General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)



(NASA=CR=175812) PINITE ELEMENTS AND THE

METHOD OF CONJUGATE GEADIEBNTS ON A
CONCURRENT PROCESSOR (Jet Propulsion Lab.)

5 p HC AQ2/NMP AQ!

N85-27588
CSCL 12a Unclas

G3/64 21276

Flaite Riements and the Method of Conjugata Gredients
oa a Concurreat Processsor

Gregory A. Lyzengs ¢

Arthur Reefsky

Jot Propulsion Laboraiory
California Institute of Technology
Pasadens, CA 91109

Bradford H. Hager
Seismological Laboratory
Calitornie Institute of Technelogy
Pasadens, CA 91125

ABSTRACT

We present an sigorithm for the iterstive solution of
finite eloment problems on s concurrent processor. The
method of conjugste gradients is used to solve the system
of matrix equations, which Is distributed among the
processors of a MIMD computer according to an
oloment-based spatial decomposition. This slgorithm fs
implemented in a two-dimensional elastostatics program
on the Caltech Hypercube concurrent processor. The
results of tests on up Lo 32 processors show nearly linesr
concurrent speedup, with efficiencies over 90X for
sufficiently large problems.

*M need to lolvo boundary niu pruiom. involving

olliptic partisl differential equstions on geometrically
complex domains arises in many engineering contexts,
and increasingly in 8 wide variety of scientific fields. The
finite element method, which has been trested in a large
number of texts (e.9., Zlenkewicz, 1), provides a
flexidle and powerful numerical technique for the solution
of such problems. The physical problems which have
been solved by finite element methods come from such
diverse flelds as structural snd continuum mechenics,

fivid dynamics, hydrology, heat flow analysis snd meny
others.

Among the common festures of most finite element
spplications Is the need to form snd to solve s matrix
equetion of the form:

Ax=» (1)

Here, X is @ vector of unknown quantities, to be
solved for st each of some number of “node’ locations
within the problem domain. The grid of nodes (usually
representing & discretization of some physical spatial
domain) slso defines a subdivision of the domain into
volumes (or sress) called ‘elements’ which jointly
coaprise the entire problem domain snd share nodes
slong their boundaries (Fig. 1).

oot —/

T+ VECTOR OF NODAL DEGREES OF FREEDOM
' VECTOR OF EFFECTIVE "FORCES"
A= ASSEMBLY OF ELEMENT “STIFFNESS"

Fig.1 Fiaite element discretization of « bouadary value
problem

The stiffness metrix A contains the terms which
determine the interaction among the different unknown
dogrees of freedom in X, and the forcing terms or
boundary values are Introduced through the right hand
side, B. Operationally, entries of A sre computed by
performing integrals over the elements which Inciude the
node in question. The stiffness matrix therefore consists
of an sssembly of individual element matrices, which sre
mapped into the °‘global® matrix through & master
equation bookkeeping scheme.

=
s S i S S i, e S e o Y Q !

TSR CYTR———



SIS ———— P Y P

ORIGHNAL Pl .
OF POOR QUALITY

Common to most such finite element applications s
the problem of solving the system given in equstion (1).
Since iha matrix A may be very large (especially in
higher-cimensional problems), considerable thought
must go Into solving it efficiently. This
computation-intensive step Is the primary motivation for
looking to concurrent computation techniques.

A stiffness matrix A typically has a number of
properties which Influence the choice of solution
technique. Fcr example, many physics! prodblems give
rise to @ symmetric positive definite metrix. For the
remainder of the present discussion we shall restrict
ourseives to this class of finite element prodlems. This
does not mean that more general cases cannot be tresied
using concurrent techniques similar to those described
below, but such problems are nol within the scope of this
work,

Traditionally, derivatives of Gaussian elimination
have deen used to solve these systems, giving robust
performance under a wide range of matrix Il1-conditioning
circimstances. Matrix ill-conditioning mey ocrur if @
given system is very nearly singular, or exhibits a very
large ratio between the largest and smallest eigenvalues,
in which case cartain matrix operstions which ere
sensitive Lo round-oif error may be insccurste. While
direct techniques such as Gaussian elimination are not
particularly sensitive to moderate ill-conditioning, they
entail a large amount of computational work. Whether
dealing with iterative or direct techniques, the matrix
prodlem nearly always represents the dominant
computational cost of a finite element calculation. In the
case of Gaussian elimination, this cost incregses rapidly
with problem size, being proportional to . where &’
is the total number of degrees of freedom-, and b is th
mean diagonal bandwidth of non-zero elements in A.

In 8 typical assembled finite slement matrix, the
entries in a given column or row are non-2ero only within
8 given distance from Lhe diagonal. This is becsuse »
given node only contributes Interaction terms from those
nodes with which it shares an element. Although judictous
node numbering can minimize the average column height
and thus the mesn disgonal bandwidth of the matrix,
problems with large numbers of ncdes in more than one
spatial direction will unsvoidadly have very large
bandwidths. This measns that, especisily for grids in
higher dimensions, the work necessary to solve the
system will increase much faster than the number of
nodes as we attempt to solve larger and larger systems.

Ceortain classes of structural snalysis problems may
have consideradbly smaller mean bandwidths than the most
general three-dimensional problem, and for these, direct
techniques remain a viable spproach. Resesrch into
concurrent methods for these techniques is siresdy well
advanced(2,3,4). The present suthors have been most
interested in continuum mechanics problems, for which
direct methods are more limited in their utility.

For the asbove reasons, we have pursued the
implementation of an Incressingly popular Rerative
technique, the method of conjugate gradients. Assuming
that it can be made to converge, the conjugste gradient
method offers the potential for much Iimproved
performance on large three-dimensional grids. This,
combined with a rather straightforward concurrent
generalization made this an sttractive ares to explore. In
sddition, the symmetric positive-definite nsture of the
matrices considersd makes the method of conjugate
gradients 8 good first choice (see for example
Jonnings,5). In the discussion which follows, we will

present the basic concurrent slgorithm developed for this
spplication.

Figure 2 shows schematically how 8 two-dimensional
finite element grid might be spread over the processors
of an 8-n.de MIMD machine. Each subset of elements
(delineated by tne hoavy lines) is treated effectively as »
separate smaller finite element prodiem within each
procassor. Adjoining subdomains need only exchange
boundary information with neighboring processors In
order to complete calculetions for each region
concurrently. The next section discusses in more detail
how this concurrency is managed.

T T
T
2

-4

afn

d

11
LR
3
[5-
3
1
3
g
>
Lt
)
| B3
3
3
t
3
aal

H
?
3
3

. A1 proc. 927 proc. 3~ 1

L1l

——— X

Fig.2 A possible distribution of & two-dimeasional
grid oa aa §-processor concurrent computar

The conjugate gradient method represents a
technique for iterstively searching the space of vectors X
in such a way as to minimize a function of the residusl
errors. Briefly, the conjugste gradient procedure
consists of the following algorithm. Initially,

el p®ap -5 x® (2)
Then, for the k™ step,
1. gy =(elt). elt) )/ (pit). Apl))
2. ghet) .,m...,m
3. rlellagltl. g, Apit) 3)
4 gy o (plhel), glael)) s (et). gR) )
5. pltetlagltetl g gtt)
6. Kekel; goto ] (continve vatil converged)

As may be seen by inspecting (3) above, this
slgorithm involvss ive basic kinds of operstions. The
Liml & these Is the vector dot product, for sxample

J gl Th&rocoml basic cperastion is the metrix-vector
oroduct, Ap't). Bot!i of tPese primitive operations can be
done in parallel by decomposing the problem into regions
of the physicsl doma'n scace. A given ‘global® vector such
98 € or P is spread out among the processors of a
concurrent ensemble, with concurrent operastions being
performed on the various ‘pieces’ of the vectors in esch
processor. The only need for information from outside 8

e ————— Y




ORIGINAL Fr.

OF POOR QUALITY

given processor occurs when nodes on the boundary
between the ‘jurisdictions® of (wo processors are
computed.

Figure 3 Illustrates schematically the protocol used
for handling shared degrees of freedom between
processors In the two-dimensional case. Each
processor obeys a convention whereby It sccumulstes
contributions to global wvector quantities (X, ¢, p)
from neighboring processors along the “right* and ‘down”
edges of the region. Contributions arising from degrees
of freedom along a8 processor's ‘left* and ‘up® edges sre
sent to the respective neighboring processor for
accumulation. The “lower right® and “upper left’ corner
degrees of freedom are passed twice In reaching their

destination.
T0
. el
|

SEND
ACROSS ls:ll ) )

(su’q
At ofe o 0 0o 0 o 0 o od -
® N N
NN\
ofaa 7
N N R /4, — ACCEPT
RN -
(5L -»~~,§‘\\ é}/‘—u&n
N 2
_§§\\ > 4
—_———lpr --!ﬂ(»VA'QU},l/Q e
| AR
|

ACCEPT FROM
D%NN (AD)

RESPONSIBILITY
. OE LOCAL
M PROCESSOR

Fig. 3 Two-dimensional prowocel for pasing shared sodal
values

While only one processor has responsibility for
sccumulating a given shared degree of freedom, each
neighboring processor must be provided with a copy of the
sccumuleted result for subsequent ulculollonh Thus,
the process of updating a quantity such as Ap'®!, which
involves adding contributions from different elements in
different processors, proceeds as follows:

1. The “local® contributions are calculsted within
esch processor independently, This means calculating
the contridbutions to the given matrix or vector product
while neglecting the effect of any neighboring processor.

2. A right-to-left pass of edge contributions is
done. Vector contributions slong the left edge of @
processor (i.e., those labeled SL, sL, and sX) are sent
o the neighboring processor on the left, et the same time
that the corresponding right edge degrees of freedom
(AR, aX, and sU) are received from the right. The
received contributions are sdded to the locally calculated
contributions already resident in those storage “slots’.

3. This Is followed by s down-to-up pass. The
contributions labeled SU and sU are sent up, while the AD
and aX slots receive contributions to sccumulste. Nole
thet the corner degrees of freedom labeled sX are

trensmitted and sccumulated twice before resching their

fina) destination In an aX slot located diagonally from
their starting point.

4. Finally, an up-to-down shift, followed by »
left=to-right shift which overwrites rather than adds to
the current contents of the boundary arreys serves to
distribute the the final sum of all contributions to all the
invo'ved processors. [his enda the communication cycle,
and the processors then return to concurrent interns!
computaticne.

Aside from this kind of calculstion, In which a
global vector i3 updated on the basis of local (element)
information, there (s one other situstion in which
processor “responsidility’ for globsl degrees of freedom
is significant. Global scaiar products are calculated by
forming partial dot products within each processor, which
are in turn forwarded to a single “control process’ (which
in this case resides in a separste external processor)
which performs the summation and takes action on the
result (e.g., terminating the iterative loop). In this
case, In order to avoid ‘double-counting’ any entry,
each processor calculstes its partial dot product only
using its internal and accumulated dearees of freedom

The scheme described above is spplicadle to the
hypercube machine architecture specifically, snd more
generally to any MIMD computer which supports the
following communications operations: (1) globa!
broadcast of date from a designated controlling process
or processor to the concurrent array, (2) transmission
of unique data “messsges’ between array elements and the
control process, end (3) element-to-element data
transmission between lattice nearest neighdbors.

IMPLEMENTATION

The example discussed here was written in the C
lenguege, ond cross-compiled on s VAX-11/750 system
for execution on the 8086 microprocessor-based 32 node
Caltect. Hypercube (Mark 1) machine. Listings and
further information on this code may be obtained by
contacting one of the suthors.

There are no basic algorithmic differences between
the concurrent conjugate gradient algorithm discussed
here and fts equivelent counterpart on a sequential
machine. Thus the concurrent program should, assuming
infinite precision of calculation, yleld resuits identical to
the sequential version.

In sctusl pracdce however, the exact result
obteined Dy the conjugate gradient method, and the
number of ferstions required for it to converge, are
rather sensitive to the finite precision of the numerical
calculations. The accumulation steps which occur during
interprocessor communications represent asdditional
srithmetic operations of finite precision, which introduce
some additional round-off error not present in the
sequential equivalent. This causes the concurrent code to
produce slightly different (but numerically equivalent)
resuits.

The computation/communication structure of the
concurrent algorithm is quite reguler, In that esch
processor is simultaneously doing the same Lype of task
88 every other, and the only load imbalence or processor
waiting is casused by giving processors responsibility for
different numbers of elements or degrees of freedom.
The prodblem of how to best decompose an arbitrarily
sheped finite elgment grid presents a problem in the
prepsration of the Input data, but this preprocessing

o

N

PPN S

AN

e

M‘«xu.u.:..\j=W‘~W~’- strnacs ol BN TG - il B

A ol e s



step has nothing to do directly with the actusl operstion
of the concurrent algorithm(§). Highly irregular and/or
non-rectilinear grids are handled transparently, just es
long as all shared boundary nodes are properly identified
(as per Fig. 3) Inthe Input deta stream.

Among the special considerations to note for this
application are restrictions on available memory. In the
present example, we have chosen to calculste and store
each element stiffness entry. In such 8 case, it becomes
possidble to exhaust the relatively modest memory
svallsble In the present generation of machines. This
problem is particularly scute In moving from two- to
three-dimensional problems. One spproach to overcome
this limftation Is not to store, but to recalculate
stiffnesses at each iteration. In such s case, the extrs
arithmetic operstions may be minimized Dy wutilizing
:n’-poim quadrature with mesh stabilization techniques
1).

ino above described [finite element/conjugste

qQradient program was lested on @ gseries of
two-dimensional plane strain elastoststics problems,
intended Lo a) verify the proper execution of the program
and b) provide benchmark measurements of the
program’'s concurrent efficiency as a function of problem
size and number of processors.

The Mark Il hypercube was used in these tests in
configurations from one node (O-dimensions! cube)
through the full 32 nodes (S-dimensional hypercube).
The actual problems solved were rectangular arrays of
elements with boundary displacements imposed to produce
8 simple shear field solution. Concurrent efficiency is &
measure of how nearly a concurrent processor with m
processors approaches speeding 8 given calculation by a
factor of m. Thus we obtain experimental efficiencies by
dividing the time required to solve a gtven problem in a
single processor by the concurrent time and the number
of processors. As long a3 the sequential ard concurrent
algorithms are truly equivalent, this efficiency € has an
upper bound of unity.

Table | - Two-dimensional conjugals gradient rua Umes aad

officiencies
avmber of aumber of Umes per olTiciency
cloments procsmors iteration (sec.)
“ 1 s .
144 1 164
% 1 3 -
400 1 433 -
7% 1 107 -
3% 2 380 (X ]
3% 4 182 w
7 N (2.] 08
7% 16 032 08
76 R 029 “"e
132 R 033 083
408 R 201 091
18432 n 743 (X

In Teble |, we summarize the results of these test
runs on a veriety of problem sizes and numbers of
processors. Since the maximum number of elements we
could accomodate within s single processor was on the
order of 600, the efficiencies listed for the larger
32-node runs are based upon extrapoletions of the

smaller problems’ execution times. in this
extrapolstion, we have assumed a strictly linear relation
between number of equations and execution time per
fteration. The single=processor proportionslity constant
is assumed here to be 6.41 millisecond / fteration per

" degree of freedom. The quoted experimental efficiencies

are valid to the degree that this scaling assumption holds.

In a problem which is perfectly losd balanced, the
concurrent efficiency will be governed by the ratio of time
spent communicating te time spent calculating
concurrently. Since in a two-dimensional array, sgo
number of communicated edge velues varies as n'/3,
where 0 i3 the total number ﬂ equations per processor,
this ratio should vary ss n°!/2 and the calculstion should
obey an efficiency relation,

€=-1-Cal72 (4)

where C 13 & constant. A log-log plot such as Figure 4
may be used to compare the above efficiencies with this
theoretical prediction.

2.0 T T 0.9
°
T ] P | 109
v
= Lot A ¥ 0.9
g or
0.5 10.68
0 1 1 L o 0
0 1.0 2.0 3.0 40 50
log n

© * 2 PROCESSORS O - 16 PROCESSORS
() - « PROCESSORS % - 2 PROCESSORS

& - 8 PROCESSORS n - w&gﬂo&g{zcs
R

OCESSOR

Fig. 4 Concurreat speedup efTiciency as & fuaction of
probiem size sad aumber of processors

On this plot, star symbols indicste the 32-node
eofficiencies at various problem sizes. The results seem
Lo sgree well with the predicted s/0pe = //2 line. The
points representing those cases with fewer than 16
processors plot sbove the 32-node trend because they do
not involve processors communicating on all four
boundaries. In summary, the concurrent conjugate
gradient sigorithm exhidbits performance characteristics
which sre theoretically understood, and well suited for
application to large ensembles of processors.

it is Interesting to note thal the experimental value
for the constant C in (4) s spparently spproximately 1.
This result, which agrees with the results of Meler(8) for
8 two~dimensional finite difference scheme on the same
machine, is a reflection of the fact that the times for
calculstion and communication of 8 single degree of
freedom on this hardware are roughly equal.

TS ‘Mﬂ

D




We find that the concurrent conjugste gqradient
slgorithm outlined here meets our expectations In
providing large, nearly linear speedup in finite element
system solutions. esults from actus! runs on the
32-node Mark |l hypercube system yleld net efficiencies
upwards of 90%. From this we can conclude thet {uture
major use of this and relsted algorithms on large finite
esloment spplications will hinge upon the applicabliity of
fterstive techniques, and not upon asny flssue of
concurrency or efficiency.

Several aress are now indicated for future research
in this area. Among the most immediste needs are:
(1) effuctive preconditioners to speed convergence of the
CG algorithm, (2) extension to three dimensions, (3)
investigation of methods to reduce or eliminate stiffness
storage requirements, end perhaps most Importantly,
(4) sutomated procedures for breaking up and balancing
sn erbditrary finite element problem among processors.
:: anticipate addressing these problems iIn the near

ure.

ACKNOVWLEDGEMINTS

The research in tnis publication was carried out
by the Jet Prepulsien Laberatery, California Institute
of Technelogy, under 8 contract with the Natienal
Aeronsutics and Space Administration. The authers
alse gratefully acknewledge the valuable sdvice and
sssistance of Pref. T. J. R, Hughes (Stanford Univ.)
and that of 8. W. Otte and M. A, Jehnsen (Caltech).

REFERENCES

1. Ztenkiewicz, 0.C., Iab#ﬂmnnmnmamn.sm
od., McGraw=Hill, London, 1977.
2. Heller, D., “Some Aspects of the Cycliz Reduction
Algorithm for Block Tridisgonal Linear Systems,’ SIAH
vol.13, 1976, pp.
484-496,

3. Salama, M., Utky, S., snd Melosh, R., ‘A Family
of Permutations !or Concurrent Foclormtlon of Block
Tridiagonal Matrices,*

, Dxford,
ugust 1984 (praceedings In press

4. Semeh, A. and Kuck, D.. Pnrollcl Direct Linesr
System Solvers - A Survey,

Barallel Computers -
%u;mmn!mm Int’l. Auoc for Mathematics and
omputers in Imulluon, 1977.

3. Jennings, A.,

, John Wiley snd Sons, Chichester, 1977,
pp. 212-221.

6. Fox, G. C. oend Otto, S. W., “Algorithms for
Concurrent Processors,”’ mmm vol, 37, No. S,
Moy 1084,

7. Belytschko, T,, Ong, J. S., Llu. w. K.,
Kennedy, J. M., ‘Hourglass Control In Linear and

Nonlinesr Problems,
Applications in m;n.njni Eﬂigﬂﬁiﬁ. vol. 43, 1984,

pp. 251-276.

8. Mefer, D.L., °Two-Dimensional, One-Fluid
Hydrodynamics: An Astrophysical Test Problem for the
Nearest Neighbor Concurrent Precessor,’ Hm-90, July
é’m. Caltech Concurrent Comput ition Project , Pesadens,

alif,

E
e A A5 A AT .rn—uv.»..«"..u&uuw (

v

o o——

v e I i b b

T -

R P



	GeneralDisclaimer.pdf
	0056A02.pdf
	0056A03.pdf
	0056A04.pdf
	0056A05.pdf
	0056A06.pdf

