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A STUDY OF INTERNAL AND DISTRIBUTED DAMPING

FOR VIBRATING TURBOMACHINER BLADES

The principal purpose of the research was to study internal

and distributed damping as possible methods for reducing the

vibration response of turbomachinary blades, and to develop

theoretical methods for analyzing the damped vibration. Efforts

were focussed on continuous, rather than localized, damping.

Thus, the widely used damping mechanisms such as rubbing between

shrouds, platforms, or in blade roots, which already have received

wide-spread attention, were not considered.

This work, which was terminated after the first third of what

was to be a more comprehensive study, was limited to the forced

vibration analysis of blade-like models subjected to viscous and

material (i.e., hysteretic) damping. Both distributed and

concentrated exciting forces were considered. It was necessary to

make theoretical extensions of the well-known Ritz-Galerkin

analytical methods to deal with the out-of-phase response of

damped systems. The developed procedure was successfully applied

to cantilever beam, plate and shallow shell representation of

blades, and is particularly useful for making parametric studies

of the effects of damping upon blade vibration response.

The theoretical development and application is summarized in

two publications. One is a paper which was presented at the

Vibration Damping Workshop in Long Beach, California, February 27-

29, 1984 ("Extensions of the Ritz-Galerkin Method for the Forced,

Damped Vibrations of Structural Elements," Flight Dynamics



Laboratory Report AFWAL-TR-84-3064, pp. EE-1 to EE-22). Another

is the Ph.D. dissertation of Mr. T. H. Young (Ohio State

University, Department of Engineering Mechanics) which is

currently being completed.

A literature search was made to uncover previously published

work dealing with the forced vibration responses of continuous

systems with damping. Approximately 150 relevant references were

found. A review article summarizing the majority of these

references was begun, but was dropped when project funding was

discontinued.



EXTENSIONS OF THE RITZ-GALERKIN METHOD FOR THE FORCED,
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T,H. Young, Graduate Student

Department of Engineering Mechanics
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ABSTRACT

The classical method for analyzing the forced vibrations of structural
elements such as beams, plates and shells is to express the displacements as
superpositions of the responses of the free vibration modes. This is only
possible for those relatively few problems where exact eigenfunction solutions
exist, and often only with considerable difficulty. Ritz-Galerkin methods are
.widely used to obtain approximate solutions for free undamped, vibration prob-
lems. The present paper demonstrates how these same methods may be used
straightforwardly to analyze forced vibrations with damping. This is done
directly without requiring the free vibration eigenfunctions.

The Galerkin method nas been shown previously to be an effective tech-
nique for these types of problems. The Ritz method has the further advantage
of not needing to satisfy the force-type boundary conditions, which is par-
ticularly important for plates and shells. But proper functionals represent-
ing the forcing and damping terms must be developed, and this is done in the
present work.

The present paper considers two types of damping—viscous and material
(hystereticl. Both distributed and concentrated exciting forces are treated.
Numerical results are obtained for cantilevered beams and rectangular plates.
Studies showing the rates of convergence-of the solutions are made. In the
case of the cantilever beam, approximate solutions from the present methods
are compared with the exact solutions.

#



I. INTRODUCTION

The Rayleigh-Ritz methods are probably the best known and most widely
used methods for analyzing the free, undamped vibrations of more complicated
structural elements, such as beams Ce.g., variable thickness), plates and
shells. The Rayleigh method, which has been in existence for over a century
[1], takes advantage of the fact that a system vibrating in one of its normal
modes, interchanges its energy completely between potential and kinetic forms.
That is, the maximum potential energy (Vmax) equals the maximum kinetic energy
(Tmax) which occurs in a cycle of vibration. Assuming a trial function for
the mode shape, one which satisfies at least the geometric boundary conditions
of the structural element, and assuming simple harmonic motion, setting TJJ.̂
equal to Vmax yields the vibration frequency. Unless one is fortunate enough
to have assumed the exact eigenfunction (i.e., mode shape) of free vibration
for the trial function, the resulting frequency is too high, and is conse-
quently an upper bound on the exact solution.

In 1908 Ritz 12] improved upon the Rayleigh procedure by assuming a set
of admissible trial functions, each having independent amplitude coefficients.
He was able to show that a closest upper bound for the frequency could be
achieved by minimizing the functional Tmax-Vmax with respect to the coeffi-
cients. Indeed, he applied this method to the completely free square plate
[2] for which no exact solution is possible. Since then literally hundreds
of references may be found which apply the method to free vibration problems
•(cf.[3,4]l. In some cases such as shells, an exact solution may exist, but
it is so complicated to use that a Ritz procedure may be employed more easily
to obtain accurate results (e.g.,[5-9]) . But in most cases no exact solution
exists, and an approximate, properly convergent technique such as the Ritz
method becomes essential./

The classical method for solving forced vibration problems for structural
elements is to expand both the forcing function and the displacement response
in terms of the free vibration eigenfunctions, This requires first solving
the free vibration problem and finding an orthogonal set of eigenfunctions.
Further, the forced vibration response typically requires the tedious (and
computationally expensive) evaluation of integrals of products of the eigen-
functions with themselves and the loading functions. If the eigenfunctions
are complicated (for example, combinations of the regular and modified Bessel-
functions in the case of a circular plate) the integrals may have to be evalu-
ated numerically. In many cases (e.g., beams) large roundoff errors are easi-
ly generated during the procedure.

It can be shown that the method of Galerkin [10] is equivalent to the
Ritz method, and is some ways more general (it may be applied even when no
energy functionals exist for the problem). This equivalent method has also
been frequently used to analyze the free vibrations of structural elements
such as beams, plates and shells (cf., [3,4]). Several years ago a method of
applying the Galerkin method to forced vibration problems of continuous
systems having viscous damping was demonstrated 111,12]. The method is a
direct one; that is, the forced response is found without first having to
solve for the free vibration eigenfunctions. The method was demonstrated for
the one-dimensional, second order differential equation of the vibrating



string, and the two-dimensional, fourth order differential equation of.the
vibrating plate.

However, the Galerkin method has one disadvantage in comparison with the
Ritz method. Both methods require satisfaction of only the geometric boundary
conditions. However, if the force-type boundary conditions are not also satis-
fied, the Galerkin method requires the use of additional terms. For a plate
having free edges, for example, these additional terms consist of two line
integrals taken along each free edge which must be added to the orthogonalizing
integrals. In the case of a shell, four line integrals would have to be added
for each free edge. Thus for a cantilevered plate or shell of rectangular
planform, the Galerkin method becomes quite cumbersome.

The Ritz method has been demonstrated in recent years to be an efficient,
accurate technique for the analysis of free vibrations of cantilevered shells
having rectangular planform [13-16]. Such configurations may be used for tur-
bomachinery blade vibration studies. The method is particularly useful for
preliminary design stages, or for making parameter studies, where finite ele-
ment methods have been found to be very costly and unreliable.

The present paper summarizes recent research in extending the Ritz method
to forced vibration problems where damping is present. This eliminates the
aforementioned disadvantages of the Galerkin method when free edges are en-
countered. The crux of the problem is to find a dissipation functional ac-
counting for the damping forces which are 90 degrees out of phase with the
exciting, restoring and inertia forces of the system, which may be added to
the kinetic, strain and load potential energies in a suitable manner to give
the correct solution. The extension is demonstrated in the present work for
systems having either viscous or material damping, distributed or concentrated
exciting forces, and one-dimensional (beam) or two-dimensional (plate) struc-
tural elements. The convergence of the extended method to exact solutions is
demonstrated for a set of cantilever beam problems. A similar method was de-
veloped by Siu and Bert £17] for laminated composite plates having material
damping, subjected to distributed forcing pressure.

II. BEAM ANALYSIS - VISCOUS DAMPING

2.1 Distributed Forcing Function

Consider first a beam of length H subjected to a distributed transverse
load q (force/unit length) which varies sinusoidally with time,

q(x,t) = q(x)eiJit (2.1)

where Ji is the forcing frequency and x is the coordinate measured along the
length. The kinetic energy during vibratory motion is

*-)2dx (2.2)

where w is the transverse displacement, p is the mass per unit length and A is
the cross-sectional area. The strain energy of the beam due to bending defor-
mation is



4 2 2
V « 7/ EI(*-2f) dx (2.3)

* o 3x^

where E is the modulus of elasticity and I is the second moment of the cross-
sectional area with respect to the neutral axis of bending.

Define a dissipation functional V by

£,

V = \ I c f^wdx (2.4)
o

where c is the viscous damping coefficient. It should be noted that V differs
from the well-known dissipation function of Rayleigh [1]. The work done by
the exciting force- is

I
W - / q w dx (2.5)

o

To apply the Ritz method, assume that the vibratory displacement w(x,t)
may be expressed as .

w(x,t) - W(x)elflt (2.6)

- I C <j>. (x)elJit (2.7)
j=l D D

where the 4>j (x) are trial* functions which satisfy at least the geometric boun-
dary conditions (zero displacement and/or zero slope) which exist for the'beam,
and the Cj are complex coefficients which may be separated into real and imagi-
nary parts as

C.. = C* - iC* (2.8)

where i=/-T. The real part (C.) may be regarded as the vector component of
the response in phase with the exciting force, and the imaginary part (Ĉ ) is
the response component which lags the exciting force by 90 degrees.

Define further a generalization of the functional Tmax-Vmax used in free,
undamped vibration analysis by the Ritz method. That is, let

L = (T • -V ) - (V -W ) (2.9)
max • max max max max

where the separate terms on the right-hand-side of Eq.(2.9) are the maximum
values of the functionals previously given by Eqs.(2.2) through (2.5) , ob-
tained by substituting Eq.(2.6) into them and setting |e2int|=l. That is,

2 £,
T = ?- / pAW2dx - (2.10a)
max 2 J

o



max
dx

dx (2.10b)

r1 (2.1Qc)

W
max = / q W dx

' ̂ (2.10d)

The Ritz method is applied by substituting Eq. (.7) into Eqs.(2.10) and by
using the minimizing equations

(2.11)

which results in a set of J linear simultaneous equations in the unknown coef-
ficients Cj. Setting the real and imaginary parts of each equation equal to
zero yields a set of 2J equations in the unknowns C? and C?, with coupling
between the C? and the C? coefficients arising from the damping. The right-
hand sides of the equations evolve from the forcing function (q). Solution of
.this set of equations completely determines the forced, damped response.

2.2 Example. Cantilever Beam with Uniform Pressure

Consider the uniform^ homogeneous, cantilever beam of length i clamped
at the end x=0 and free at the end x=& (see Fig. 1), subjected to a uniformly
distributed pressure

q(x,t) = (2.12)

,int

mtn

t

Figure 1. Cantilever beam with uniformly distributed forcing-pressure.



where q is a constant. Let the trial functions $j' to be used in Eq.(2.7) be
expressed as simple algebraic polynomials,

• (x) = xj (2.13)

which, by beginning with j=2, guarantees that the boundary conditions at the
clamped edge

w(0,t) - (2.14)

are satisfied exactly. Substituting Eqs.(2.12) and (2.13) into Eqs.(2.7),
(2.9) and (2.10), carrying out the minimization indicated by Eqs.(2.11) and
the necessary integrations over x, and separating the real and imaginary parts,
yields the following set of equations:

y , [El. j(j

j=2 U4

-l)k(k-l)
J+k"3 j j+k+l

1 I}
 qo

k+1 (2.15a)

Y f f cfl 1cR i FEI JO-Dk
j=2 [j+k+1 J j U4 j+k'

- TT7T7̂ -] C*} = 0 (k=2,3,...,J) (2.15b)

R J
These 2(J-1) equations may be solved for the 2 (J-l) unknowns C. and C-s.

The Galerkin method [11,12] was applied in the present work for purposes or
comparison, and yielded Eqs.(2.15) identically.

The response of the Beam at a typical point may now be obtained by adding
the in-phase and out-of-phase components separately, and combining them vec-
torially. That is,

; rc>i.—j.\
(2.16)w(x,t) =

with the amplitude of the response given by

J
W(x) =

j=2
(x)

3 J
+ . (x)

.3=2
(2.17)

and the phase angle lag by

J

<j>(x) = tan
-1 1=2

j=2

(in radians) (2.18)



2.3 Exact Solution of the Previous Problem

The preceding problem of the cantilever beam subjected to uniformly dis-
tributed, sinusoidally oscillating exciting pressure has an exact solution.
The equation of motion for the problem is

(2.19,

Assume a solution to Eq. (2.19) in the form

w(x,t) = X (x)T (t) (2.20)
m=l

where X (x) is a typical eigenf unction of the free, undamped vibration problem.
That is ,

X (x) = cosha C-cosa £-y (sinha C-sina £) (2.21)TTI m m m m m

where £ = x/i and a A is the nondimensional frequency parameter given by

which are the eigenvalues of the equation

cosa I • cosha I = -I . (2.23)

The coefficient y is determined fromm

cosha A+cosa 4
Y = - - ^~ (2 24)
'm sina £+sinha I

m m

Values of a I and y are given in Table 1.m m

Substituting Eq.(2.20) into Eq.(2.19), multiplying through by a typical
eigenfunction x / integrating over the length, using the orthogonality rela-
tionships

/XmXndx = 0 = /-^Xndx (2.25)
o o dx

(when m^n) and the equation of motion for free vibrations

d\El - -7 - pAum xm = 0 (m=l,2,...) . . (2.26)
dx4



Table 1. Eigenfunction parameters for clamped-free beams,

m

1 1.8751041 0.7340955

2 4.6940911 1.01846644

3 7.8547574 0.99922450

4 10.9955407 1.00003355

5 14.1371684 0.99999855

» (2m-l)ir/2 1

yields the equation for the response of the mth mode:

where the dots represent time derivatives , and where
I • .

dx

o

The solution to Eq. (2.27) is

where A and B are given in nondimensional form asm m

A = -Hn - JL )
m A (1 u 2 Jm

cm m

2

0) cm mm

(111=1,2...) (2.28)

(2.29)



Here 5 is the static amplitude of the mth mode (i.'e., A_ when fl/tu =0) and c^.m ui m cm
is the critical damping constant of the mth mode. In detail,

Sm = , c = 2pAo> (2.31)m 2 cm m
m

The total response at a typical point on the beam is given by

w(x,t) = Ce1 ~"<f' (2.32)

o°
where C =

m=l m=l
(2.33)

and mt1
BmXm(X)

<J> = tan — (in radians) (2.34)

£ Vm(x)

m=l

It is observed that C and <(> are both functions of x.

The classical solution procedure shown above is exact in that explicit
expressions for responses of the free vibration modes (i.e, Eqs.(2.30)) may be
written, even though the total response requires infinite summations of terms.
The crux of the problem ie the evaluation of the integrals of Eq.(2.28). For
this purpose the tables calculated by Young and Felgar [18] are useful.

2.4 Numerical Results for the Uniform Pressure Loading

Table 2 presents numerical results for the amplitude response C/6Q of a
cantilever beam subjected to uniform pressure varying sinusoidally with time,
where 6Q is the static displacement (&=0) of the point considered. In this
case the viscous damping is small (c/c ,=0.01), and response at the free end
(x=A) is evaluated. The frequency ratio (fi/m..) is varied from 0 to 2, and
data are given also for excitation at the second and third natural frequencies
(n/o), = 6.267 and 17.547). Solutions using the Ritz method are obtained using
2, 4 and 7 polynomial terms of the type given by Eq.(2.13), yielding 4, 8 and
14 simultaneous equations from Eqs.(2.15). Comparison is made with the
results of the exact solution, described in Section 2.3.

It was found that, to at least five significant figure accuracy, the
exact solution is the same as the 7-term Ritz solution for all fl/u^ except at
the third resonance and that (again, except near the third resonance) a 4-
term solution would be sufficiently accurate for engineering purposes. If 9
terms are used, five significant figure agreement with the amplitude at the
third resonant point is also found. Results for the response at the middle
of the beam (x=0.5£) yielded nearly identical comparisons.



Table 2. Amplitude response C/6O at the end (x=£) of a cantilever beam; uni-
formly distributed load, viscous damping (c/cĉ =0.01).

ft
U>1

0.0
0.5
0.9
0.99
1.0
1.01
1.1
1.5
2.0
6.267
17.547

Number of

2

1.00000
1.33134
5.06759
28.6556
45.8860
44.5984

. 5.04832
0.82658
0.34731
0.03837
0.00001

trial functions

4

1.00000
1.33759
5.29616
36.0870
50.6697
35.5744
4.81325
0.82473
0.35276
1.27647
0.02056

in Ritz method

7

1.00000
1.33759
5.29622
36.0896
50.6694
35.5715
4.81315
0.82472
0.35276
4.48085
0.83682*

Exact
Solution

same
H
ii
H
ii
n
n

n

n

n

0.93829

*9-term solution yields 0.93829

The static solution (Q/û O) in this case is exactly expressible as a
polynomial of 4th degree. Thus a 3-term Ritz solution would be exact at this
frequency, while the "exact" method must laboriously sum up an infinite set of
eigenfunctions. Table 2 shows the 2-term solution to be also exact at the
particular point x=SL. At x=0.5£, it would yield 0.941176, instead of unity.

Interestingly enough, the exact solution procedure gave numerical diffi-
culty in obtaining accurately converged results for Table 2, even with the
use of double-precision (i.e., 16 significant figure) arithmetic. This was
largely for large ct Jl, the Ym are very close to unity, and cosh am£ and
sinhct C are nearly identical. However, the Ritz method proceeded straight-
forwardly without difficulties.

2.5 Point Loading

Consider next the case of excitation by a concentrated transverse force
F, as F,ê ^t acting at an arbitrary point x=x^ along the beam. Solution of the
problem by the Ritz method is simple and straightforward. Instead of Eq.(2.5),
the work done by the exciting force is

W= FjwU^ (2.35)

and the appropriate functional for use with the Ritz method is

W ' = F.W(x.) (2.36)
m a x 1 1

instead of Eq.(2.10d). When two or more point loads are present, or if a point
load is acting in addition to a distributed load, then superposition applies.



In the case of a point load acting at the free end of a cantilever beam, the
right-hand-side of Eq,(2.15a) is simply replaced by F .

To obtain an "exact" solution to the problem in terms of free vibration
modes when a concentrated force is present, either of two methods may be used.
One method would represent the concentrated force as- a Dirac-delta function
for q(x,t) , and expand this function in terms of the eigenfunctions as in Eq.
(2.28). However, this procedure would be extremely tedious, for it would re-
quire many terms in the series (Eq.(2.20)) to determine a reasonably accurate
representation.

Another exact procedure introduces a change of variables. For example,
consider the end loaded beam. The equation of motion is homogeneous:

EI1̂  + pAl!| + c£ = 0 (2.37)
3x4 3t" dC

But one of the boundary conditions is nonhomogeneous; i.e.,

w(0,t) = |̂(0, t) = ̂ -f U,t) = 0 (2.38a)
3x 3x2

(2.38b)
3x

Let w(x,t) be replaced by

w(x,t) = v(x,t) + g(x)eint (2.39)

where g(x) is chosen so that

2
-
3x

g(0) = -tO) = --U) - 0 (2.40a)
2

0 = FX (2.40b)

Then g(x) is found to be

g(x) = - r^rx2 + -r^-x3 (2.41)

Substituting Eqs.(2.39) and (2.41) into (2.37) transforms the problem into one
having a nonhomogeneous equation of motion, with homogeneous boundary condi-
tions ; viz.

EIi4 + pA3fl + c|Z = (PAn
2-icn)g(x)eiSit (2.42a)

3x4 3t2 3t



3v 32v 33v
v(0,t) = r̂ (0,t) = — -HA,t) = ̂ --(Aft) = 0 (2.42b)

OX «. 2. -3
3x 3x

and the solution proceeds as in Section 2.3.

III. BEAM ANALYSIS - MATERIAL DAMPING

3.1 Incorporation of Complex Stiffness

In the case of material damping (also called "structural" or "hysteretic"
damping) , it is possible to use an equivalent viscous damping representation
under certain conditions, the viscous damping coefficient being chosen so as to
dissipate an equivalent amount of energy per vibratory cycle. The most impor-
tant condition to be met is that, for the given forcing function and the range
of frequency ratio under consideration, a single normal mode is strongly domi-
nant among the modes excited. While it is possible to represent any single
mode response adequately by equivalent viscous damping, especially in the vi-
cinity of resonance and if the damping is reasonably small, the individual
modes respond differently. Therefore, strong normal mode coupling makes the
representation less accurate.

The preferred method of treating material damping is by means of a complex
modulus of elasticity (cf. [19]). That is, let the modulus be

E* = E(l + in) (3.1)

where i=/^T and n is the loss factor.
/

To apply the Ritz method to a forced vibration problem with material damp-
ing, the energy dissipation due to friction is combined with the elastic strain
energy in complex form, and the functional to be minimized is

L = T - V* + W (3.2)
max max max max

In the case of a beam, for example, V* is given by

i 2 2
V* = I/ E(l+in)K̂ -4) dx (3.3)
nax 2 o 3x2

whereas T__v and W_,,, remain as given previously by Eqs.(2.10a) and (2.10d) ,, UlcLX tuaX
respectively .

The exact solution uses the equation of motion expressed in complex form,
which is

4 2
= q(x)ei£lt (3.4)

23x 3t



Assuming that the displacement (w) and the transverse loading (q) can both be
represented as summations of the eigenfunctions of free vibration, a procedure
similar to that employed in Section 2.3 may be followed, leading to the solu-
tion forms given by Eqs.(2.29) and (2.32), except that in the case of material
damping the coefficients A and B become

m m

6
Bn = z^n (3.5)

with 6 given by Eq.(2.31), and the amplitude and phase angle again given by
Eqs.(2.33) and (2.34), respectively.

3.2 Example. Cantilever Beam with Uniform.Pressure

The uniform, homogeneous, cantilever beam subjected to sinusoidally vary-
ing, uniform pressure, as described previously in Section 2.2, is again taken
as an example; however, in this case the damping is hysteretic. Using alge-
braic polynomial trial functions as in Eq.(2.13) with the Ritz method, the
following set of equations arises for the determination of the coefficients Cj
and C? associated with the real and imaginary parts of the solution:

/

j(j-l)k(k-l) PAQ2 "I R El j(j-l)k(k-l) I I, _ qo—" Vk-3 c} - C3-6a)

(3.6b)

j*

Application of the Galerkin method to the problem yielded Eqs.(3.6) identi-
cally. The displacement w(x,t) of an arbitrary point is again given by Eqs.
(2.16), (2.17) and (2.18).

Numerical results for the nondimensional amplitude ratio C/5Q at the free
end of the beam as a function of the frequency ratio fi/u^ are presented in
Table 3 for a loss factor representative of many metals (n=0.001) , and in
Table 4 for a large loss factor (n=0.1). Once again it is seen that the Ritz
method converges rapidly to the exact solution as polynomial terms are added
to the displacements. A 7-term solution is accurate to 6 significant figure
accuracy except in the vicinity of the third resonance.

In studying Tables 3 and 4, the data is seen to exhibit certain charac-
teristics similar to those for a single degree of free system having material
damping (e.g., [20], p. 230). That is,



Table 3. Amplitude response C/d at the end (x=Z) of a
cantilever beam; uniformly distributed load, material
damping (n=0.001).

n -
(!>!

0.0
0.5
0.9
0.99
1.0
1.01
1.1
1.5
2.0
6.267
17.547

Trial functions-Ritz method

4

0.999999
1.33770
5.31980
50.8387
1013.39
50.3766
4.83954
0.834967
0.352793
1.32170
0.025578

7

0.999999
1.33770
5.31986 .
50.8463
1013.39
50.3686
4.83944
0.824959
0.352792
'14.3001
0.925293*

Exact
Solution

same
M
ii
H

n

it

n

n

n

n

1.06942

*9-term solution yields 1.06942

Table 4. Amplitude response C/5O at the end (x=Z) of a
cantilever beam; uniformly distributed load, material
damping (n=0.1).

Trial functions-Ritz method

"1

0.0
0.5
0.9
0.99
1.0
1.01
1.1
1.5
2.0
6.267
17.547

4

0.995037
1.32593
4.70715
9.93494
10.13252
9.93658
4.36873
0.822066
0.352364
0.148371
0.009427

7

0.995037
1.32593
4.70719
9.93498
10.13249
9.93649
4.36865
0.822058
0.352362
0.145056
0.010733

Exact
Solution

same
••
»
"
n

n

it

n

n

it

0.010730



(1) At fi/u =0, C/6 is not unity (as in viscous damping) , but C/6 =

(2) Damping does not shift the first resonant peak - it remains at fi/u> =
1. X

(3) The first resonant amplitude ratio (C/6 ) is very nearly equal to
Vn. °

That C/60 at fi/u),=0 is not exactly 1/n is due to the slight influence of the
higher modes. Comparing Tables 3 and 4, it is seen that increased material
damping causes greater contribution from the first mode at the second and
third resonant frequencies, as might be expected.

IV. PLATE ANALYSIS

4.1 Ritz Method

Except for the fortuitous case of a plate having at least its two oppor
site sides simply supported, no exact solution for the free vibration eigen-
functions is possible [3]. Nevertheless, the Ritz method may be generalized
from the preceding beam analysis to deal with the forced vibrations of plates
having arbitrary edge conditions, including' point supports.

To be somewhat specific, let us consider a rectangular plate having di-
mensions a x b, such as the cantilever shown in Fig. 2. The exciting force

Figure 2. Cantilever plate with concentrated exciting force.

may be either distributed or concentrated. A sinusoidally varying distributed
load will, in general, be of the form

q(x,y,t) = q(x,y)eiflt (4.1)



where now q is force per unit area, whereas a point load is of the form

F = Fei£2t (4.2)

The transverse displacement is taken as

w(x,y,t) = W(x,y)elJit (4.3)

J -K . -ru.
= 11 C.^.-tx^e1 (4.4)

where the ̂ j^ satisfy the geometric boundary conditions exactly, and the
are complex coefficients given by

f* s C* • i C*
]k ;jk jk (4.5)

The functionals for the plate, which are the generalizations of the beam
functionals given by Eqs.(2.10), are:

n2 a b/2
T = —- / / phW dxdy
max 2 o -b/2

(4.6a)

Vmax

a b/2
J I I D{(V2W)2 - 2(l-v)
o -b/2

32w
.,2.2
_3x 3y

dxdy (4.6b)

max 2

a b/2
= Hi / / c W2 dxdy

o -b/2
(4.6c)

W
a b/2

max
/ / q W.dxdyJ J ^, ..o -b/2

In these expressions the flexural rigidity (D) is

Eh3

12U-V2)

(4.6d)

(4.7)

with h being the plate thickness and v being Poisson's ratio. In the case of
material damping, the integrand for V is simply multiplied by (1+iH) .max

The functional L is constructed as in Eq.(2.9) and minimized as
max

= 0 (j=l,...,J; k=l,.. . ,K) (4.8)



yielding a set of 2JK simultaneous equations in the coefficients C., and C. .
Solution of these equations determines the forced, damped response, ^

4.2 Example. Cantilever Square Plate with Point Load

To demonstrate the Ritz method, a cantilever plate of square planform
(a/b=l) is chosen, and is excited by a concentrated force F acting at the
center of the outer edge, the force varying sinusoidally with time (Fig. 2).
Assume viscous damping affects the plate uniformly (i.e., c is a constant).
Let Poisson's ratio (v) be 0.3.

A set of polynomials for use in Eq.(4.4) may be chosen as

<frjk(x,y) = x
jyk (j=2,3...J; k=0,l...K) (4.9)

which satisfy the geometric boundary conditions

w(0,y,t> = |̂ (0,y,t) =0 (4.10)
ox

exactly. Moreover, for the present example problem where the exciting force
preserves the geometric symmetry already present, the antisymmetric modes are
not excited, and the index k may be taken as k=0,2,4... with no loss of gener-
ality.

Accurate numerical results were obtained by taking 6 terms in the x-
direction (i.e., j=2,3,...,7) and 4 terms in the y-direction (i.e., k=0,2,4,6).
This yields 6 x 4 = 24 polynomial terms ̂ ^ and, hence, 24 modal degrees of
freedom to the problem. Considering the in-phase and out-of-phase components
of motions, the resulting problem consists of solving 2 x 24 = 48 simultaneous
equations for the C?, and C* .

}k ]k

Numerical results for a small damping ratio (c/c .=0.01) are shown in
Table 5. Here, as in the beam analysis cĉ  (=2phu)̂ ) is the critical damping
coefficient for the first free vibration mode of the square cantilever plate.
In Table 5 the nondimensional displacements WD/Fâ  of three significant points
are given, as functions of Ji/u,. These points are the plate center (x=0.5a,
y=0) , the point of loading (x=a,y=0) and the corner points (x=a,y=+0.5b). In
addition to the first resonant frequency (n/u>̂ =l) , data is also given for the
next three frequencies of symmetric modes (n/01̂ 6.1317, 7.8307 and 15.6165).
u>3/u)̂ =7.8307 corresponds to a chordwise bending free vibration mode, whereas
the other three are spanwise (i.e., flapwise) bending modes (cf. , [3,13]).

Comparing Table 5 for the plate with Table 2 for the beam, both having
the same damping ratio (c/cĉ =0.01), one observes that the amplitude responses
at the second and third spanwise bending frequencies is considerably greater
for the plate than the beam. This is mainly due to two differences:

(1) The concentrated end force excites the higher spanwise bending modes
more than a uniformly distributed force.



Table 5. Displacements WD/Fa of a cantilever plate with a
sinusoidally varying point load (P) at the center of the outer
edge; viscous damping (c/c =0.01).

fl

0.0
0.5
0.9
0.99
1.0
1.01
1.1
1.5
2.0
6.1317
7.8307
15.6165

Plate center

-= 0.5, £=0a .. b

0.111
.150
.601
4.153
5.755
3.992
.548
.096
.043

1.714
1.193
.736

Load point

0.360
.473

1.79.8
12.209
16.887
11.690

. 1.574
.247
.089
3.997
1.254
1.258

Corner point

0.329
.440

1.744
11.982
16.597
11.507
1.572
.268
.114

1.843
2.865
1.307

(2) The concentrated force is not along the entire free end of the plate,
but only at its center, thereby causing a significant contribution
of the first chordwise bending mode.

It is interesting to observe the change in chordwise bending effects in
Table 5 as ft/u^ is swept from zero to the fourth natural frequency. At fi/tu1 =
0 one has static loading, and the plate exhibits significant anticlastic curva-
ture; that is, the center of the free edge deflects more than the corner
points. The anticlastic curvature is greater here than for a uniformly loaded
square cantilever [22], as might be expected. As Q/UI is increased, the curva-
ture remains anticlastic until slightly past the first resonance (fi/ô  = 1.1).
The curvature is strongly anticlastic at the second resonance, but reverses
itself for the third and fourth resonances.

Table 6 gives the results for the same problem when the damping coeffi- .
cient is ten times greater (c/ccl=0.1). The responses at the resonant peaks
are all very similar to those with small damping, except with amplitudes es-
sentially one-tenth as large, except for the fourth resonance.

V. CONCLUDING REMARKS

An extension of the Ritz method has been developed for analyzing the
forced vibrations of structural elements such as beams, plates and shells in
a straightforward and efficient manner. Both viscous and material damping
may be accounted for. The exciting forces may be distributed and/or concen-
trated. Convergence to the exact solutions for a set of cantilever beam prob-

lems was demonstrated.



Table 6. Displacements WD/Fa of a cantilever plate with a
sinusoidally varying point load (P) at the center of the outer
edge; viscous damping (c/c =0.1).

"

Plate center

£= 0.5, V-=a b

Load point

a

Corner point

f-l.f-O-5

0.0
0.5
0.9
0.99
1.0
1.01
1.1
1.5
2.0
6.1317
7.8307

15.6165

0.111
.148
.438
.578
.576
.567
.381
.093
.042
.172
.119
.117

0.360
..469

1.309
1.700
1.690
1.662
1.094

.240

.088

.404

.129

.200

0.329
.436

1 . 268
1.669
1.660
1.636
1.093

.261

.113

.187

.287

.207

Although the method was demonstrated for homogeneous beams and plates of
uniform thickness, the energy functionals presented are in more general form,
capable of accounting for variable cross-sections (i.e., A, I, h) and nonhomo-
geneous material (E, p). JHork is currently progressing to extend the method
further to shell problems. The method will also be developed for analyzing
the free, damped response of structural elements, and other types of damping
will also be considered.
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