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CHAPTER 1|
INTRODUCTION

Porous materials have proved useful as sound absorbers in higi' .ensity
environments, such as jet engine inlel ducts, where sound levels routinely exceed
140 dB. At this level most porous materials exhibit amplitude dependent properties,
i.e., they act nonlinearly.l’2 Although it is known that the nonlinearity significantly
alters the efficiency of the absorber, the physical processes which cause the
nonlinearity have not been well understood. Moreover, the precise effects of
nonlinearity are not well documented. There is thus a need to understand more fully
the high amplitude behavior of bulk porous materials.

Propagation of sound in porous materials is fundarientally different from
that in an ordinary fluid. The acoustic flow encounters frictional resistance at each
~7 .he many gas/fiber interfaces. As a result the sound wave is attenuated, the
phase speed reduced, and the impedance increased. The severity of these effects
depends on frequency. For exampie, low frequency signals pass through the material
more by diffusion than by propagation: attenuation and phase speed are both
proportional to \/'f—-. At high frequency, on tl.» other hand, the attenuation and phase
speed reach constant values. Furthermore, because the frictional resistance
increases with flow velocity, the acoustical properties also depend on amplitude.
The combination of nonlinearity and diffusion causes some unusual and interesting
behavior; it also makes the problem difficult to solve.

The present study covers high intensity sound propagation in air-filled
fibrous bulk porous materials. The investigation is both theoretical and experi-

mental.



The theoretical work has two hallmarks: (1) the theoretical mode) is very
simple, and (2) the analysis is done in the irequency domain. The result is a
relatively uncomplicated theory and predictions that compare favorably with
experimental data over a wide range of intensities, ‘requencies, and input signals.

Since the number of investigations and treatments of porous material
problems is vast, it is useful to show the relationship of the present work toc that
which has gone before. Because a thosough review of the literature has already
been given by Kumz,l we offer an abbreviated review to establish a succession of

reference points.

A. Small-Signal Theory

Raylos.-igh3 was apparently the first to> correlate sound absorption in
porous materials with viscous and thermal losses occurring across the substantial
internal surface area of the material. He characterized the material as a solid
riddled with a multitude of narrow tubular channels. Rayleigh combined this model
with the work of Kiu .hhoffu who had investigated the effect of viscosity and heat
conduction on sound traveling in a narrow tube, to create tne first modern theory of
sound propagation in porous materials.

Many investigations which followed were based on Rayleigh's pioneering

5,6,7,8,9

work. The most prominent and thorough work along this line was

performed by Zwikker and Kosten.lo

They took into account fiber motion, and also
introduced the concept of the structure factor.

1..amb<s:rtll discovered that above a certain frequency the gas motior and
frame motion are indeed decoupled. The decoupling frequency depends on the

material. For Kevlar®29, which figures heavily in the experimental phase of this

work, the decoupling frequency is below 85 Hz for porosities above Q=0.94. Support



for Lambert's hypothesis is offered in Chapter 2. His work increased confidence in
subsequent theories in which frame mocticn was neglected altogether. Kuhl and
Meyer12 were the first to introduce the following two crucial assumptions: (1) the
dc flow resistance can be used directly in the momentum equation for acoustic
signals, and (2) frame motion is negligible. Their theory provides the foundation for
the present study.

Hersh and Wall-cer13 elaborated on Kuhl and Meyer's theory. They used
hydrodynamic flow theory to formulate empirical relations between viscosity,
porosity, fiber diameter, and resistivity. Heat transfer effects were also accounted

for.w

15 16)

Other influential linear theories (see, for example, Biot™~ and Lambert
are comprehensive and generally quite useful. We are not able, however, to derive
any benefit from them because their inherent complexity precludes axtension for

nonlin2ar behavior.

B. High- Amplitude Behavior

Zorumski and Parrot2 combined theoretical work with experimental
observation in their study of *he amplitude dependent impedance of thin porous
sheets. Most important, they showed that the ac resistivity is not only independent
of frequency, but that it closely approximates the dc flow resistivity over a wide
range of particle velocities as well. The equivalence of the ac and dc resistivity
apparently proves the first assumption of Kuhl and Meyer.

Kuntz's investigationl builds on the best aspects of the contributions of
Kuhl and Meyer and Zorumski and Parrot. However, a single error in Kuntz's
expression for the nonlinear resistivity caused his theoretical predictions to differ

markedly from his experimental observations.



There have been other investigations of the nonlinear properties of porous
materials, but most are tased on empirical observation of nonlinearly induced
phenomena, with no clue at.out the relevant physical processes. Because they do not
reveal the source of the nonlinearity, these studies have been of little value to the

present work,
C. Present Work

In the present investigation we seek a simple theory which quantifies the
effects of amplitude dependent resistivity. In particular, we seek to explain and
rectify the discrepancies between Kuntz's theory and experiment. The theory is
based on the following model of the porous materiai: the material is rigid,
incompressible and homogeneous, and it has only two important properties, porosity
Q and resistivity r. Knowledge of the microscopic structural details of the material
is unnecessary. The porosity and resistivity are determined by direct measurement.
The resistivity is shown to be the following function of velocity u: r=r1+r2usgn(u).
The effects of hydrodynamic nonlinearities, e.g., shock formation, are neglected,
and sound propagation through the material is assumed to be isothermal. This model
leads to a nonlinear wave equation, the solutions of which agree favorably with
experimental observations.

Two of Kuntz's experiments have been repeated (with minor modifi-
cations): propagation of complex periodic signals, and dc flow resistivity measure-
ments. Measurements were performed on batted Kevlar®29 in the 400 to 6200 Hz
frequency range for small-signal waves, and 500 to 1500 Hz for finite-amplitude
waves up to 165 dB source sound pressure level (SPL). The porosity of the samples

ranged from 2=0.94 to 0.98.



An outline of the current investigation is as follows. Chapter 2 begins
with a section on rnaterial modeling. Equations of motion are then derived, which
lead to a nonlinear wave equation and ar infinite set of inhomogeneous Helmhoitz
equations. The solution of the Helmholtz equations and the predictions which can be
made from them are given in Chapter 3. The chapter is divided into two sections:
(1) propagation of low amplitude waves and (2) finite-amplitude effects. The s.cond
section is further divided into an analysis of the behavior of the fundamental and a
study of the growth and decay of the harmonics. Chapter 4 is devoted to
experimerts. Discussions of the experimental apparatus and procedures are followed
by a detailed comparison between theoretical predictions and measurements.
Observed phenomena include excess attenuation of the fundamental, phase speed (of
the fundamental) which decreases with amplitude, and a cubic distortion pattern in
the harmonics. Hysteresis in the amplitude dependent phase speed seems to imply
the presence of a nonlinear bistability. Chapter 5 is a summary and conclusion of
the first four chapters of the study, which constitute the thesis work. Chapter 6
was added after the thesis and presents an application of the theory to the acoustics
of lined du~ts. The vector wave equation is derived, and a frequency domain
perturbation in the velocity potential is set up to solve the problems of reflection
from a porous half-space and propagation in a lined duct. Appendix A gives a
discussion of thermal effects on propagation in porous materials. A discussion of
the alternative use of a resistivity model r:rl+r3u2 is given in Appendix B.
Appendix C contains the listing for and a short description of the computer program

which calculates the numerical solutions.
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CHAPTER 2

THENDRY AND MODELING

A. Introduction

The theories of sound propagation which pertain most directly to the
present investigation were reviewed in Chapter 1. In Chapter 2 we develop a simple
model for studying propagation of high intensity sound through air-filled bulk porous
absorbers. Some of the assumptions made have been used previously by other
authors, iiamely,

1)  the frame is assumed rigid,l k2

2) dc flow resistivity can be substituted for the ac value through-

out,z’l 3 and

3) isothermal sound speed is appropriate for all frequencies of

interest.l
The fourth assumgtion,
4)  hydrodynamic nonlinearities are small relative to the resistive
nonlinearity,
is unique to the present wcrk.

In Section B the concepts of porosity and resistivity are defined. Assump-
tions used in generating of the model are examined in detail. The continuity and
momentum conservation equations, derived in Section _C, are combined in Section C

to produce a wave equation and the corresponding Helmholtz equation.

Because the process has been assumed isothermal, the energy equation is not needed

in the derivation of the wave equation and is therefore not discussed here.

, PAGE__/ INTENTIONALLY BLANK
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B. Modeling

Porous materials in general have geometrically disorganized structures;
the frame elements are arranged helter-skelter in near-random fashion. This fact
makes detailed ana.ysis of the hydrodynamic field virtually impossible. We
therefore prefer to take a macroscopic viewpoint in which the summed effect of

local flows determines the material properties.

1. Porosity

The porosity is defined as the fraction of the material volume which is
filled with air. We have devised an abstract function D(x,y,z) to describe the
structure of a porous material; the function is merely a convenient mathematical
construct and need not be directly measurable. The value of D is 0 at a point
occupied by a structural element and | otherwise. It therefore follows that the

porosity is simply the value of D averaged over a volume substartially larger than

Q= v—é;J]]D(x,y,z) dx dy dz. (2.1)

The sample is assumed to be homogeneous and the porosity stationary

the mean pore size:

throughout the sample. In practice, the porosity is determined by empirical means:
the known densities of a sample Pg? the frame Pgs and the air trapped within P

combine in the relation

Q= (pf - ps)/(pf - po) . (2.2)

While the porosity defines the fraction of volume occupied by air, the
percent open area Q_ defines the unobstructed fraction of a representative plane
through which the flow passes. First, the local percent area Q, for a plane located

at Z:ZO is



1
galzoz area‘[fmx’y’zo) dx dy . (2.3)

The average of the local value over all possible planes is the quantity<ga> ’

1 1
<Q p= mfmffD(x,y;zo) dx dy dZo . (2.4)

Note that Eq. (2.4) reduces to Eq. (2.1), so that in general

<Qp=Q
The percent open area and the porosity must be equal because the aggregate open

area of all infinitesimally thin slices defines the total open volume. This result is

obtained regardless of the material geometry.

2. Resistivity
Viscous drag causes the material to resist the passage of an acoustic

wave. The resistance per unit length is called the resistivity r, and is defined for a

one-dimensional flow as follows.
dp/dx = -ru , (2.5)

where dp/dx is the pressure gradient parallel to the flow and u the flow
velocity.

Since in general the details of the flow cannot be analyzed, the resistivity
cannot be calculated explicitly and must therefore be measured directly. A dc flow
test is the most straightforward way of measuring the resistivity. The fact that the
dc flow resistivity also applies to oscillatory flows is not intuitively obvious, but

2 have shown that the ac and dc resistivities are indeed

Zorumski and Parrot
equivalent over a wide range of particle velocities. It is therefore possible to
determine the ac resistivity of the medium by measuring the dc resistivity.

9



Measured data indicate that the resistivity depends on the flow velocity; a
mathematical expression of the resistivity is sought which is appropriate for both ac
f

and dc flows. Static flow resistivity data' (see Fig. 2-1) seem at first glance to

indicate that the resistivity is of the form

r=r, +r (2.6)

s L

in which case

2

-dp/dx = r u + ryu (2.7)

Closer examination, however, reveals the implausibility of using Eq. (2.7) for an ac
signal: it suggests that the nonlinear contribution to the pressure gradient is
positive regardless of the instantaneous direction of flow. If the discrepancy is to
be remedied, the pressure gradient must not contain any even functions of u. The
simplest improvement is to affix sgn(u) to the r, term in Eq. (2.7). The pressure

gradient then becomes
2
-p, =rju+rousgn(u) (2.8)
from which it follows that the resistivity has the form
r=r +r,usgn(u) , (2.9)

where usgn(u) is the instantaneous speed of the flow. The coefficient
0 is referred to as the linear resistivity because it plays a large part in determining
the small-signal propagation effects. Similarly, the nonlinear resistivity is so called

because it causes nonlinear behavior. Equation (2.9) is still compatible with the

T

A detailed discussion of the data is given in Chapter 4. The large number of trials

at small flow velocities was taken to find an accurate vaiue of ry

10
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dc flow resistivity data. Although the addition of the sgn(u) term seems redundant
for dc flows, its omission led Kuntzl to inaccurate theoretical predictions of
nonlinear behavior for acoustic signals.

Other expressions exist which fit the data well and satisfy the pressure
gradient requirement. One example is

F=r) +ry T (2.10)

Equation (2.10), which we shall refer to as the "quadratic model" rather than the
"sgn(u) model," is more attractive for analytical study than Eq. (2.9), but does not
bring us any closer to closed form solutions of the wave equation. Furthermore,
predicted behavior based on this model does not differ substantially from that
predicted for the sgn(u) model (see again Fig. 2-1). Although we have carried out
parallel theoretical developments using the quadratic model, the results are
somewhat redundant and are not covered here in detail. The quadratic model can be
used to obtain a perturbation solution. Analytical expressions for propagation of
intense tones and numerical results for propagation of more complex finite-
amplitude signals subject to quadratic resistivity are given in Appendix B. The
sgn(u) model, however, receives the bulk of the attention in the remainder of this

work.

3. Frame Rigidity

The material frame is set in motion by the sound field but under certain

11

conditions is nearly stationary and can be considered rigid. Lambert = and Zwikker

10

and Kosten =~ determined that forces coupling the frame and gas motion are

insignificant if

12



where Wy is the decoupling frequency and B is the effective structural density
defined by Lambert. Interpretation of Eq. (2.11) is straightforward. The resistivity
factor represents viscous coupling which drags the frame with the flow while the
factor Pag FEPresents inertia which inhibits frame motion. For frequencies above W)
the inertia dominates and the frame tends to remain motionless.

Kevlar®29 was used extensively in the experimental phase of this inves-
tigation. In the porosity range 0.94-0.98 the decoupling frequency is between 60 and
85 Hz. The lowest fundamental frequency used in our experiments was considerably

higher, namely 500 Hz. Thus, we have assumed the frame to be rigid.

4. Constitutive Relation

Heat transfer between the air and the frame causes the thermodynamic
state of the entrapped air to depart from being adiabatic. We are primarily
interested in the proper relationship of the pressure and density which, as the ideal

gas law
p=pRT (2.12)

siwws, is determined by the temperature fluctuations in the gas. The
acoustic pressure p and acoustic density p are related to the total pressure p and
total density p as p=p_+p and p=p_ +p where P, and p are ambient values. The
total temperature is similarly expressed as I=T0+T and R is the gas constant. The
frame, by virtue of its considerable heat capacity, tends to remain at the ambient
temperature To while the air temperature fluctuates with the acoustic signal. A
thermal boundary layer forms around the frame. In the boundary layer the
temperature fluctuations decay to near zero at the frame surfaces. The boundary

layer thickness varies as the inverse square root of the frequency and, because of

13
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the extensive surface area of the pores, may embrace significant fractions of the

fluid. The mean temperature fluctuation in the pores determines the sound speed

& :‘/dpldg .

Although the phase velocity of a wave in a porous material is actually substantially
less than the sound speed, the following discussion is couched in terms of the sound
speed because it is the most familiar name [or the quantity. Appendix A gives a
detailed discussion of the effect on sound speed of heat conduction between the
fibers and a laminar flow. For the present it is sufficient to summarize the results
of Appendix A.

The sound speed takes a frequency dependent value somewhere between

the extremes of the adiabatic value c - rpol_FoafYRTo and the iso*hermal value
ci=M=Jﬁ—f;. At high frequency, because the boundary layers around the fibers
are relatively thin, most of the air is in an isentropic state. The isentropic value of
the sound speed is therefore appropriate. At low frequencies the thermal boundary
layers fill the pores almost completely so that the air temperature is constrained to
the ambient value To' In this range the sound speed value is roughly that for an
isothermal gas. At sub-audic frequencies, however, the quasi-static temperature
variation induced by the acoustic flow overcomes the heat capacity of the frame
and drives the temperature of the material as a whole. Since the air and the frame
are in thermal equilibrium, the adiabatic sound speed is once more appropriate.
Figure 2-2 shows the approximate variation of sound speed with frequency for
Kevlar'29 of porosity 0.9%4, 0.96, and 0.98.

The sound speed calculation is based on knowledge of the temperature
distribution around an individual fiber. This distribution in turn depends on the

assumption that adjacent fibers do not interact thermally; that ‘s, the boundary

14
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luyers must not overlap., If they do overlap the ac(ual temperature distribution
cannot be determined, but is expected to yield a sound speed that is more isothermal
than Fig. 2-2 would indicate. The boundary layer interaction turns out to be signifi-
cant at surprisingly high frequencies. The vertical liries which intersect the sound
speed curves represent the frequencies below which the sound speed calculation
cannot be trusted. A detailed discussion of how these frequencies are determined is
given in Appendix A.

The results shown in Fig. 2-2 are based on the assumption of laminar flow
conditions. The high particle velocities of intense waves, however, render the flow

L7

highly turbulent. Carman ® has determined that the onset of turbulent flow in

porous materials occurs when the modified Reynold's number

R §§ (2.13)

reaches a value in excess of unity, where S=4(1-Q)/d is the surface area of the fibers
per unit volume, d the fiber diameter, and v is the kinematic viscosity. For
Kevlar®29 in porosities raaging from 0.98 to 0.94, the velocity at which turbulent
flow begins is 0.1 to C ' m/sec, respectivzly. The flow velocities used in our
experiments often exceed these values by as much as an order of magnitude: the
assumption of laminar flow is clearly not applicable in these cases. Turbulent
mixing of the fluid has a significant effect on the sound speed because it greatly
improves the heat transier between the air and the fibers. We the-efore expect
condit:nis to be significantly closer to isothermal than would be predicted from a
laminar flow mod-l. Since we are primarily interested in meisurements at high
intensity in frequency ranges where the boundary layer interaction is significant, we

are justified in assuming the isothermal sound speed.

16



5. Relative Importance of Hydrodynamic Nonlinearity

Hydrodynamic nonlinear effects are extremely important for finite-

amplitude progressive waves in an open medium, but their influence on wave
propagation in porous materials is small. Many fine discussions of the physics of

intense sound propagation in air already a.=:)cist;“‘a”lg’zo'21

we shall cover only those
points pertinent to the present discussion. An intense wave in an open medium
distorts because the propagation speed dx/dt varies over the waveform,

dx/dt = Co + Bulx,T) ,
where B8=(Y+1)/2 and v is the ratio of specific heats. The waveform distortion,
which we shall call hydrodynamic distortion, is cumulative. An initially sinusoidal

wave tends to distort into a sawtooth wave, i.e., a periodic sequence of shock waves.

The shock formation distance

x=1 /ﬂeko ;
where e.—-no/co is the dimensionless wave amplitude and k°=21rf°/co is the wave
number, serves as a measure of the rate of distortion. I x is large the distortion
builds up very slowly; the reverse is true if x is small. The shock formation distance
in our experiments ranged from about 1.5 m to 5.5 km. These values should be

compared with the characteristic length for the absorption,

X, = la.
where a is the small-signal attenuation coefficient. Since values of Xg for our
experiments were between 2 and 9 cm, i.e., ;»xa, the wave was completely
absorbed before hydrodynamic distortion had a chance tc develop. Furthermore, the
effects of the nonlinzar resistivity turn out to be much more severe than those for

hydrodvnamic distortion (see Chapter 3). Our experimental conditions are expected

17
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to be typical of those encountered in practical uses of Kevlar as a high intensity
sound absorber. We therefore assume the hydrcdynamic nonlinearity to be negligible
relative to the resistive nonlinearity and neglect any second and higher order terms
not pertaining to the resistivity in the following derivation of the equations of

motion.

6. Structure Factor

A true one-dimensional flow in a porous material exists only as a
convenient fiction. In reality the flow is deflected by the frame in directions
perpendicular to its net direction of travel. Some of the force applied in the x
direction to a fluid particle is therefore wasted in the process of accelerating the
fluid arcund obstacles. This inefficiency causes the fluid to appear more dense than
it actually is. The effects of increased inertia are most notable at high frequency,
where they cause the phase speed and attenuation to be reduced.

Most studies of porous materials include factors to account for the extra
inertia. They are called by many names: structure factor, apparent density,
tcrtuosity, and others. Some of the theoretical discussions of the underlying physics

10,15,22 Direct measurement of the structure factor is, how-

are quite elaborate.
ever, not possible nor can one determine its value theoretically »ithout considering
the microscopic structural details of the material. Furthermore, the dependence on
amplitude of the structure factor is not known. It seemed better to this author to
do without such an enigmatic parameter, lest in our desire to assign it a numerical
value we reduce it to a "fudge factor". We therefore choose to overlook the

structure factor in formulating the equations of motion, physical significance

notwithstanding.

18
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C. Equations of Motion

The foregoing discussion of the physics of acoustic flow in a porous
material demonstrates that the resistivity effects far outweigh those of frame
motion, frequency dependent sound speed, and hydrodynamic nonlinearity. The
latter effects are therefore neglected so that needless complication is eliminated.
The problem is thus reduced to a rathes simple one: plane wave propagation through
a "fluid" with one easily definable property, namely amplitude-dependent resistivity.
The purpose of this section is to convert this physical undersianding into equations
of motion.

A number of general comments and definitions must be made at the
outset. We are presently concerned with only one-dimensional aggregate flows.
Local perpendicular flow components are assumed to sum to zero over a given plane.
We define the control volume, depicted in Fig. 2-3, to be a differential section of
length ’x and cross-sectional area A. The material within the volume is
homogeneous and has the same porosity throughout. Flow enters the volume at the
left side through the open area N A and exits through the same area to the right.
Pressures exerted on the sides of the control volume act on the entire cross-
sectional area A, not just the open area. A resistive force due to visc us drag is
presumed to act throughout the volume, not just in the pores. The velor density,
and pressure are mean values across a given plane. The velocity and density are

averaged only within the pores.

1. Continuity Equation

The equation of continuity mathematically expresses the balance between
the rates of mass influx, efflux, and accumulation. At some instant in time the flow

carries a certain amount of mass into the control volume through the open area at a
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rate (pul(AQ)| . Mass exits the volume at the rate (pU)(AQ)Im Ax Since we expect
the mass to be conserved, the difference between these two rates represents a rate
of mass accumulation, thAAx. The continuity equation may therefore be written

as

PRA AX = puA| - pugAl (2.14)

The differential form of Eq. (2.14) is found by dividing by QA Ax and taking the limit

as Ax goes to zero:
pe+pu) =0 . (2.15)

The porosity factor does not appear in this equation because the volume fraction in
which the mass accumulates is equivalent to the area fraction through which the

T

flow passes.

Nonlinear terms not pertaining to the resistivity are neglected on the
basis of the discussion in Section A.5 . Furthermore, we assume that there is no dc
flow through the sample. We can therefore reduce Eq.(2.15) to the familiar
linearized continuity equation

2. Momentum Equation

The derivation of the momentum equation proceeds along similar lines.
An identical control volume (depicted in Fig. 2-4) 1s established, but this time the
momentum of the volume is considered. The rate of momentum accumulation
(pu)tQA Ax is balanced by the net momentum influx to the volume and body and

surface forces acting on the control volume. Momentum enters the volume at the

.r

Particle velocity at or within a rigid obstacle is, of course, zero.

21
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left at the rate (pu)uQAlx and exits to the right at the rate (pu)uQAlx+Ax. Pressure
exerted on the sides of the volume result in surface forces E"*lx at the left side and
EA|x+Ax at the right. A body force due to viscous drag ruA Ax acts throughout the
volume in opposition to the flow. Although the form of r(u) is already known, it has
been left in its general form for the moment.

The mathematical statement of conservation of momentum is

(pu)tﬂAsz(pu)u AQ|, - (pulu ARy, ax*PA| x "PA|x,ax-TUALX . (2.17)

This equation is divided by A Ax and take the limit as Ax goes to zero to find the
differential form

Qlpu), +2(puu) +p +ru=0 . (2.18)

Again dropping hydrodynamic nonlinear terms, we obtain

QP U, + P +ru=0 . (2.19)

The porosity factor appears in Eq.(2.19) because the flow enters the
control volume through an area determined by the porosity while the pressure and

body force act on the entire surface and volume, respectively.

3. Pressure-Density Relation

We recall from Section B.4 that the gas within the pores is constrained to
the ambient temperature value To because of rapid convective heat transfer

between the air and the frame. Equation (2.12) therefore reduces to
p = pRTO '] (2020)

where ciz.fRT0 is the isothermal sound speed.

23



D. Wave Equation

In the previous sections the continuity, momentum, and constitutive
equations appropriate for high intensity sound propagation through rigid bulk porous
materials were derived. The wave equation is found by combining these three
relations. We first apply the differential operator cizalax to the continuity
equation and 9/at to the momentum equation. Density and pressure terms cancel

via Eq. (2.20), and the wave equations is found to be
(ru),

Po

tu, -du +—L-0 . (2.21)
We adopt the sgn(u) model for the nonlinear component of r. Substitution
of Eq. (2.9) in Eq. (2.21) yields
2 r rz(uzsqnu)t
Qu_ -cu_+—u + ———— =0 . (2.22)

tt 1 xx po t po

It turns out that solutions of Eq. (2.22) are best sought in the frequency
domain. If the nonlinear term is ignored for the momenrt, we see that the behavior

implied by Eq. (2.22) is a combination of lossless plane wave propagation

and a diffusion process

For most cases of practical interest the diffusive behavior is dominant; that is, the
resistance term rlutlpo is much larger than the Qu . term. The diffusion equation
has wavelike solutions, but they are characterized by severe frequency dependent

attenuation and dispersion. In particular, no general time domain solutions like

24



g(x+ct) or f(x-ct) for incoming or outgoing waves, respectively, can be found.
Functions corresponding to incoming and outgoing waves are, however, identifiable
in the frequency domain. It is therefore advantageous to transform Eq. (2.22) into
its frequency domain counterpart, the Helmholtz equation.

Before tranforming Eq.(2.22) we find it convenient to rewrite the

equation in nondimensional form, vis.,

v
2
ar % + R]V-r + Rz(v sgnv)f =0 , (2.23)
where
Jzu/Ci ’ Rl =rllﬂp°w° ’
T=w,t 4 Ry = l-2ci/ﬂ*"o“’o ’
X= c..‘mat/ci ’

and w s is a characteristic frequency, such as the fundamental frequency of the

incident acoustic wave.

2. Helmholtz Equation

We now transform Eq.(2.23) to the frequency domain. The transfor-

23 and Korpel.zu Time and

mation is done in a manner popularized by Fenlon
distance dependences of the velocity variable v(X,T) are separated by expanding v as

a doubly infinite series of exponentials in time, with range dependent amplitude

T
v_(x),

viX,T) = z: Vn(X)exp(jn'r) . (2.24)

N==e0

The index n represen.s the nth harmonic of the signal.

25




Since v is a real quantity, we require that V_n and Vn be complex conjugates. The
series approach is preferred to an integral transform because our incident signals

are monochromatic or at least periodic. The nonlinear term contains the factor

v sgnl(v), here abbreviated as w(X,7), which represents the speed (not velocity) of the

acoustic flow

+ w0
w(X,T) = vsgnv = Z Wn(x)exp(jn-r) ; (2.25)

N==e0

and W_nzwn*. The speed w corresponds to a full-wave rectified version of the
signal, and the spectrum Wn corresponds to the spectrum of the velocity-dependent
resistivity.

Substitution of Egs.(2.24) and (2.25) in Eq.(2.23) leads to the in-

homogeneous Helmholtz equation,

" 2 i
Vo+a.V, = jnSleE prn-p ; (2.26)
p

where the double prime denotes two differentiations with respect to the argument
X, and qn:n,fﬂ(l-le/n) is the complex dimensionless wave number, which may be

written

9 =%~ 1%; - (2.27)

The real and imaginary parts are

26



and

The polar forms are

an -

i

where

= lqnl cos(tan'lQn) ’

- 'qnlsln(tan'lQn) -

i 4 (Rl)Z
|ql's| —HJQ_ 1+ ?

and

R)Z

-1+ Vli-(—n—l

(2.28)

(2.29)

(2,30)

(2.31)

Despite its compact form, the inhomogeneous Helmholtz equation is

extremely difficult to soive.

subject of Chapter 3.

Approximate solutions of Equation (2.26) are the
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CHAPTER 3
SOLUTIONS

A. Introduction

Chapter 3 is devoted to solutions of the inhomogeneous Helmholtz
equation for progressive waves. Solutions for low intensity linear behavior are
investigated in Section B. Examination of these solutions gives a basic under-
standing of the effects of resistivity on small-signal waves. An introduction to the
theoretical problem of finite-amplitude waves in porous media is offered in
Section C. An approxiinate first integral of Eq. (2.26) is developed that is the basis
of the solutions in subsequent sections. In Section D, we investigate propagation of
a tone subject to nonlinear resistivity effects. It is assumed here that the harmonic
distortion products, though inevitable, are weak enough to be neglected.
Concentrating, then, on the fundamental, we obtain approximate analytical solutions
for pressure, particle velocity, phase velocity, and impedance magnitude and phase
angle. Section E contains a discussion of the approximate solution for high intensity
periodic waves in which the harmonics are taken into account. The multiplicity of
harmonic interactions and interlocking solutions, as defined by the convolution term
in Eq. (2.26), makes it necessary to seek a numerical solution. Harmonic
propagation curves, i.e., amplitude versus distance for the various harmonic
components, are generated. The numerical solution gives insight into the evolution
of harmonic distortion products and in addition provides predictions against which

experimental data may be compared.
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A series of general expressions are now given in preparation for the
analytical solutions discussed in Sections B and D. These definitions simplify the

analysis and clarify the effects of resistivity in the linear and nonlinear regimes.

l. Velocity and Pressure

The particle velocity v(X,7) can be expressed as an infinite sum of

sinusoids with range dependent phases ¢vn(x) and amplitudes An(x):

v(X,T) = 2 An(xi(sin nr- ¢vn(x)) ; (3.1)
N=

where A (x)and ¢ (x) are real and are related to V _(defined in Eq. (2.24)) by

A (%)
v, = 3 (exp -jovn(xb : (3.2)

Use of the An notation allows the amplitude and phase effects to be easily separated
so that they may be considered independently.

The nondimensionalized pressure signal is defined as

p(X,7) - p =
BT = ———2= ) B (X) expjnT) (3.3)
poczi -

A
where ﬁ—nzpn* and, alternatively,

o0

p(X,T) = g nn(X) sin (n'r-opn(x)) ; (3.4)

where and °pn are real, and

30
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nn(x)
J

ﬁn(x) = —3— exp (-jopn()()) ' (3.5)

2. Phase Velocity

A general expression for phase velocity, applicable in both the linear and
nonlinear cases, may now be derived usi.g the notation of Egs. (3.1) and (3.4). The
phase speed is defined as the rate of travel of a constant phase plane, that is, a
plane for which the quantity nr-qavn()() remains constant. Upon differen*iating this

expression we find that

ndf-q\‘vndX:O ’

where the prime again denotes differentiation with respect to the argument X. The

phase velocity of the nth coinponent of the particle velocity wave is therefore

dx .
Cyn = dr const. "' . (3.6)

phase o

The phase velocity for the pressure signal is similarly defined as the rate of travel
of a plane for which nr- ¢pn(X) stays constant,

_dX n_

pn_ dr |const. 0 ' (3.7)
phase P

Two phase velocitics are defined because the impedance phase angle is amplitude
dependent at high intensity and therefore the pressure and particle velocity signals

travel at different speeds.
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3. General Definition of Characteristic Impedance

The characteristic impedance is defined in general as the ratio of the

pressure to the pcrticle velocity for a given harmonic component:
s n-ﬁex -ilp_ -9 ) (3.8)
n"V "A p(] pn'vn)' '

1f Z, is written in polar form,

Z = |Zn| exp(-jo_ ) , (3.9a)
it follows that
nn(X)
|zn| = m (3.9b)
and
-1 -lm(Zn)
P = tan W = Q‘pn “Pun ° (3.9¢)

A general relation for the impedance can be found by using the continuity
equation which, although linear in form, provides a relation appropriate for all
amplitudes because the hydrodynamic nonlinear terms have been neglected. We

first replace Py in Eq. (2.16) by pt/ci2 and t! en nondimensionalize the result to find
A
P_+Vx = 0 .

Equations (3.1) and (3.3) are here substituted into this equation to give the

dimensionless continuity equation in terms of the harmonic components,

32



A
jnP_+V' =0 . (3.10)
n n

We first divide Eq. (3.10) by Vo

<

{
n

inZ_ +o =0 ,
n Vn

and then substitute for Vn and Vn' using Eq. (3.2) to solve for Zn,

R . (3.11)
n n e’\m"lAn ¢ G

It is interesting to note that the rate of change of phase of the wave represents the

real impedance while changes in the wave amplitude represent the reactive part.

B. Low Intensity

Attenuation and phase velocity are controlled at low intensity by the
dimensionless linear resistivity coefficient Rl' The Helmholtz equation takes the

linear form

2
Vi+giV =0 (3.12)

for small signals. This second order differential equation may be factored into two
first order relations by use of operational notation. Equation (3.12) is first written
as
2 2
(DX +qp )Vn'—'o ’
or
(Dx +an)(Dx -jqn)Vn=0 ,

where DX represents differentiation with respect to x . The "roots" of this factored

equation are
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Vi o+iq vV, =0 (3.13)
and
v o-iq Vv =0 . (3.14)

Equation (3.13) is the relation for the forward traveling wave, Eq.(3.14) for a
backward traveling wave. We now concentrate on Eq.(3.13), which may be
interpreted as a first integral of the Helmholtz equation for forward traveling
signals.

Amplitude and phase information may be obtained by substituting Eq. (3.1)

into Eq. (3.13); one finds that

A'n + j(qn" G'vn)An = 0 . (3015)

The real and imaginary parts of this equation give relations for the amplitude and

phase, respectively, vis.,

A + q A O y (3016)

n ni-n~

and
an - @'\'n = O '] (3-17)

where q _and q . are given by Egs. (2.27) through (2.31).

1. Particle Velocity Solution

Solutions of differential equations (3.16) and (3.17) are quite simple. The

range dependent amplitude is

An(x) = An(O) exp(-qnix) - (3.18)

where A (0) is the value of A (X) at the effective origin of the signal. Thus q,; is

the decay constant. The phase function is

3



wvn\X) =q X+ °vn(0) i (3.19)

where ¢ _(0) is the value of o  (X) at the effective origin and we see that q__is the
propagation wave number. The general solution for the particle velocity for small-

signal progressive waves is therefore

o0

viX,t) = z; An(O) exp(—qnix) sin (nt -anx-ovn(O)) 5 (3.20)
n=

One effect of the resistivity is to attenuate the wave as it travels. The
nondimensional rate of attenuation varies according to Eq. (2.29), with the dimen-
sionless grouping R defined in Eq. (2.23). Figure 3-1 is a graph of Eq. (2.29) where
for simplicity the value @ =1 has been used. It is seen that the attenuation increases
with the dimensional resistivity r and frequency. The dependence of q,; ©on
porosity is complicated because " is itself a function of porosity. The range

0<R,<50 is sufficient to cover the audio spectrum for most materials. At high

1
frequency (Rl«l) the tr.c attenuation, a=wq .C., reaches an asymptotic value
a:rlIZ PoCir which is independent of frequency. The low frequency asymptotic

result is

€

-
[ =gF
1

N
©
o

which is pioportional to Ji just as in the case of boundary layer dominated
attenuation. The high and low frequency results are not very useful, however,
because the isothermal sound speed is inappropriate at very high or very low

frequencies, nor is the frame rigid at low frequencies.
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Another effect of the resistivity is to reduce the phase speed of the wave.

The phase speed is evaluated by combining Egs. (3.6) and (3.17) to obtain

C._ =1

» L. 18 (3.21)
% Ynr

Resistivity causes the phase velocity to be substantial!v less at low frequencies than
the sound speed. The dependence of C\rn on R | can be seen in Fig 3-2, where once
again a value of 2=1 has been used for simplicity. The true phase speed value is
C= cinn. The high and low frequency asymptotes, subject to frequency constraints

on the theory, are the isothermal sound speed at high frequencies and

at low frequencies. The low frequency phase speed and attenuation have JT

dependence which is indicative of a diffusion process.

2. Small-Signal Characteristic Impedance

The characteristic impedance is strongly affected by resistivity.
Equations (3.16) and (3.17) are substituted into the general iinpedance relation,

Eq. (3.11), to give

Z wd ] -on (3.22)
n=nl9% 9| T -

At low frequencies sound propagation is reduced to a diffusion process, charac-
terized by an impedance magnitude of Jr lI Pow and a phase angle of 45°, At high

frequency the magnitude of the impedance approaches @ and reactance drops to
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zero. Figure 3-3 illustrates the dependence of the impedence magnitude on R| and
Fig. 3-4 does so for the impedance phase angle.

3. Small-Signal Pressure Wave Solution

The solution for pressure waves is found by simply taking the product of
the particle velocity and impedance. Since Zn is independent of amplitude at low

intensity, the pressure has a similar solution

ﬁ(x,r) :Z) %(x) exp(-qnix) sin (nr-anx -¢pn(0)) . (3.23)
n=

The phase velocity of the pressure wave and that of the particle velocity wave are
therefore identical:

n o_n (3.24)

C —
PR 2on  nr

n

The attenuation constant of the pressure signal is the same as well. This is the

expected result.

4. Summary

The effects of resistivity on low intensity acoustic signals are summarized
as follows: the linear resistivity coefficient Rl is the most important parameter
controlling the flow of acoustic energy, since it

1) causes attenuation,

2) causes dispersion, and an overall decrease in the component phase

speeds, and

3) increases the impedance magnitude, and introduces a constant phase

angle between the pressure and particle velocity signals.
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The method of separating the amplitude and phase information developed in this

section is applied in Section D to the problem of a finite-amplitude tone.

C. Introduction to the Nonlinear Problem

The method of solution of Eq. (2.26) for finite-amplitude waves is dictated
largely by the information available from the experiment. Without going into great
detail, we can say that the experiment provides the harmonic pressure amplitudes
Sn at several ranges for a! progressive wavefield. While a single boundary condition
per harmonic is available, the inhomogeneous Helmholtz equation, Eq.(2.26), is
second order and thus requires two boundary conditions per harmonic. The missing
condition is the radiation condition, for which we have found no general analytical
expression. Without this expression we can neither specify the second boundary
condition exactly, nor can we integrate Eq.(2.26), in which case one boundary
condition would be sufficient. Moreover, the missing boundary condition cannot be
estimated accurately enough to prevent the numerical solution from becoming
unstable. An approximate first integral is therefore developed which allows a stable
solution for a progressive wavefield. Errors arise in the approximate solution but
they are at least qualitatively predictable.

For future reference we here introduce some special nomenclature. We
are oftentimes concerned only with how the fundamental component of the wave
propagates. The fundamental with higher harmonics neglected is, for simplicity,
referreu to as a "finite-amplitude tone". When the higher harmonics are included in

the analysis the signal is referred to as a "distorted sinusoid".

1. Boundary Conditions

The boundary conditions are taken to be the harmonic pressure amplitudes
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of the signal at the microphone closest to the source, which we call the reference
microphone. Although the transducer input is always sinusoidal, various nonlinear
processes cause the high amplitude signal to distort before it reaches the first
microphone position; the signal at the initial point therefore contains all harmonics
of the original tone. The SPL of the harmonics are measured and from these the
harmonic pres,ure amplitudes 6'1(0) are determined. These amplitudes serve as
starting points for the solutions ﬁn(x), to which we compare the data from
microphones at other positions.

In order to specify the solution of Eq.(2.26), it would be necessary to
know the initial values (that is, the values at the initial point) of both vV, and V'
However, only one of the boundary conditions can be synthesized from the pressure
data; the value of V 'is linked to t;n through the continuity equation, Eq. (3.10). The
remaining boundary condition, however, is the value of Vn at the reference
microphone. No exact general relation has yet been found between $n and Vn. The
value of Vn must therefore be estimated. We tried using various successive
approximation methods to obtain the necessary estimates but found solutions of
Eq. (2.26) to be so unstable that all attempted approximation schemes ended in
failure. The reason for the extreme instability is that the Helmholtz equation
belongs to a class of differential equations called "stiff". In a stiff equation the real
parts of the roots (eigenvalues) of the characteristic equation are widely separated,
i.e., the values anil are large. Attempted solutions based on one eigenvalue of the
system are easily contaminated by errors (numerical and otherwise) which become
forcing functions for the undesired solution.

A better understanding of this problem may be gained by examining the

homogeneous solution of Eq. (2.26),
Vn(X) = Bn(o) exp(jqnx) + Fn(O) exp(-jqnx) ‘ (3.25)
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For a progressive forward-traveling wavefield Bn(O) is expected to be identically

zero. Unfortunately, we are unable to accurately specify the boundary conditions

for finite amplitude waves, so that Bn(O) retains some residual value. Since the
backward-traveling wave decays for decreasing X, it grows just as rapidly in the
forward direction as the forward-traveling wave decays. Eventually a point is
reached where the spurious backward-traveling wave solution obscures the desired
solution. The larger the values of i the more rapidly the accuracy of the soiution
deteriorates.

In order to achieve a stable s»hlution, the second order system of equations
must be reduced to first order by applying the condition that the wave field is
progressive. An exact first integral of Eq. (2.26), similar in form to Eq. (3.13), has
not been found because of the complexity of the convolution term. We therefore

seek an approximate first integral.

2. Approximate First Integral

The approximate first integral isolates forward wave behavior within
Eq. (2.26), but does so at the expense of somr= =:zcuracy. Since we seek solutions for

the forward-traveling waves, we propose a solution of the form
Vn(X) = Fn(X) expl-jq_X) (3.26) ,

where the deviation of Fn( X) from a constant value is due to nonlinear effects, and
the exponential term represents small-signal effects for a forward-traveling wave.
One may think of Fn(X) as an apparent harmonic source amplitude which is allowed
to vary with distance in response to nonlinear effects. Substitution into Eq. (2.26)

gives

F." - 2jq F '= j“m{z;van-p exp(jq x) . (3.27)
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Note that this substitution has not reduced the number of eigenvalues in the
problem; to accomplish this feat an integration is necessary. The danger of
contamination by spurious backward-traveling waves still remains. We have,
however, shifted the eigenvalues of the linear problem to 0 and qun, so that we can
take advantage of the differing relative importance of the terms Fn" and Fn' for the
two wave types. The following analysis is carried out as if there were no backward
waves, and it is this selective vision which accomplishes the integration. For
forward-traveling waves where the nonlinearity is moderate, the transition between
nonlinear and linear behavior is thought to be sufficiently gradual to warrant the
assumption that Fn“ can be neglected relative to F’n'. Removal of the Fn" term

results in a truncated version of Eq. (3.27),

QR
T (X) = op =2 \ £
F_'(X) = -n 2, E Jpwn-p expq X) . (3.28)
P

In effect an approximate first integral of Eq. (2.26) has been obtained,

9R2
Vn + ]qnvn = =N E\ E prn_p . (3.29)
]

The fact that Eq. (3.29) is the appropriate first integral is proved by noting that the
relation |Fn“|<<|2ann'| is not satisfied by a backward-traveling wave.
Equation (3.29) is therefore an approximate differential equation governing pro-

gressive waves.

3. Solution Errors

In the process of re,ecting the spurious solution, a certain amount of

information regarding the spatial dependence of Vn has been lost. Implicit in
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Eq. (3.29) is the supposition that the transition between nonlinear and linear
behavior is gredual. For very large amplitude waves, however, the transition is
relat.vely rapid and Fn“ is not negligible. The errors of the approximate solution
that result are called "overshooting" after their graphical manifestation. Non-
linearly induced gains and losses for the fundamental and various harmonics (see
Section E) of the signal are predicted too large. Since the exact solution is not
known, there is no way to quantify the errors of the approximate solution. The
errors will, however, become apparent when the solution is compared with measured

data in Chapter 4.

D. Propagation of a Single Tone

We now consider propagation of a single tone of finite amplitude. The
effects of the inevitable harmonic distortion components on the tone are neglected
because the higher harmonics are very weak relative to the fundamentai. With the
aid of the approximate first integral, we are able to find analytical expressions
governing the amplitude and phase of the wave and the impedance of the medium.

Analytical solutions of Eq. (3.29) are obtained for a tone
wmﬂ=Aﬂngn@-%ﬂn) , (3.30)

which has spectral components Vlz(Al/2j)exp(-j¢vl(x)), and V_1=V *, Since these

1
are the only harmonic components assumed to exist, the convolution term of
Eq. (3.29) is shortened considerably:

. “Bh,
Vl + quvl = qu— (v1w0+va2) . (3.31)
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The spectrum Wn of the full-wave rectivied version of an arbitrary signal
is usually too complicated to analyze. In the pure tone case, however, it is

straightforward. The rectified signal is defined as

A (X) | sin ‘r-ovl(x))l

Application of the Fourier transform gives

N 5
sln(f')exp(-jn'l‘)df'-f sin(texp(-jnm)dr'| ,
o T

wn(X) = 27

where 1= 7- °vl(X)' Finally, evaluation of the integrals yields

2A (X) :
———3- exXp (-jn@vl(X)) (3.32)

W _(X) =
d m(l-n“)

for n=even and 0 otherwise.
A differential equation in Al and 2,1 arises when we substitute Eq. (3.30)
and (3.32) into Eq. (3.31),
- QR
" oad e A 2
As in the linear analysis (Section B), the real and imaginary parts of Eq. (3.33) give
separate relations for amplitude and phase information,

' _ 2
Ay - qpA = -Kq A, (3.34a)
ard

qy, - oy = KA A (3.34b)
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where

K= ——2 (3.35)

I 1+R'f

is the coefficient of resistive nonlinearity. For the Kevlar samples used in our
experiments the vaile of K was often 20 or greater. Since the hydrodynamic
distortion effects would have been scaled by the dimensionless coefficient #=1.2, we
see that it is indeed correct to neglect them.

The amplitude of the particle velocity wave is founs by integrating

Eq. (3.34a) directly,

AI(O) exp(-q“X)

(3.36)
+T ( l—exp(-q IIX))

where I'=K AI(O)/QI, which is directly analogous to the Gol'dberg number.T
Figure 3-5 gives plots of log(Al') versus distance for various initial particle velocity
amplitudes. Low intensity waves experience simple exponential decay. Hence, the
corresponding curves are straight lines. High amplitude waves, however, undergo
excess attenuation as a result of nonlinear resistivity. As a result, the propagation
curves bend. For very high source amplitudes the pressure amplitude approaches an
asymptote (the dotted line in Fig. 3-5): the amount of energy that can be

transmitted to a given point cannot be exceeded regardless of the starting

The Gol'dberg number, which was originaily developed for distortion due to
nonlinear effects in nonporous fluids, measures the relative importance of the

nonlinear distortion effects to small-signal attenuation.
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amplitude. The "saturation"zs limit is determined by the properties of the medium
and is independent of the initial amplitude.
Although some have heretofore thought the excess attenuation in porous

materials is due to conventional nonlinear effects in the fluid, we now see that the

true cause is nonlinear resistivity. Equation (3.36) is of the same form as the
equation derived by Webster and Blackstockzs to describe excess attenuation and
saturation of a nonlinearly propagating pure tone in free air. In their model, excess
attenuation and saturation are a direct consequence of shock formation. Intense
sound waves in porous media, however, do not form shock waves because the
harmonics are rapidly attenuated and dispersed. The form of Eq. (3.36) was also
obtained by Kum:zl as a result of his empirical model of attenuation of a tone in a
porous medium. The fact that Eq. (3.36) can be derived analytically proves that the
basis of Kuntz's model was correct.

The phase speed of the particle velocity wave is affected by the
nonlinearity in a rather unexpected way. Substituting Eq. (3.10) into Eq. (3.6), we

obtain

c

-1
vl = — = [qlr + qulAI] . (3.37)

1

ov1

The phase speed is seen to depend on the inverse of the propagation wave number q,
at low intensity, but the amplitude dependence causes Cvl to decrease at high
amplitude (see Fig.3-5). A high intensity wave therefore starts by propagating
slowly, but as the wave is attenuated the phase velocity increases, eventually

reaching the linear value q, r'l.

The resemblance of the characteristic shape of the
curve in Fig. 3-6 and that in Fig. 3-2 should be noted.
In Chapter 4 the relative phase between two pcints is measured as an

indicaticn of the phase speed, to which it is closely related. Equation (3.34b) can be
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integrated to give the phase function

ovl(x'; =q, X +QIn (1 + I (l-exp(-q“x)))wvl(m ; (3.38)

The nonlinearly induced decrease in the phase speed is manifested here in the
logarithmic term, which represents the increased relative phase at high intensity

between two points. The full particle velocity solution is therefore

A,(0) exp(-q,.X)

YT = T Tea )

x sin (-r-qlrx-Qlln (l+ r‘(l-exp(-qnx)) - °vl(0)) " (3.39)

The impedance of the wave is strongly amplitude dependent. The general

impedance relation Eq. (3.10), combined with Eqs. (3.34a) and (3.34b), gives

Z, =(q, +Kq;A)) - jlq ;+Kq, A) (3.40a)

Z,=q, - jKAq} . (3.40b)
The magnitude of the impedance can, after some manipulation, be shown to be

1/2
A =(|ql|2 (1+kA?) 2R1KAI) , ate

which can be approximated by

Z)|= |a,|(1 + KA ) (3.41b)

when R | is sufficiently greater than unity. As one may readily observe from

Eq. (3.41b) and Fig 3-7, the impedance magnitude increases linearly with particle
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velocity. The phase angle of the impedance is

\

-1 (95 *qurAl)
o_, =tan —_— ] . (3.42)
3l (qlr +Kq; A,

Once again the phase information gives a surprising result. The impedance phase
angle varies between a high intensity asymptote tan'l(l/Ql) and a low intensity
limit tan'l(Ql). The material is relatively more reactive at high amplitude; as the
wave travels and is attenuated, the reactance approach~s its low intensity value.
The amplitude-dependent impedance phase angle has interesting consequences for
the pressure wave phase velocity, as we shall see shortly. A plot of Eq.(3.42)
appears in Fig 3-8.

The solution for finite-amplitude pressure waves is again simply the

product of the particle velocity and inipedance,
A ;
p(x,T) = A ) Zl(X) sm(-r-avl(X)- azl(x)) ; (3.43)

The pressure signal is subject to excess attenuation and saturation just as the
particle velocity is. But since the impedance magnitude is amplitude dependent, the
functional dependence is slightly different. Although not apparent from Fig. 3-7,
the impedance reaches a high amplitude limiting value which is determined by the
particle velocity amplitude at saturation. The product of the saturation limits of
the inpedance and particle velocity as a function of x gives the high intensity
pressure amilitude asymptote. Propagation curves for various initial pressure
amplitudes are given in Fig. 3-9.

The most surprising result of this section comes when we consider the
phase velocity of the pressure wave which, from Eq. (3.7) and the definition of

impedance phase angle, is
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] 'l = [ ' -1
Cpl = ("pl) = (°vl + wz]) . (3.44)

This phase speed is different from that for the particle velocity because at large
amplitudes ¢z'l does not equal zero. The value of ov'l has previously been given,
but the value of ”z'l must be obtained by differentiating L. (3.42) with respect

tox. It can be shown that the rate of change in the impedance ohase angle with

distance is
-9,,Q,B exp(-q“)()
0',1 %) = . - (3.45)
l1-B exp(-q“)() + Ql
1‘(1-Q12)
where Bz ——
I 4 I

The oz'l term opposes the °v'l term. The pressure signal therefore travels slightly
faster than the particle velocity signal. As the wave is attenuated, the pha: speeds
c f the two waves eventually converge to their mutual small-signal value qlr-i' In
Fig. 3-10 the pressure phase velocity Cpl is shown as a function of distance for a
given source level. The corresponding curve for Cvl is provided for comparison.
This phenomenon has been observed during the course of our experiments, and is
reported in Chapter 4.

Several general conclusions can be made regarding the effects of high
intensity on propagation of a finite-amplitude single tone:

1) The nonlinearity causes excess attenuation and, in the limit,

saturation.

2)  The phase velocity is less than its small-signal value.
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3) The impedance magnitude and reactance increase with amplitude.

) The phase velocities of the pressure and particle velocity signals
differ. The difference is due to the dependence of the reactance of
the material on amplitude.

Since the wave decays as it travels, the attenuation, impedance, and phase velocity
eventually revert to their small-signal values.

It is clear that small-signal resistivity effects are augmented at high
amplitude, that is, the higher amplitude wave encounters a larger resistivity. The
increased resistivity can be demonstrated by direct calculation. We consider a

nondimensionalized version of Eq. (2.9),
The average value of the resistivity over a cycle of the tone is simply
{R) = Rl + R2 \Vo(x) . (3.47)

This result demonstrates a local increase in the mean resistivity because of the
passage of the wave.

The reader should note, however, that the resistivity actually fluctuates
in time because of the acoustic signal, as defined in Eq. (3.46). Time-varying
properties of the medium signify that new harmonic components are produced by the
interaction of the signal and the fluctuating resistivity. In the next section we

expand the analysis to include the harmonic distortion products as well.

E. Numerical Solution for Initially Pure Tones and Distorted Sinusoids

The purpose of the numerical solution is to generate theoretical pre-
dictions for comparison with actual signals. We must therefore extend the solutions

of the inhomogeneous Helmholtz equation to include the harmonics of the signal. In
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particular, we are interested in the solutions for a distorted sinusoid like those used
in our experiment. Closed form analytical solutions are not possible in the general
case because the spectrum of the full wave rectified signal (Wn) cannot be expressed
as a direct function of the signal harmonics Vn' In addition, the full solution
consists of a large number of interdependent individual solutions, one for each
harmonic in the signal. For these reasons the general case is best solved by
computation. Nevertheless, qualitative predictions can be made by inspection of

Eq. (3.29).

A single initial value for each harmonic is required to solve Eq. (3.29),
namely Vn(O). The values of Vn(O) are easily determined from the available data for
Pn(O) by means of an approximate impedance relation that we now derive. The
continuity equation, Eq. (3.10), relates P and V', ard the first integral Eq. (3.29)
relates Vn' and Vn. These relations are combined to give an approximate impedance

relation

A
P iq 2R vV w
n_'n_ . 2 Z p_n-p
V - n 'J zq 1] (3-“8)

Since the distortion spectrum vawn_p depends on the signal spectrum Vn, we
determine Vn(O) by successive ap%roximation. Minute approximation errors are no
longer a cause for concern, since the possibility of spurious wave solutions has been
eliminated; the single initial value per harmonic is sufficient to fully specify a
stable solution.

The velocity dependent resistivity causes energy to be exchanged between
the various harmonics of the signal. Two basic but loosely defined classes of
harmonics arise: primaries and distortion products. Primaries are net suppliers of

energy to other harmonics. They are characterized by the relation
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Hd§|vnl + qnilvnl <0 , (3.49)

which implies ii.at the attenuation rate exceeds that for a small-signal wave Qi
Other harmonics are net receivers of energy. They are called distortion products,

and are characterized by the relation

%l"n| o qn;|Vn|3° . (3.50)

Occasionally a distortion product receives such a rapid influx of energy that the

harmonic amplitude initially increases with distance,
d
a;|vn| e 0 (3.51)

The harmonic amplitude does not increase indefinitely, however. As the primary
decays the loss mechanisms soon overtake the energy influx. In this case the

corresponding propagation curve takes on a characteristic rainbow shape.

1. Propagation and Distortion of an Initially Pure Tone

The case at hand is that of an initially pure tone, for which the rectified
spectrum has been shown (see Eq. (3.32)) to consist entirely of even harmonics. In
the case of a pure tone, the resistivity varies in time at even multiple frequencies of
the fundament:'. As a result, odd harmonic distortion products are introduced into
the signal. Despite their introduction, it turns out that the Wn spectrum retains its
even harmonic character. An initially pure tone is therefore expected to acquire
only odd harmonic distortion components. This pattern is commonly referred tc as

cubic distortion.
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For the pure tone case, it is rather easy to recognize the primary and the
distortion products. The differential equations go© =ing the first four harmonics

are

. SR>
Vl + quvl = - Tq—— (V1W0+V‘\V

| i +V3WE+V§WQ+ Teai) H VI(O) = Vlo ’ (3.52a)

2

Vi +iq,V,=0 5 V(00=0 (3.52b)

V3 + ]q3V3 = - ——E— (V1W2+VTWQ+V3W°+V§W6+ e I V3(0) =0 , (3.52c)
and

V, +iq,V, =0 ; V,(0=0 . (3.52d)

The fundamental can be identified as a primary by the term szlwo on the right-
hand side of Eq. (3.52a). The equations for the even harmonics are homogeneous.
Because the initial values for these equations are zero, the even harmonics stay at
zero amplitude for all distances. The odd harmonics, however, are vigorously
energized by the "undamental as shown by the presénce of forcing terms containing
\’1 and Vl*. Because their initial amplitude is zero, the odd harmonics are expected
to have the characteristic rainbow shape. Figure 3-11 is a graph of the propagation
curves for an initially pure tone. It is not possible to compare these predictions with
data because we were not able to produce a true pure tone at high intensity in a
porous material. This example is, however, very useful for helping us understand the

distortion of more complicated signals.
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2. Propagation of Distorted Sinusoids

We now consider the case of propagation of distorted sinusoids like those
used in our experiment. These signals are characterized by a strong fundamental
accompanied by both odd and even harmonics which decrease in amplitude with
increasing harmonic number. Although it is difficult to demonstrate analytically, it
turns out that the addition of even harmonics to the signal has the effect of causing
odd harmonics to appear in the rectified signal spectrum. We can make predictions
of the harmonic propagation curve shapes by examining the differential equations

governing the first four harmonics,

Vi +lqy,
QRZ
Va+ iV,
ZQRz
.y - — 1
- —23-2-(v2w°+v5w,++vlwl+v1 WtV WELVEW 4 .. D v2(0) =V s (2.53b)
-3 QRZ
' 1 — ——— - —
V3 + jq3V3 = 2q3 (V1W2+V’IW4+V3W°+V3\V6+ sl 3 V3(0) = V30 5 (3.53¢c)
and
-49R2
Vq + Jqlivl& = —ia-l;— (V2W2+V§W6+V1W3+V'iws+ iand 3 Vu(O) = V‘&O . (3.53d)

Again, only the most prominent forcing functions have been listed.
The fundamental is the strongest component in the signal. It is subject to
excess losses because of the augmented resistivity, but some of its lost energy is

upshifted in frequency and strengthens the family of odd harmonics (the rest of the
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energy is dissipated). The second harmonic is less strong than the fundamental but,
because a negligible amount of energy reaches it from the fundamental, it too
functions as a primary. Most of its energy is lost to augmented resistivity and in so
doing it energizes the higher even harmonics. In fact, a second harmonic
independently undergoing cubic distortion would energize the sixth, tenth, and
fourteenth harmonics, and so on. It is therefore of interest to note that the fourth
harmonic and its multiples are not members of the second harmonic cubic distortion
product group. They are products of coupling between the primaries as represented
by the forcing function V2W2 which relies heavily on the fundamental strength
through the factor W,. Figure 3-12 shows the first five numerically calculated
propagation curves for a distorted sinusoid. The initial harmonic levels are those of

an actual measured signal.

3. Cubic Nonlinearity

All of the aforementioned distortion spectra could be explained equally
well in terms of a cubic nonlinearity, i.e., the nonlinearity which results from use of
the quadratic resistivity form

r=r, +r u2
.

In this case, the corresponding form of Eq. (3.29) is

RO W RE =
Vi ®ig Vo VoVa¥h-p-q ° (3.54)

Analysis of the convolution term reveals that a pure tone input produces odd
harmonic distortion products. Indeed, the "cubic" distortion pattern was named
after the effects of just such a nonlinearity. This pattern leads us to suspect that

other results for cubic distortion are similar to those for vzsgn(v) distortion.
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The computer program for the numcrical solution is easily reconfigured to
accommodate the cubic nonlinearity. The modified program was run starting with
the same initial levels used to produce the curves in Fig. 3-12. Tne predicted
behavior for cubic nonlinearity, shown in Fig. 3-13, is qualitatively very much like
that for the vzsgn(v) nonlinearity. This should come as no surprise, since the
resistivity curves r{u) for the two models are designed to mimic the same set of
resistivity data. Although the u sgn(u) model gave a better fit to the resistivity
data, the quantitative results are not that much different here. Moreover, when
compared to the measured acoustic data the differences between the two solutions

are smaller than the approximation errors inherent in the solution (see Chapter 4

and Appendix B). We are therefore led to believe that a cubic nonlinearity may be
substituted for the vzsgn(v) nonlinearity. This approach will be of considerable
usefulness for a planned perturbation solution of a high intensity sound field in a
lined duct.

Analytical solutions of Eq. (3.54) for the finite-amplitude tone case are
very similar to their counterparts based on Eq. (3.29), and are given in Appendix B.

We have acquired basic understanding of the harmonic distortion caused
by nonlinear resistivity. The numerical solution, which is based on an approximate
first integral of Eq. (2.26), provides quantitative predictions foi the cases of initially
pure tones and distorted sinusoids. The fundamentals of the distorted sinusoids are
shown to behave like the tones discussed in Section D, and the growth of harmonics
is in a cubic distortion pattern. In Chapter 4 we compare the numerical solution
results with measured data. Details of the computer program used to implement the

solution are discussed in Appendix C.
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CHAPTER 4
EXPERIMENTAL WORK

A. Introduction

Three experiments have been performed to measure the effects of a
porous material on static flows and acoustic signals. Comparison of measured data
to theoretical predictions provides an indication of the validity of the theory. We
discuss the experiments in the following order:T

1) static measurement of flow resistance,

2) propagation measurements at high and low intensity,

3) phase speed measurements.

In the first we measure the pressure drop across a length of bulk porous material for
various dc flow rates, from which we determine the resistivity of the sample as a
function of flow speed. The second experiment comprises measurements of the
harmonic sound pressure levels at various ranges. In the third test we determine the
phase speed from the relative phase of the fundamental between two points. The
latter two experiments are referred to here as the acoustic tests.

The dc data and the acoustic data serve different purposes. By fitting
Eq. (2.9) to the dc flow resistivity data for a given sample, we determine the
constants r, and Foe These constants are treated as properties of the medium and

serve as input paramciers for the numerical and analytical solutions. The

experiments are intended to confirm or refute two of our key assumptions, namely:

The actual chronological order is discussed in Section C of this chapter.
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1)  the dc and ac flow resistivities are the same, and
2) the dominant nonlinear mechanism is a speed dependent resistivity
of the form r=r, +r,usgn(u).

The ac resistivity inferred from the small-signal attenuation data is compared with
the dc resistivity to test the former assumption, and the qualitative agreement of
the harmonic data and predictions is taken as an indication of the validity of the
latter assumption. Data from the phase velocity test provides, for comparison with
the prediction of Eq. (3.35), that a high intensity tone propagates more slowly than a
small-signal wave of the same frequency.

The static flow and acoustic tests previously performed by Kuntz used a
separate apparatus for each test type. Hence the static flow and acoustic
measuremer. s were performed on different samples. Since it is very difficult to
create samples with identical properties, one is led to wonder about the com-
patability of the two data sets. We have therefore modified Kuntz's traveling wave
tube to accommodate both the acoustic and static flow experiments. Experimental
results indicate that the key assumptions stated above are at least qualitatively
valid.

The remainder of Chapter 4 is divided into four parts. Section B contains
a discussion of the equipment used in the experiments. Experimental procedure is
detailed in Section C. Finally, the experimental data and theoretical predictions are
compared in Section D. Section E is a summary of the experimental work and the

conclusions drawn therefrom.
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B. Experimental Apparatus

This section is divided into discussions of the traveling wave tube, the dc
ilow te.t apparatus, and the acoustic test apparatus. Since the traveling wave tube
is common to all experiments, it is discussed first, followed by a discussion of the dc
flow apparatus and of the acoustic test equipment.

The traveling wave tube is the central piece of equipment for all the
experiments. The sample fills the tube and is held in place by friction with the
walls. The tube provides for measurement of acoustic and static flows in the
sample. The length of the tube is 26 in., the inside cross-section is 3/4 in. on a side,
and the wall thickness is 1/& in. A screen of 0.008 in. steel piano wire restrains the
sample just inside what we call the downstream end of the tube. A series of % in.
diam. holes are drilled in the top side of the tube to serve as microphone ports.
Engineering drawings of the tube are presented in Fig. 4-1 for the convenience of

the reader (reproduced from Kuntz's dissertation by his kind permission).

2. dc Flow Apparatus

The dc flow apparatus measures the pressure drop across a porous sample
as a function of flow speed. The traveling wave tube was originally designed for
acoustical measurernents, not for high pressure dc flow tests, so the tube had to be
modified to accept a static flow input and to prevent leakage from the microphone
holes. An adapter, fabricated from a block of hexagonal aluminum stock, is affixed
at the upstream end of the tube to provide attachment points for the incoming flow
and for the ~ressure gages. The adapter is clamped to the tube and a gasket
guarantees a tight seal. A strip of rubber gasket material backed with aluminum is
clamped on top of the tube to seal the microphone holes. These modifications were

quite effective; at no time was the tube observed to leak.
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The apparatus is best understood if the flow is followed from source to
outlet (see the block diagram in Fig. 4-2). A regulated 100 psi air supply drives the
flow. The flow rate l"r in standard cubic feet per hour (SCFH) is measured by one of
a collection of flowmeters which cover various ranges. The flow then enters the
tube at the adapter, passes through the sample, and exhausts into the atmosphere at
the left end of the tube. The gage pressure in inches of water (in. HZO) at the
adapter block is measured by a series of pressure gages. Since the gage and tube
share the same outlet pressure, the gage reading indicates the pressure drop across

the sample Ap. The resistivity is

A

rs ’
F L

5

where L is the length of the sample and A is the cross-sectional area of the tube.

3. ac Test Apparatus

The ac test apparatus permits measurement of harmonic SPLs and
relative phase of the fundamental at six down range positions. Six microphones
were used in the experiment so that they would not have to be moved repeatedly.
The only drawback to this approach is that the signals from the microphones must be
adjusted so that the microphones respond equally to a given input. The microphone
nearest the source is called the reference microphone; the harmonic spectrum
measured at this position provides the boundary conditions for the numerical
calculation. Phase angle measurements are referred to the signal au this micro-
phone as well. The ac apparatus includes some rather elaborate electronics; the
reader is encouraged to make use of the block diagram provided in Fig. 4-3. Four

distinct sections of the apparatus are identified:

73



SNLVHVddV LNJWIHNSYIW ALIAILSISIH MOT4 20 40 WYHOVIA %2018

Z¥ 34NOI4

HNOH/1334
218N2

<4— MOT4 HIV

GYVANVYLS
00rOL L'0
SH313NW

MOT4

324NOS
div
(CERNEL B To k]

38N1 IAVM ONIT3AVHL

H31VM 50 "ut 0SL OL S0'0
S39NVO 3HNSS3IHd

AS-85-577

74



SNLVYHVddV LNIWIHNSVYIW J1LSNOIV
40 AYHOVIA %2018

€-% 3¥NOI
||||||||||||||||||||||||||||||||||| R ———
- = I
T3INNVHI " | NOILD3S 304NOS
i
4 J g T3NNVHO " “
| T
HIZATVYNY Y3ILIW 3402S01119S0 P!
144 3ISVHd V1910 X
| |
|
X —_— Y313IW
|
AT SH3IIHITdWY L LN3H¥NI
NOILVLNIWNHISNI | “
oLoz mmN>..<z<_ i A -|* H
% ANV 8 WNYL3dS | L ¥ 340950111350
$317ddNS Y3IMOd ”" HSZE 18r
53 T |,
B ¥ HI11dWY
 — - M 002
I
%QW%% : %
|
SINOHJOHIIW | | CERRIE
NOIL123S LNIWIHNSVIW I : SSvd4anve
I 318VNNL
||||||||||||||||||||||||||||||||||| d e —=
_ 4
|
| | HOLVNN3ILLY
“ 3avo3a
—f—_—_——— e e, ————— e T 9 !
] || 4
! Ho1o2313a ! H3141TdNY
|
L o kﬂmu_“,___%hum S 39v110A 1| | a31ouiNoD
_ "] | swy3anyl | 3OVLI0A
" N t
I S1IN3IW313 TOHLNON __ “ HO1V1119S0
—u |||||||||||||||||||||||||| NN oo s S

ARL:UT

AS-84-947-P
DN - GA

75

10-30 -84



1)  the source section,
2)  the acoustical section,
3) the measurement section, and

4)  the control elements.

They are discussed in this order,

The source section begins with the oscillator and ends with the com-
pression driver.T The oscillator produces a continuous pure tone which is appro-
priately amplified or attenuated by the voltage controlled amplifier (VCA) section
of the compressor. The compressor is a control element and is discussed below.
Since signal distortion is inttoduced by the VCA, a high-Q bandpass filter tuned to
the fundamental signal frequency is inserted in the circuit to remove unwanted
harmonics. It is desirable to have as pure a spectrum as possible at the reference
microphone because the harmonic distortion effects are more apparent. A decade
attenuator compensates for the gain of the filter. The source signal then passes to
the DuKane 200W amglifier and on to the acoustic source, a JBL 375H compression
driver with titanium diaphragm. The power applied to the driver was kept below
25 W continuous rms which, for 8 2 nominal impedance, corresponds tc a current
limit of 1.768 A as measured by the Keithley VOM. The oscilloscope was used to
visually warn the experimenter in the event of signal fluctuations or clipping.

The acoustic section of the experiment includes the tube, all associated
hardware, and the sample itself. The empty tube has a first cross-mode cut-on at
about 9 kHz; frequencies used here are low enough that inadvertent maodal

excitation is not expected to be a factor in the measurements. An adapter connects

A compression driver is usually used to drive an acoustic horn.
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the driver to the tube by means of a tapered bore which smooths the cross-sectional

area difference. The microphones are placed in holders at the reference (0 cm), 2,

5, 8, 11 and 20 cm positions. In addition, the microphone holders grip the tube
tightly. Thus, tube wall mass loading is provided, which reduces vibration of the
holders. A narrow air gaj - left between the microphone face and the sample to
avoid noise caused by direct contact of the fibers with the microphone face.
Finally, the porous sample serves as its own acoustic termination, since it provides
small-signal attenuations in the hundreds of dB/m. The sample extends well beyond
the 20 cm microphone position; no reflected waves are expected to be present
within the sample near the microphones.

Although the source signal is originally sinusoidal, the signal received at
the reference microphone is somewhat distorted at high intensity. Harmonics are
added to the signal by a variety of nonlinear mechanisms, including transducer
nonlinearity, propagation through the air, transmission through the material/air
interface, and propagation through the material.

The measurement signal paths begin at each of the six microphones. Five
Bruel and Kjaer model 4136 and one model 4135 microphone were used. The signals
from the individual microphones pass to a rack of instrumentation amplifiers where
the dc power supply voltages are removed and coarse microphone calibration is
done. Fine calibration is performed with a separate set of potentiometers so that
the microphones respond uniformly to the calibrated signal from a B&K pistonphone.
A six-position rotary switch is used to select the output of one microphone channel
at a time. The harmonic spectrum of the signal from the selected microphone is
measured with either a 3&K 2010 heterodyne analyzer or an HP 3580A spectrum

analyzer.
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in early phase tests the relative phase between unfiltered signals from the
reference microphone and a selected microphone was measured using a Dranetz
305-PA-3009 phase meter. However, phase errors induced by the presence of
harmonics in the signals complicated the measurement considerably. Consequently,
later tests were performed using a Spectral Dynamics SD375 2-channel digital FFT
spectrum analyzer which measured the transfer function between the two signals for
a multitude of narrow passbands. Phase shifts of the fundamental component
measured with the SD 375 are not subject to intrusion of harmonics and are
therefore much more trustworthy.

The control elements exist so that the experimenter need not continuously
monitor the source section of the experiment. A signal is tapped from the reference
microphone channel and is returned to the control input of the compressor. The
compressor senses the rms voltage of the signal at the control input, compares it
with a voltage set by the operator, and automatically adjusts the VCA gain so that
the reference microphone signal stays constant. The compressor therefore

guarantees a stable SPL at the reference position.

C. Experimental Procedure

The following is a description of a single segment of the experimental
regimen as applied to an individual porous sample. A flowchart of the process is

provided in Fig 4-4.

1. Preparation

Preparation for the experiments consumed nearly as much time as the
experiment itself because the procedure of packing the tube was extremely tedious.
We began by selecting one of three sample porosities, namely Q =0.94, 0.96, or 0.98.

A large number of 3/4 in. squares were cut out of sheets of batted Kevlar®29. The
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squares were origirally % in. thick and had a natural porosity of about 0.985. The
squares were inserted one at a time a predetermined distance into the tube to

create a sample having the desired porosity as defined by

(4.1)

where m is the mass of the sample, L is the total sample length, Pkev is the density
of solid Kevlar (1450 kg/ma), and A is the cross-sectional area of the tube. The
natural spring of the Kevlar resists packing, but friction with the tube walls holds it
in place. Once the packing was completed the microphone holders and driver
adapter were affixed to the tube.

The homogeneity of the sample was tested by measuring the small-signal
attenuation in the material at each of the microphone positions. With the source
adjusted for a 100 dB SPL tone at | kHz at the reference microphone, the SPL at
each of the microphone positions was measured. If the SPL differences between the
signals at the 2, 5, 8 and 1l cm positions covered a range of more than 1 dB, the
sample was pronounced inhomogeneous and rejected. In this case the hapless
experimenter discarded the sample and repacked the tube. Otherwise, the propaga-

tion tests could begin.

2. Propagation Experiment

The sound pressure levels of the signal harmonics at each of the six
microphone positions were measured for all possible combinations of the following
frequencies and reference microphone fundamental SPLs: 500, 1000, and 1500 Hz,
and 100, 120, 140, 150, and 160 dB. It was not necessary to perform all

combinations of microphone position, frequency, and SPL for the phase test.

80



Microphone selection was limited to the reference and the 8 cm and 1l cm
microphones because the changes in phase at high intensity were cumulative and
were not fully developed at earlier microphone positions; at the 20 cm position the
signal-to-noise ratio was usually too low to obtain stable phase readings. A full
complement of reference SPLs was used, however, since the nonlinearly induced
phase shifts tended to appear rather suddenly. Once the phase test was completed
the microphones, microphone holders, and driver adapter were removed and the tube
was reconfigured for the dc test.

The accuracy of our measurements was potentially quite good. The B&K
2010 is highly accurate and can be read to within +0.2 dB. Digital sampling errors in
the Spectral Dynamics analyzer give errors of +0.2 dB and about 0.5% in phase. The
HP spectrum analyzer, which was not designed for such exacting tasks, can be read
to an accuracy of +1 dB. The high level of accuracy is in reality unnecessary:
inhomogeneities in the sample cause readings to deviate from simple small-signal
attenuation by up to +.5 dB T Since the theoretical predictions assume a homo-
geneous material, the inhomogeneities are the limiting factor for the applicability

of the data.
3. dc Test

The dc test was performed last for one reason: the sample usually
compresses during the test, and the final porosity was unpredictable. Moreover, the
sample can compress so far that it ceases to function as a termination. In extreme

cases, the sample may recede beyond the last microphone.

Samples with larger deviations are rejected.
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The test itself was quite simple. The flow rate was increased in steps
that would be roughly equidistant on a log u plot. A large number of measurements
were clustered at low flow velocities to ensure a good estimate of e As the flow
rate was increased, care was taken to stay within the operating ranges of the
flowmeters and pressure gages. The adapter block was occasionally removed for
measurement of the sample length so that the compression effects could be
accounted for at a later time. The experiment was completed when the range of the
available pressure gages and/or flowmeters was exceeded. The sample was then

discarded and the tube repacked.

4. Compensation for Porosity Changes

The purpose of the static flow resistivity test is to determine the
resistivity of a sample as a function of flow speed. Implicit in this statement is the
understanding that the frame is rigid, i.e., 2= constant. Unfortunately, because the
static flow test operates far below the decoupling frequency, the material is
compressed by the flow, i.e., the sample length L is dependent on the velocity as
L(u). As the sample compresses, the porosity is reduced and the resistivity of the
material changes. These compressions do not take place for signals which, as in our
experiments, lie well above the decoupling frequency. The subject of this section is
a method of compensating the resistivity measurement for sample compression.

The velocity dependent porosity 2(u) can be determined via Eq. (4.1) if the
sample length L as a function of velocity is known. The sample length was measured
for several velocities during the experiment, but the limited number of discrete data
points obtained is hardly sufficient to define a function L(u). We therefore use the
method of cubic T-splines as developed by Foreman26 to generate an approximate

curve from the discrete length data. The advantage of Foreman's method is that it
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minimizes spurious curve "oscillations" and other inaccuracies caused by the
inadequacy of a cubic polynomial fit.

In order to distinguish between resistivity changes due to sample com-
pression and those due to the expected amplitude dependence, we develop a model
which describes the changes in resistivity with velocity and porosity. Hersh and
Walker have determined the functional dependence of the linear resistivity r, on

porosity to be

m
rl(Q) = —g— 18 ‘/#“'95 , (4.2)
d“g ( 3/2
m
4(1-2)

where u is the dynamic viscosity, d is the fiber diameter, and g is an empirically
determined constant of the material. From our data we calculate the average value
of g for batted Kevlar 29 to be roughly 0.065. Kuntz's dat::ll imply a value of about
0.062, and Hersh and Walker13 reported a value of 0.059. We have used a
compromise value of g=0.063 throughout these calculations. The nonlinear resis-
tivity ry also changes with porosity, but its functional dependence has yet to be
determined. We have observed, however, in Kuntz's data and our own, that the
value of ro seems to be related to ) by a simple constant for a given material for a
number of porosities. If we call this constant h, the resistivity can be determined

from known values of rl,Q , and h:
r(Q,u) = rl(SZ)( l+hu)
A more general form, which faors neither Eq. (2.9) nor Eq. (2.10), is

r(Q,u) = rl( Q) f(u) , (4.3)
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where the coefficients of the polynomial f(u) are porosity independent constants of
the medium. For our experiment the porosity was a function of velocity Q2(u), so

that our measured resistivity data is assumed to obey the relation

o oas, (W0 = 7, (@) £ (4.t)

If the sample had remained rigid, the data would have obeyed the relation
r(Q(0),u) = rl(Q(O)) f(w) , (4.5)

where 2 (0) is the nominal porosity before any flow is applied. In order to adapt the
data from a compressed sample to an ideally rigid one, the two relations are
combined to eliminate f(u). The rigid sample data is therefore related to the

measured data by

r (Q(O))

r(Q(O),u) = 71_(5(6 S B (Q(J),u) ‘ (4.6)

Note that the explicit form of f(u) is unimportant here; it is sufficient merely to

acknowledge its existence.

D. Experimental Results and Comparison with Data

This section is the conf!uence of the theoretical work of Chapter 3 and
the experimental work of Chapter 4. Here we examine the correspondence between
theoretical predictions and the experimental observations. The dc resistivity data is
discussed first, since the resistivity properties of the medium are needed as inputs
for the predictions. The acoustic data is then discussed in the same order followed
in the theoretical discussions of Chapter 3: propagation of small-signal waves,

finite-amplitude tones, and finite-amplitude distorted sinusoids.
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l. Resistivity

Resistivity data for six samples, adjusted for sample compression, were
fitted to the u sgn(u) model, Eq. (2.9), and the u? model, Eq. (2.10), by the method of
curvilinear regression. The quality of fit, as measured by the mean squared
deviation of the data from the fitted curve consistently favored the u sgn(u) model
(see Table B-1 in Apperdix B). A plot of some typical resistivity versus flow
velocity data is shown by the circles in Fig. 4-5 (see also Fig. 2-1). The data are
somewhat scattered at low flow velocities because our equipment is less accurate
for very small values of u and Ap. The calculated values of the constants N and ra
for the samples are shown in Table 4-1, along with the calculated values of the
empirical constant g and the "relative nonlinearity" ratio rzc.l/rl. The sample

numbers were assigned in the order in which they were tested.

TABLE 4-1

Resistivity properties of porous samples

r r
Sample (non?inal) (mks ralyl/m) (rayl sezc/mz) g rzci/rl
1 0.94 50233 6715 0.066 38.9
2 0.98 10437 3261 0.071 90.8
3 0.96 29789 6831 0.062 66.7
4 0.94 51539 12708 0.064 71.7
5 0.96 28601 6904 0.066 70.2
6 0.94 52891 11354 0.062 62.4
74 0.96 28784 6204 0.065 62.7
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An illustration of the power of the compression compensation algorithin
can be found in Fig. 4-5. The triangular symbols represent the raw data prior to
correction for sample compression. The porosity of the sample remained constant
at the value 2=0,96 for flow rates below | m/sec. For higher flow rates, however,
the sample compressed quite a bit: a flow rate of 1.73 m/sec reduced the porosity
of this particular sample to Q=0.946. The uncompensated resistivity datum at this
flow velocity was actually 62,139 rayl/m before the algorithm reduced it by 35% to
40,538 rayl/in, where it falls right into line with the pattern set by the lesser flow
rates. The remarkable consistency of the corrected points with those for which the
sample was in fact rigid implies that the assumption underlying Eq. (4.3) i< valid.
Adjustments made to resistivity data were similarly successful for all samples for
which there was adequate L(u) information, save one. The exception was sample 2
which, because of its very high porosity (2=0.98), compresse ! *o about one third of
its initial length. The cubic polynomial curve fit was simply insufficient to match
the length data.

Five of the seven samples studied had very consistent properties. Sample

1, for no apparent reason, had 2 much lower rejative nonlinearity than the others.

2. Small-Signal Tests

Attenuation and phase velocity predictions of Section 3.B were tested by
measuring the change in SPL and phase of a propagating tone as a function of
distance through the sample. The attenuation determined therefrom is plotted
versus frequency and compared to predicted values in Fig. 4-6. The phase speed
measurements and predictions are shown in Fig. 4- 7. In both figures the solid lines
represent predictions based on Eq. (3.23). The dashed line in Fig. 4-7 represents the

isothermal sound speed value. Low frequency predictions agree well, but as the
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frequency is increased the predicted phase velocity and attenuation curves diverge
from data. Preliminary calculations indicate that most of the discre, .ncy could be
removed by introducing a frequency dependent sound speed and a structure factor
(see below). We have no explanation for the slight discontinuity in the data near
1750 Hz in both figures.

Recently published work by Lambert and Tesar7 apparently makes it
possible to obtain an a priori value of the structure factor and the frequency
iependenit bulk modulus from resistivity tests no different from those discussed
here. Lambert and Tesar's tl.eory is somewhat involved, but predictions of the
small-signal phase speeds and attenuation constants for Kevlar"29 are accurate over
a wide range of porosities. Indeed, if *heir work had been published earlier, their
formulations of the structure factor and frequency dependent sound speed would
probably have been incorporated in the present study. The behavior of these
properties at high intensity remains, however, unknown. Nevertheless, predictions
based on our simple theory are, by demenstration, reasonably accurate and have the
advantage of being substantially less complex. A more detailed comparison cf the
two approaches, in:luding application to nonlinear effects, would be a good idea for
a future study.

The attenuation data serves as a check of the assumption that r is the
same for ac and dc {lows. Table 4-2 compares the linear resistivity coefficients for
ac and dc flows for six of the samples tested. Data taken at low frequency (where
our theory is highly accurate) yield estimates of the value of r 1 which are
consistently lower than their dc counterparts by a few percent. The agreement is
good enough, however, to validate our assumption that the ac and dc resistivities are

equivalent for small signals.
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TABLE 4-2

Comparison of measured static flow and acoustic resistivity

Q rldc r,ac
Sample (nominal) (mks rayl/m) (mks rayl/m) A%
| 0.94 50233 48831 -2.8
2 .78 10437 9895 -5.2
3 0.96 29789 29054 -2.5
i 0.9% 51539 48395 -6.1
5 0.96 28601 27059 -5.4
6 0.94 52891 50898 -3.8

3. Finite-Amplitude Tones

We now discuss the SPL and relative phase data for finite-amplitude
tones. The finite-amplitude signal at the reference microphone is not a pure tone,
but rather a distorted sinusoid. Here we are concerned mainly with the fundamental

and assume that the harmonics are small and have a negligible effect on the SPL of

the fundamental. Theoretical predictions from Chapter 3 lead us to expect excess
attenuation and a reduction of the phase velocity at high amplitude. In other words,
a finite-amplit''de tone behaves as a primary, as defined in Chapter 3. The
nonlinear behavior is thought to be caused by the local increase of resistivity due to
the passage of the wave. A good exam' e of data that show excess attenuation is
found in Fig. 4-8. The data is taken for sample 2, for which the porosity is 2 =0.98.
The three data sets correspond to three initial source amplitudes, and the dashed
lines represent small-signal attenuation. No prediction curves have been included
here because the tabulated value of ry for this sample is considered inaccurate.

This data set contains the most pronounced excass attenuation we measured. The
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explanation is that the lower small-signal attenuation rate allows the wave to
remain strong for a longer period. The nonlinear effects are therefore relatively
more important than in other samples.

The other samples we tested showed very little excess attenuation (see,
for example, Fig. 4-9) because their small-signal attenuation rates were large and
our maximum source level was only 160 dB. (By using source levels of up to 170 dB,
Kuntzl was able to obtain large excess attenuations over a wide range of porosities.)
The three data sets in Fig. 4-9 once again correspond to three initial source
amplitudes, but this time predicted propagation curves are included for each. At
low intensity the predictions match the data well, but as the intensity is increased
the expected amount of excess attenuation is exaggerated by the approximate
solution. This is an example of the tendency of the approximate solution to
"overshoot" as discussed in Chapter 3. Calculations have shown that the second
derivative term discarded from Eq. (3.27) is moie important than had originally been
thought. Because of the inaccuracy of the solution, we are unable to
determine whether ry is the same for ac and dc flows. If the solution were exact,
the validity (or lack thereof) of the measured static flow value would be immediate-
ly apparent. Unfortunately, the solution is inexact. It was hoped that the
measurements could be used as a test of the theory and, in particular, a check on
the assumed value of oY but since the solution of Eq. (3.29) misrepresents the
theory, no direct assessment of the accuracy of the static flow of r, can be made.
Nevertheless, the excess attenuation behavior is at least qualitatively predicted and
is compatible with the concept of nonlinearly augmented local resistivity.

Measurements of the relative phase between two points in the wavefield
indicate quite strongly that the phase speed of the pressure wave is a function of the

wave amplitude. The relative phase is defined as the difference in phase between
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the signals at the reference and a downstream point, i.e., 9A =0(x)-0(0). An
increase of the relative phase corresponds to a decrease in the phase velocity.
Figure 4-10 is an example cf some typical data. The solid curve represents
predicted values of the relative phase as a function of 5PL. Abscissa values
represent deviations of the relative phase from t'e predicted small-signal value

A°ss’ that is,

A"graph: o(x) - o(0) - A@ss .

Vertical offset errors due to inaccurate predictions of q,, are present which
complicate the picture somewhat. However, the shape of the curve is a generally
dependable measure of the change in phase velocity.

The measured relative phase data did some things we expected, and others
we did not. As the SPL was increased, the relative phase usually decreased at first,
but always increased at higher levels. The decrease took many forms; sudden jumps
were as common as gradual changes. The overall tendency of the relative phase to
increase with SPL is compatible with the concept of augmented resistivity, because
the data show that the phase velocity of the pressure wave was reduced at high
amplitude. The decrease in the relative phase was totally unexpected. Small
hysteresis loops were also observed; that is, the data followed a different path
depending on whether the SPL was increasing or decreasing. The anomalous
decrease, sudden jumps, and hysteresis behavior suggest a nonlinear bistability for
which the local stochastic variation of the quantities ) and r, causes there to be
more than one possible wave number at high intensit;,.

The skeptical reader might suspect that the hysteresis behavior was
introduced somnewhere in the measurement apparatus. The measurements were

repeatable, however, for various microphones, microphone positions, frequencies,
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and even different FFT aralyzers. We therefore believe the measurements to be
true representations of actual acoustical events.

We conclude from the finite-amplitude tone measurements that atten-
uation is indeed increased and phase velocity reduced at high amplitude. The
approximate solution gives good qualitative predictions for both. Although we
should have liked to draw a conclusion concerning the values of ry for ac and dc
flows, the inherent inaccuracy of the approximate solution prevents us from doing
so. We are there.ore unable to confirm or deny our initial assumption that the dc

and ac resistivity are interchangeable at all particle velocities.

4, Distorted Sinusoids

Having finished with the fundamental, let us now concentrate on the
higher harmonics of the signal. The higher harmonics generated by the propagating
fundamental are no longer neglected, nor are those present at the reference

position. Analyzing the behavior of the higher harmonics gives us information about
the form of the r(u) function. A computer program was written to numerically solve
Eq. (3.29) for periodic waves. A cubic distortion pattern is predicted and the
harmonic propagation curves are prcdicted to cross. Figures 4-11, 4-12, and 4-13
give measured and predicted harmonic propagation curves for three different
samples. In each cas., data for the fundamental show that it behaves essentially as
treated in the previous section. In fact, the sinall difference between the analytical
(see Fig. 4-9) and numerical solutions for the fundamental demonstrates the minimal
effect of the higher harmonics on the fundamental. The SPL of the second harmonic
is seen to decrease monotonically with distance just as the SPL of the fundamental
does. Therefore the second harinonic also functions as a primary. The third

harmonic SPL, however, increases initially and routinely equals or exceeds he level
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of the second harmonic. The upshifted energy from the fundamental skips over the
second harmonic and reinforces the third. As a result, the propagation curves for
the second and third harmonics may « ross. This is a distinguishing mark of the cubic
distortion pattern which was iscussed in Chapter 3. An ordinary quadratic
nonlinearity, such as that for hydrodyna 'c distortion or that assumed by Kuntz,
would cause the second harmonic to behare as a distortion product rather than a
primary. A quadratic nonlinearity does not therefore fit the distortion pattern
observed here. Data for the fourth and fifth harmonics indicate that both receive
significant energy from the primaries. Their behavior, however, neither confirms
nor denies a cubic distortion mechanism.

The predicted harmonic propagation curves are in substantial cgreement
with the data. Predictions of the SPL of the fundamental and second harmonic are
oo low because the numerical solution exaggerates the nonlinear effects. The
overshoot phenomenon has a different effect on distortion product predictiors.
Since the solution exaggecates the nonlinear effects, the approximate solution wci.ds
to overestimate the amount of energy received by a distortion product and thus
overestimates the SPL as well. The error is balanced somewhat, however, because
the approximate solution also underestimates the strength of the primaries which
drive the distortion products.

Prediction curves for the higher harmonics, especially those that receive
a great deal of upshifted energy, often have cusps (sce n=5 curve in Fig. 4-11). The
cusps are artifacts of the solution procedurs. The cause lies in the fact that the
differential equation is solved for initial conditions at the reference postion X =0.
The inhomogeneous part of the solution, representing energy upshifted from the
primaries, is set to zero by the computer program at this point. In reality, the

upshifted energy is nonzero at the reference position: it is only zero at the true
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physical boundary, the material/air interface, which is not located at x=0. The nth
component at x =0 is partly due to energy upshifted while traveling from the physical
boundary at the reference position. Since the waves represented by the two parts of
the solution travel at different speedsT the upshifted signal is occasionally out of
phase with the signal represented by the homogeneous solution. Destructive
interference takes place, and one and occasionally more spurious cusps may appear

in the predicted propagation curve for a harmonic.

E. Summary of Experimental Work

As a test of the validity of our theory, we have performed a series of
experiments to examine the behavior of acoustic signals in batted Kevlar 29 at low
and high intensity. The following five conclusive results have been obtained .

1) The static flow resistivity depends on the flow speed as

r=rl+r2usgn(u).

2) The value of o for oscillatory flows is equivalent, or nearly

equivalent, to that for static flows.

3) A finite amplitude tone undergoes excess attenuation which is

somewhat less than predicted.

4) A finite-amplitude tone propagates more slowly than its small signal

counterpart.

5)  The harmonic distorticn pattern has cubic character.

Although point (5) admits both the u? and sgn(u) resistivity models, the evidence

from (1) implies that the sgn(u) model is correct.

TConsider that the harmonic tends to cravel at Cpn while the primaries, whence

comes the inhomogenous part, trave! at Cp 1 and sz.
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In addition, two results have been obtained which, although not con-

clusive, are considered trustworthy and merit further study:

1)  the resistivity can be separated into functions of porosity and flow
velocity as rzrl(Q)f(u), where the as yet unspecified coefficients in
the function f(u) are independent of porosity,

2)  an apparent nonlinear bistability has been observed which indicates
that the local stochastic variation of the inaterial properties may be
of importance at high intensity.

We have not been able to detemine whether the value of ry is the same

for ac and dc flows because of the inaccuracy of our solution.
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CHAPTER 5
CONCLUSIONS FOR CHAPTERS | THROUGH &

The propagation of finite amplitude sound in rigid air-filled porous
materials has been studied both theoretically and experimentally. In particular we
have studied the effects of amplitude dependent resistivity on propagation of
acoustic signals. Expe:iments performed on batted evliar™29 are in at least
qualitative, and in many cases quantitative, agreement with the theoretical predic-
tions.

The theory is based on the following model of the porous material: the
material is rigid, incompressible, and homogeneous and has only two important
properties, porosity Q and resistivity r.  Detailed knowledge of the material
geometry is unnecessary for this model. The resistivity has been measured for dc
flows and is shown to be the following function of flow velocity u: r=rl+r2usgn(u)

13,21 shows that the static flow

(see Eq. (2.9)).T Previous work by other authors
resistivity function may Le applied to oscillatory (acoustic) flows. The components
of the flow resistivity play two different roles. The '"linear resistivity" r1
determines, among other things, the small-signal attenuation, which in a typical
porous material is quite severe. The amplitude dependent resistivity leads to strong

nonlinear effects, namely excess attenuation and harmonic distortion. The effects

of hydrodynamic distortion, which normally give rise to shock formation, are

T

The model of Eq. (2.10), r=r u2, is far from useless; a discussion of results based

1Y

on this model is given in Appendix B.
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completely overshadowed by both the linear and nonlinear resistivity effects and are
neglected. The isothermal sound speed is used icr all frequencies. We have
therefore established the resistivity as the prime mechanism for attenuation and
distortion of acoustic signals in porous materials. The apparent lack of sophis-
tication of the model respresents a deiiberate retreat from more elaborate theories;
the simplified thecry has the advantage of being easily extended to include finite
amplitude behavior.

A nonlinear wave equation, Eq. (2.23), is derived from the model. The
wave equation has a relatively uncomplicated form, but turns out to be very
difficult to solve in the general case. Transformation to the frequency domain
produces an infinite set of coupled inhomogeneous Helmholtz equations, one for
each harmonic.

In the low intensity limit the Helmholtz equations are homogeneous and
solutions are easily obtained. Because the propagating acoustic wave is subject to
diffusion (see Chapter 2), we expect to observe high attencation rates, severe
dispersion, and low phase speeds.

Solutions for high intensity waves are considerably more difficult to find.
An approximate first integral, Eq. (3.29), of the Helmholtz equation was derived
because numerical calculations for the solutions of the second order Helmholtz
equations (Eq. (2.26)) were unstable. Two different approaches were used to solve
Eq. (3.29). In one the higher harmonics were neglected entirely and in the other the
higher harmonics are taken into account. Using the first approach we are able to
obtain an analytical solution from which expressions for impedance, and the
amplitude and phase speed of both the particle velocity and pressure waves are

found. All of the many informative results obtained from these solutions may be
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summarized in the statement that the mean resistivity increases with the wave
amplitude. Finite-amplitude tones are therefore predicted to have higher atten-
uation rates and impedances and lower phase speeds than small-signal waves of the
same frequency. Saturation behavior is predicted at very high intensities; i.e.,
nonlinear losses determine the maximum pressure amplitude which can be reached
at a given point in the wavefield.

Numerical solutions of Eq. (3.29), including all harmonics, are performed
by a computer program written for this purpose. Predictions based on this solution
lead us to expect a cubic harmenic distortion pattern in which the fundamental
energizes the third and higher odd harmonics. The second harmonic is predicted to
behave as a fundamental as well and to directly energize every other even harmonic,
that is, the sixth, tenth, fourteenth, etc. The fourth harmonic and multiples thereof
are products of the interaction between the first and second harmonics.

Several experiments were performed to investigate the propagation of
finite-amplitude sound in porous materials. A traveling wave tube filled with a
porous sample was fitted with six microphones, a compression driver, and extensive
electronic devices for the acoustic measurements. The tube, with the same sample
intact, was reconfigured with pressure gages and flow meters for static flow
resistivity measurements. The samples were batted Kevlar®29 and had porosities
2=0.94, 0.96, and 0.98. Smzll-signal measurements were taken in the frequency
range 400-5200 Hz. Finite amplitude measurements were conducted at a frequency
of ! kHz. Sound pressure levels of up to 160 dB (at the reference position) were
used.

Experimental results were in general consistent with predictions.

Measurements at low intensity showed the attenuation and phase speed were strong
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functions of frequency. Measured attenuations for all samples were of the order of
hundreds of dB/m and increased from low values at low frequency towards
asymptotic values at high frequency. Phase speeds were substantially reduced at
low frequency and increased to near the isothermal sound specd at high frequency.
At high intensity, measurements of the SPL of the fundamental with distance
showed a small but significant amount of excess attenuation. Because of the limited
power-handling capacity o our acoustic source, however, the saturation region was
out of reach. The approach to saturation has been much better documented by
Kum:::.l The relative phase of the fundamental between the signals at two positions
was measured as a function of amplitude. An increase in relative phase corresponds
to a decrease in the phase speed. The measured relative phase was stable at low
intensity, usually decreased slightly as the amplitude was increased, and always
finished with a strong increase at the highest SPLs tested. The decrease was not
always gradual, but often involved sudden jumps of several degrees for a source
level change of | dB. In addition, small hysteresis loops were observed in the
relative phase data. Finally, the harmonic distortion pattern was indeed observed to
be cubic, that is, the first and second harmonic both behaved like "fundamentals";
that is, they decreased monotonically in strength with distance. The third harmonic
SPL, by contrast, was observed to routinely exceed the amplitude of the second.
The fourth and fifth harmonics often increased initially in strength as well. Such a
distortion pattern could not be caused by a hydrodynamic distortion mechanism and
is solely attributed to nonlinearity of the porous material resistance.

We now compare the theoretical predictions and experimental obser-
vations with a view towards =valuating ihe validity of the model. Excellent

qualitative agreement was obtained tcr all predicted pheromena for which
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measurements were attempted. Quantitative agreement ranged from satisfactory

to excellent.

(1)

(2)

(3)

Low intensity attenuation and phase speed measurements were in
very good quantitative agreement with predictions based on the
measured dc value of rysat low frequency (< 1500 Hz) the agreement
was excellent. We therefore surmise that the dc and ac values of r
are the same.

Measurements of sound pressure level versus distance at high
intensity showed some excess attenuation, but in general we
observed much less than was predicted. The assumptions on which
Eq. (3.29) is based were apparently more easily violated than we had
expected. It was hoped that this solution could be used to
demonstrate the equivalence of ry for ac and dc flows, but the
inaccuracies prevent us from drawing a solid conclusion. Never-
theless, the dc value of r, seems to be at least approximately
correct for use with acoustic signals. The relative phase data
deviates from predictions as a result of a process which we suspect
is a nonlinear bistability induced by the inhomogeneity of the
material. The predicted increase in relative phase (a decrease in
phase speed) appears, however, consistently at high intensity.

The existence of cubic distortion is compatible with both a uzsgn(u)
or u3 nonlinearity. The gross details of the harmonic propagation
curves are very adequately predicted; for the most part the pre-

dictions are within 5 dB of the measured data.
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On the basis of the qualitative and quantitative agreement between the
theory and experiment, we conclude that

1) the resistivity is the dominant mechanism for acoustic loss and

disturtion in a porous material,

2) the mathematical form of the resistivity function is r:rl+r2usgn(u)

for static flows and is retained for acoustic flows, and

3) the value of " is indeed the same for ac and dc flows, but

4) the agreement between the value of ra for ac and dc flows cannot

be determined because solutions are inaccurate for finite-amplitude
waves.

Two phenomena were observed which suggest modifications for future
theories. Small-signal measurements indicate that the accuracy of the theory would
benefit somewhat from a more sophisticated model in which the sound speed were
allowed to be frequency dependent, and a structure factor were included. However,
there is currently little knowledge available on the variation of these parameters at
high intensity. The second phenomenon is the hysteresis loops that were cbserved in
the phase speed versus amplitude data. The nonlinear bistability implies that local
stochastic variations of the material resistivity, i.e., material inhomogeneity, may
be important at high intensity.

The experiments had two basic shortcomings First, the static flow test
compressed some high porosity samples so much that even our otherwise highly
effective compression compensation algorithm could not account for the changes.
Use of lower porosity samples solved the first problem but led to the second: the
source amplitude was not high enough to observe significant excess attenuation for
all the porosities tested. Results of future experiments will be more conclusive if

these two problems can be solved.
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Three topics are suggested for future study. First, there is a definite
need for more accurate solutions of the infinite set of coupled second order
inhomogeneous ordinary differential equations represented by Eq. (2.26). Second,
the accuracy of theoretical predictions may benefit somewhat from a more
elaborate model of the material which includes structure factor and a frequency
dependent sound speed. Furthermore, the change in these parameters at high
intensity should be studied. Third, since the material is likely to be used in an
inhomogeneous state, the effects of the inhomogeneity should be investigated.

The theory developed here was originally intended to be applied to the
problem of absorption of high intensity sound in a lined duct. Theoretical work on
this topic is zlready being pursued by this author. I. point- and local-reaction
models of duct liners are to be used with confidence, it will be necessary to
establish the validity of amplitude dependent impedance expressions derived in this
work. Despite the difficulties encountered, the theory we have developed appears
to offer the best hope for solving the important and practical problem of high

intensity sound absorption in lined ducts.
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CHAPTER 6
THEORY OF LINED DUCTS

A. Introduction

Chapter 6 is an application of the accumulated knowledge of the fore-
going chapters to the problem of a lined duct. We are particularly interested in the
effect of the materia! nonlinearity on the absorptive power of the duct. We begin
by deriving a nonlinear nondimensional vector wave equation for acoustic waves in
the material. Next we investigate the process of nonlinear reflection from a porcus
half-space. Lastly, a third order perturbation solution for a lined duct is prepared,
but is never executed because of its forbidding complexity. Instead, we propose an

ad hoc model to aid in understanding the nonlinear effects.

B. Nonlinear Nondimensional Vector Wave Equation

In previous chapters the nonlinear resistivity was calculated assuming
one-dimensional flow. In order to consider a lined duct, however, a general
expression for the resistivity is needed. In particular, we are interested in finding
vector expressions to replace Eqs. (2.9) and (2.10) for use in a vector wave equation.
Of the two previously used forms ci the nonlinear resistivity u sgn(u) and uz, the
former represents the instantaneous sp2ed of the flow and the latter the square of
the velocity. It turns out that the square of the instantaneous particle velocity can be

L

expressed in vector terms as -0 =|ul“. The vector form of Eq. (2.10) therefore
lends itself rather well to a perturbation method of solution. The instantaneous
particle speed is of course JG.a. An expression of the resistivity based on this form,
however, does not allow a perturbation solution because the square
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root function is not distributive. Even though we prefer the sgn(u) formulation (as
discussed extensively in previous chapters), we use the quadratic form of the
resistivity in preparation for a perturbation so!ution.

Since the porous material is assumed isotropic the one-dimensional

particle velocity u can be replaced by its vector counterpart,
P+ P T T =0 . (6.1)

The noridimensional continuity equation, expressed in vector notation, is

Pp sV V=0 , (6.2)
and the momentum equation becorr.es
- A

VT+ %P— +R1\T+R3('\7('V’-V)) =0 , (6.3)

3'5-? has been used.

The wave equation is found by adding the results of the operations -9/Q on the

where the vector form of the quadratic nonlinear resistivity R

continuity equation and 8/8, on the momentum equation:

. V(T V) -
Vor - —~—-Q——+RlvT +R, (Wv-'ﬂ)f =0 . (6.4)

This equation is awkward in vector form and has the added disadvantage of allowing
rotational solutions. Since we are interested in scalar fields describing irrotational
motions, two modifications are made: the velocity vector is first replaced with the

gradient of the scalar potential field V@,
2
v(v ) - -
90, THL R, T0, +R, (F0P0 - 90, - 0 (6.5)
and the divergence of the result is taken to reach the scalar form

v, - V20 R 0+ Ry (0 +F9 - 9X90 - TO)) 0. (66)

114



The frequency domain version of this equation is found by substituting for

the potential in the by now familiar manner to give

V%% +q H9, = -jng R32p); (vzop T, 00, - 00, ) 6D
where
0 =2:q,‘ (Q) exp(jnt)
and )
Pn= " -
The perturbation solution is prepared by ex, 'es<i.. the nth frequency

component of the potential field as

D= €0 + £3Q)n3+..., (6.8)

where only the first and third orders are represented because the second is
homogeneous and therefore redundant with the first. The value of ¢ will be
specified later. Substitution into Eq. (6.7) and grouping by powers of epsilon gives

the following relations:
2 ol 2
v -
Vi+q 90, =0 (6.9)
and

npqt) s 610

V@l vq 0 ,- -anR3§§:(V2®pl +90,,- DT0,, - T
Once the first order field is specified, the third order field can be found by
operational integration.

Later we find that the perturbation technique is very awkward for
application to the problern of li.ied ducts because of the enormous complexity of the

nonlinear interaction of the wave fields. The perturbation solution nevertheless

serves to illuminate several interesting physical processes including
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ro ilection of an intense wave from a porous half-space as discussed on the next

saction.

C. Reflection from Porous Boundary

1. Small-Signal Problem

The problem of the reflection of sound from a porous material is
interesting for low intensity sound waves, but the inclusion of the effects of
material nonlinearity leads to some surprising phenomena. It turns out that at high
intensity the wave reflected f-om a porous surface does not have the same spectrum
as the corresponding incident wave. This prediction relates directly to experimental
obsc 'vations made by Zorumski and P.=.u-rot.27 The following investigation is
predominantly theoretical in nature.

The wave equation is very complicated, but still lends itself to a
workable, if somewhat tedious, perturbation solution. To begin the problem, we
first define two potential fields: @ in the air and O™ in the material. They of
course have the frequency domain manifestations (Dr‘? and (or. These fieids are

further broken down as

AR s R (6.11a)
and
@21: C(D:]Al+€3®?f3+-.., (6.11b)

where € is the magnitude of the potential function of the incident wave. Since
nonlinear effects in the air are neglected, the Helmholtz equation for the air is
homogeneou:. We shall see, hcwever, that it is still necessary to retain the third
order solution in the air because it represents eneigy which is iadiated from the

materi~ surface. The first and third order Helmmho!tz equations are:
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2
(v2 " E) oh =0 (6.12)

¥ n
and

2 A
(v2 + 3) @3=0 . (6.13)
In the material, Egs. (6.9) and (6.10) apply. To further complicate matters, the wave

fields in the air are composed of incident and r :flec ted waves,

A A A
®nk - ] anl + nkR . (6.“4)

The material is assumed to be of semi-infinite extent, so that the wave fields are
composed solely of transmitted waves,

M M

S (6.15)

The conditions that pressure and mass flux must balance are invoked at
the boundary. The pressure boundary condition is written in potential form from the

equation of continuity: the substitution of VO for vV yields
P+ 9D =0 (6.16)
and in the frequency domain this expression becomes

inP_ = -vip . 6.17)

n

£quating the pressures on either side of the boundary at x = 0, we find that

2 M ,
=V an . (6-1:))

x =0 x=0
Since the density of the air does not change across the boundary, the boundary

condition for the conservation of mass is simply that the volume velocities match.
In the air the volume velocity is
A
aq’nk

aX X=0
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and in the material M
aq)nl'c

QA
ax |y

n
o

where A is the cross-sectional area of the boundary. The second boundary condition

is therefore

A M
30nk o 2%Pnk (6.19)
aX x=0 aX X=0
The first order wave fields are defined as follows:
wA =A_, exp (-j = (cosg_x +sin_¢) (6.20)
nll = n1 €XP ]ﬁ n i )
oA =B exp(-j X (-cosd_X+sing_¢) 6.21)
niR * “p) P JJ‘?‘ n n . :
and
Q)M =C_,exp(-jlq_,x + £) (6.22)
nIT = Cnt P19y X +95557) '
2 2 2 . . . . g .
where 9yt qng =q . The situation is depicted in Fig. 6-1, where X is the coordi-

nate normal to the surface and ¢ is the coordinate parallel. The algebraic
manipulations encountered in applying the boundary conditions are tedious and not
very informative; hence we simply show the results. The small-signal pressure

reflection coefficient pn(en) is equivalent to B_,/A |, which is

2
[Yyq_ cosf _-nq_.Q
_ Bnl _~ n n nx 6.23
pn(an) - A - . ( )

nl ﬁqﬁ cos@ = +nq .9

The pressure transmission coefficient tn(a n) is simply equivalent to one plus the

reflection coefficient or
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2J7 qz cosf

t (6 )= (6.24)
nn 2
JY q,, cosé  + nqnx Q
The value of Cnl,Anl is not equal to tn(on), however, but
C 2
Mo Yn e () . (6.25)
A 2 nNn
nl Y9,

The magnitude of the transmitted waves, whence comes the nonlinear part of the
solution, is determined by ihe value of Cnl,Anl'

The angle of the phase fronts within the material is defined by

- R: [I:ng:]' , (6.26)

nX
where
9y :qu - nzl‘Y sinzﬂn
and
Ing =J‘:,; sing , | (6.27)

It is important to note that the angle of travel within the material is frequency-
denendent for all angles of incidence except normal incidence. Since low frequency
waves have lower phase speed in the material (see Fig. 4-6), they are refracted
strongly. High frequency waves, on the other hand, are refracted less. An incoming
signal with a rich spectrum therefore fans out into its respective components as a
consequence of the severe dispersion in the material. The complete first order field

in both the air and the material can now be defined from the values of A = and @ S
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2. Nonlinear Reflecticn and Refraction

In this section we seek practical insights into the problem of reflection »f
high-intensity sound from porous materials. This work is done in preparation for the
solution of the lined duct problem, and to help us understand some of the vagaries of
that problem. Here we merely prepare the theoretical tools necessary for explicit
solution of reflection problems; we choose to concentrate on explaining qualitative
results for instructive cases.

We first define the third order wave fields for the reflected and

transmitted waves:

A
Pan=0 » (6.28)
PR = Bn3 e"P('i nAfy (-cos @ 5 X +sin 8 _5¢ )) : (6.29)
and
M :
@ naT = Cps %P (_J (qnx3 X*+Gn 3 § )) , (6.30)

where, for a nonlinear interaction involving the rth, sth, and n-r-sth harmonic

components, the following relations apply:

qnx 3° qrx * qsx u qn-r_sx ’ (6.31)
qn§ 3= ql'g * qsg 22 qn_r_s‘g ’ (6-32)
0n3 = sin” [(lln) (rsin g +ssin 6 + (n-r-s) sin on-r-s)] , (6.33)

121



and

W3 = tan'l(Re [qng 3] / Re [qnx3J ) ’ (6.34)

The third order incident wave field is identically zero because the nonlinearity of
the air has been neglected. The subscript 3 attached to variables in the following
discussion indicates that they apply to the third order solution. In many cases we
will study, the travel directions and wave numbers for the third order waves are
redundant with those of the first; but in order to be sufficiently general, the explicit
expressions are given.

It is clear from Eq. (6.10) that the third order transmitted field is nonzero
for at least some harmonic components of an intense wave. Since the same
boundary conditions apply for all orders of the solution, it is necessary that a
component generated in the material by nonlinear effects must be balanced by a
component in the air, which then radiates from the surface. This means that the
reflected wave field carries with it the imprint of the nonlinear interaction which
takes place inside the inaterial. Observations made by Zorumski and Parmt27
corrobor: te this prediction: while studying the reflection and transmission of sound
through thin porous sheets, they observed that the reflected wave field for an
incident pure tone contained a strong third harmonic.

The first nonlinear case we consider is that of an intense pure tone
incident on the material at some angle 91, as depicted in Fig. 6-2.T The transmitted

fundamental follows the angle ¥ which is determined from Eq. (6.2€). The third

order field contains two components: a correction to the fundamental proportional

Circled numbers denote intense harmonic components.
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to (D‘I?Q)_l and a third harmonic distortion product which comes from Q)?. Distortion
products such as these will be referred to as "products of self-interaction," because
the nonlinear interactions by which they are produced involve only one frequency
component. It is interesting to note that these distortion products travel in the
same direction as the primary (in this case the fundamental) from which they
originated. 't is easily shown that
d3x3=3q; andq,,4=13q, andtherefore ¥,, = ¥,

and

9, y3 =9 andq]‘£3=ql and therefore ¥ 4 =¥, .

This leads to a second observation: products of self-interaction travel collinearly in
the material with the primary from which they are generated. It is also of interest
to note that the angle \P33== \II-’. In other words, the nonlinearly produced third
harmonic travels in a different direction from one that originates outside the
material. Furthermore, the angle which the distortion products take on emerging
from the material is equivalent to that for the emerging primary which energized
them. This is easily seen from Eq. (6.33). If the solution were carried to higher
order, all of the odd harmonics would be represented in the transmitted and
reflected waves, and all would be collinear within and without the material.

The reflection coefficient of the fundamental is affected strongly by the
material nonlinearity. In Eq. (3.41b) the predicted dependence of impedance
magnitude on amplitude is given. Figure 6-3 shows the predictions of this equation
and data obtained from Kuntz,l where the value of K has been selected to best fit
the data. Our predictions are qualitatively borne out. With this in mind, we use
Eq. (3.40b) using the fitted value of K to determine the normal incidence energy

absorption coefficient as a function of SPL. Figure 6-4 is an illustration of the
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severe deterioration of the absorber efficiency as the signal strength increases.

The second nonlinear case we discuss is that of an incident wave made up
of two intense components (primaries): the fundamentai and the second harmonic.
Once again, these primaries travel into the material in the directions designated for
linear behavior (see Fig. 6-5). This time, however, there are six components in the
third order field. Each of the first six harmonic components it represented. The
first and third qualify as products of self-interaction, and travel collinearly with the
fundamental. Likewise, the second and sixth harmonics are direct products of the
second harmonic, and trave! collinearly with the second. The fourth and fifth
harmonics, as products of a mutual interaction, do not travel either of these two
paths; they travel instead in intermediate directions. These directions can be
calculated rather easily. The fourth harmonic is a result of the product waz, and
has the wave numbers

Aux 3 =29y *+ 99y

and

4 .
Upg=iapy *8gy = M0
which gives the propagation direction

-1 (ulﬁ)sin 0,

3 7B\ TRe ]

Likewise, the fifth harmonic is a result of the product @22(1)1, and has these

wave numbers and propagation directions

d5x3 = dyx * 2d2x
U5£3=dy¢ + 295, = 5\¥sine,
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1 5NY siné,
Veq =tan | w—s—a
33 Re[d5y4)

Perhaps the most interesting point to note here is that despite the unusual
direction of travel for the harmonics (relative to their linear paths) their reflected
wave counterpa-ts are still collinear with the first order reflected wave. This is
easily verified from Eq. (6.33). This brings us to another principle: if the incident
signal is collinear in the air, then neither the frequency-dependent refraction nor
the nonlinear interaction between the noncollinear elements in the material
prevents the reflected wave field from emerging in a collinear fasiion.

A similar example is given in Fig. 6-6, where the case of an intense first
and third harmonic incident on the material is shown. Qualitatively, this case is no
different from the previous one, except that the third harmonic distortion product
travels in a different direction from the incident third harmonic. The resuit is
spatial interference patterns resembling Moire pattarns.

The final example we consider is that of an intense first and second
harmonic incident on the material, but this time at different angles 6, and 05 By
all appearances Fig. 6-7 is no different qualitatively from the case in Fig. 6-5, but
an important distinction appears in the reflected wave field: some of the wave
components are no longer collinear with the incident primaries in the reflected
wave. The reason for this is not difficult to .hcw. The ¢-direction wave numbers
for the fourth and fifth harmonics are

Ugs* (Zlﬁ) (sin 0, + sinez)

and

A5¢ 3 = (llﬁ) (sinel +4 sinsz) "
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The emergence angles are therefore equal to

sin @, + sin@

and
sing, + 4 sin@
6 :sin'l (——l— —2—) .
53 5 /

We see that if noncollinear incident components interact within the materiai, the
products of their mutual interaction in the reflected field will not propagate in
either of the primary directions, but will adopt instead some intermediate direction.

The purpose of this discussion has been to understand in a practical way
the nonlinear interaction in the material, and its effect on the wave fields inside and
outside the material. In particular we have been interested in the wave numbers and
propagation directions of the nonlinearly induced distortion products. The fact that
signals can arrive from and depart in any direction from the material creates no
difficulties in the reflection study. Difficuities arise, however, in the lined duct
problem because wave numbers and propagation directions are rigidly linked by the
waveguide. The nonlinearly induced waves in the waveguide guarantee thar there is
a certain amount of mode conversion. The resulting algebraic tedium of the

perturbation solution of the lined duct problem renders it nearly useless.

D. Lined Duct Problem

Our original plans to solve the lined duct problem by perturbation were
very ambitious. We first intended to solve the smaii-signal problem of a nonlocally

reacting liner. The theory was then to be expanded to include the nonlinearity of
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the duct liner, and lastly to include the nonlinearity of the air as well. Unfortu-
nately, this plan had to be curtailed considerably in the middle of the first phase: it
is difficult or impossible to obtain general solutions for the modal wave numbers.
After making some approximations, we arrive at an ad hoc model for calculating
attenuation of a nearly-plane wave having wavclength much larger than the duct
dimensions. A computational scheme is proposed to visualize the effects of liner
nonlinearity on the absorptive efficiency of the duct. A computer algorithm is also
suggested to calculate the optimal duct liner configuration.

We first define the waveguide geometry. The reader will recognize in
Fig. 6-8 the axes from the reflection problem. The following derivation conforms
roughly to those performed by Kurze and Ver28 or Scott.8 We define two
wavefields, consisting of a wave traveling in each direction in both the air and
material:

A A ; A 4 :
? n = (G mn PPl X) # H exp(JamnX)) exp(-jb_ &) (6.35)

and

(0} -(GM  ex (-jc x)+ HY explic_ x)) expl-jd__¢) (6.36)
mn mn €*P1Cmn mn €*PUCmn XP=1%mn g *

where

h =Tm mnlY)

The wave numbers and modal solution will be defined by the previous two boundary

conditions, Eqs. (6.18) and (6.19), plus

A
99 mn

ax - = O (6-37)
X=—LA

and
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M
29 mn

X | L

=0. (6.38)
M

The two new conditions represent the requirement that there be no normal velocity
component at the walls. Upon applying the boundary conditions, we find the

following equation for the wave numbers

2
-Qn
W ‘a"(amn'- A) - __7_. - tan(cl nn1_M) " (6.39)
where qn
2
2 2. _n g2 (6.40)

4mn” “mn~ 5 " 9n
and bmn s dm e A major complication arises at this point because of three factors:
tangents occur on both sides of Eq. (6.39), and the wave numbers are both complex
and hyperbolically related. To our knowledge, the problem of determining the wave
numbers has not been solved satisfactorily because numerical solutions of these
simultaneous equations are extremely unstable. Standard practice seems to be to
assume something about the duct liner, for instance, that it is locally reacting (see
Cremerzg). This simplifies the mathematics considerably. It becomes necessary at
a later stage for us to make approximations as well, but for the moment we assume
that the wave numbers can be found, and proceed with a third order solution for the

duct. The following four wave fields are defined:

A _[~A : A . :

Q)man = (G m3p exp(-jam3 X)+H m3p exp(]am3x )) exp(-]bmn3 ¢) (6.41)
(0] A o(GA . explja_,Xx)+HA exp(j X)) expl(-jb_ &) (6.42)
mn3H | ¥ m3H XP13n3 m3H Bm3 P=Pmn '
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M M . M y .
q)man = (G mip e:vcp(-;cm3 x)+G m3p exp(jcm3 X)) exp(-]dmn3 ¢) (6.43)

M M ; M ‘ P
Pmn3H = (G m3H SXPliCmn3 X) + G gy explic oy X )) exp(-jd - €) (6.44)

where the two homogeneous fields (an3H) exist for the purpose of satisfying the
boundary conditions at £ = 0. The wave numbers of the waves radiated into the air
space are not generally those which fit the modes of the guide, hence this set of
homogeneous modes is needed to balance the nonlinearly induced ones.

The harmonic interactions are calculated from Eq. (6.10), and expressions
for the wave numbers and mode strengths are found by applying the boundary
conditions. The number of calculations is potentially large: there will be 9M2N2
interactions, where M is the nuinber of modes considered and N the number of
frequency components. Moreover, for each interaction a wave is produced which
does not "fit" the guide and requires balancing at £ = 0 by a homogeneous field v/hich
in general contains a full complement of M modes. The total number of

3N2. This is truly forbidding, since

contributions to the wave field is therefore 9M
the use of at least a few frequencies and several modes is essential to a realistic
investigation of a wave propagating in a lined waveguide. For example, two
frequency components with two modes apiece would require calculation of no less
than 288 contributions. Nevertheless, we are only prevented from achieving this
solution by the prodigious time and effort involved. As a research project in and of
itself this calculation is well within the realm of possibility. However, the problem
might be better solved using finite element techniques.

We are now forced to resort to bold approximations if we want to convey

any information about the effects of the liner's nonlinearity on attenuation. We
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consider the nearly-plane wave mode where aanA and canM are both much less
than unity. In this case, the tangents in Eq. (6.39) can be replaced by their

argumen.s to give

a‘ = = (6.45)

- is the fill ratio.

Ny

where ¢ =

Qly

It is now possible to solve explicitly for a, b, ¢, and d, where the lack of a subscript
denotes the nearly-plane wave mode. In essence we have assumed the duct to be
acoustically narrow, and we must therefore keep in mind at all times the restriction
to long wavelengths which we have imposed. If used for wider ducts, the
calculations give attenuations which are much too large, since we have effectively
neglected beaming. The expressions for the wave numbers are:

2in 72 2
al - n_.__ly @ h:_ﬂﬁ , (6.46)

nzlv - aqf‘

3. 3
n“/yq (1 +0)
b = d? = n , (6.47)

;7/7 + Oqﬁ

and

2.2 2
2 aqn(n /v-qn)
c = 2 2 . (6.“8)
n“/Y+ oq

We are particularly interested in the value of -Im(b), because it represents the

attenuation of the wave as it travels down the duct:
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0’y (e 0) (0*/7g + o q )

- — -1+
Z(na/')’z +0’2|qn!2_)—

Figure 6-9 is a graph of the attenuation in dB/m which is plotted against the

3
g (>R, 2

-Im(b) =
n’aly +a|qn["

. (6.49)

common logarithm of the normalized liner impedance. The graphs are parameter-
ized against the fill ratio ¢ . There is clearly an optimum liner impedance for a
given fill ratio which yields the maximum absorption in the duct.

The magnitude of the characteristic impedance of the material has been
shown to increase for an intense wave. We can get an idea of the resulting effect on
attenuation by considering the pure tone expression for the characteristic impe-
dance of the material, Eq. (3.41a), where K is based on RZ' An alternate expression
of this is Eq. (B.11a) where the quadratic resistivity model is used. An approxima-
tion of the attenuation rate in the duct at a given point can be found by using the
particle velocity magnitude in either of the above equations and reading the
attenuation rate corresponding to this impedance value in Fig. 6-9.

It can be seen that increasing the amplitude of the wave does not always
increase the absorption in the duct. In cases where the small-signal impedance is
below the optimum, a high intensity wave generally is attenuated more rapidly than
its linear counterpart. On the other hand, if the small-signal ‘mpedance is already
toc large, an increase in the amplitude of the wave simply brings a further
deterioration in duct performance. Although this method of determining the
attenuation of a duct is not highly accuraie, it gives a useful mnemonic for the
designer.

A duct should therefore be designed so that the small-signal impedance is
belew the optimum for a given fill ratio (which is usually determined by other

physical constraints). The degree to which the impedance lies below the optimal
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value is determined by the initial intensity of the wave and the length of the duct,
so that the absorption hovers in the vicinity of the maximum. An algorithm is
therefore needed which integrates the total attenuation over a given length of lined
ducting (since the absorptive power of the duct changes in space because of the
decaying wave). We suggest a procedure which calculates the wave amplitude and
corresponding liner impedance for successive small steps through the waveguide, and
integrates the corresponding infinitesimal attenuations. The optimal valve would
then have to be found on a trial and error basis, since no closed form optimization

formula has been obtained thus far.
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E. Conclusions

Calculation of the dispersion and nonlinear effects caused by the material
are complicated in vector notation, but addition of the inherent dispersion of a
waveguide makes a perturbation solution extremely tedious. We have, however,
managed to salvage an understanding of the gross effects of the nonlinearity on the
absorptive power of the liner. Further study is recommended into solution oi the
modal wave number equations, and computational perturbation or finite-difference

solution of the nonlinear problem.
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APPENDIX A
THERMAL EFFECTS ON SOUND SPEED

This Appendix contains an investigation of the frequency dependent
effects on sound speed caused by heat conduction between the air and fibers. The
bulk of this discussion parallels that given by I'iuntzl in an appendix to his Ph. D.
dissertation. Two assumptions are made: the wavelength is much larger than the
fiber diameter, and the fluid flow around the cylinder is laminar. The wavelength
assumption applies well beyond the range of audio frequencies and means that the
pressure forcing function is uniform throughout the region of interest. The laminar
flow assumption breaks down between 125 db for 2=.98 and 135 dB for 2=.94 batted
Kevlar™29. Above this level the flow becomes turbulent and the primary mode of
heat transfer is convection rather than conduction. In a turbulent flow the
prevailing thermodynamic conditions are expected to be more isothermal than
predicted for a laminar flow model.

The flow of heat to and from an individual cylindrical fiber is governed by

the radial heat conduction equation

expljwt) , (A.1)

diffusivities. The subscript f refers to quantities pertaining to the fiber, while the
lack of a subscript indicates a quantity for air. Since the fiber is considered
incompressible and the wavelength large the total pressure is independent of range
and can be expressed as g:pexp(jwthpo. In this case the radial heat equation is

solved by
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T=(A lo(rt) +B Ko(rt) - plpocp) expljwt) + T, (A.2)

where Ko and ]o are modified Bessel functions of the first and second kinds,
respectively, and tz\/':ul—. The specific heat Cp should not be confused with the
phase speed presented in Chapter 3. Since the thermal properties of the air and
fiber are different we define two temperature functions, I:Texp(jwt)+To for the air
and If:Tfexp(jwthTo for the fiber. The subscript f will henceforth indicate a
quantity appropriate for the fiber, while the lack of a subscript indicates a quantity
for air. The temperaturc and heat flux are balanced at the wall of the fiber, r=a,

and the following temperature distributions are found,

b Ko(rt)
T= g e expljwt)}+ T ’ (A.3)
o rza
Kt K;)(rt)
where D = Ko(at) - FTf f—_(mo at, lo(atf) ,
and
Kt Ka(a!.')
— 1 (rt,)
rf I'(a o °f
s f o f -— ] exp(jwt) + T
“f=pc D phwtl + T : (A.4)
o°p
r<a

The value of K, decays at large ranges, and b decays as the range is reduced to
zero. Temperature fluctuations are therefore largest far away from the fiber and

are usually near zero at the center of the fiber. Th: region in between these ranges

144



contains two thermal boundary layers inside which the transition is accomplished
and the thermal losses tuxe place. The boundary layer outside the fiber has a
thickness §=y2a/w and the layer inside the fiber, éfzm. The internal boundary
layer is much thinner than the external one and can usually be neglected. It turns
out that the thickness of the external boundary layer plays an important role in
determining the sound speed because it influences the overall thermodynamic state
of the fluid in the pores.

We now evaluate the average temperature fluctuation throughout a
representative region of a fluid which is filled with a multitude of individual fibers.
For this analysis we need only assume that the fibers are cylindrical and parallel. A
spatial average of the value of T is taken over differential conceniric circles

between the fiber wall and some as yet unspecified integration radius T

<T>=—LE—(1-<p>) , (A.5)
pc
opP
Ko(rt)
where F = D and
rO
| 21rrKo{r§)dr
<F> = '——2'—2 J’ ——5—"'— . (A-G)
m(r--a%)
o
The result of the integral is
e, (’o"‘l('o“ : a"l(a“) , (A.7)
e W D
E(r -a )

The average value of F is an indication of the overall thermodynamic state of the

fluid in the pores. When <F>=z=1, conditions are isothermal and the temperature
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fluctuations are very small. When <F> is near zero, adiabatic conditions prevail and
the effect of the fiber is negligible.

The integration distance is chosen so that the total integrated volume
around all of the fibers is equivalent to the volume of fluid in the pores. It was
found in Chapter 2 that the volume and area porosities are equivalent; the
expression for the porosity can be written as

Q=1- Cra? " (A.8)

where C is the number of fibers per unit area and '.'rc-x2 the area of a cylindrical fiber.
A circle of radius Vu is centered on each fiber, so the percentage of the material
volume falling within the integration rad . .. Cnroz. Upon eliminating C between

the two equations, one finds that
- S [+ 2
*\/T-0 . (A.9)

Although not all of the fluid parcels are counted, a number of parcels are counted
more than once to make up the difference. The resulting volume is presumed to be
a good representative of the fluid.

The value of <F> is now used to determine the average sound speed in the

pores. The ideal gas law is written in modified form using spatial average values as
<p>= <p>R<T> , (A.10)

where R is the difference of specific heats cp-cv. 7. .5 equation can be written as

Py * <p>expljwt) = (po +<p> exp(jwt}) R (To + <T>exp(jwt)) j (A.11)
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where the total density has been expanded as were the total pressure and
temperature. The "ambient" terms cancel out (poz poRTo) and we neglect the

second order term. The result is
<p> =REP>T + p<T>) . (A.12)
Since the expression for <T> is already known, we substitute it .ato Eq. (A.12) to

find

RT
— - o__— —
<p> = 1_+R7E—F;(T- <F>) . (A.13)

We define the average sound speed <c> asvé<p>ld<p>. Since the term in brackets

in Eq. (A.12) is simply a constant, the differentiation is simple and <c> is clearly

CO
<C> = ’ (A.14)

V14 (y-1)<F>

where Y=1.4 (for air) is the ratio of specific heats cp/cv . This is nearly the result
obtained by Kun'cz;1 the only difference is the choice of integration radius. A
general discussion of the results of this equation has already been given in
Chapter 2, B.4,

In this analysis it is assumed that the external boundary layers of adjacent
fibers do not interact. At very low frequencies, however, the boundary layers
become very large. In this case the temperature solution, on which the calculation
for <c> is based, is no longer valid. We define a criterion frequency, below which
the calculated value from Eq. (A.l14) cannot be trusted, as the frequency at which

the boundary layers of the fibers are predicted to intersect the centers of adjacent
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fibers. The fiber radius a is usually known for a given material; for Kevlar it is

6 m. The expression for § has been given previously and is V2ak where

=2.2 -10*5 mzlsec is the thermal diffusivity of air under standard conditions. To

6 +10°

find the inter-fiber spacing, we return to kq. (A.8), where the average number of
fibers per unit area,dé, is defined. The inter-fiber spacing is simply 1/JC, the

"distance per fiber",

s=a lﬁfi . (A.15)

Qur criterion can be written as s=a+&. We first solve for the critical 6 at which the

criterion is reached,

6=(a\ T—"—Q ,1) . (A.16)

[
32 X -12
1-Q

and the physical frequency f th below which the solution is inaccurate,

o

th ~ z =
L2 T
Ta ( 'IT'Q—'-I)

The actual sound speed in the pores is expected to be closer to isothermal than

f (A.17)

would be calculated from Eq.(A.13) for frequencies below f . For the three

porosities of Kevlar used in our experiments, the frequencies are
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R—

0=.98 1462 Hz ,
2=.96 3147 Hz , and

Q=.94 5002 Hz .

Figure A-1 is included for the reader's convenience and is merely a reprint of
Fig. 2-2. It shows that the sound speed tends towards the isothermal value in the
middle of the audio band. The actual sound speed value is, however, closer to the
isothermal value than predicted by Eq. (A.14) for frequencies below fth‘ Moreover,
at high intensity the sound speed is closer to isothermal fo all frequencies because
of turbulent mixing in the fluid. Since we are most interested in measurements
taken below fth and above 135 dB, we are justified in assuming th.e sound speed to

have the isothermal value.
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Appendix B
RELATIONS FOR QUADRATIC RESISTIVITY

The quadratic resistivity function r:rl+r3u2 was not used in the bulk of
this investigation because the rl+r2usgn(u) model was observed to fit the static
flow resistivity data better. The two models, however, closely approximate one
another for most of the flow velocities used in the static flow resistivity
measurements. This is to be expected, since both curves are intended to mimic the
same set of data. Figure B-1 shows corrected measured resistivity data and the
fitted curves for the two resistivity models. This figure is the same as Fig. 2-1 and
is presented here for the convenience of the reader. The values of the two
resistivity functions are close over the measured range. However, the two curves
rapidly diverge above this range. Table B-1 gives the fitted values of Ty and ry and

the ratio of the mean-squared errors for the seven samples tested in this study.

Table B-1
r ry
Sample @ (rayl/m) (raylsec2/m3) MSE ratio
1 0.94 51007 4260 1.04
2 0.98 11214 1302 1.86
3 0.96 30700 4195 1.18
4 0.94 53031 8839 1.42
5 0.96 29497 4291 1.38
6 0.94 54394 6995 1.40
7 0.96 29727 3393 1.70
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The quadratic resistivity model has one definite advantage: the resulting
cubic nonlinear term in the wave equation lends itself more readily to analytical
study than the corresponding uzsgn(u) term. We therefore present the following
results in preparation for a planned perturbation solution for a high intensity sound
field in a lined duct.

The Helmholtz relations based on the quadratic resistivity model have the

cubic nor linearity form

—nQR3
Vh*19,V, = 2q, szpqun-p-q ) (B.1)
P q

where R3=r3ci2/ Py « If the harmonics of the signal are assumed to have a
negligible effect on the fundamental, we assume that only Vl and Vv, *are important

terms in the convolution. Equation (B.1) becomes

. . QR 3 * * *
Vl*mﬂl=“quﬂﬁvl+ﬁvﬂ*vﬁﬁvﬂ p (B.2.a)
which reduces to
30R , .
) H -
v1+,qlvl.--—:ﬁl—-vlvlvl . (B.2.b)

1

This equation can be written in A, ¢ notation (see Chapter 3) as

_ 30R Af
A +ilq - 9, )A :=-_3ET__77 . (B.3)
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Once again the real ~1d imaginary parts separate to give

A'l+q“ 1= K3q1r 1 (B.4)
and
-9 =-K.q..A.2 (B.5)
Ue = Pvy =-K3qA7 y
where
3R3
K3= S . (B.6)
8V1+Rl

The solutions of this equation are similar in form to the ones generated for the other

model in Chapter 3.

A, (0 exp(-qux)

A (X) = (B.7)
1
Vi +I‘3(1 . exp(-2q“x))
3Af(0)
where I"3 = Ql
" X g0 (B.8)
vl q 39) )
2 *
Z)=q, - KyAZq) (B.9)
q,. +K,q Az
Qzl 2 tan-l 11 3 Ir 12 ; (B.lo)
e+ KaqpA
4 2 1/2
|2,] = (lqll (1 + k2 3AD + 2R1K3AI) ’ (B.11a)
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which can be approximated by

2
Z,| e J+K;AD (B.11b)
-1
2q,.Q,C, exp(-2q,.X)
Cp1 =91 * Kyay,A] - b2 G o
Q2+ (1 -Cy exp(-Zqux))
where 2
(l e Ql)[‘a
C, = ———
3 1+ I'y i

There is very little quantitative difference between the solutions of these
expressions and those derived in Chapter 3 if the particle velocity amplitude lies in
a range where the resistivity functions have similar values. As an example, the
velocity at which the two curves cross in Fig. B-1 is 1.45 m/sec. Above this
velocity the value of the resistivity function for the quadratic model exceeds that
for the sgn(u) model, and the resistivity curves rapidly diverge for high velocities.
For a | kHz tone in 2=0.96 batted Kevlarm29, a l.45 m/sec particle velocity
corresponds to an SPL of 153.9 dB. Solutions of these equations for signals weaker
than 153.9 dB (in this particular case) are therefore expected to be nearly equivalent
to those in Chapter 3.

The numerical solution of Eq. (B.l) involves a mere two line code change
in the existing computer program (see Appendix C). The successive approximation
for the harmonic impedances is less stable in the quadratic resistivity case because
of the higher power of u involved. The successive approximation algorithm may be
unable to converge for high intensity signals, in which case the propagation curves

are never generated. It turns out, however, that the algorithm is stable for virtually
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all boundary conditions that do not exceed the aforementioned amplitude limit.
Figure B-2 contains a comparison of predicted and measured harmonic amplitudes.
The data plotted here are the same as contained in Fig. 4- .2, Since the solutions
for the two models are nearly equivalent we have no qualms about using r3u2 in

place of ryu sgn(u) within the stated restrictions on amplitude.
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Appendix C
COMPUTER PROGRAM

Computer program PRPKRV2 is a FORTRAN 5 program which solves
Eq. (3.29) as an initial value problem. A resistivity function of the form
r=rl+r2usgn(u) is assumed. The heart of the program is the IMSL routine DGEAR,
which solves systems of differential equations using a 12th order Adams predictor-
corrector method, also known as Gear's method. The routine is adaptable to a wide
variety of problems and is particularly designed to solve stiff equations with
unstable solutions. Fast Fourier transform and plotting routines which were written
at Applied Research Laboratories, The University of Texas at Austi:, were used
extensively in this program.

The calculation retains up to 32 harmonics and accepts inputs of SPL and
phase for as many. The user must also supply the values of " and ro the
fundamental frequency, and the porosity . Hardcopy output is provided which gives
the dimensionless coefficients Rl and RZ’ the initial dimensionless impedance
magnitudes for the first six harmonics, and the predicted SPL of the first five
harmonics out to 20 cm beyond the effective origin in % cm steps. A plot of the
SPL predictions is also supplied, and the user has the option of overlaying measured
data for comparison with predictions.

The program PRPKRV3, which uses the resistivity relation r=r +ry uz,
differs from PRPKRV2 in only two places. These are marked in the code and the

replacement lines are provided. The iterative approximation for the .initial
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impedances has been observed to be less stable in PRPKRV3 than in its predecessor

and, as a result, the algorithm may never converge and the solution may never be

executed. The limits of the algorithm stability are discussed briefly in Appendix B.
The computer code contains a running comraentary on its function which

will, it is hoped, help the user understand the operation of this program.
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