the computer program, it became apparent that additional
test cases were needed. For example, the accurate prediction of turbulent
flows requires the use of both a good numerical scheme and a sufficiently
accurate turbulence model. Current turbulence models require further
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development and their use may produce errors that cannot be separated from
those produced by alternative numerical procedures, Therefore, two laminar
flow cases were also selected for analysis; however, one of these cases was
not based upon experimental data.

The turbulent flow test cases were based on experiments discussed in
References 1, 32, and 33, In general, none of the test cases satisfies
completely all of the criteria noted previously. In some cases, one or more
important inlet profile is not reported; in these cases, the unknown inlet
conditions have been assumed or extrapolated from downstream results. However,
all of the test cases do contain flow features representative of those found
in modern gas turbine engine combustors.

The test cases used were:

Laminar flow over a rearward facing step (20)

Laminar flow with swirl in a sudden expansion (2D)
Turbulent flow over a rearward facing step [(20)

Coannular turbulent flow in a sudden expansion (20)
Coannular turbulent swirling flow in a sudden expansion (2D)
Row of turbulent jets in turbulent crossflow (3D)

(PG S
il il il ™ il bl

6.1 TWO-DIMENSIOMAL LAMIMAR FLOW TEST CASES

Two laminar flow cases were used, The first consisted of the flow downstream
of a rearward facing step. The second consisted of the swirling flow
downstream of a sudden expansion. These cases were run to assess the
performance of the alternative finite-difference schemes independently of the
turtulence model.

6.1.1 Flow Downstream of Rearward Facino Step

The laminar flow downstream of a rearward facing step was computed using the
three finite-difference schemes considered herein; the baseline hybrid method
- HYBRID, the second bounded skew-upwind differencing scheme - BSUDSZ, and the
gquadratic upwind differencing scheme - QUDS. The flow geometry is shown in
Figure 6-1. The inlet Reynolds number was assumed to be 250, the inlet axial
velocity profile was taken as uniform, and the inlet vertical velocity was
assumed to be zero. The test case was run using four uniform, and successively
finer, meshes designated TOPHAT1, TOPHATZ, TOPHAT3 and TOPHAT4. Mesh size
parameters and computed flow reattachment points are presented in Table 6-1.
It is seen that the mesh sfze fs halved in each direction for each subsequent
mesh. Representative computed stream)lines are shown in Figure 6-2.
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Raj = 250 - LAMIMNAR FLOW
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Figure -1 Laminar Flow Over a Rearward Facing Step with Uniform Inlet
Velocity Profile - Stagnation Streamline

Figure v-2 Representative Streamlines for Flow Over a Rearward-Facing Step
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TABLE 6-1

COMPUTED REATTACHMEMT LENGTHS FOR VARIOUS DIFFEREMCIHG SCHEMES
FOR THE FIRST LAMINAR FLOW TEST CASE

Reattachment Length, Ipfh

Case Grid HYBRID QuDs BSUDS2
TOPHATY 10 x 6 2.5 5.32 2.2

TOPHATZ 20 x 12 314 5.25 3,95
TOPHAT3 40 x 24 4,52 £.35 5.78
TOPHAT4 78 x 48 5.53 §.75 5,98

The variation of computed reattachment length with total number of grid nodes
{the product of the number of nodes in each directifon) is shown in Figure 6-3,
Also shown is the experimentally determined value of 6.3 reported by Durst
(Ref. 32) for this flow. It can be seen from Figure 6-3 that, for the coarsest
mesh, HYERID and RSUDS? have comparable accuracy that 15 considerahly worse
than that of QUDS. The predicted reattachment length using QUDS s not teo
sensitive to the number of grid nodes used. As the mesh is refined, the
accuracy of BSUDSZ increases rapidly and becomes somewhat superior to that of
QUDS. It appears that all of the methods give essentfally the same asymtotic
value as the mesh is refined. For mesh densities normally used in
two-dimensional flow calculations (f.e., ~1000 nodes), BSUDSZ and OUDS perform
about equally well and both are superior to the HYBRID method. It should be
noted that this assessment is specific to the type of flow calculated in this
test case and is probably dependent on the Reynolds number of the flow.
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Figure u-3 gnmnnjbed Reattachment Length Using Different Finite Difference
chemes,
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From Figure 6-3, it can be seen that the computed reattachment point iz always
less than the measured value, It is possible that the underprediction of
reattachment length indicates that a grid-independent result has not yet heen
achieved. More 1ikely, this slight (=4 percent) error is due to the uniform
axial velocity inlet profile used in the calculations since the experimental
inlet profiles were not available from Reference 32,

6.1.2 Swirling Flow Downstream of a Sudden Expansion

The second laminar flow test case consisted of the swirling flow downstream of
a sudden expansion in flow area. The Reynolds number for this flow was 450,
The inlet tangential velocity was assumed to be equal to the axial velocity to
give a vane angle of 45 degrees and a swirl number of 0.66. The expansion
ratio, which is defined as the ratio of the outer radius, R, to the inner
radfus, r, was 3.0, The flow field was terminated by a sudden contraction with
a contraction ratio of 3.0. Uniform profiles of axfal and tangential velocity
were specified as the inlet boundary conditions. There are no experimental
measurements available for this case. The geometry and flow conditions are
given in Figure 6-4, This test case was run using three uniform meshes
designated COARSE, FINE, and XFINE, and described in Table 6-11. The computed
streamlines shown in Figure 6-4 make it obvious that 1t is difficult to
characterize such flows using a single parameter such as reattachment length,
At a given station, the velocity profiles change significantly with a
relatively insignificant change in the length of the recirculation zones,

- 15r '

Figure u-4 Flow in a Sudden Expansion with Swirl; Re = 450, 5wirl MNo. =
U.bb, Vane Angle = 45-degree.

TABLE 6-11

MESH DENSITIES FOR THE
SECOND LAMINAR FLOW TEST CASE

Case Grid

COARSE 20 x 10
FINE 40 x 20
¥FIME 78 x 40
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Figure 6-5 shows the stagnation streamlines computed using the COARSE mesh., It
can be seen that the solutions produced by the three finite-difference schemes
differ significantly from each other, al though two basic recirculatifon zones
are being calculated by all of the methods. The results for BSUDS? show a
distinct lobed central recirculation region while the results for QUDS show
that a lobe 1s just beginning te form. The results for HYERID show no lobed
region, For the FINE mesh, Figure 6-6, hybrid differencing sti11 does not show
a lobed region but detailed inspection of the computed velocity profiles shows
that further mesh refinement may lead to a lobed region. Computed stagnation
streamlines using the finest mesh, XFIMNE, are shown in Figure 6-7, It can be
seen that the shape of the recirculation region calculated using BSUDS2 has
changed the Teast. The central recirculation region calculated using QUDS now
shows a larger inner bubble which indicates that for even finer meshes OUDS
may also produce the lobed recirculation bubble being computed by BSUDSZ.
Results for HYBRID still do not show break-up of the central recirculation
region, but a comparison of the velocity profiles for FINE and XFINE meshes
indicates that further mesh refinement will Tead to break-up.
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Figure o-% Stagoation Streamlines for Second Laminar Flow Test Case on
20 » 10 Mesh.
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Figure o-6 Stagnation Streamlines for Second Laminar Flow Test Case on

40 x 20 Mesh.
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Figure -7  Stagnation Streamlines for Second Laminar Flow Test Case on
76 x 40 Mesh,
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From the above, it can be concluded that the results for BSUDS2 are probably

nearer to a mesh-independent solution than the results using either HYBRID or
QuDs, although it nqpenrs that the use of QUDS will produce a mesh-independent
solution more quickly than HYBRID. The implication of this conclusion is that,

for this flow situation, the BSUDSZ results appear to be more accurate than
the QUDS results.

It is fnteresting to note that lobed recirculation zonmes have been observed in
experiments for similar swirl numbers and geometries in turbulent flow (Ref.
31) as shown in Figure 6-8, It can be seen that it is the back-pressure effect
due to the downstream contraction that produces the lobed feature,

45" swirler : Mozzle contraction
ratio
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Figure o-84 Experimentally Observed Lobed Recirculation Regions in Turbulent
Flow - Yoon and Lilly (Ref. 4, |

The results of the second laminar flow test case are in apparent contradiction
with those of the first test case, because in the first test case QUDS was
more accurate than BSUDSZ2. Perhaps one explanation is the flow angle, The flow
angle in the first test case, Figure 6-2, seems to be smaller than the flow
angle of the second test case, Figure 6-4, It was found during the model
problem studies, Section 4.0, that the accuracy of these schemes was flow

angle dependent and probably the flow angles of the above two case h
that one favors OUDS and the other BSUDSZ, 5 dre stc
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6.2 TWO-DIMEWSIOMWAL TURBULENT FLOW TEST CASES

Three two-dimensional turbulent flow test cases were rum using the baseline
and revised computer programs. The first test case consisted of the analysis
of the flow downstream of a rearward facing step. The second considered the
coannular nonswirling, axisymmetric flow downstream of a sudden enlargement im
flow area. The third case used swirling flow in the same flow geometry as the
second case.

6.2.1 Turbulent Flow Downstream of a Rearward Facing Step

The first test case consisted of the analysis of the flow downstream of a
rearward-facing step. Extensive data have been reported for this configuration
in Reference 33. This experiment has been used by several workers to assess
the accuracy of their Flow field models and it has been designated as Stanford
Case 421.

The geometry of the test section used in the experiment reported in Reference
32 15 shown in Figure 6-2; the vertical scale has been exaggerated for
clarity. The flow region from a point 4 step heights upstream of the step
(where suitable data for initial conditions were obtained) to a point 20 step
heights downstream of the step [(well beyond the location of the reattachment
point) was analyzed. In Figure 6-9, this region is delineated by the dashed
lines,
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Figure b-8 Geometry of Test Section for Flow Over a Rearward-Facing Step -
First Turbulent Flow Test Case

Initial conditions for the baseline case are shown in Table 6-1I1 and are
based on test conditions reported in Reference 44, The initial boundary layer
was approximated in a step-wise manner as indicated in Table &6-III,

la7



TABLE B-111
INITIAL CONDITIONS FOR CASE 421

Mean Velocity 18,32 m/sec
Temperature 41.2 C
Pressure 101.35 KN/me
Boundary Layer Thickness 8.4 mm
Turbulence Intensity (u'/u) 003

Axial Velocity Profile - Assumed
u= 9,16 m/sec, 1.0 = y/h<1,0336
u= 13,74 m/sec, 1.0336 =y/h<1.0736
u = 18.32 m/sec, 1.0736 =y/h =3.0

The turbulence enerqgy dissipation rate was calculated from the expression
e = 3.0k3/24
where K is the turbulence kinetic energy and H is the hefght of the channel.

the ¢
The experimentally-determined reattachment point was located at 7 *+ 1
step-heights from the step.

Three cases, each using a different grid system, were calculated using the
baseline computer program for the conditions shown in Table 6-111. The
pertinent grid information is given in Table 6-V and the grid set up for three
cases 15 explained below. The first case used the relatively coarse grid shown
in Figure 6-10 and the grid has been designated as COARSE; in Figure 6-10, the
vertical scale has been exaggerated for clarity. A second case was then run
using a grid obtained by nearly doubling the number of grid 1ines in each
direction; this grid has been designated as FINE. Based on the results
obtained for these two cases, a third case was run in which the number of
vertical grid 1ines was approximately the same as that used in FINE, but the
distribution of both horizontal and vertical grid Tines was changed to reduce
the Peclet number distribution in the vicinity of both the step and the
reattachment point; this grid has been designated as ADJUSTED. In the baseline
code, the finite-difference approximation to the governing flow equations uses
central differencing for Peclet numbers less than 2 and upwind differencing
for Peclet numbers greater than 2. Errors due to numerical diffusion are
associated with the use of upwind differencing. The Peclet number distribution
for the horizontal (east-west) direction for ADJUSTED is shown in Figure 6-11.
It can be seen that, even for this dense mesh, the Peclet number is in the
range from 2 to 10 for a relatively large portion of the separated flow
region. Since the streamlines are at an angle to the grid in this region,
numerical diffusion is still present. {The high Peclet number zone, Peclet -
10, outside of this region has little influence on the computed results
because the streamlines are almost parallel to the mesh.) The Peclet number
distribution for the vertical (north-south) direction 15 shown in Figure 6-12
and indicates that central differencing is used for the convective terms in
the vertical direction throughout the separation zone; thus, the calculated
results should be relatively free of errors due to the finite-difference
approximation for these terms.
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Figure u-10 Grid System for Stanford Case 421-COARSE.

The calculated and measured reattachment points are presented in Table 6-1IV,

Use of either of the alternative grid systems (that is, FIME or ADJUSTED)
resulted in a substantial improvement in the accuracy of the predicted

location. As the results in Table 6-IV show, ADJUSTED s reasonably free from
numerical diffusion. Further mesh refinement is required to make the

calculation completely free of numerical diffusion, but the pumber of nodes
needed to eliminate diffusion was beyond the storage capability of the
computer used in this program.

TABLE 6-1IV

CALCULATED AMD MEASURED REATTACHMENT POINTS
{h = step height)

Measured (mean value) Xp/h = 7

Reattachment Length, Xp/h
Calculated: Case HYBRID B QuDs

COARSE 5.2 5.4 5.5
FINE §.7 5.9 Unstable
ADJUSTED 5.8 5.8 Unstable
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Figure u-12 Horti-South Peclet Number Distribution for Stanford Case
421-ADJUSTED Using HYBRID Differencing (Pe = Peclet Number)
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For completeness, additional information about the grid system used and the

number of iterations required to achieve convergence is summarized in Table
B-Y.

TABLE 6-V
ADDITIONAL GRID SYSTEM INFORMATION

Number of Grid Lines Number of Iterations to Convergence
Case ¥-Oirection Y-Oirection HYBRTD BUSDSZ
COARSE 26 29 308 253
FIME 50 56 780 538
ADJUSTED 74 53 1515 993

The first test case was then run using the BSUDS2 finite-difference method.
The grids and flow conditions were identical to those used with the baseline
computer program using hybrid differencing. In fact, the same input files were
used to run both the HYBRID and BSUDSZ cases. The calculated reattachment
points are presented in Table 6-IV where it can be seen that BSUDSZ is
s1ightly more accurate than hybrid differencing for both the COARSE and FINME
meshes, However, the improvement in accuracy 1s not as large as suggested by
the model problem studies, Section 4.0, and laminar test case 1. For the
ADJUSTED mesh, the reattachment point given by HYBRID and BSUDS2 is the same.
It is curious to note that the reattachment lemgth with the ADJUSTED grid
decreases slightly as compared to the FIME grid.

Since the ADJUSTED grid was desioned for HYBRID to give more accurate results,
it is not surprising that this qrid has become somewhat inefficient for
B5UN52. The number of fterations to achieve convergence is less for the RSUDSZ2
than for the HYBRID method. However, since RSUDS2Z requires the calculation of
more finite-difference coefficients than HYBRID, total computation time may be
greater when RSUNS2 15 used,

Results of running the above test case with (DS are also given in Table 6-IV.
For the coarse grid, it can be seen that the trend shown in laminar test case
1 is followed. QUDS is marginally better than RSUDS? and IYBRID. However, the
difference in accuracy 15 not as larqge as it was in the laminar flow test
cases, For finer grids, QUDS becomes unstable. This behavior was expected,
because as discussed in Section 4.0, QUDS is not compatible with the solver
presently incorporated in TEACH,

6.2.2 Coannular Monswirling Turbulent Flow

The computer programs were applied to the analysis of the coaxial nonswirling
flow downstream of a sudden enlargement in flow area, as reported by Johnson
and Rennett in Peference 35. The flow is admitted into a 61 mm radius tube by
two concentric annuli. The inper annulus has an exit radius of 12.5 pm, and
the outer annulus has am exit radius of approximately 15.3 mm. The
experimental apparatus is shown in Figure 6-13, The flow in both annuli is
water,
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Figure 6-13 Second Test Case - Co-axial jets with and without swirl

The tube dividing the two annuli is tapered to a sharp edge at the exit of the
annular region (that is, at the entrance of the sudden enlargement region).
Very 1imited data are currently available at the end of the annular recion.
Hence, the following assumptions were made to establish the boundary
conditions for the inlet.

Upstream of the annular jet, measured profiles of axial velocity were
provided. Turbulence energy was calculated from measured turbulence intensity
assuming isotropic turbulence. Since mo measurements were available for the
length scale, the following expression was used for the calculation of
dissipation rate:

e = (3.0 K3/2)/p,,
where Oy 15 the hydraulic diameter,

Experimental information on the boundary conditions for the central jet were
provided at a station 12.7 mm downstream of the expansion. Measurements could
not be made at the expansfon plane itself due to lack of optical access, It
was therefore decided to use the information provided at 12.7 mm to estimate
the conditions at the sudden expansion, in the following manner:

0 Axial Velocity - From the measurement of peak velocity at the 12.7 mm
station and the flow Reynolds number, a fully developed turbulent
pipe flow profile was calculated which was then adjusted to give the
correct mass flow rate.
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o  Turbulence Energy - The measured value of the turbulence energy on
the centerline at 12.7 mm, normalized by the centerline axial

velocity at this point, was used to provide a 1imiting boundary value

of turbulence energy at the inlet, assuming that this ratio remained
constant:

K/uf = 0.005

Turbulence energy dissipation rate was calculated in the same manner as it was
calculated for the annular jet.

Global values of the initial conditions are presented in Table 6-VI. The axial
velocity profile for the inner annulus was specified in accordance with the
velocity distribution calculated using the analyses mentioned above.

TABLE 6-VI

INITIAL CONDITIONS FOR MOMSWIRLING FLOW TEST CASE
(Based on Reference 35)

Inner Flow fDuter Flow
Mean Velocity, m/sec 0.596 1,74
Mass Flow Rate, kg/sec N.648 0.55
Temperature, "C 15.6 15.6
Turbulence Intensity (u'/fu) 0.057 0.036

Three cases, each using a different grid system, were calculated for the
conditions shown in Table 6-VI. The first case used the relatively fine grid
shown in Figure 6-14 and has been designated EXTRA FIME grid. The second case
used a grid with the same vertical definition as that shown in Figure 6-14 but
with approximately one-half the number of axial nodes; this case has been
designated FINE grid. The third case used approximately one-half the number of
nodes in each direction, relative to the grid shown in Figure 6-14 and has
been designated COARSE grid. The vertical scale in Figure 6-14 has been
exaggerated for clarity.

A comparison of the measured and calculated centerline axial velocity
distribution is shown in Figure 6-15 for the coarse grid. It can be seen that
in the initial region the results do not agree well with the data regardless
of the differencing scheme used.

Figure 6-16 shows the comparison for the FINE grid, Since QUDS was unstable
for this mesh, only HYBRID and BSUDS2 calculations are shown. It can be seen
that there is virtually no difference between the two calculations. However,
it cannot be said that a mesh independent solution has been cbtained because
east-west cell Peclet numbers are large even for this grid, Figure 6-17.
North-south cell Peclet numbers, Figure 6-18, are well within limits,
Calculations with the EXTRA FINE grid did not show any further improvement and
hence are not shown.

113



2 Rl HER ] !
III |
T AR | '
T 1
:|IJ|.| ; ¥
eIl 1 1 ; :
e T
Bl Vi D] ok
T T 5
SHTATEA TR 1 iy
NIRRT ! H i :
R NA T I I A I Bt
£ ! [d1ag]]) | | O
- HI | ] 1 - ' | | i |
||.| I |“|_ I : .! i |
1.0 T '!— _!'| i ] ' : 1
i |--;:|..-| |I 'i. i : f L -
L ] | |1 1 | I
% IR EEE N RN BN A I I
R K| 4 | 1 7L | 1
= T [T T T 11 i
I 1 E| . T ] \ H v
i " 1 i — .
T e e e T e
o e = —— gl e ——
kot {0 3 Y O S D RO I |
T
_|J!!||JI..'_.: l
1 'Il-l!ll II ! ;
Lig gp Vg ! | S RN i
Il || ||. 1
a 10 20 20

AXIAL POSITION - X/Ra
Mo |X and W axis are noton gama gesle)

Figure o-14 Grid System for Second Turbulent Flow Test Case - Extra Fine Grid
(Rtz = 15.3mm)

COARSE R0

-
o

B
im

CENTERLINE VELDCITY, M/SEC

AXIAL DISTANCE, KR,

Figure o-15 Axial Velocity Distribution - Second Turbulent Flow Test Case
114



B
o FIME GRID

4

= D Data

E_ HYERLD:

E e i ]

g

(11

E’

=

ﬂ N
& [ 1 i 1 1
o 0.5 1.0 ) 70 25 30

ANIAL DISTANCE, FT

Figure b-16 Axial Velocity Distribution - Second Turbulent Flow Test Case

-
?
=
2
E P =l &
5
2
4] 1 | J
a i 20 a0
AXIAL DISTANCE, X¥a

B (X arl ¥ axis amm nod on same scabs|

Figure 6-17 East-West Peclet Humber Distribution for Second Turbulent Elow
Test Case; Pe = Peclet Number,

115



Pezi0

Pecd

mADIAL DISTANCE, Rifla
-

L] | 1 |
0 16 20 20

AxbAL EETANCE, X/Ra

Mg |¥ &nd Y axls ane ot an same scalal

Figure ©-18 Horth-South Peclet Mumber Distribution for Second Turbulent Flow
Test Case; Pe = Peclet Number.

Figure 6-19 shows the calculated streamlines for the case. This figure also
shows the three stations at which comparisons of the radial profiles of the
mizture fraction and axial velocity were made. These comparisons are shown in
Figures 6-20 and 6-21 for the coarse grid and in Figures 6-22 and 6-23 for the
FINE grid. It can be seen that the agreement with the experiment is reasonable
even for the coarse grid, and mesh refinement does not result in further
improvements. The apparent good agreement is somewhat misleading because
comparison of the centerline profiles had shown quite a significant
discrepancy between the data and calculations. Also, as was found in the first
turbulent flow test case, the accuracy of hybrid differencing is almost as

ood as that of BSUDSZ and QUDS, and emphasizes the need to investigate

urther this behavior,

MOH-EWIALING COANMULAR TURBULENT FLOW

51 mm 162 mm 306 mim
Figure b-1% Stations at Which Comparisons of Radial Profiles Were Made
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The calculated and measured reattachment points are shown in Table 6-NII. The
measured reattachment point was estimated from flow visualization data. It can
be seen that the trend is the same as was seen for laminar flow over a
rearward facing step, Figure 6-3, BSUDSZ seems to reach an asymptotic value
more gquickly than does hybrid differencing. But, as pointed out earlier the
difference between BSUDSZ and hybrid differencing is not large. Since QUNS
became unstable, its accuracy cannot be judged for this test case.

TABLE 6-VII

COMPARISON OF REATTACHMENT LENMGTH FOR THE CORMNER
RECIRCULATION ZOMES FOR COANNULAR MOMSWIRLING FLOW
MEASURED 200-225mm

MESH CALCULATED REATTACHMENT LEMGTH
HYBRID BSUDSZ quos
mm mm mm
COARSE 239 241 234
FINE 243 ' 254 UNSTABLE
EXTRA FINE 252 257 UNSTAELE

For completeness, additional information about the grid system_used‘and the
number of iterations required to achieve convergence is summarized in Table

6-¥III.
TABLE 6-VIII
ADDITIONAL GRID SYSTEM INFORMATIOM
Iterations to Convergence*

Case Grid HYBRID BS0DSE QuDS
COARSE 2l x 20 357 300 1911
FINE 21 x 38 1395 1228 Unstable
EXTRA FINE 40 x 38 1506 1430 Unstable

* Convergence defined as maximum residual source (normalized) 0,006
6.2.3 Coannular Swirling Turbulent Flow

The test case for swirling flow is based upon the data reported by Johnson and
Roback (Ref, . ) for the experimental apparatus which was used for the
coannular nonswirling flow. An extensive number of comparisons between
experimental and analytical results have been reported previously under the
HOST /Aerothermal Modelling Program - Phase 1 (Ref. 1) using the hybrid
differencing scheme.
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Since very limited data are currently available at the end of the annular
region, the following assumptions were made to establish the boundary
conditions for the inlet in the swWwirling flow case. The calculations were
started at the first plane of measurement, 0.51 cm from the expansion plane,
using the measured quantities as inlet boundary conditions. At this plane all
variables, except the dissipation rate, required for the 2D-TEACH code were
measured and can be specified. To specify the dissipation rate, it was assumed
that the inner portion of the flow originated from the inner tube and the
outer portion originated from the concentric outer tube; turbulence Tength
scales were assigned accordingly, using 3 percent of the passage heights, and
the dissipation rate was calculated from these length scaﬁes.

Four cases, each using a different grid system, were calculated using the same
set of inlet conditions. The first case used the relatively coarse grid shown
in Figure 6-24 and has been designated COARSE grid test case. The second case,
designated ADJUSTED COARSE grid, used the same number of grid lines as coarse
grid but with a greater concentration of grid lines in the axial direction
near the entrance region. The third case, designated FINE arid, used a greater
number of grid lines in the axial direction than either coarse grid or
adjusted coarse grid; again, the grid 1ines were concentrated near the
entrance region, The fourth case used the same axial grid line distribution as
FINE grid together with more grid 1ines in the radial direction; this case has
been designated EXTRA FINE grid. EXTRA FINME grid is shown in Figure 6-25, The
number of grid lines for all cases in both the axfal and radial directions,
together with the number of iterations necessary to achieve a converged
solution, are listed in Table 6-1IX.
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Figure 6-24 urid system for Coarse Grid Test Case
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TABLE B-IX

COANNULAR SWIRLING TURBULENT FLOW
ADDITIONAL GRID SYSTEM AND CONVERGEMCE INFORMATION

I[terations to Convergence
Case Grid HYBRID BSUDS2 ﬂUﬂS

COARSE 40 x 35 955 1186 3616
COARSE ADJUSTED 40 x 35 2594 1340 1579
FINE 47 x 35 1539 1422 1240
EXTRA FINE 47 x 43 2221 364* 1676

*Run with FAST Algorithm, which is the PWA version of PISO {Pressure-Implicit
Split Operator) Algorithm - Ref. 40.
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Contour plots for the east-west Peclet number distributions obtained using the
baseline computer program are shown for COARSE grid and EXTRA FINE grid cases
in Figures 6-26 and 6-27, respectively. There were very few differences
between the ADJUSTED COARSE, FINE and EXTRA FINE results; hence, only the
EXTRA FINE grid results are being shown, These contours show the region for
which the absolute value of the Peclet number is 10 or less. Generally, the
hybrid differencing procedure can be used for Peclet numbers less than 10, but
in flow regions with strong gradients in flow properties such as the entrance
region and corner recirculation region in the present case, the Peclet numbers
should be less than 2 to ensure the use of central differencing and resulting
solution accuracy. Inspection of Figures 6-26 and 6-27 shows that these
criteria are not met for even the finest grid. However, it can be seen that,
as the grid is refined in the axfal direction, the east-west Peclet numbers

are reduced to more acceptable values in both the entrance region and the
corner recirculation region.
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Figure u-206 East-West Peclet Number Distribution for Coannular Swirling Flow
- Coarse Lrid
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Contour plots for the north-south Peclet number distributions are shown in
Figures 6-28 and 6-29. Generally, the radial velocity components are small
relative to the axial velocity components, and, therefore, the north-south
Peclet numbers are smaller than the east-west values, It is interesting to
note that north-south Peclet numbers change significantly from the coarse grid
to EXTRA FINE grid, Figure 6-28 and 6-29. The reason for the change in
north-south Peclet numbers is that increasing the grid density in the axial
direction modifies the flow field significantly, producing much larger radial
velocities. These increased radial velocities are reflected in the change in
north-south Peclet numbers. The north-south Peclet numbers, as was the case
for east-west Peclet numbers, do not change significantly for the last three

grids, and their magnitude is such that the grid in the radial direction is
probably adequate.

Before detailed profile comparisons are made for this flow, it is instructive
to compare the predicted reattachment lengths of the corner and central
recirculation regions, These lengths are defined as the distance between the
inlet and reattachment point Figure 6-30. The length of the corner
recirculation region is given in Table 6-X. It can be seen that for hybrid
differencing and B5UDSZ the predicted length is reduced by almost a factor of
two between the coarse and adjusted coarse grids; further refinement does not
bring about a significant change in this length. However, for QUDS, it can be
seen that this length is reduced only by about 10 percent between the coarse
and EXTRA FINE grid, Since QUDS seems to reach an asymptotic value socner than
does BSUDS2 and hybrid differencing, the implication is that for this case
QUDS seems to be more accurate than BSUDS2 and hybrid differencing.
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Fiyure v-3U Streamiines for Coannular Swirling Flow

TABLE 6-X

COMPARISON OF REATTACHMENT LENGTH FOR THE CORMER
RECIRCULATION REGIOM FOR COANNULAR MOMSWIRLIMG FLOW

MESH SCHEME
HYBRID BSUD32 ouDs
mm: (T A
COARSE 113 10z 58
COARSE ADJUSTED 54 56 50
FINE a9 54 3 |
EXTRA FIME 50 53 52

Table 6-XI gives the reattachment Tength for the central recirculation region,
and again QUDS seems to be attaining an asymptotic value more quickly than
B5UD52 or hybrid differencing. In fact, hybrid differencing does not approach
an asymptotic value even for the finest mesh. The superiority of QUDS 1is
confirmed when the centerline velocity profiles, Figures 6-31 and 6-32, and
radial profiles of axial and tangential velocities, Figures 6-33 to 6-36, are
examined, It cam be seen that for the coarse grid, QUDS agrees best with the
experimental results. When the mesh is refined, there is no significant
improvement in QUDS5; however, both HYBRID and BSUDSZ show significant
improvement and come close to QUDS results. It was also found that BSUDS2 was
unstable for the finest mesh; an improved pressure algorithm, FAST, was used
to achieve convergence, It is possible that QUDE has reached grid independence
because its results did not change when the mesh was refined. However, the
grid refinement was not sufficient to state this with confidence.
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TABLE 6-XI

COMPARISON OF REATTACHMEMT LENGTH OF THE CENTRAL
RECIRCULATION REGION FOR COAMNULAR MOHSWIRLING FLOW

MESH SCHEME
HYBRID BSUD5S2 QuDs
[Tim fm fm
COARSE 129 134 126
COARSE ADJUSTED 129 146 155
FIME 139 153 158
EXTRA FIHNE 142 156 157
&
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Figure =31 Axial Velocity Distribution - Third Turbulent Flow Test Case



Figure ©-32 Axial Velocity Distribution - Third Turbulent Flow Test
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6.3 SUMMARY OF 2D-TEST CASES

Two laminar flow test cases and three turbulent flow test cases were
calculated and compared against experimental data where such data were
available, For laminar flow, the results confirmed the findings of the model
problem studies; both schemes were markedly superior to the hybrid
differencing scheme, BSUDSZ seemed to be more accurate at large flow angles,
whereas QUDS was more accurate at small angles. For turbulent flows,
especially for the first two test cases, hybrid differencing turned out to be
almost as accurate as the two improved accuracy schemes. This behavior was
unexpected and warrants further investigation. Alse, QUDS became unstable for
the first and the second turbulent flow test cases. This instability of QUDS
was expected. For the third turbulent flow test case, QUDS was superior to
both B5UDS2 and hybrid differencing for the coarse mesh. It was found that
BSUDS2 was unstable for the third turbulent flow test case and the improved
pressure algorithm, FAST, was used to achieve convergence. This behavior of
BSUDS2 was also unexpected and needs further investigation. The unexpected
behavior of the differencing schemes in turbulent flow emphasizes the
importance of using realistic test cases for the final evaluation of the
differencing schemes.

6.4 SELECTION OF DIFFERENCING SCHEME FOR 3D-TEACH

It was found from the computation of ZD-test cases that QUDS was prone to
instability. Since in 3D, this tendency is bound to increase, there was 1ittle
chofce but to select the more stable BSUDSZ for incorporation into 3D-TEACH.

6.5 THREE-DIMENSIOMAL TURBULENT FLOW TEST CASE

The baseline {hybrid differencing) and BSUDSZ versions of the three-

dimensional computer program were used to analyze the three-dimensional test
cases. This test case is based on the experiments conducted by Khan [Ref. 37)
in which rows of jets were injected normal to the main flow in a duct with a

rectangular cross-section. For the test condition simulated, a single row of

129



2.58-cm diameter jets with a pitch (jet centerline-to-centerline distance) to
Jet diameter ratio of four was used; the test section height to jet diameter

ratio also was four. A schematic diagram of the flow i
section s shown in Figure 6-37, ¢ geometry in the test
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Figyure o-37 Test Case Flow Geometry for Base-Line Computer Program.

In the axfal (x) direction, the simulation extends from a plane five jet
diameters upstream of the leading edge of the jet to a point 24 jet diameters
downstream of the trailing edge of the jet; that is, for 30 jet diameters. In
the vertical direction, the calculation extends from the floor of the wind
tunnel to the roof, a distance of four jet diameters, In the lateral direction
the computational domain covers the distance through the jet centerline to the
plane of symmetry between the jets, a distance of two jet diameters. Kahn
verified that the flow was symmetric about the latter plame.

The grid system for each plane is shown in Figures 6-38 through 6-40,
respectively. The jet was simulated using the relatively fine, rectangular
grid in the injection plane, as shown schematically in Figure 6-41, The number
of arid nodes in the x, y, and z directions were 34, 10, and 15, respectively.
For later reference, this grid system has been designated as the COARSE grid.
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The ratio of jet to mainstream velocity was approximately 2.3. Experimental
data, Reference 38, were used to establish the initfal velocity of the jet.
These data, which were for a jet to mainstream velocity ratio of 2, are shown
in Figure 6-42, together with the assumed jet velocity distribution used in
the test case. For other calculationsin this flow system, see Ref. 1

For the baseline computer program with hybrid differencing, calculations were
continued for 141 iterations until the maximum residual error was less than &
percent. Selected calculations were continued to a Tower level of maximum
residual; the computed flow field did not change significantiy.
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Both BSUDS2 and Skew-Upwind Differencing (5UD) without bounding were used, The
number of fterations reguired to achieve comparable levels of convergence were
as follows:

Differencing Ho. of Iteration
Hybrid 141
BsUDS2 222
SUD (No Bounding) 244

The BSUDS2 calculations were run with the blending factor initialized to unity.

Calculation time per iteration for BSUDSZ was approximately twice that for
hybrid differencing. This large increase is probably due te the time required
to assemble the additional finite-difference coefficients required for RSUDS2
and to the bounding procedure, as noted earlier.

The streakline plots for the coarse mesh are shown in Figure 6-43 to 6-45.
These figures do not show significant differences between the hybrid and
BSUDSZ calculations.
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Comparison of Streakline Plots for BSUDSZ and HYBRID in the X-Z

Plane at ¥Y/D = 20 - Coarse Grid

Figure 6-45



Comparisons of calculated results with data at four axial locations are shown
in Figures 0-46 to 6-49. As expected, calculations without bounding appear to
contain less numerical diffusion than the bounded calculations. However, the
difference between the two predictions is not significant. Also, either skew
method 15 successful in reducing numerical diffusion, as can be seen from
Figure &-46 where peaked profiles are calculated by the skew schemes where as
numerical diffusion smears out the peaks for hybrid. There are, however,
significant differences between the experimental data and the predictions, and
grid refinement is required to ascertain {f the discrepancy is due to the
coarseness of the mesh or inaccuracies of the turbulence model.
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The mesh used for the fine grid calculations used 40, 20, and 17 nodes in the
%, ¥ z direction, respectively. (Figures 6-50 to 6-52) It can be seen that the
major difference between the coarse and fine meshes is the grid density in the
vertical direction, which has doubled.
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For FINE mesh calculations, the blending factor was initialized to 0.75. The
reason for initializing the blending factor to 0.75 was that, when this factor
was initialized to 1.0, (as is usually the case), severe convergence problems
were encountered. These problems persisted even when a converged hybrid
differencing solution was used as the inftial guess for the BSUDSZ scheme.
Since the initialized blending factor is not altered at a given node if the
solution remains within bounds, reducing the initial blending factor by 25
percent nas the effect of introducing some extra numerical diffusion. This
diffusion seews to be sufficient to damp out the oscillations and to enable
the solution to converge. Increasing the blending factor beyond 0.75 made the
sulution unstable. It was later found that the computer program was not
computing the blending factors properly in some cases and the above
instability could be due to the error in the code. Since 1t was ensured that
the blending factors were in bound, the final solution is not in error. It may
nave more than the minimum amount of numerical diffusion required by the
BSUDSE scheme. However, as will be seen later, it has significantly less
numerical diffusion than hyorid.

wouparisuvns of calculated results with data are shown in the Figures 6-53 to
&-%6. It can be seen that as compared to the COARSE grid calculation, the
predicted profile shapes have been modified, and the hybrid differencing and
B5ULSZ predictions approach each other; however, there are still significant
differences between the predictions and the data. Examination of the
streakline plots, Figures 6-57 to 6-59, confirms the findings of the profile
plots. The differences between the flow fields predicted by the two schemes
are less pronounced than they were for the coarse grid.
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Figure t-bl0 shows a comparison of COARSE and FINE mesh predictions for BSUDS2
and hybrid differencing. It can be seen that the predicted profiles have
changed significantly near the floor of the tunnel but not near the roof. A
comparison of the COARSE and FINE meshes in the y-z plane, Figure 6-61, shows
that although the mesh was refined considerably near the floor its density was
not increased sufficiently near the roof. Since the measured profile near the
roof 15 also peaked and the yradients near the roof are as large as those near
the floor, it can be inferred that a significant amount of numerical dfffusion
is still present in the FINE grid calculation. To ensure that a mesh
independent solution has been achieved, the mesh density near the roof must be

increased. Unfortunately, the cost of making such a run during present
contract was prohibitive.
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Figure b-60 3D Test Case 1 - Comparison of Axial Yelocity Profiles for Coarse
and Fine Heshes
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b.6 SUMMARY OF 3D-TEST CASE

Une turbulent flow three-dimensional test case, a row of jets in cross flow,
was calculated using hybrid differencing and BSUDS2. Two mesh sizes, COARSE
(34 x 10 x 15) and FINE (40 x 20 x 17) were used. It was found that BSUDS2 was
able to reduce numerical diffusion when compared to hybrid differencing. There
remained a considerable discrepancy between the data and predictions. Because
of budget lTimitations, a finer mesh, which would have been able to resolve the
velocity near the roof of the tunnel, could not be used. Hence, it could not
be ascertained if this discrepancy is due to the turbulence model or to an
insufficient number of grid nodes.

6.7 SUMMARY OF TEST CASES

The improved accuracy finite-difference schemes, QUDS and BSUDS2, were
evaluated in 20-TEACH by computing laminar and turbulent flow test cases.
Tiese computations were compared with experimental data where such data were
available. Every test case was calculated using successively finer grids in an
effort to obtain grid independent solutions. Grid independence was obtained in
most cases, but in some turbulent flow test cases, Timitations of computer
size or instability in the solution prevented achievement of this goal.
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For the laminar flow test cases, the flow over a backward facing step and
sWwirling flow into a sudden expansion were analyzed. For laminar flow, the
results confirmed the predictions of the model problem studies described in
Section 4.0. Both schemes were markedly superior to the hybrid differencing
scheme; and, B5UD5SZ was more accurate at large flow angles and QUDS was more
accurate at small angles. Three turbulent flow test cases were considered:
flow over a backward-facing step, nonswirling flow in a sudden expansion, and
sWwirling flow in a sudden expansion. For the first two test cases the accuracy
of hybrid differencing was the same as that of the two improved accuracy
schemes. This behavior was unexpected and warrants further investigation.
Also, QUDS became unstable for the first and second turbulent flow test cases.
This instability of (QUDS was expected. BSUDS2 became unstable for the third
turbulent flow test case; this behavior was also unexpected and needs further
investigation. The unexpected behavior of the performance of the differencing
schemes for the turbulent flow test cases demonstrated the inadequacy of
relying only upon model problem studies for selecting a scheme and emphasizes
the importance of using realistic test cases.

One three dimensional, turbulent flow test case, a row of jets in cross flow,
was calculated using hybrid differencing and BSUDSZ with two mesh sizes.
Because of computer storage and budget 1imitations, a grid-independent
solution could not be achieved for either scheme. It was found that BSUDSZ was
more accurate than Hybrid differencing for this test case.
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7.0 CONCLUDING REMARKS

Tnis study has contrivuted significantly to the effort of reducing numerical
errer in computational fluid mechanics codes. One of the most mportant
developments nas been the establishment of a frame work by which future
schemes can be judyed. This frame work did not exist prior to this study. In
this study, nut only were the criteria for evaluation established, but a
number of schewes were evaluated using these criteria and the procedure was
successful in 1dentifying the most suitable scheme for 30-codes. In addition,
tne assessment methods developed during this study were able to predict most
orf tne deficiencies of tne selected scheme which were later exhibited in the
db-code. Another important outcome of this study was the realization that an
tiproved accuracy scheme cannot be completely divorced from the solution
algoritim. It was because of the fncompativility of QUDS with the present
solution alyoritim, and the resulting nstability, that it was not
incorpordted into JU-TEACH, although it has significant advantages over BSUDS2,

Tuis effort nas resulted in the fmprovement of the accuracy of 2D as well as
sl-codes based on the TEACH concept. Although accuracy improvement is
dependent on the flow field, it is expected that for practical applications,
wnere some portion of the flow makes a Targe angle with the grid lines, this
inprovement will be more than sufficient to justify the increased cost. $ince
tne selected scheme 15 never less accurate than hybrid differencing, there is

nu danger of the improved code giving less accurate answers than the baseline
versioi.

Twis study should be Tooked upon as a first step in the process of reducing
nuuerical error from combustor performance codes. More work 1s required,
especially for the 3D code, to ensure that the selected scheme is performing
with uptimum accuracy.

The reasons for the poor performance of BSUDS2 in some of the ZD-test cases
also need to be investigated more throughly. At present, 1t 1s conjectured
toat tne sensitivity of each scheme to flow angle is responsible for this
vehavior. It is quite possible that this may not be the only reason. For
elample, all model problem studies were conducted on meshes of uniform size
With cell aspect ratio of unity whereas the 2D turbulent flow test cases used
a non-uniform mesh witn Targe aspect ratio cells. Hence poor performance of
B3ULSZ in ZU cases could also be attributed to large cell aspect ratio. In
principle, modifications to the scheme can be made to take account of the cell
aspect rativ. The scheme can also be modified to account for the pressure
grauient in the flow field which, as discussed earlier, leads to inaccuracies.
It is suyygested that the test cases be rerun with the above modifications to
Lile schewe to assess cne fuprovement in performance. [t is anticipated that
the perforumance of B5UDSZ will improve significantly after these modifications.

Tie vlending procedure used in BSUDSZ suffers from the disadvantage that the
final solutivn is not path independent. It is even conceivable that dfi fferent
initial values of the blending factor may produce different convergedsolutions
Wogre convergence is weasured by the level of residual source ervor which in
practice is always nonzero; that is, the solution may not be unigue
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computationally. Path dependency may cause difficulties when this code is used
in a production environment. Several schemes can be formulated to reduce or
eliminate this path dependence. One scheme would be to always start with a
converged liybrid solution. The other would be to recalculate the blending

factors at every iteratiom and use their latest value without under relaxing
tnem with teeir value of the previous iteration.
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8.0 RECOMMENDATIONS

There are two type of recommendations that can be made based on this work.
Recommendations of the first type are related to the use of current codes for
optimum accuracy. Recommendations of the second kind are concerned with
further developments of the code.

It is recommended that BSUDSZ be used for production running of 20- and
JU-TEACH codes. 5Since flows commonly encountered fn gas turbine combustors are
complex, and since some portion of the flow makes a large angle with the grid
lines, BSUD52 will yield more accurate results than will hybrid differencing.
It is also recomnended that during grid selection account be taken of property
gradients present in the flow field. Indiscriminate refinement 15 not feasible
in three-dimensional calculations with present day computers.

Since the accuracy QUODS as well as that of BSUDSEZ is dependent on flow angle,
it 15 desirable to develop differencing schemes that are less sensitive to the
direction of the velocity vector. It is not necessary to abandon present
methods completely in the pursuit of flow angle independence. Since QUDS and
SUDS are accurate at different flow angles, it may be feasible to combine
these two schemes in such a manner that the resulting scheme is more accurate
than either of the schemes at all flow angles. This possibility should be
fnvestigated. It was found that the model problem based on single cell
calculations was successful in predicting the flow angle sensitivity of the
schemes tested. Hence, i1t is recommended that this problem be used to screen
the candidate schemes in future.

Incorporation of the more implicit pressure algorithm, FAST, into the 3D-TEACH
code 1s recommended. It is expected that the stability of B5UD5SZ will improve
with this algorithm as demonstrated in the 20-Code, In order to improve the
stability of QUDS and other schemes, whose computational molecule is not
compatible with the ADI method, a more compatible matrix solver must be
developed.

Alternatively, instead of developing further the JD-TEACH code, an entirely
new computer program based (say) on a time-marching procedure which does not
need a matrix solver. Since the time-step size necessary for stability of an
explicit algorithm is extremely small, it is expected that a higher-order

di fferencing scheme, such as QUD5S, will be stable in this framework. However,
considering that the time required to bring a new code to production status is
about ten years and the expenditure of resources is considerable, any
improvements to the present code in the interim are highly desirable.
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APPENDIX A - THE THREE DIMENSIONAL BOUNDED SKEW-UPWIND DIFFERENCING SCHEME

In this section, the three dimensional Bounded Skew-Upwind Differencing Scheme
(BSUDS) is described. First, a brief review of the flux form of the equations of mo-
tion is presented. Second, a detailed description of the finite-difference form of
the flux contribution to a representative face of a typical control volume is given;
the derivation of the flux contributions to the other five faces is then outlined.
Third, the resulting co-efficients for the finite-difference equations representing
the total flux (and sources) are presented. Fourth, the results of applying the boun-
dary conditions in a manner consistent with the foregoing flux representation are

shown. Fifth, the bounding scheme for the coefficients is detailed.

This section is an extension of the two-dimensional scheme presented in Section 5.0
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A.1 - Flux Form of the Equations of Motion

The equations of motion for both laminar flow and (time-averaged) turbulent flow
can be written in similar fashion for all of the dependent variables:
Cartesian Co-ordinates

3 9 _ 3
o (pud) + >y (pve) + Y. (pw¢)

a3
=-5-}—{( )+—(T¢ ) +""‘(F¢ ) +S¢) (Al.la)

— (pu¢) -'——-(rpv¢) + % — (pwd)

S0 3y 123 g 3¢ 1, 8
= (T )+ (I'Td)ar)"’r (rl"¢ )+S

= To oo s (A1.1b)

¢

The variable ¢ represents any of the dependent variables (e.g., the velocity compo-—
nents u, v, w, mixture fraction, turbulent kinetic energy and turbulent energy dissi-
pation). The exchange coefficient, F¢, represents the sum of both laminar and turbu-
lent contributions and is interpreted as the effective viscosity for ¢ = u, v, w, the
effective diffusivity for ¢ = mixture fraction, etc. S¢ is a generalized source term.
Eqs. (Al.1) are integrated over a control volume appropriate for each dependent
r}variable ¢ and, after some manipulation, the finite-difference equivalent forms of
Eqs. (Al.1) are obtained. The control volumes are defined using an orthogonal grid
formed by the intersection of co-ordinate lines in each axial, radial, and lateral
co-ordinate direction. The intersection of the grid lines form the grid nodes at
which all flow properties except the axial (u), radial (v), and lateral (w) veloci-
ties are calculated; i.e., all scalars. The axial velocity is calculated using a
second grid with grid nodes located midway between the scalar grid nodes in the axial
direction and co-incident with the scalar grid nodes in both radial and lateral posi-
tions. The radial velocity is calculated using a third grid with grid nodes located
midway between the scalar grid nodes in the radial direction and co-incident with the
scalar grid nodes in both axial and lateral position. The lateral velocity (or azi-
muthal velocity in cylindrical co-ordinates) is calculated using a fourth grid with
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FIG. A-1
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grid nodes located midway between the scalar grid nodes in the lateral (z or ) direc-
tion and co-incident with.the scalar grid nodes in both axial and radial position.
Directions in the grids are identified as north, south, east, west, back and front.
Nodes are identified as shown in Fig. A-1 where P is the node at the center of the
control volume. For hybrid (upwind and central) differencing, the principal nodes are
designated N, S, E, W, B, F and P. TFor the bounded skew-upwind differencing scheme,
twenty additional nodes are used as shown in Fig. A-1.

The relative positions of the various grid systems can be illustrated by con-
sidering the grid systems in the x-y plane only. Then, the grid system for the scalars
is shown in Fig. A-2 and the control volume for the scalars is shown in Fig. A-3. The
relative positions of the axial and radial velocity control volumes is depicted in
Fig. A-4. Similarly, in the y-z plane, the radial and lateral velocity control volumes
are displaced relative to the scalar control volumes. Finally, in the x-z plane, the |,
axial and lateral velocity control.volumes are displaced relative to the scalar control
volumes.

The faces of the control volumes for each scalar are defined by planes located
midway between the scalar grid nodes as shown in Fig. A-3. Thus, the location of the
east or west faces of a scalar control volume is co-incident with the axial locations
of the axial velocity components, etc., so that normal velocity components lie along
the boundaries of the control volumes. (Generally, boundaries for the u, v or w con-
trol volumes include scalar grid-lines and are not necessarily 1ocatedvmidway between
velocity grid lines.) For the scalars, the grid systems defined above provide some
computational convenience. Since the u, v and w velocities are stored midway between
the scalar grid nodes, the convective fluxes for each face can be calculated without
recourse to averaging any of these velocities. Also, the pressure gradient driving
the flow can be computed without averaging pressures.

The finite~-difference forms of Eqs. (Al.1) are derived by integrating these equa-
tions over the appropriate control volume. In performing the integration over the con-
trol volume for each term in Eq. (Al.l), the mean-value theorem is employed and the
source term is linearized in the vicinity of the center of the control volume (point

P). After some manipulation, the finite-difference form of Eqs. (Al.1l) is obtained
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Cebe = Cuby * ONn = Cgbg + Cyoy, — Cpdyg

Dy (¢g=¢p) = Dy (6p6)

+

DN (¢N—¢P) - DS (¢P—¢S)

+

Dy (¢B-¢P) - Dp (¢P—¢F) + Syt Spep (A1.2)

where CE’ C etc. are ''convective coefficients' as defined below

w’

c

E (OU)e ae

Cy = (pu) , a,

(@]
|

N = (ev)y ay

O
w0
i

(pv)S a_

CB = (pw)b ab

O
]

(pw)f ac (Al1.3)

where a , a , a , a , a,, a. are the areas of the faces of the control volumes. The
e w’ n s b f
"diffusion coefficients''are given by
= E¢>
Dg (Ax ag
- Ii)
DW (Ax 2w
w
T
Dy & (—~) a
N v n
T
Dg = ("i) s
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DB =(——-¢2> ab
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2
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where the convective and diffusive coefficients are shown in terms of the cartesian
co-ordinate system. Since Eq. (Al1.2) has the same form for both cartesian and cylin-
drical co-ordinates it is only necessary to define the geometric parameters used in
the convective and diffusive fluxes in a manner appropriate for each coordinate
system. These definitions are given in Appendix B. If a consistent set of
geometric parameters is used, then the equations for the bounded skew-upwind diffe-
rencing scheme developed below are identical in both cartesian and cylindrical co-~
ordinates. For convenience, the nomenclature for cartesian co-ordinates will be used.
It is important to note that Eq. (Al.2) applies to all of the dependent variables

although the appropriate grid must be used in each case to define the geometric

Bl

parameters used in the calculation. Also, Eq. (A1.2) can be used with any of the difference

procedures considered in the program since each scheme is simply an alternative method
for defining (interpolating for) the fluxes at the face of the control volume (e.g.,
¢e, ¢w, ¢n, ¢s, db s ¢f). However, the diffusion terms are always represented by
central differences.

It is convenient to define a total flux for each face of the control volume as

the sum of a convective flux and a diffusive flux such that

Fe = Fy + F, = Fg + Fp - Fg = Sy + Sp0p (A1.5)
where

F, = Cgée - DE (65 - ¢p)

Fy = Cyéw - Dy (ép - ¢w)

Fn = Cy¢n ~ Dy (o - ¢p)

Fg = Cgbg = Dg (¢p = ¢g)

Fg = Cpég - Dg (¢p - ¢p) (Al1.6)
In the following section, the skew differencing procedufe will be used to calculate
the values of the dependent variables at the faces of the control volume. As a result,

Eq. (A1.5) will include not only the values of ¢ at the '"normal," or main, grid node

locations (E, W, N, S, B, F and P) but also at the corner locations. The finite-difference
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form for Eq. (Al.5) is then
= + A
Apbp = Aphp * Auby * Agby ¥ Aghg ¥ Apby T Apbp * Ayptyg

Askbse * Am®nw T Asw®sw * Penelsne * ABse®Bse

+ + + A + A +
ABNW¢BNI~7 ABSW¢BSW BN¢BN BS¢BS ABE¢}3E1

Bpuley * ArneEne T Arse®rsE t Arwdrnw t Arsudrsw

+ A 4+ S
Aon®en * Arsfrs t o Are®re T ARutrw T Syt Spte

(A1.7)
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A.2 - Calculation of the Fluxes

Recall that the equations of motion, Egs. (Al.1), can be written in terms of fluxes
to each face of the control volume, Eq. (Al.5). 1In this section, a procedure will be
described to calculate fluxes, Fe, Fw, Fn,'Fb and Fg. The derivation of F,, the flux
to the west face, of a typical scalar control volume is given in detail. The deriva-
tion of the other fluxes and of the fluxes of the u, v, and w velocity components are

outlined.

Consider the control volume used to determine the value of a scalar variable at
the point P. A portion of this control volume is shown in Fig. A-5 for the case in
which the u and v components of velocity are non-negative and the w coﬁponent is nega-
tive. For all velocity vectors located at the center of the west face of the control

volume (point w), the flux to the west face is given by:

Fy = Cué, = Dy (6, = ¢) (A2.1)

Furthermore, for central-differencing (CD), the value of the dependent variable at the
west face, ¢w’ is always given by linear interpolation between ¢ at the W and P grid

nodes:

(1 - aw) ¢w + aw¢P (A2.2)

=
€
"

where the interpolating factor is

o = Jw Xy (a2.3)
w Xp - Xy

‘In the 3D-TEACH computer program, o = 0.5 for each face of the control volume for
each scalar variable since the control volume faces are located midway between scalar grid
nodes. For the axial, radial and lateral velocity components, however, the a for
each face may assume other values. The central difference form of the flux at the
west face is then:
FwCD

*5;* = | Pey, (1 - uw) + 1 ] o + (agPe, = 1) ¢p (A2.4)

where the Peclet number at this face is given by:
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Pe = CW/Dw (A2.5)

The central difference form of the flux at all faces of the control volume for point P
are presented in Table A-1.

The upwind difference (UD) form for the flux at the west face is defined by:

F

— P (A2.6)
D Feyly AZ.
W
for a non-negative value of axial component of velocity, u,, and
F
wUD
——= =P A2.7

for a negative value of u,. Essentially, the upwind differences are derived from the
central difference by setting o, equal to zero Or unity, respectively, and by neglect-
ing diffusion.

It is convenient to define the velocity switches

V=3 (1+—"—) (A2.8)

for the axial, radial, and lateral velocity components and to adopt the convention that
the value of a switch is unity if the velocity component is non-negative and it is zero
otherwise. Then, the upwind difference form of the flux at the west face of the

control voluem is:

Fy
D _ u - gu
D, = Pe_ [cw o + (1 - 00) ¢p ] (A2.9)
The upwind difference forms at all of the faces are summarized in Table A-2.

Equation (A2.1) is also the starting point for developing the flux equations for

the skew-upwind differencing (SUD) procedure. The value of ¢ at the west face of
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the control volume, by is determined by extrapolating the velocity vector upstream

of the face. FOFr the case shown in Fig. A-5, this point lies in the plane formed by
the nodes W, SW, BW and BSW. The value of w'" is determined by linear interpolation.
First, the projection of the velocity vector in the x-y plane is extrapolated upstream
to the point w' which lies along the grid line between the nodes W and SW. The inter-
polation factor kq is defined by:

Vy
U

_Gw'w) 1 ax

1 Ay 2 Ay

k (A2.10)

w

where (w'W) is the distance between point w' and the node W and Ay is the distance

between nodes W and SW. Then,
¢ r = k]. (¢Sw - dpw) + ¢w
= ky dgy + (1 - k) ¢y (A2.11)

For very large flow angles (skewing) relative to the co-ordinate directionms, ky will
exceed unity and w' will be defined in terms of ¢ at the SW and S nodes; however; it
is known that for two-dimensional flows this approach can yield negative coefficients
at corner nodes which can in turn produce oscillations in the solution; it is assumed
that the same situation will prevail for three-dimensional flows. To assure that the

coefficients for the corner nodes are non-negative, then:

1 ox ) (A2.12)

k., = min 1

Vw
1 &3

Uy

ay

The use of absolute values in Eq. (A2.12) permits this equation to be used to define
k1 for all velocity components at the west face. Similarly, the value of ¢ at the

point w'" along the gridline connecting nodes BW and BSW is given by:

o = kg opsw + (1 - k1) Spw (A2.13)

where the same interpolation factor is used as in Eq. (A2.11). The value of ¢ at the
point w'"' is obtained by linear interpolation between ¢,t and ¢ym. The interpolation
factor is obtained by extrapolating the projection of the velocity vector in the x-z

plane to the point 3 along the gridline connecting nodes W and BW:
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-
bom = kg b+ (1= k) gy (A2.14)

with
. Ax ww
kg =min | 1,5 = | (A2.15)
Az | U,

The superscript ++- indicates U, > 0, V, > 0, W, < 0.
Consequently,

bt = ks [ xp opgw + (1 - k1) opw ]

+ (1= k) [ kp ogy + (1 = k) ¢y ] ’ (A2.16)

For two-dimensional flow, k3 = 0 and it can be seen that Eq. (A2.16) has the correct
limiting value.

Equation (A2.16) was derived for the case of Uy, > 0, V;, > 0, W, < 0. For the
case of Uy, > 0, V,, > 0 and W_ > 0, the appropriate equation can be derived by rotating
the velocity vector into the positive z direction and (referring to Fig. A-1) replacing

the subscripts BSW by FSW and BW by FW. As a result, one obtains:
+++
o.m = k3 [ Ky opgy + (1 - k1) opy |
+ (T - k3) [ Ry oy + (1= k) oy ] (A2.17)

Then, for Uw

v

0, v, > 0, and all Wy

++
111

= OW ¢w|n [ Eq. (A2.17)] + (1 O'w) ¢)w'“ [ Eq. (A2.16) ] (A2.18)

or
ot = oy [ oy epe * (1= k) orw ]
+ (1 - 0:) k3 [ k1 ¢Bsw + (} - k1) ¢BW J
+ (L-ky) [ kg gyt U -1) o ] (A2.19)

where the superscript ++ indicate that U, and V, are both non-negative.
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A similar expression can be derived from Eq. (A2.19) for the case U, > 0,
Vy < 0, and all W, by replacing the subscripts FSW by FNW, BSW by BNW, and SW by NW

to obtain

-
d)wm = O: k3 [ kl ¢FN‘W + (1 - k]_) ¢Fw ]

+(1-:0:)k3[k1¢BNw+(1"k1) ¢BW]
+ (1 - k3) [ ¥y o T (1 - k) b ] (A2.20)

Then, one can combine Eqs. (A2.19) and (A2.20) to obtain an expression for ¢wlu for

U, 2 0, all Vi, all W, from:

+ v+ vy L +-
d)w"l = Ow ¢wlll + (1 - GW) q)w'n (A2.21)
For the case in which U < 0, Vi > 0, and all Wy, an expression for ¢w"' can be

obtained from Eq. A(2.19) by replacing the subscripts as follows

FSW becomes FS
FW becomes F
W becomes P
SW becomes S
BW becomes B

BSW becomes BS

Hence
-+ _ W _
¢wl|l - GW k3 [ kl ¢FS + (1 kl) ¢F ]
w
+ (1 -0 k3 [k ogg + (1 - k1) ¢g ]

+ (1 -k3) [k og *+ (1 - k1) ¢p ] A (A2.22)

Finally, for the case of U, < 0, V, < 0 and all Wy, an expression for ¢;", can be

obtained from Eq. (A2.20) by replacing the subscripts as follows:

FNW becomes FN
FW becomes F

BNW becomes BN
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BW becomes B

NW becomes N

W becomes P

Hence

-©-
]

ov kg [ Ry opy + (1= k) ¢p ]
+ (1 -0 kg [k op + (1 -kp) oy ]
* A =ky) [y o+ (1=K g, ] (A2.23)

Then for Uw < 0, all Vv, and all Wy

— —
b = oy b * (1= o) el (A2.24)

and for all Uy, all Vi and all W, :

_ u t _u -
¢wl|| - GW ¢w'|| + (1 Gw) ¢)w||| (A2.25)

In analogous fashion, interpolated values for ¢ at the other faces of the control
volume can be derived. Equations for gt ¢n'”’ and ¢b'” can be derived immediately
from the expressions for ¢w'”’ ¢s'"’ and ¢f'”’ respectively, by shifting nodal sub-
scripts in each case in the positive co-ordinate direction (i.e., toward the opposite
face of the control volume). Tables A-4 through A-9 present the equations correspond-
ing to Eqs. (A2.19) through (A2.25) for each of the faces.

Since the grid is not uniform, the geometric parameters AXx, Ay, AZ, used in the
calculation of k; and k3 differ for each face of the control volume and for each
orientation of the velocity vector at each face. A summary of the geometric parameters
is presented in Table A-3. Only the definitions for the parameters used for the east,
north and back faces are shown in Table A-3. Since the fluxes at only these faces
are actually computed as indicated in the next section; the flux at the west face for
the control volume at node (I, J, K) is the flux at the east face of node (I-1, J, K),

etc.
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In his original development of the skew upwind differencing procedure for two-
dimensional flow, Raithby(Ref. A=-1)assumed that the value of the dependent variable
at (say) the west face of the control volume is equal to the interpolated value. 1In
the present development, this is equivalent to assuming that ¢w = ¢w'" so that--using

Eq. (Al.6) and the definition of Peclet number--

FWSUD
Dy

= Pe_ 6w = Dy (¢p - ¢.) (A2.26)

It is desirable to use the central-difference procedure for small values of the grid
Peclet number and the skew upwind differencing method for large values of the grid
Peclet number. It is also desirable that these two formulations produce a continuous
transition at the transition Peclet number which in the case of U, > 0 at the west

face of the control volume becomes:

* 1
Pe = e—— (A2.27)
w Cw

For the scalar grid system used in the 2D-TEACH computer program, P_* = 2. At the

transition Peclet number, the central difference result using (Eq. A2.4) is:

Pigp _ tw (A2.28)
Dy ey .
while the skew upwind differencing method (Eq. (A2.26)) yields:
FW ¢ i
UD :
SR . ¥ (o - by) (A2.29)
D a W
W W

From Egs. (A2.18) through (A2.25), it is clear that these two results are not equal.

++
(Note: At present, ¢w'" = ¢w .)

The fluxes at the transition Peclet number can be made equal by noting (contrary

to the assumption made by Raithby) that ¢, and ¢w"' are related by:

b m = b, (%i—) bs + . . . (A2.30)

so that Eq. (A2.26) becomes
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Fy
SUD _ _ 3¢ _
Dy Cewlu T Fey ( Bs) bs = (9, = ¢,) (A2.31)

w

where As is defined in Fig. A-5. Writing the central differencing result in terms

of the flux definition, Eq. A2.1, then:

Fwep - p

D, eydy = (op = oy) (A2.32)

Clearly, these two fluxes will be equal at the transition Peclet number if a correc-

. % [ 3 ' . .
tion Pew<—8%> Ls is added to the skew upwind differencing flux, Eq. (A2.26), to
w .

obtain:

= Pew¢’w|u + P;‘w(_aﬁ) As - (‘bP - ¢w) (A233)

The derivative (3¢/3s),, can be computed by

3 0] - ¢ m
S% = “E"X;—Ji-' (A2.34)

To provide a continuous variation in flux at the transition Peclet number, the derivative

in Eq. (A2.34) is approximated further as:

(¢w) - d) "t
LA CP l (A2.35)
98 Ns

where (4) .. 1is given by Eq. (A2.2). Then, after using Eqs. (A2.2) and (A2.35) and some

(3))
rearrangement, Eq. (A2.23) becomes:

FW
SUD * *
Dy = (Pe, - Pe,) bym * [Pe (1-0p)+1] 2%

*
+ (aw Pew - 1) op (A2.36)
This last result is valid for all U_, V,, W, (i.e., for all ¢,™) provided that the

transition Peclet number is given by:

P* = 1
ey 03 - (1 - aw)

(a2.37)
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At the transition Peclet number, the flux given by both central differencing and skew

upwind differencing are:

F
Yo 2 0 — = EE (A2.38)
-7 DW Oy

F
- = - Dw O.W"l :

Results similar to Eqs. (A2.36) and (A2.37) for all faces of the control volume are

summarized in Table A-10.

In the hybrid differencing procedure, the more accurate central differencing formu-

lation (see Table A-1) is used when the Peclet number is less than the transition value

while the less accurate, but stable, upwind differencing result (see Table A-2) is
used when the Peclet number is greater than the transition value. In the development
of the equations for two-dimensional flow, it was believed at first that a similar
hybrid differencing method could be formulated using central differencing for Pg < Pe*
and gkew-upwind differencing for Pg > Pe*. However, this approach proved to be
unworkable since some of the coefficients derived from this hybrid formulation could
be negative. As an alternative, a flux blending scheme was used in which a weighted
average of the upwind differencing fluxes is used. The weighting (blending) factor,
Y, was chosen to assure boundedness (i.e., all co-efficients of the difference equa-
tions are non-negative). It is assumed that a similar flux blending procedure can

be utilized for the three-dimensional case. The Bounded Skew-Upwind Differencing

(BSUD) scheme is defined by

F =y F + (1 - F 2.40
psyp = Ym Frigyp * (1 = vm) Fryy (A2.40)

where Il represents one of the six faces of the control volume. The weighting factor

Yy..is restricted to the range 0 < Ygp £ 1 and is calculated as described in Section A.5.

174



A.3 - Calculation of the Co—-efficients for the

Finite-Difference Form of the Equations of Motion

The finite-difference form of the equations of motion (e.g., Eq. (A1.7)), can be
derived directly from the flux information presented in Tables A-1, A-2, A-4 through
A-10 and Eq. (A2.40). The resulting expressions will contain the unknown blending
factor, Y. The blending strategy requires that the terms in the equations for the
coefficients responsible for producing negative co-efficients be isolated so that
appropriate values for y can be determined. Furthérmore, the coefficients for the
control volumes adjacent to the physical boundaries of the flow may require modifica-
" tion to incorporate the effect of the boundary conditions. Thus, to simplify manipu~-
lation and modification, some additional notation will be defined.

Let the center of the control volume (point P) be located at the Ith axial posi-
tion, Jth radial positiom, and Kth lateral position. The flux contributions (the com-
ponents of the total flux) to the east face are denoted as E1(I,J,K), E2(I,J,K),
E3(I,J,K,L); the flux contributions to the north face are denoted as N1(I,J,K),
N2(1,J,K), N3(1,J,K,L), and the flux contributions at the back face are denoted as
B1(1,J,K), B2(I1,J,K), B3(1,J,K,L) where L = 1,2,3,4 as indicated below. The flux con-

tributions are defined as follows:

E1(I,J,K) = Dg - o Cf

E2(I,J,K) = E1(1,J,K) + Cg

E3(I,J,K,L) =0 L =1,2,3,4 (a3.1)
N1(I,J,K) = Dy - apCy

N2(I,J,K) = N1(I,J,K) + Cy

N3(1,J,K,L) =0 L=1,2,3,4 (A3.2)
B2(1,J,K) = B1(1,J,K) + Cy

B3(1,J,K,L) = 0 L = 1,2,3,4 (A3.3)
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E1(I,J,K) = (og - 1) Cg
E2(1,J,K) = E1(I,J,K) + Cg

*
E3(I,J,K,1) = Dg(Pec-Pe ) (k3ky),

¥*
E3(1,J,K,2) = Dg(PecPeo) [ k3 (1 - %) ]

E3(1,J,K,3) = DE(Pee—Pez) [ (T =-%k3) k],
E3(1,3,K,4) = Dp(Peg-Pey) [ (1 - k3) (1= k) - 1] (A3.4)
N1(I1,J,K) = (o, = 1) Cy

N2(I1,J,K) = N1(I,J,K) + Cy

N3(I,J,K,1) = Dy(Pey-Pey) (K3kp)

N3(I,,K,2) = Dy(Peq-Pe ) [ k3 (1= %) ]
*

N3(I,J,K,3) = Dy(Pep=Pe ) [ (1 - kg) kg 1
*

N3(I,3,K,4) = Dy(Pe-Pe ) [ (1 - ky) (1 -%) -11_ (43.5)

-— w P

Bl(IstK) - (Ob 1) CB

B2(1,J,K) = B1(I,J,K) + Cg
*

B3(1,J,K,1) = Dy(Pep-Pey) (k3ky)y
%

B3(I,J,K,2) = Dg(Pep-Pey) [ k3 (1 - k)],

B3(I,J,K,3) DB(Peb-Pe:) [ (Q-%xy) k]

b

B3(1,J,K,4) DB(Peb-Pe:) [ - k3) (1 -%y) -1] b (A3.6)

The use of central vs. bounded skew-upwind differencing is determined by the value

of the Peclet number at each face. The parameters, CE’ Dg, o,» k15 . . . are local

e
values; the subscripts (I,J,K) have been omitted in the interest of readability.
The corresponding flux contributions at the west face are given immediately by
E1(I-1,J,K), E2(I1-1,J,K), . . ., the flux contributions at the south face are
N1(1,J-1,K), N2(I,J-1,K) . . ., and the flux contributions at the front face are

B1(1,J3,K-1), B2(1,J,K-1),
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The coefficients of the finite-difference form of the equations of motion may
then be defined in terms of these flux contributions. The results are presented in
Table A-11. The notation used in Table A-1l can be explained by examining, for ex-
ample, the second term, exclusive of the blending factor, in the equation for A; at
the node (I,3,8K): [ G: - G:) E3 ] (1,3,K,2). The subscripts I1,J,K indicate the
node at which o:, 0:, and E3 are evaluated; the fourth subscript refers to the flux
contribution E3(I,J,K,L) with L equal to 2--see Eq. (A3.1) or Eq. (A3.4).

For the two-dimensional case, it is relatively easy to demonstrate that Ap is
equal to the sum of the other eight co-efficients whenvuse is made of the mass con-
tinuity equation. It is assumed in the three-dimensional case that Ap is now equal
to the sum of the other 26 co-efficients in Table A-1l when use is made.of the mass

continuity equation:

- +C - R - = 3.
cE cw N cS cB CF 0 (A3.7)

The boundary conditions (Section A.4) and the blending scheme (Section A.5) can be
applied directly to the flux contributions so that the results shown in Table A-11

are general.
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A.4 - Boundary Conditions

The boundary conditions are applied to the flux contributions as defined by Egs.
(A3.1) through (A3.6) so that the set of coefficients (e.g., Table A-11) for each de-
pendent variable is the same throughout the computational domain. This consistency
simplifies the application of both (1) the algorithm for solving the set of simultane-
ous equations for each variable and (2) the bounding procedure (see Section A.5).
Scalars

It will be recalled that the axial velocities are stored midway between the
scalar gridlines in the axial direction; therefore, the axial velocities are stored at
the midpoint of the east and west faces of the scalar control volumes. Similarly
the radial velocities are stored at the midpoint of the north and south faces of the
scalar control volumes and the lateral velocities are stored at the midpoint of the
front and back faces of the scalar control volumes.

Physical boundaries are located midway between scalar gridlines in the appropriate
direction. 1In the following discussion, the boundary conditions are applied to the
various faces of the control volume for an interior node (I,J,K) to produce modified
east-west flux contributions (El, E2, E3), north-south flux contributions (N1, N2,

N3), or back-front flux contributions (B1l, B2, B3) for use in calculating the co-
efficients of the finite-difference equations for the scalars (e.g., Table A-11).

There are five types of boundary conditions to be considered; these types are:

(1) specified wall,

(2) axis of symmetry, planes of symmetry,

(3) unspecified opening,

(4) specified inlet, and

(5) periodicity.
The application of these boundary conditions to modify the flux contributions used to
determine the finite-difference coefficients for a node (I,J,K) having a physical
boundary on the west face of its control volume will be described in detail. The
modifications to the co-efficients due to the other physical boundaries are similar

and will be summarized.

a) West Face

For a specified wall, the value of the scalar at the wall may be either known (e.g.,

turbulence kinetic energy = 0) or unknown (e.g., turbulence dissipation). Since the
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variation of the scalar from its wall value to the value at the node (I,J) is
(generally) non-linear, it is prudent in every case to decouple the wall values from
the system of equations. The influence of the wall can be reflected by using appro-
priate wall functions to compute the source terms for the scalars. From Table A-11,

it can be seen that the (known or unknown) wall values of the scalar can be excluded

if the co-efficients ABNW’ ABSW’ ABW’ AFNW’ Ast, AFW’ ANW’ Aw and ASw are set to zero.
These coeffiicents will vanish if the following flux contributions are set accordingly:

E2(I-1,J,K) = 0

E3(1-1,J,K,L) = 0O L=1,2,3,4
N3(1,J,K,L) = 0
N3(1,J-1,K,L) = 0

L=1,2

B3(1,J,K,L) =0
(A4.1)

I
o .

B3(1,J,K-1,L)

If the west face of the control volume for the node (I,J,K) is a plane of symmetry,

then the flux normal to this face is zero. By definition, the unknown values of the
scalar at the nodes (I-1,J,K) and (I,J,K) are equal; the gradient of the scalar normal
to the axis vanishes there. Thus, an axis of symmetry is mathematically identical to
a specified wall boundary condition with zero gradient (source) at the wall. The modi-
fications to the flux contributions are given by Eq. (A4.1).

For an unspecified opening, it is assumed that (1) the flow is exiting through
the opening, (2) the streamlines are parallel in the vicinity of the opening, and (3)
the cell Peclet number exceeds the transition value. By the third assumption, the
skew differencing formulae, Eqs. (A3.4) through (A3.6) are used but by the second
assumption the flux contributions E3, N3 and B3 used in the calculation of the nine
co-efficients are zero. By the first assumption, the flow direction switch OZ at
the node (I-1,J,K) is zero so that E2(1I-1,J,K) is zero. As a result, the conditions
in Eq. (A4.1) are satisfied and all nine coefficients are zero. Thus, the unknown
values of the scalars at the unspecified opening are dgcoupled from the system of equa-
tions.

It is seen that the modifications to the flux contributions for the specified wall,

axis of symmetry, and unspecified opening boundary condition are identical.
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For a specified opening, the value of the scalar is known at the west face of the
control volume for the node (I,J,K) since, as noted above, the physical boundary in
this case is located at the west face of the scalar control volume. In general, the
cell Peclet number is greater than the transition value whenever the boundary repre-
sents a specified opening. Therefore, the flux contributions El, E2 and E3 at the
node (I-1,J,K) are computed using the skew upwind differencing formulae, Eq. (A3.4).
However, since the boundary is coincident with the west face of the control volume for
the node (1,J,K), there is no skewing of the flow at this face and, therefore, all E3
at (1-1,J,K) are set to zero.

The determination of the co-efficients for the node (I,J,K) in this case also re-
quires the computation of north, south, back and front contributions. Since the speci-
fied opening is coincident with the west face of the control volume for the node (I,J,K)
and since this face is located midway between the nodes (I-1,J,K) and (I,J,K), it is
necessary to double the value of the skewing interpolation factors used in calculating

these flux contributions. Thus, for the specified opening:

E3(1-1,J,K,L) = 0O L=1,2,3,4

(k3)_=min [ 1, 2(k3) ]

(K3) = min [ 1, 2k3)_ ]

(k3), =min [ 1, 2(k3), ]

(R3), = min [ 1, 2(x3), ] (84.2)

The analysis of the modifications to the flux contributions for a physical boun-
dary at other faces of the control volume is similar and the results are summarized as
follows.

b) East Face

(1) For a specified wall, axis of symmetry, or unspecified opening:

E1(I,J,K) = 0

E3(I,J,K,L) = 0 L=1,2,3,4

N3(I,J,K,L) = 0

N3(I,J-1,K,L) =0

B3(I,J,K,L) = O L=12

B3(1,J,K-1,L) = 0 (A4.3)
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(2) For a specified opening:

E3(1I,7,K,L) = 0O L=1,2,3,4
1, 2(R3) ]

(K3)n min

(K3)S

(K3)b = min

[

min [ 1, 2(K3)S ]
[ 1, 2(R3), ]
[

(K3)f = min | 1, 2(K3)f ]

(AL .4)

¢) South Face

(1) For a specified wall, axis of symmetry, or unspecified opening:

N2(I,J-1,K) =0
N3(1,J-1,K,L)

[
o
[

I

=1,2,3,4
E3(1,J,K,L) = 0
E3(1I-1,J,K,L) =

|
(=]

B3(1,J,K,L) = 0
B3(1,J,K-1,L) =

1
o

(A4.5)

(2) For a specified opening:

N3(I,J—1,K,L)
(Kl)e = min [ 1, 2(K1)e ]

0 L=1,2,3,4

(Kl)w min [ 1, Z(Kl)w ]

(k1) = min [ 1, 2(xp), ]

(K1)f min [ 1, 2(K1)f ] (A4.6)

d) North Face

(1) For a specified wall, axis of symmetry, or unspecified opening:

N1(I,J,K) = O

o O

=1,2,3,4

=
|

N3(1,J,K,L)

E3(1,J,K,L)

[
o

E3(1-1,J,K,L)
B3(1,J,K,L) = 0

B3(1,J,K-1,L) = 0 (A4.7)
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(2) For a specified opening:

N3(I,J,K,L) =0 L =1,2,3,4

(k) = min [ 1, 2(kp) ]

(Kl)w =min [ 1, Z(K]_)W ]

(R1), = min [ 1, 2(%y), ]

(R, =min [ 1, 2(ky) . ] (A4.8)

e) Front Face

(1) For a specified wall, axis of symmetry, or unspecified opening:

B2(1,J,K-1) =)
B3(1,J,K-1,L)

"
@
£

i

=1,2,3,4
E3(1,J,K,L) =0

L=1,2

[
o

E3(I-1,J,K,L) =
N3(1,J,K,L) = 0 ‘
L

1,3 (A4.9)

i
o

N3(1,J-1,K,L) =

(2) For a specified opening:

B3(I,J,K-1,L) = 0 L
= 1 K
(K3)e min [ 1, 2( 3)e ]

1,2,3,4

it

(K3) min [ 1, g(K3)w ]

(Kl)n min [ 1, 2(K1)n ]

(K1) = min [ 1, 2(ry)_ ] (A4.10)

£) Back Face

(1) For a specified wall, axis of symmetry, or unspecified opening:

B1(1,J,K) = O

B3(I,J,K,L) = =1,2,3,4

i
o o
-

E3(1,J,K,L) =
1,2
E3(1-1,J,K,L)
N3(I,J,K,L) = 0

0 L

N3(1,J~1,K,L)

)
L]
o
[
[
i

#

(A4.11)
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(2) For a specified opening:

B3(I,J,K,L) = 0 L=1,2,3,4
(K3)e =min [ 1, 2(K3)e ]

(K3)w =min [ 1, 2(K3)w ]
(Kl)n =min [ 1, Z(Kl)n ]
(Kp), = min [ 1, 2(kp)_ ] (A4.12)

The east and west faces of the axial velocity control volumes are co-incident with
the vertical scalar gridlines. The axial storage locations of physical boundaries are
the same as the axial locations of the axial velocities; the inverse is, of course,
not true. The radial and lateral locations of the u velocity and scalar control
volumes are identical.

a) West Face

Assume that a physical boundary is located to the west of the axial velocity control
volume. If the physical boundary represents either a specified wall or an axis of sym-
metry, then the axial velocity at this face is zero; if it represents a specified open-
ing, then the axial velocity is a known, specified value. If the physical boundary
represents an unspecified opening, then it is assumed that the axial velocity is known
from the previous iteration. In every case, it is seen that the axial velocity is
known at the west face of the axial velocity control volume. Therefore, the axial
velocity at the west face of the control volume can be computed in the same manner as
is used for any axial velocity interior node.

The radial and lateral velocities for the west face of the axial velocity control
volume are interpolated in the same manner as they are for the west face of a scalar
control volume since the radial and lateral grid line locatiomns for the scalars and
axial velocity are identical. Thus, one can obtain the values of u, v and w and the
flux contributions can be computed using Eqs. (A3.1) through (A3.6) in the usual manner.
Thus, it is seen, that the application of the boundary conditions requires no modifi-

cation to the computation of the flux contributions.
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b) East Face

A similar analysis leads to the conclusion that no modifications are made to the

computation of the flux contributions.

¢) South, North, Front and Back Faces

Since the radial and lateral positions are identical for both the axial velocity
and scalars, the modifications of the flux contributions for these faces of the axial

velocity control volume are the same as those required for the corresponding face
of the scalar control volume.

The radial velocity control volumes have radial and lateral positions identical to
those for the scalar control volumes.

a) South and North Faces

No modifications are necessary. (See discussion for west and east faces of axial
velocity control volumes.)

b) West, East, Front and Back Faces

Use modifications for corresponding face of the scalar control volume.

The lateral velocity control volumes have axial and radial positions identical to

those for the scalar control volumes.

a) Front and Back Faces

No modifications are necessary. (See discussion for west and east faces of

axial velocity control volumes.)

b) West, East, South and North Faces

Use modifications for corresponding face of scalar control volumes.

Special Treatment for Corner Regions

At a corner, it is necessary to compute the flux contributions as a weighted
average of the fluxes in the vicinity of both a wall and a fluid boundary (unspecified
opening or specified opening). The weighting is equal to the fraction of the face of
the control volume adjacent to the solid boundary. Since this procedure is not
peculiar to the bounded skew-upwind differencing procedure, but is part of the general
procedures used for all finite-difference schemes in the TEACH computer program, it

will not be described further.
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A.5 = The Bounding Scheme

The calculation of the bounded skew-upwind differencing fluxes and, therefore,
the determination of the coefficients to the finite-difference form of the equations
of motion requires that the blending factor, y, be determined. The blending factor
specifies the relative proportions of the flux computed using skew and upwind differen-

cing. For example, at the west face of the typical control volume, Eq. (A2.40) states:

(1 -v,) F (A5.1)

F +
WsSUD w{D

F =
WRSUD | W

The co-efficients including the local blending factors are listed in Table A-11. The
blending factors are limited to the range 0 < v < 1. Examination of the terms in each
of the co-efficients in Table A-11 lead to the following general conclusions:

(1) For the principal co-efficients (those with a single subscript such as
A, Ag, etc.), the term without a blending factor y is unconditionally
non-negative and the five terms containing blending factors are uncon-
ditionally non-positive.

(2) For the edge co-efficients (those with two subscripts such as Agp, Ayw,
etc.), two terms are unconditionally non-negative and two terms are
unconditionally non-positive.

(3) The corner co-efficients (those with three subscripts such as. Apgp,

Apgy, etc.) are unconditionally non-negative.
Therefore, it is possible that some of the coefficients in Table A-11 will be negative.

It is desirable that all of tﬁe co—efficients of the finite-difference form of

the equations of motion (Eq. (Al.7)) be non-negative for in this case the value of the
dependent variable ¢ at the node P is simply a weighted average of the values of ¢ at
the surrounding nodes exclusive of (the somewhat complicating) effects of local sources.
A bounding scheme is a procedure to limit the values of the co-efficients of the
finite-difference equations in such a manner as to produce this physically realistic
result. Its principal computational advantage is to exclude under- and overshoots of
the solution during the‘iterative procedure; these oscillations can produce severe

numerical instability.
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The bounding procedure used herein is based upon the following sequence:

(1) for each iteration, the solution for the distribution of the dependent variable
¢ is obtained using the blending factors y determined during the previous iteration;
the blending factors are-set to unity for the first iteration;

(2) for each point P in the variable field, the maximum and minimum values for ¢

are determined from the 26 neighbors:

¢ = max (¢k) (A5.2)

max

6 . = min (¢)) (45.3)

min
vhere ¢ is the value of ¢ at any of the 26 neighboring nodes and k # P.

It should be noted that the effects of sources are not included explicitly in calcu-
lating ¢max or ¢min since the explicit result is difficult to perform while avoiding
double counting of the source effect. In any case, the results obtained will be no
worse than to force the use of upwind differencing by making vy = 0. According to Pro-
fessor A. D. Gosman, consultant to this project, the determination of ¢max and ¢mi

n

is an area for which further research is needed.

It should also be noted that onme or more ¢ may be excluded from the determination
of ¢max or ¢min when the control volume under consideration is adjacent to certain types
of physical boundaries. For example, if the x—axis is an axis of symmetry, then ¢S
is excluded since it is identical to ¢P and its use could yield an inappropriate range
of permissible values.

(3) if ¢ . < o, < ¢ s then'the local value of the blending factor is unaltered

min P max
from its current value. However, if ¢P is outside of this range, then a new value of
Y must be determined. For this purpose each of the co-efficients in Table A-1l1 is

written in the form:

A = A + YA, k =N, S, NE, SE . . . (A5.4)

where it has been assumed that the blending factors for each of the faces of the local

control volume are equal. Then Eq. (Al.7) can be written as:

¥ ' 1
o, Lz vy A ] - Spop = T Agby + ¥ T Agdy + Sy (A5.5)
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Now, if ¢P < ¢min’ then from this equation,

1 N
Z Adr T dnin z Aﬁ Syt SP¢min

Y > . T T A“cb (A5‘6)
¢min Ay k¥k
but 1f ¢p > ¢max’ then
T A - b I A" +S +8 ¢
<Kk max k _u_ pmax (45.7)

! lv_z 1"
¢max z Ak Ak¢k

Of course, in practice the value of Y is determined by use of the appropriate equality
for Eq. (A5.6) or Eq. (A5.7).

(4) In this fashiom, the local value of y(I,J,K) is determined. The co-efficients
in Table A-11 are then recomputed using the blending factors and the new distribution
of ¢ is determined. For each face of the control volume at the point (I,J,K) there are
two values of Y as determined for the two control volumes sharing the common face.
Thus, a sufficient condition forassigning local values of the blending factors is

given by:
y =min [ v(1-1,J,K), v(1,3,K) ]
[ v(1,3,K), v(1+1,3,K) ]
y =min [ vy(1,3-1,K), v(I,3,K) ]
y_=min [ y(I,3,K), v(I,J+1,K) ]
ve = min [ ¥(1,3,k-1), v(1,3,K) ]

= min [ v(I1,J,K), vy(I,J7,K+1) ] (A5.7)

This procedure for determining the blending factors effectively limits the value
of the dependent variable range to values of its immediate neighbors. However, it is
still possible that some of the main co~efficients will be negative. More restrictive
schemes can be formulated that guarantee that all co-efficients of the finite-difference
equations are non-negative but these procedures achieve this result by reducing the
blending factor toward zero; the greater relative contribution of upwind differencing
in this case produces larger amounts of numerical diffusion. Thus, the selection of
a blending scheme represents a compromise between the undesirable effects of numerical

instability and numerical diffusion. 187



The final blending factor field determines the ratio of the UDS solution
present in the final solution. Since at present it is not possible to ensure
that the blending factor field is unique for a given problem the solution
generated by BSUDS2 is also not unique. Although it 1ies between UDS and SUDS.
The reason for non-unique blending factor field is the following.

The calculation of blending factors depends on the value of the coefficients.
These coefficients are calculated on the basis of the flow field that existed
in the previous iteration. Hence the initial blending factor field strongly
depends on the first guess. If, due to a bad guess, for example, at some nodes
in the first iterations some of the factors are set to zero, the following
iteration will produce a solution for those nodes which will be in inbounds.
Hence the blending factors will never be increased from zero subsequently, and
the final solution will be nearer to UDS. On the contrary a good first guess
will not cause these factors to be set to zero at the final solution would be
nearer to SUDS. In snort if a bad guess forces the introduction of more than
tie minimum required numerical diffusion in the solution, there is no
mechanism for diffusion to be taken out in the final stages of the solution.
In the present code this adverse effect is minimized by under-relaxing the
blending factor. But this practice can some times cause a minor problem. In
some cases it is possible to obtain convergence with the solution being
unbounded at some nodes. This problem can be completely avoided by checking
for the undershoots and overshoots after convergence has been obtained. If an
unbounded solution is detected iterations can be continued until a bounded
solution is obtained. The above approach to achieving a unique solution from
BSUDS2 is only one of a number of options that can be used. Another approach
would be to update the blending factor at every iteration and not under-relax
them at all.
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Nomenclature

A Coefficient in finite-difference equations (Eq. Al.7)
a Flow area

B1,B2,B3 Flux contributions, back face of control volume
C Convective flux

D Diffusive flux

E1,E2,E3 Flux contributions, east face of control volume
F Flux

I Index for nodes - axial direction

J Index for nodes - radial location

K Index for nodes - lateral direction

kqy,k3 Skewing interpolation factors

L Flux contribution index for B3, E3 or N3
Ni,N2,N3 .Flux contributions, north face of control volume
Pe Peclet number

T Radial coordinate

5 Source

s Distance along streamline (e.g., see Fig. A-5)
u Axial velocity

v Radial (or vertical) velocity

w Lateral velocity

X Axial co-ordinate

y Vertical (or radial) co-ordinate

z Lateral co-ordinate

o Interpolation factor

T Exchange co—efficient

Y Blending factor

Ax Ay Az Internodal distances

o Azimuthal or co-ordinate

¢ Dependent variable

p Density
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o ,0 ,0 Flow velocity direction switches

Subscripts

B Back node - see Fig. A-1l

b Back face

BE,BN,BS,BW Back edge nodes - see Fig. A-1
BNE,BNW,BSE,BSW Back corner nodes - see Fig. A-1
BSUD Bounded skew-upwind differencing
CD Central differencing

E East node - see Fig. A-1

e East face

F Front node - see Fig. A-1

£ Front face

FE,FN,FS5,FW Front edge nodes - see Fig. A-1
FNE,FNW,FSE,FSW Front corner nodes - see Fig. A-1
k ‘ Dummy index

max Maximum value

min Minimum value

N North node - see Fig. A-1

n North face

NE Northeast node - see Fig., A-1
Nw Northwest node - see Fig. A-1

P Node at center of control volume - see Fig. A-1
S South node - see Fig. A-1l

s South face

SE Southeast node - see Fig. A~-1
sw Southwest node — see Fig. A-1
SUD Skew upwind differencing

u . Value not dependent on ¢

UD Upwind differencing

W West node — see Fig. A-1

w West face
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Dummy node indicator

Dependent variable

Interpolated value

Axial velocity

Radial or vertical velocity

Lateral velocity

Transition

For co-efficients, value not associated with vy

For coefficients, value associated with ¥y

Intermediate values of interpolated result for assumed velocity

components
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TABLE A-1

Central Differencing Fluxes
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TABLE A-2

Upwind Difference Fluxes

West
Fy
UD u u
=P ) + 1" ]
By, e, | %% ( ow) ¢P
East
FeUD - [ u . (1 u)
Dp T Fee | % ¢P % ¢E ]
South
Fg
UD _ v v ]
D Pes [ o ¢S + (1 os) ¢P
North
Fn
UD _ v v ]
DN - Pen Un ¢P + On) 0:)N
Front
Ff
UD [ w w ]
—— = P + 1-
D eg | o ¢ * (1rop) o
Back
b
UD [ \ \'4
._.._‘__P o+ 1_
Dy ey | % ¢ * (179 ¢
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TABLE A-4

INTERPOLATED VALUE FOR ¢ - WEST FACE

0, V, > 0, all W,

+4

\
¢w"' = O: k3 [k1¢FSW + (1-kq) ¢FW] + (1—0w) ki [k1¢BSW + (1—k1) ¢BW]

+ (l-k3) [k1¢sw = (1-k71) ¢w]

0, Vi < 0, all Wy,

+- w
¢om = 0: kg [k1¢FNw + (1-k1) ¢Fw] + (1—0w) ky [kidggy + (1-k1) ¢gyl

+ (1-kg) [kyo, + (1-k1) ¢,]

0, Vv, 2 0, all Wy

67h = o k3 [kyope + (1kD) op ]+ (1-0%) k3 [kpoyg + (1-kp) o]

+ (1-k3) [kieg + (1-k1) ¢,]

Then
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0, Vi < 0, all Wy
—— w w
¢ = o k3 [kiepn + (1-kp) ¢g] + (1-00) kg [kidgy + (1-kp) ¢g]
+ (1‘k3) [k1¢N + (1‘k1) ¢P]
+ v+ vy +- . 1 1 Ax Vv 1
¢wm = Ow ¢wln + (1"'Ow) ¢wm kl = mln L > 9 Ay UW -
- v ~—+ v -
¢wm = GW W'" + (1—OW) ¢W"' . 1 Ax Ww 1
k., = min 1, — — |T—

u .+ u - 2 k 2 Az UW

¢wm =0 w™ + (1_0W) ¢wm L



TABLE A-5

INTERPOLATED VALUE FOR ¢-EAST FACE

v

Ue = 0, Ve = 0, all We
Y ).IK + (1-K + (1o +
et T T Ky [Kypg + (17Kp) ¢p) + (1-0) Ry [Kydpg + (1-K)) 0]
+ (1- ' -
(1 K3) [Kl‘bs + (1 Kl) d)P]

Ue = 0, Ve 2 0, all We

¢+E. = CW.K K + (1-K.) ¢.] + (1-¢") K. [K.¢.._ + (1-K.,) ¢_]

e e 3 ey 1) Y %7 %3 1% 1’ B

+ (1K) (Ko + (1=K )¢

Ue < 0, Ve 2 0, all We

w w
¢en| = Oe K [I\l¢ + (1“Kl)¢FE] + (l-oe) K3 [Kl¢

gsg T (1K) ¢gg)

FSE
(1K) (Ko + (1K )6, ]

Ue < 0, Ve < 0, allWe

w
¢e||l_ = 0 K [K ¢ + (l—Kl)¢FE] + (l-Oe) K3 [

e 3 '‘"17FNE + (1-K)) dpp]

K1%sNE

+ (1K) K&+ (1K )e]

1'NE
Then

+ v+t v +-
Cbevn = Oe d)en, + (l—Oe) ¢>eu'

- v -t v -
¢e||1 = Oe ¢en' + (l-O’e) ¢en'

u + u -

¢’enl = Oe ¢e"' + (l—Ge) ¢e"'
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TABLE A-6
~ INTERPOLATED VALUE FOR ¢-SOUTH FACE
All Us, Vs = 0, Ws 2 0_

++ u
¢)S"' = OS K [K ¢ + (l—Kl)q)

u
3 Ky %pqy 1+ (1-0) Ky [Kpopep + (17K)) g

SW 1"FSE

+ (1K) [Rpgo + (1K)

6 = 00 Ky [Kopo + (1Kol + (1m0)) K

17BSW 177 sw + (1-Ky) ¢SE]

3 [Ky¢psE

£ (A-Ky) [Kpoye + (1K)eg)

- u u
¢’snl =94 K3 [Kl(wa + (l-Kl)¢w] + (1‘05) K3 [K1¢FE + (l—Kl) ¢E]
+ Ky [Kpop + (1K))e)
AlL Us, Vs < 0, Ws < 0_
T =00 K, [K + (1-K.)6.] + (1-0) K. [K + (1K) ¢_]
Ggmr = Og Ry Kydyy Koyl 0g) Ky (K opp 1) %g
+ (oK) [Kjoy + (K)o
Then
-+ W ++ + (1 \%
¢S"' = OS g ( —OS)¢ tn
- -+
¢ oy = ow T + (l—ow)¢) 1o,
S S s S S
v o+ v, -
¢S'" - OS S'" + (l_os)¢s'"
. 1 Ay (Ws
Kl = min [, 2 Az lVs ‘]
K3 = min [1, 2 Ax l |1
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TABLE A-7

INTERPOLATED VALUE FOR ¢~-NORTH FACE

++ u u
¢nvn =% K3 [K1¢FW + (1-K1)¢w] + (1‘0n) K3 [Kl ¢FE + (1-K1) ¢E]

+(17K,) [Kjop + (1K) 4]

> _ u -
¢ =0 K [hl bou (1—Kl) ¢w} _Q on) K3 [Kl - (1 Kl) ¢E]

+ (1K) (K] ¢, + (1K) ¢p]

All Un, Vn < 0, Wn = 0O_

-t u u
Sarm = 90 Ky (K bpe T 7K o] + (1'°n) Ky IRy dpyp + (17K ¢NE]

+ (1K) (K bp0 + (1-K) ¢]

_— u u
= ; + - + - + -
6w = on Ky [R) gpo 4 (K o]+ (100) Ky [K) ¢+ (1K) ¢ ]
+ (l—K3) [Kl oyt (l-Kl) ¢N]
Then
+ w4+ w +
¢nvu = Gn a'" + (l-On) ¢nvn
- w -+ w _—
¢'n!ll - on " + (l_On) ¢n|u
v + v -
¢n||| = On A + (l—on) ¢n|n
o 14y ¥n,
Kl = min [1, 2 Az an ]]
_ . 1sy Un
K3 = min [1, > bx an []
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TABLE A-8

INTERPOLATED VALUE FOR ¢-FRONT FACE

> > _
U = Ve 20, 311 ¥f

++

q)f'"

+-

¢f|'|

Ug <0, Vg

¢f|"

Bp <0, Vg

I

Then

O

b

¢f1"

w
=og_ {K,[K,¢

¢ RgIK bpgy (1'K1) ¢FW] + (1'K3) [K1¢FS + (l'Kl) ¢F]}

+ (1'°¥)[K1¢sw + (1-K1) b ]+ (1—K3) [Kl og + (l-Kl) ¢P]}

= o} (R IK) open + (1K) o]+ (1K) [Ry bpy + (1K) ¢ ]}
y w - _ - v
+ (1-0}) (K [R) ¢ + (1-Kp) ] + (1K) IR ¢p (1-K)) ¢ 13
>
=0, all We
— w — - —
= o, {K3[K1 bogp T 1 Kl) ¢FE] + (1 K3) [K1 rs + (1 Kl) ¢F]}
W
+ (l—cf) {K3[K1 bgp + (1—K1) ¢E] + (1-K3)[K1 dg + (1—K1) ¢P]}
<0, all wg
w .a
- . _ _ - 3
o {K3[Kl ¢FNE + @1 Kl) ¢FE] + (1 K3) [K1 ¢FN + (1 Kl) ¢F],
w ,
+ (1—0f) {K3[K1 ¢NE + (1—K1) ¢E] + (1—K3) [Kl ¢N + (1-Kl) ¢P]}
v o+t .V -+
= o ¢f'" + (1 - of) ¢f'"
v o -+ v, .~
= of ¢f'" + (1 - Of) q)fll!
_u + u, -
- Of ¢’f'n + (l - Of) ¢ mn
min [1, 1/2 Agjzg‘]
by g
min [1, 1/2 -
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TABLE A-9

- INTERPOLATED VALUE FOR ¢~BACK FACE

20, vy 20, all W

— v — . — - — —— — G- - —

Then

+ (l-o:) {K3

bg + (1K 6.1 ¥ (1K) [K| 6 + (1-K)) ¢p1)

K, ¢

. + —-— 4
psw T (1K) ¢

gl T QK (K by + (1K) 61}

0, Vb < 0, all WD
ooV R K + (1K) 6] + (1-K.) [K. o_ + (1-K.) o_1}
tprn T Oy Ry LKy oy 1 % 3 Ky oy 1 %p
- w —-— — —-—
+(ma) (Kg Ry g+ QKD eg) + (K [Ry gy + K 4]
Up <0 ¥p 7 0y allwp
-+ oW . _ _ _
6 v = op KSR oop + (1-K)) o] + (1K) [K) ¢ + (1K) ¢,])
w 5 _ _
+ (1-9,) {K3 [K) ¢pgp * (17K)) ¢p.1 + (1-K)) [K) ¢pq + (1-K)) 451}
O <0 Wy < 0, all W,
bpon = 0y Ky [Rp o0 + (1=K 4] + (1K) [K) o + (1-K)) ¢, 1)
w
+(Lmop) (Ry K] op e+ (1K) oo ] + (1-K,) [K) g+ (1K) oy 1)
+ v o+ v, +
¢b'" - ob ¢b'" + (l-ob) d)b'"
- v -+ v, ,—-
¢’b|n = Ob ¢’b|u + (1-Ob) ¢b|v|
_ u + _.u -
¢b'" Ub ¢b'll + (1 Ob) ¢ "
V.
, 14z ,'b
Kl = min {1, 2 by Iwbl]
- 14z Uy
K, = min [1, 5 & lwbl]
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SKEW UPWIND DIFFERENCING FLUXES

TABLE A-10

* * *
D = (Pew-Pew) ogrm + [Pey (1-0) + 17 o + (o, Pe-1) ¢o

West_
F
w
SUD
W
Dy P * 1
Pe_w = e =
4 Cw w Ou _ (1—Q )
w
East_
F
®sup
DE
Dy . 1
Pee = EE. s, Pe = "
E ¢ 5 - (1-a)
e
South
Fs
SUD
D
S
D 1
Pes= E'S-,Pes= S
S g = (l-a)
s
North
Fn
SUD
D
N
Pen = Er , Pe = -
N T - (1-an)
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F
fSUD P * + [P * 1 + 1 + P *
D *
Pe_= —E', Pe_ = L
f Cr f v (1-a.)
¢ £
Back
Fb
SUD Pe, -P *) ; + [Pe* (1=a, ) + 1] ¢_ + (o Pe*-l) ¢
D, (PeymPey) ¢pan b b P b b B
D % )
Pe = _.B_ . Pe = _.___.._._:_]‘._____.
Cp b

w
oy (1 ab)
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TABLE A-11

COEFFICIENTS OF THE FINITE-DIFFERENCE EQUATION

]

AB(I,J,K) B1(I,J,K)

vy [V (1-0") E3] (I,7,K,2)
e e e

\
- v, [-0) B3] (1,3,K,4)

vy [e” (1-0") N3] (1,J,K,3)
n n n

y [ (-0 (1~¢") E3] (I-1,J,K,2)
w e e :

vol(1-0") (1~00) N3] (1-1,J-1,K,3)
» n
A (1,3,K) = =y [(1-0)(1-0") E3] (I,J,K,2)
BE e e e
u w
- Yb[(l—cb)(l—ob) B3] (1,J,K,2)
-y [~ ¢° (-0") N3] (1,J,K,1)
n n n n ) .
+ v [(1-0Y) (1-6") (1-0") N3] (I,J-1,K,1)
S n n n
) u v w
ABN(I,J,K) = —Ye[ce(l-oe) (l—oe) E3] (1,J,K,1)
v W
-Yb[(l"cb)(l'ob) B3] (1,J3,K,3)
v w
- Yn[(l—on)(l—on) N3] (1,J,K,3)

+y [(1-0")(1-0") (1-0")E3] (I-1,d,K,1)
W e e e
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TABLE A-11 (Cont'd)
COEFF ICIENTS OF THE FINITE-DIFFERENCE EQUATION

¢I -
Apg (195K

Ye[(l—cu) (1-0V) (1-0") E3] (1,J,K,1)
e e e

u v w
Yb[(l—ob) (l-ob)(l—ob) B3] (1,J,K,1)

vy [Q=-cY) (1-6")(1-0") N3] (I,J,K,1)
n n n n

u v w
- - ,1
ABNW(I,J,K) Yb[ob(l cb) Q1 ob) B3] (I1,J,K,1)

y [0%(1~6") (1=¢") N3] (I,J,K,1)
n n n n
+ Yﬁ[cz(l-UZ) (1-c:) E3] (I-1,J,K,1)

A (1,3,K) = -y [d¥ o’ (1-") E3](I,J,K,1)
BS e e e e

v W

Yb[ob(l-cb) B3} (1,J,K,3)

+v [(1-0Y) ¢ (1-6") E3] (1-1,J,K,1)
w e e e

v [0'(1-6") N3] (1,J-1,K,3)
S n n

+

- _ u v - W
ABSE(I’J,K) = Ye[(l Ue) Ge(l oe) E3] (1,3,K,1)

u v W
Yb[(l“cb) Ub(l"cb) B3] (IQJ’K$1)

+

y [(1-0") o' (1~0") N3] (I,J-1,K.1)
s n n n ‘

206



TABLE A-11 (Cont'd)

COEFFICIENTS OF THE FINITE-DIFFERENCE EQUATION

u v w
ABSW(I,J,K) Yb[Ob Ub(l-cb) B3] (I,J,K,1)

+ vy [6" o' (1-¢") E3] (I-1,J,K,1)
w e e e

+y [6° ¢' (1-0") N3] (I,J-1,K,1)
S n n n

ABW(I’J’K)

u w
Yb[Ub(l Gb) B3] (I,J,K,2)

-y [0 oY (1-0") N3] (1,3,K,1)
nonn n '

+ v [6" (1-¢™) E3] (1-1,J,K,2)
W e e

+v [0 (1-0") (1-0")N3] (I,J-1,K,1)
s n n n

i

AE(I,J,K) E1(1,J,K)

- ye[(l—o:) E3] (I,J,K,4)
u w
- v, [Q-0)) o B3] (1,1,K,2)
- v [Q-cY) o' N3] (1,3,K,2)
n n n
u w
+ v [Q-0)) (1-o)) B3] (1,3,k-1,2)

+ v [(1-eD) (1-¢") N3] (I,J-1,K,2)
K- n n
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TABLE A-11 (Cont'd)

COEFFICIENTS OF THE FINITE~DIFFERENCE EQUATION

AF(I!J’K) BZ(IQJax"l)
u w
- Ye[ce O'e E3] (1,3,K,2)

-y [ov o N3} (1,J,K,3)
n n n

u, w
yw[(l—ce) oe E3] (1-1,J,K,2)

+ yf[G: B3] (I,J,K-1,4)

+

v [1<0") ¥ N3] (1,3-1,K,3)
S n n

u W
AFE(I,J,K) = - Ye[(1~oe) o, E3] (1,J,K,2)

vy [(-0") o' 6" N3] (I,J,K,1)
n n nn

+ Yf[(lao:) o: B3] (I,J,K-1,2)

+v [(A-cD) @Q-¢") ¢° N3] (I,3-1,K,1)
S n n n

u v w
AFN(I’J’K) = ye[oe(l—oe) o, E3] (I,J,K,1)
-y [(1-0") ¢" N3] (I,J,K,3)
n n n
+ v t(l—ou) (l-ov) o E3] (1I-1,J,K,1)
w e e e

+ yf[(l-GZ) o: B3] (I,J,K-1,3)
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TABLE A-11 (Cont'd)

COEFFICIENTS OF THE FINITE-DIFFERENCE EQUATION
u v W
AFNE(I,J’K) == Ye[(l'ce) (1_0e) Oe E3] (I,J,KQJ-)
-y [(1=0Y) (1-0") & W3] (I,J,K.1)
n n n n
u v w
+ yf[(l ob) (l-ob) o B3] (1,J3,K-1,1)
u v W
AFNW(I,K,K) = - yn[on (l—on) cn N3] (1,J,K,1)
+ v [0u (1—ov) qw E3] (1-1,J,K,1)
w e e e
u v w
1- -
+ Yf[ob ( ob) o B3] (1,J,K-1,1)
A (1,3,K) = -y [o" o o E3] (I,J,K,1)
FS e e e e
+y [(1-0) o' o E3] (I,3,k-1,1)
w e e e
' v w
+ Yf[cb cb B3} (1,J,K-1,3)
+y [0 o N3] (I,J-1,K,3)
] n n
u v w
= - - E3
AFSE(I’J’K) Ye[(l oe) o, %, ] (1,J3,K,1)
u v W
- Yf[(l-ob) o Oy B3] (I,J,K-1,1)

-y [(1=c) o o N3] (I,J-1,K,1)
S n n n
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TABLE A-11 (Cont'd)

COEFFICIENTS OF THE FINITE-DIFFERENCE EQUATION

' u v W
AFSW(I,J,K) = Yw[oe ce o, E3] (I-1,J,K,1)

u Vv w .
+ yf[cb ob 9 B3] (1,J,K-1,1)
u vV w
+ Ys[cn o, o N3] (1,J-1,K,1]
u v w
A (1,3,K) = - N3 ’
Fw( ) yn[cn oo ] (1,3,K,1)
+y [o° o E3] (I-1,J,K,2)
w e e
u w
+ Yf[cb cb B3] (1,J3,Kk-1,2)
+vy [6° (1-0') o N3] (I,J-1,K,1)
S n n n

AN(I,J,K) = N1 (1,J,K)

u v
Ye [Ge(l"ce) E3] (I,J’K).B)

Yy [(1—02) o: B3]. (1,J,K,3)

vy [(1-00) N3] (1,3,K,4)

n b

+vy [(-0") (1-¢') E3] (I-1,3,K,3)
w e e

+ Y, [(l—oZ) (1-0:) B3] (I,J,K-1,3)
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TABLE A-11 (Cont'd)

‘COEFFICIENTS OF THE FINITE-DIFFERENCE EQUATION

A (T, 3,K) = Ye[(l—c:) (l—oZ) E3] (I,J,K,3)

vbm-o‘;) (1—o§> o: B3] (I,d,K,1)

u v
yn[(l-cn) (l—on) N3] (1,J3,K,2)

+

Yf[(l-c:)(l—oZ) (l-c:) B3] (I,J,K-1,1)

y

ANW(I,J,K) =

u v w
1- B 1,J,K,1
b[ob ( ob) 05 3] (1,3 )

u v
= yplo (-0 ) N3] (1,3.K,2)

-y [¢© (1-¢") E3] (I-1,J,K,3)
w e e

u v w
o - - l
+ Yf[Ob Q1 cb) ¢! cb) B3] (1,J,K-1,1)

AS(I,J,K) N2(1,J-1,K)

fi

u v
- K,3
ye[ce oe E3] (1,J,K,3)

v w
- yb[ob o B3] (1,J.K,3)

+

u, v
yw[(l-—oe)oe E3} (I-1,J,K,3)

v

+ Yf[ob

(l-o:) E3] (1,J,K-1,3)

+ YS[OZ N3] (1,J-1,K,4)
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TABLE A-11 (Cont'd)

COEFFICIENTS OF THE FINITE-DIFFERENCE EQUATION

u v
= - - E
ASE(I’J’K) Ye[l Ue) Ue 3] (1,J,K,3)

u v w
yb[(l—ob)o o B3] (1,J,K,1)

+

u v W
Yf[(l“ob) oy (1—cb) B3] (I1,J,K-1,1)

+

v [=0D) o¥ N3] (1,3-1,K,2)
S n n

U VvV W .-
B J,K,1
Y [ob o O 31 (1, )

1,J,K) =
Asw( K) b

+ v [6° o' E3] (I-1,,K,3)
w e e

+

u v w
vloy oy (1-op) B3] (1,3,K-1,1)

u v
+ ys[on o N3] (1,3-1,K,2)

AW(I,J,K) E2(1-1,J,K)

- Y [G: e} B3] (I,J,K,Z)

w
b b

u v
- Yn[on Un N3] (I,J,K,Z)
u
+ 1y, lo] B3] (I-1,3,K,4)
u W
+ yglop (1-00) B3] (1,3,K-1,2)

+y [ (1-0") N3] (I,3-1,K,2)
s n n
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FIG. A-1

THREE-DIMENSIONAL GRID AND NODE SYSTEM
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DESCRIPTION OF 3D-TEACH
B.1 Description of Aerothermal Model

3D-TEACH is a computer code that can solve fully three-dimensional fluid
dynamics problems. It can handle axisymmetric, planar, or three-dimensional,
elliptic, turbulent flows. It is one of a family of such codes with titles
2D-TEACH, 2D(C)-TEACH, 3D-TEACH and, 2D-PREACH.

The input to all of these codes is generalized such that different problems
can be run without the need for Fortran programming between problems. Also,
the physical models used can be turned on or off by input command. These
collective features result in an extremely flexible system.

The codes form a family in that:

a) As computer codes they are written with the same format, menus and

commands such that an operator trained to run 2D-TEACH can easily run
3D-TEACH.

b) A1l codes have an interactive nature using the IBM Conversational
Monitor System (CMS), and use prompts and cautions to ensure smooth
execution of a case. The operator has the choice of either CMS or
Batch running. The recommended procedure is to set up a case and get
it running on CMS, then switch it to Batch to complete execution.
File modification and selection of running mode is identical for all
codes.

¢) The same basic equations are solved and the same physical models are
used, together with solution algorithms, in all codes such that
regression is possible. This means that the same two-dimensional
problem can be solved on 2D-TEACH and 3D-TEACH, and the same results
will be achieved. The only difference between the 2D-TEACH and
3D-TEACH is the additional dimension available in the
three-dimensional code. Also, the post-processors available with
3D-TEACH are necessarily more comprehensive than those with 2D-TEACH,
in order to adequately display the results.

The acronym TEACH (Teaching E1liptic Axisymmetric Characteristics
Heuristically) represents a generic solution technique and these codes
represent current production state-of-the-art calculations in terms of
equations solved, physical models used, discretization of the equations, and
solution algorithms. They are not perfect, but are a marked advance on
one-dimensional flow calculations and global modeling that formed the previous
capability. The structure of the codes has been made such that modular
replacement can be carried out as better models and solution algorithms are
developed, while the basic framework and operational features remain.
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The 2D-PREACH code is similar in concept to the others, but uses different
solution procedures. It is not considered further here.

B.2 Outiine of Calculation Procedure
B.2.1 Equations to Be Solved

The combustion process is an extremely complex turbulent flow. It is a
somewhat daunting task to describe such a random flow of chemically active
eddy structures in terms that can be currently solved and can provide useful
answers for the designer of practical equipment.

Currently, the most practical approach is to stay within the framework of
continuum mechanics and to use a statistical description of the turbulence,
coupled with the accepted Eulerian description provided by the Mavier-Stokes
equations of motion. Hence, an instantaneous quantity is described as the sum
of a time-averaged value and a random, fluctuating value.

When the statistical description of an instantaneous quantity is substituted
into the Navier-Stokes equations (Reference B-1) and time averaged, the
resulting equation set is known as the Reynolds equations (Reference B-2).
These equations are similar to.the Navier-Stokes equations except that
time-averaged quantities are used, and for the appearance of time-averaged
correlations of fluctuating quantities.

Turbulent motions increase the apparent viscosity of a fluid by some orders of
magnitude since there is a continuous transfer of energy from the mean flow
into large eddies and thence, cascading down through progressively smaller
eddies, to the molecular level where the energ% is dissipated as heat. If
laminar diffusion terms are therefore very much smaller than turbulent
diffusion terms, then neglect of fluctuations in laminar viscosity is
permissible. This results in simplification of the Reynolds equations. It is a
frequently used practice (Reference B-3) to also neglect terms involving
fluctuating density, although this implies that temperature differences in the
flow are not large. This practice also results in simplification of the
Reynolds equations.

The simplified Reynolds equations are expressed in terms of time-mean
quantities and also cross-correlations of fluctuating velocities such as
uj'ui'. These terms are known as the Reynolds stresses, and result in a
closure problem. Turbulence modeling provides the necessary descriptions of
the Reynolds stresses in known or determinable quantities. When the flow
consists of more than one chemical species, modeling is required also for the
turbulent mass flux uji'my'. These terms arise from applying the
statistical treatment o% turbulence to an instantaneous species transport
equation. The instantaneous energy equation is given the same treatment.
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To mgdel the turbulent mass fluxes it was assumed that, similar to molecular
Schmidt and Prandtl numbers, there are turbulent Schmidt and Prandtl numbers
that relate turbulent mass and heat diffusivities to momentum diffusivity.
Closure to the Reynolds equations was provided by a particular turbulence
model known as the two-equation or K- model. It relies on the eddy viscosity

concept. Fina!]y, the modeled equations were algebraically manipulated into a
general form in cylindrical coordinates:

8 (id)+ o (rvd) 8 (pwd) -8 (1,20
_§ 85) = S¢

Q

rT . 8
rar ( eff,o

- 4 (1. r L9
r) réé r eff,¢ a0

where:

any of tﬁe independent variables

réff,é an appropriate turbulent exchange coefficient, depending on

what ¢ represents

(%]
O
i

a so-called "source term” which lumps together all other
terms in a given equation not included in the first four
terms of Equation B.1.

The equation given is for steady state flow. Reynolds averaging does result in
the equations retaining time-dependent terms, but these have been dropped.
This was done for two reasons: (1) compatibility with the present design
system and (2) time averaging precludes dynamic behavior other than that
induced deliberately through one of the independent variables.

By way of example, Figure B-1 gives the values of some of the items in
Equation B-1.
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Cg3 is an additional constant, presently taken as being equal to C€1.

Figure B-1 Summary
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B.2.2 Numerical Approach to Equation Solution

The simultaneous set of main and auxiliary equations to be solved in a
turbulent reacting flow with a liquid-fuel spray contains a significant number
of individual equations, most of which are either ordinary or partial
differential equations, and which are nonlinear. Numerical solution of these
equations is necessary. Rearrangement into the general form represented by
Equations B-1 and B-2 enables one solution algorithm to be used for all
equations.

Conventional numerical methods available to solve equations of these types can
be broadly divided into finite difference and finite element methods, although
the dividing 1ine is not distinct. Finite differences have a considerable
background, and most solution approaches utilize this method.

The finite difference analog of the differential equations is obtained by
overlaying a computational mesh on the flow domain, and obtaining the basic
finite difference form of the partial derivatives for every node of the mesh
from a control volume approach (Reference B-4). The finite difference
expressions, when substituted back into the differential equations, yield a
set of linearized, algebraic equations for every node of the mesh. Thus, there
are as many sets of equations as there are nodes in the calculation domain.
These sets, along with the problem boundary conditions, can then be solved to
give solutions for the entire flow field.

Standard numerical techniques can be employed to solve the finite difference
forms of the differential equations (Reference B-5). A steady-state implicit
solution method is often used (Reference B-6); an initial guess is made of the
field variables, and these guesses are iteratively updated until the solutions
have converged. Convergence is deemed to have been obtained when the absolute
sums of the residuals of each variable over the whole grid goes below a
specified value.

The relevant equations describing the flow motions, the physical models, and
the solution techniques are assembied into the computer codes to carry out
direct flow simulations on high-speed, large-core digital computers. Figure
B-2 presents a flow diagram describing the calculation procedure, showing the
assembly of the equations, the utilization of physical modeling, the computer
solution, and the output for design use. The 3D-TEACH code conforms to this
organization,
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B.3 Solution Procedure

With reference to Figure B-2, assembly of the equations governing the problem
has been briefly described. The details of the computer solution of the
resulting equation sets are to be described.

Rearrangement of the equations into the general form represented by Equation
B-1 enables one solution algorithm to be used for all equations. The equation
set is solved using a steady state, implicit, finite difference numerical
procedure. Initial guesses are made of the field variables, and these guesses
are iteratively updated until the solutions have converged. Convergence is
deemed to have been obtained when the absolute sum of the residuals over the
whole grid of each variable goes below a specified value.

B.3.1 Discretization of the Equations

The finite difference analog of the difference equations is obtained by
overlaying a computational mesh on the flow domain to be calculated, and
obtaining the basic finite difference form of the partial derivatives for
every node of the mesh from a control volume approach, (Reference B-4). The
finite difference expressions, when substituted back into the differential
equations, yield a set of linearized, algebraic equations for every node of
the mesh. To demonstrate, first in two-dimensions, Figure B-3 illustrates the
mesh and the control volume established about a considered node, P. The
control volume approach is based on the satisfaction of macroscopic physical
laws such as conservation of mass, momentum and energy. The conservation
property is essential when combustion is taking place.

Figure B-3 Control Volume for the Finite Difference Scheme
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The code is written in both cylindrical and cartesian coordinates. The grid
system consists of a set of coordinate Tines intersecting in the x-r, x-© and
r-© planes for the cylindrical system. In the cartesian system the grid is
formed by the intersection of x-y, x-z, and y-z plane lines. The intersections
of these 1ines form the grid nodes at which all scalar properties are stored.
Vector quantities are stored midway between nodes. Figure B-4 gives the finite
difference grid control volumes for the scalar quantities and storage
lTocations for the velocities in both coordinate systems. Note that compared to
Figure B-3, there are two additional neighboring nodes, F and B, denoting
Front and Back nodes in the z or© direction. The faces of the scalar control
volume are denoted by lower case letters. Figure B-5 shows typical scalar
control volumes in perspective and gives the face areas and volume. Since the
velocity components are located midway between the grid nodes, the control
volumes for velocity components are formed by planes passing through the grid
1ines. Mote that since the control volumes for the velocity components are
staggered (Figure B-6) the areas and volumes for these control volumes will be
different from those of the scalar control volume.

The finite difference form of the general partial differential equation is
derived by supposing that each variable is enclosed in its own control vclume,
as illustrated in Figures B-3-6. The general ¢ transport equation has a
source term . This is expressed in linearized form and integrated over the
control volume. The remainder of the transport equation is also integrated
over the control volume, and added to the integrated source term. This yields,

CE¢e*CH¢w+CN¢n°C5¢5+CB®D°CF¢{=DE ((bE-'(ﬁp) ’DH(pr"d’H)
B2.

In the above equation the convection coefficients are defined as,

Cp = (P ﬁ)e a, ;o Cp= (p Q)f ag etc.,

9

and the diffusion coefficients are defined as:

nga(m> © 2 DFs(reff,¢)»af etc.
o x e ra 6

3eﬁf etc. are the areas of the cell faces
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Figure B-5
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Certain weighting factors are introduced into the variation of ¢ , the
variable being calculated, and with the help of continuity, Equation B-2 can
be manipulated and normalized to give the form,

app = Ay Py +A5¢5+AN¢H+AE¢E+ Ap &g + Ag Pg + Sy
where, B-3.
APBAN*AS‘*AE*AN*AF"’AB“SP

and Equation B-3 is the finite difference equation for ¢ , and the main
coefficients are defined as,

Ay = 0 when Pe < =2

N
A= Oy - Nwhen-2< P, < 2
2 N
Ay = Cy when P > 2
N
Similarly for Ag. Ap etc., where the cell Peclet number is defined as,
p = CN/DN etc.
®N

There are several differencing schemes that can be used to evaluate the
weighting factors. The values of the coefficients Ay, Ag etc. above were
obtained using Spaldings Hybrid Differencing Scheme (HDS), of Reference B-7.

The hybrid differencing scheme is unconditionally stable and the solution is
bounded. It uses second order central differencing for convection and
diffusion fluxes when the absolute value of cell Peclet number is less than or
equal to two. When Peclet number is greater than two, first order upwind
differencing is used for convection fluxes, and diffusion fluxes are neglected
altogether. The switch of differencing is done both Tocally and directionally
in the computational grid. Peclet number defines the relative importance of
convective and diffusive transport.

The finite difference Equation B-3, derived in the previous section could be
used to obtain the velocity if the pressure field were known a priori. Since
the pressure field is unknown, an iterative solution procedure, SIMPLE
(Reference B-8) is used. SIMPLE is an acronym for Semi Implicit Method for
Pressure Linked Equations.

The essence of SIMPLE is that a pressure field is guessed, velocities are
calculated from their finite difference equations, then the pressure and
velocity fields are updated using a "pressure correction" equation which
satisfies continuity. The procedure is repeated until the momentum and the
continuity equations are adequately and simultaneously satisfied. The pressure
correction equation can be derived from the continuity and momentum equations;
the procedure is described below,

231



The finite difference form of the continuity equation can be written as:
(p Weae=- (B Uyay* (P Vgag - (P Vlgas + (wlgar- (Awpap=0
The momentum equations can be written as:

AP vP* = AN vN* + AS vs* + AE vE* + Aw vw* * Ap VF* + Ag vg* + ag (Pg* - Pp*)

Ap up* = Ay u* + Ag ug* * Ag ug* + Ay uy® * AP UF*+ Ag ug* + ay (Py* - Pp¥)

ApWp* = ANWN™ + ASWS™ + Ap w.* + Aygwy* + Apwp* + Agwg* + ap (Pp* - Pp¥)

In the above equations the pressure term has been separated from the source
term and the (*) superscript denotes the values obtained from solving the
momentum equations using the guessed pressure. An incorrect guess will give
rise to a "mass source", Mp, in each cell because the continuity equation will
not be satisfied. The mass source can be found by using Equation B-4. Hence

Mp = (p u*)g ag = (P U*)y ay + (P v*)y ap = (P Y*)s a5 -(Pw )gag + (AW )pap
If the above equation is subtracted from Equation B-4.,

Mp = (7 ulete = (P u'lyay* (P viyag- (P v ag-(Fw)far + (AW )b

B-5.
where ue' = (U - u*)g etc.

The above velocity corrections can be calculated from the 1inearized momentum
equations.

AP uPo = aw (Pwt - RP')

B-6
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Note that up' in the momentum equation control volume is uy,' for the
cont1qu1ty ontrol volume and similarly for v,' etc. On sugstitution of
Equation B-6 in Equation B-5 and simplification,

Ap Pp' = Ay Py' + Ag Ps' + Ay Py' + Ap P’ + AP + A P45, B-7

where

Av = (ay/Ap)
Sy =-Mp
Ap = Ay + Ag + Ay *+ Ag+Ap+Ap

Equation B-7 is called the pressure correction equation which is solved to
obtain corrected velocities and pressures,

Pe = Pe* + P

etc,

The difference equation for P' (Equation B-7) is in the same form as the
difference equations for @ (Equation B-3) an dexe a single solution
algorithm can be used to solve all difference equations embodied in the
numerical method.

Since the SIMPLE procedure computes the variable fields successively it is
highly flexible with respect to the methods of solution which it will admit
for the difference equations. At present the following 1ine by line iteration
method is employed. This method is also known as Alternating Direction
Implicit Method (Ref. B-9). The ADI methods were Tnitially formulated for
unsteady equations; their adaptation to steady state equations is sometimes
also known as Alternating Direction Iterative Methods.

The finite difference Equation (B-3) to be solved is

Ap ¢pﬂAN oN + Ag ¢S+Aw ¢'J+AE ¢E *AF¢F+AB¢B+SU
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where ¢ stands for u, v, p, K, g , and H successively. This equation can be
recast in the following form

Ap op = Ay oy *+ Ag ¢S*C'
or

Ap ¢35 = Ay ¢4+1 * As 051 ¢ s’

B-8.

To solve the equations for points on each 1ine (e.g., N-S Tine) values on
neighboring lines are assumed to be temporarily known. The equation for each
point on the N-S 1ine then reduces to one where only three values ( ¢,

®Ns ¢S in Equation B-8) are unknown. An equation of this type can then be
solved by the Tri-Diagonal Matrix Algorithm (TDMA), which is explained below.

Equation B-8 can be rearranged for the jth point as

0j =85 ¢5+1*C ¢5-1 +Dj
where
Bj = AN/Ap , Cj = As/Ap

Dj = (Ay ¢yt A %+ AF¢F+AB¢B+ Sy)/Ap

The points on the computation grid range from 1 to Nj in the N-S direction

with points 1 and Nj on the boundaries. Since the boundary values o1 and
¢NJ are known, equations for ¢ togpyg.) are solved. The set of

equations then becomes:

Y2782 ¢3+C; ¢y + 1,
3 =83 ¢y +C3 9, + Dy

& e

ONjel = By S y .
Nj=1 BNJ_,] ¢NJ + CNJ-] ¢“J_2 + DNj-]

B-9
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Now, since g1 is known, ¢ can be eliminated from Equation B-9 and so on,
yielding a general recurrence relation

05 = Ay #50 * 0y

B-10
To get the relation for A; and Dj' Equation B-10 is written as
]
$j-1 = Ajo1 03 ¢ D3-1
Now putting in the value of 3
?3 -( A ) 007 + | LA °J-1]
Ap - Ag . AJ'-] j Ap - Ag Aj-l j
B-11
Comparing Equation B-10 and B-11 yields coefficients for the recurrence
formula
where Aj = (A (A = As Ag1)) 812
Dj = ((AS Dj-1 +Cj ) / (Ap - As Aj ))j
B-13

Using Equations B-12 and B-13, @3 can be calculated from Equation B-10.
Having solved for ¢i on one N-S ° ¢315 on the next N-S Tine are solved
and so on until the entire solution %omain is swept. The same treatment is
then applied in the W-E direction and finally, in the F-B direction. It is
usually necessary to sweep between 1 and 3 times per iteration for optimum
solution time.

The coefficient matrix formed by the finite difference equation of ¢ should
satisfy the stability condition,

Now

AP‘ An-SP

M o>t
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So if Sp £ 0

the above criteria is satisfied. In the solution procedure care is taken so
that Sp is always less than or equal to zero.

In the process of the computations, convergence is assessed at the end of each
iteration on the basis of the "Residual Source" criterion. The residual source
Rg is defined as

Ro =Ap p=Z Ay 0, -5

It is required that:
ZIRgl <€ Roper

for each finite difference equation.

Ro Ref s the fixed flux of the relevant extensive prgperty fed into the
domain of calculation, and & 1is of the order of 10-3,

When it is the equations for mass fraction of species that are being solved an
additional convergence criterion requires that the sum of the mass fractions
at each node is =< (1 +¢g).

When the flow is of variable density it is initially required that the change
in density in one iteration at every node must also be less than g

new old old
p - p / P < €
ij ij iJj

Since the enthalpy values in the calculation domain do not conform with the
species mass fractions during the first few iterations, temperature aqd
density are not updated for the first 10 - 25 iterations. !f the den§1ty
gradients are steep, density is updated every second or third iteration after
the first update.

or

A typical convergence plot is shown in Figure B-7.
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Figure B-7 Typical Convergence Plot

Since the finite difference equations are nonlinear in nature the convergence
is facilitated and sometimes divergence is avoid e by under-relaxing the value
of being calculated as:

FopNew 4 (1-F)qp 01d

B-14

where F is an under-relaxation factor which is less than one.

The way in which the above relation is introduced into the numerical procedure

is as follows:

AR = A
A p/F

SR=s,+ (1 -F)af 401
B-15
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!t can easily be shown that the effect of introducing the above modifications
is to under-relax ¢p according to Equation B-14. From Equation B-3 we have

New Za, 0,+5,

¢
p
Ap
B-16
putting in the under-relaxation factors,
¢R.§An 9 + SR
P R | B-17
P
putting the value of Ap and SR from Equations B-14 and B-15 in
B-16,
B-18
T Ay O+ Sy+ (1-F) AR 01d
R N P P
P
z ¢+ B-19
R« [nfn 0t ey (or 0t
o R =0 NewF + (1-F) ¢ 01
P P P B-19

It should also be noted that the effect of under- re1axat1on is to make the
coefficient matrix more diagonally dominant.

238



The various steps in the numerical procedure can now be summarized as follows:
1. Guess fields for all variables.

2. Assemble coefficients of momentum equations and solve for U* and V*
using prevailing pressures.

3. Solve the pressure correction equation and update velocities and
pressures,

4, Solve equations for other variables.
5. Update fluid properties such as viscosity and density.

6. Test for convergence. If not attained use prevailing fields as new
guesses and repeat from step 2 until convergence is attained.

In general, it is necessary to specify @ or its gradient at the boundaries
of the calculation domain. There are six types of boundaries that can be
assigned to a fluid block:

Plane/axis of symmetry
Unspecified wall
Specified wall
Unspecified opening
Specified opening
Periodic

SO P WNF-
s e ® © e @

A specified boundary is one for which all boundary values such as velocities,
temperatures, etc. are given. An unspecified boundary is one for which the
boundary values are calculated by the code. If the flow structure is
repeating, periodic can be used to compute only one segment.

On a plane/axis of symmetry the gradient of all ¢ 's except v-velocity is put
to zero; v-velocity itself is set to zero. It should be noted that the
symmetry condition should be applied to all block faces which constitute the
plane/axis of symmetry. Most walls are specified, with all velocities set to
zero (no slip condition). A moving wall is modeled with the no slip condition
by specifying nonzero velocities in the plane of the wall. A porous wall is
modeled by specifying nonzero velocities normal to the plane of the wall. At
the outflow, it is required that there be no negative axial velocity
components. At high Reynolds numbers this requirement makes specification of
bﬁundary values of all ¢ except u redundant. The axial velocity is specified
thus,

Uni, § * Yni-1, § * VINC B-21

where ni is the outflow boundary and Upyc is calculated such that the total
mass outflow is equal to mass inflow. &wternative1y, if an exit velocity
profile is known, it can be specified.

239



The calculation mesh is constrained by the coordinate system, which presently
has been selected as orthogonal. Therefore, curvilinear geometries have to be
represented in the form of discrete steps or "staircases." The specified
blockage boundary condition permits this representation and allows inflow and
outflow through elements of these staircases. In addition, the condition
allows solid bodies to be placed inside the flowfield and to contain mass
sources or sinks within them. This capability is written in generalized form
and confers considerable geometric flexibility on the code without the need
for interproblem reprogramming.

Adjacent to solid boundaries, the local Reynolds number of the flow based on
local velocity and distance from the wall becomes very small and the
two-equation turbulence model, which was developed for high Reynolds numbers,
becomes inadequate. Although a version of the two equation model that can
handle both high and very low local Reynolds numbers exists (Reference B-10),
its application requires a large number of grid nodes (more than 30) in the
wall layer. This is due to the steep gradients of properties in the wall
region (Reference B-11). '

To avoid these difficulties, it was argued that the flowfield in the
calculation domain is not influenced to first order by the details of the flow
at the walls (Reference B-12). Consequently, as a matter of computational
efficiency and economy, the high Reynolds number version of the turbulence
model was retained and a Couette-flow analysis was used to give an equilibrium
boundary layer on all solid surfaces bounding the calculation domain. The
resulting wall functions are used to 1ink the walls to the near-wall nodes of
the finite difference grid.
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