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ABSTRACT

f	 Features and objects in the Western'North
Atlantic Ocean - the Eastern Seaboard of the
United States - are observed from Earth orbit by
passive microwaves. The intensities of their

jradiated flux signatures are measured and
displayed in color as a microwave flux image.

The features of flux-emitting objects such
as the course of the Gulf Stream and the occur-

]	 rence of cold eddies near the Gulf Stream are
identified by contoured patterns of relative
flux intensities.

The flux signatures of ships and their
wakes are displayed . and discussed. Metal data
buoys and aircraxt are detected.

Signal-to-clutter ratios and probabilities
C`	 of detection are computed from their measured
C^	 irradiances. Theoretical models and the range

equations that explain passive microwave detec-
tion using the irradiances of natural sources
are summarized.
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The Western North Atlantic Ocean -- the Eastern Seaboard of the United

States to a distance of 800 kilometers from the shore -- is a seawater region

and the subject of our microwave image.

It's a busy place, day or night, and at any season of the year.

Strong ocean currents, thrusting from the north to the south and at the

same time from the south to the north, continually change the water patterns

and water features as they interact with each other.

The sometimes strung, and always cold, Labrador current presses

southwestward down the coastline from Newfoundland and Nova Scotia, and chills

the water along the continental shelf near Cape Cod, Long Island, Delaware,

and as far south as Cape Charles, at the entrance to the Chesapeake.

Entering from the Gulf of Mexico, the Gulf Stream rounds the tip of

Florida and flows northward along the coasts of Alabama, Georgia. and the

Carolinas. As the warm Gulf Stream moves northeasterly, it interacts with the

cold shelf water along the coast and with the Labrador current itself,

producing eddies and swirls that seem to attach themselves to the west wall of

the Gulf Stream and are carried along with it.

In the region to the south of Newfoundland, the Gulf Stream sometimes

executes a meandering pattern with hairpin turns. When the direction of the

hairpin curves to the south, the cold water from the Labrador Sea enters and

fills the hairpin. Later, the bore of the Gulf Stream changes its direction

and causes the volume of water that is circulating within the hairpin to be

pinched off and cast aside as an autonomous body (an eddy) . . . known as a

"cold ring." Cold rings drift in a direction counter to the bore of the Gulf

Stream, on its south side. Ultimately, cold rings vanish near the Carolinas.
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To the east, and spanning a wide front, is the Sargasso Son, a huge

circulating mass of warm water.
t

Near Florida are the Bahamas. The water that surrounds them is clear,

shallow, and very warm. Between the Bahamas and the Florida coast lies the

corridor of the Gulf Stream as it emerges from the Gulf of Mexico and plies

northward. Intervening between the Bahamas and the Sargasso Sea is a region

of relatively cool water.

There are ships -- small ships, large ships, huge ships -- hundreds of

them at any one time. Submarines, as well, operate in the shallow waters of

the continental shelf.	 t

Aircraft of all types and sizes abound: cargo planes, intercontinental

carriers, and small shuttle planes to the islands.
t

Large buoys are moored in permanent locations at distances from 70 to 700

kilometers from the coast. Six or more are continually in service. Data 	 +

buoys measure important meteorological and oceanographic parameters.

Large buoys are Discus-type buoys. That is, their configurations are, as

the name implies, disks, with diameters ranging from 6 to 12 meters. 	 f

Some buoys look like rectangular boats. They are metal, and their

dimensions range from 6 to 8 meters. They are called Boat buoys.

Buo s aircraft shi s and submarines comprise the man-madeY ,	 ,	 p ,	 p	 population	 j
I

of the Western North Atlantic.
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SECTION I

THE MICROWAVE FLUX MAY

The microwave flux emittances of water features and man-made (metal)

objects in the Western North Atlantic are observed and imaged by an Earth-

y•	 orbiting microwave receiving system with an articulating, collecting aperture.

j	 The scene of observation and the microwave imagery are shown in Figure 1.

The imaged parameter for emitting objects is the relative flux intensity

^	 (watts) produced by thermal gradients in the surface features. For metal

objects, the imaged parameter is the relative flux produced by the bistatic

gain properties of the metallic objects, as they redirect the downwelling
` 	 t

l 1/	
irradiances of the atmosphere and the cosmic background into the articulating,

d

i	 collecting aperture on the spacecraft.

The projection given by the microwave flux is a Mercator. The
Y

coordinates are north latitude and west longitude. The width and length

j l	 dimensions are 718 and 2400 kilometers, respectively. The colors represent

orders of flux intensity. In ascending order, they are, from left to right:
i

pink

red

yellow

gold

green

^I	 light blue

jI

	

	 medium blue

lavender

r
violet

dark blue

f	 ,
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Figure l.a. The Western North Atlantic (annotated color code)
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Figure l.b. The Western North Atlantic (a microwave flux image)
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Because of the wide dynamic range of flux intensities in the image, the color

code replicates. Th •. is, for flux intensities that exceed that of the pink,

the colors start again with dark blue. Similarly, for flux intensities that

are lower than that of the dark blue, the color code sequences in reverse,

starting with pink. By expectation, the replicating colors produce

at;	 ambiguities at particular flux levels.

The color code operates independently for emitting objects and for metal

objects. Because the processes that determine the flux intensities for

emitting objects and metal objects are different, their replicating colors are

uncorrelated.

A. THE GULF STREAM

The west wall of the Gulf Stream is shown in colored isofluxes. From 33

(north latitude) / 78 (west longitude), medium- and light -blue isofluk lines

clearly delineate the serpentine course of the Gulf Stream to where it exits

the image at 39/68. Also, mainly in yellow and red, the west wall of the Gulf

Stream is seen to meander northeastward where it interacts with several

thermal attachments along the way; one attachment in particular at 40/69.5

exhibits the characteristics of a small, warm eddy.

A concurrent infrared image of the Gulf Stream is displayed for

comparison in shades of black and white in Figure 2. The infrared and the

microwave observations were taken within a few hours of each other. At the

lower-center edge of thn infrared image, the bore of the Gulf Stream enters,

where it is viewed in dark shades that signify warm =emperatures. White

shades signify colder temperatures. In the infrared image, the bore of the

Gulf Stream passes to the south of Cape Hatteras, as it commences its

.,^	 `̂,r,,, Fes;,_.-;,-•
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:igure 2. An infrared image of the bore of Lhe Gulf Strum,

near and south of Cape Hatteras, on June 29, 1979
at 0843 hours Universal time. The bore is shown
in dark shades. Cumulus cloudforms are shown in

shades of white. Lake Erie is barely perceptible
in the upper-left corner. The infrared and micro-
wave flux images were taken within a few hours of
each other.
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. H	 northeasterly course. To the east of Cape Hdtteras, the Gulf Stream

J I disappears under a cumulus cloud.

An overcast of intermittent cumulus clouds characterizes the general

weather pattern during the time of the observation. Precipitating clouds are

I
shown in red and pink as they occur over the Sargasso Sea near 36/70 and again

near Long Island and New Jers:y at 40/73.5. Cloud patterns and areas of

' '	 precipitation are identified in the infrared images that are taken at the same

time as the microwave flux observations. (See Figure 3.)

B. METAL OBJECTS

The flux signatures (passive measurements) of many metal objects appear

in the image. The strength (signal.-to-clutter ratio, S/C) and the probability

of detection, Pd , are computed for several objects. The criteria for

estimating signal-to-clutter ratios and probabilities of detection are

discussed under "Detectability Criteria."

The identification of the metal objects shown in the image is based on

experience. A large number of observations and measurements of metal objects

were taken from orbit during planned experiments in the Gulf of Alaska during

1978. Ships, aircraft, and buoys participated in the experiment -- they were

particularly identified and positioned within the view of the mir-owa%a flux

imager for many overpasses of the spacecraft (Seasat). Some objects were

observed more than once.

From these controlled experiments the signatures of ships, wakes,

aircraft, and buoys were identified and analyzed. A partial listing of the
i

metal objects observed during these experiments is given in 'fable 1.

^ yr
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Figure 3. The Western North Atlantic -- an infrared image by NOAA

on Jura 29, 1979 at 0500 hours Universal time. The
southeast coast of th,: United States is shown with the
Western North Atlantic region. Shades of white are cumulus

cloltds. Alabama and Suath Carolina are essentially cloud
free. Lake Erie is perceptible in the upper left corner.
Coordinates intersecting near northern Florida are 30N/80W.

The Gulf Stream is not visible it this large area image.
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Table 1. Metal ob ects d^cected from Earth orbitI
	

e

^i	 (Microwave Flux Measurements)
s

S C (S/C ) dB Pd ORBIT Id.
ASTRODOME SITES

Mt. Hopkins^j	
Mt. Hopkins

20.25 1.23 12.63 0.69 480
5.64 1.23 6.6 0.27 /344/

Palomar4 20.69 1.30 13 . 16 0.72 /480/

11	 Jungfraujoch 25.93 5.53 6.71 0.28 /196/
Zermatt 25.55 2.05 10.96 0.58 /196/
Sonneberg 23.86 2.14 10.47 0.53 /196/

Kitt Peak (11 m) 43.90 1.44 14.78 0.79 /480/
Kitt Peak (11 m) 66.55 4.20 11.99 0.65 /344/
DSN Canberra ( 85 m) 21 . 39 5.10 6 . 23 0.25 /355/
Parkes (64 m) 12.23 3.93 5.27 0.19 /355/
Owens Valley (40 m) 28.32 4.16 8.33 0.40 /531/
Hat Creek (26 m) 7.17 3.80 8.56 0.41 /531/
Yebes Station (4 m) 25.34 2.70 9.73 0.50 /871/
Bonn (100 m) 15.08 2 .53 7.75 0. 35 /196/

AIRCRAFT
CV-990 37.96 2.87 11.21 0.60 1163
RP-3A 31.95 1.30 13.89 0.75 /1212/

it CV-530 38.47 3.90 9.86 0.51 /1292/
u

SPACECRAFT

NOAA-C 64.91 3.76 12.37 0.67 /N20733/
NOAA-C 27.62 4.88 7.53 0.34 /N21012/

SHIPS

Oceanographer 30.00 2 . 04 11 . 67 0.63 /1163/
Oceanographer 13.22 3.53 5.73 0.22 /934/
Oceanographer 163.06 3 . 38 16 . 97 0.87 /1212/
Oceanographer* 10.90 2 .46 4.44 0. 26 /1292/

j Oceanographer 30.00 3 . 91 8.85 0 . 43 /940/
Oceanographer 8.90 3 . 72 3.79 0.12 /1006/
Merchant Ship (CGBS) 20.75 1.53 11.32 0.61 /1163/
Merchant Ship (5LGP) 24.00 8.40 2.86 0.15 /1292/
Merchant Ship (WLDF) 23.71 4.68 5.07 0.30 /1292/
Vancouver 28.60 5 . 83 6.91 0 . 29 /934/
Vancouver 12.81 4 . 51 4.53 0 . 15 /940/
Vancouver 9.34 4.32 3.35 0.10 /1006/

BUOYS
46001	 (12 m) 25.52 4.49 7.55 0.34 /1006/
46004	 (12 m) 18.29 2.32 8.93 0.44 /934/i

7 46004	 (12 m) 26.10 3.54 8.67 0.42 /1212/

46004	 (10 m) 16.50 1.04 12.00 0.65 /466/
46005	 (12 m) 27.16 2.44 10.46 0.55 /1212/

*Raining Clouds
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Table 1. Metal objects detected from Earth orbit
(Microwave Flux Measurements) (continued)

S	 C	 (S/C)dB	 Pd	 ORBIT Id.

46006
46008
44002
44002
44003
44005
44005
44004
44004
44004
44002
44002
44001
44001
44001
42001
41004
41004
41002

(lU m) Zu.bi Z.73 1U.Z4 U._'^4 /4bb/
(12 m) 24.28 3.95 7.88 0.36 /940/
( 6 m) 9.74 5.01 2.88 0.09 /940/
(	 6 m)* 13.58 5.04 4.30 0.14 /N3427/
(	 6 m) 25.22 4.44 7.54 0.34 /888/
( 6 m) 30.86 4.01 8.86 0.44 /N3427/
(12 m) 20.09 3.72 7.32 0.32 /N3427/
(12 m) 28.30 5.42 7.18 0.31 /N1160/
(12 m) 25.84 2.56 10.05 0.52 /888/
(12 m) 38.29 6.33 7.81 0.36 /1017/
(12 m) 42.70 6.03 8.50 0.41 /931/
( 6 m) 23.81 2.32 10.12 0.53 /931/
(	 6 m) 23.06 3.93 7.68 0.35 /1017/
( 6 m) 19.87 3.54 7.49 0.34 /N3427/
(	 6 m) 10.68 3.68 4.63 0.16 /N1160/
(	 6 m) 25.07 3.64 8.39 0.37 /1017/
(	 6 m) 27:49 5.49 7.00 0.30 /1440/
( 5 m) 17.89 1.11 12.08 0.66 /888/
( 5 m) 48.78 4.37 10.48 0.55 /1017/
(10 m) 23.11 2.24 10.98 0.59 /N3427/

LEGEND

	

S	 Signal output of the receiver in digital counts (relative
flux units).

	

C	 Temperature-resolution (RMS) clutter magnitude at the output
of the receiver in digital counts (relative flux units).

(S/C)dB	 Sign,'-!:o-clutter power ratio expressed in decibels.

	

Pd	 Calculated probability of detection from the SIC ratio and
the probability of a false alarm.

Pd - Pn 
1/(1 + S IN)

• Detector threshold level: one false alarm for 1377
independent samples in 60 seconds.

• False alarm probability: Pn = 7.7.6E-04
• Conforming with the accepted interpretation of the

probability of detection for scanning collectors, a
probability of detection of 0.5 expresses the expectation
that 5 out of every 10 targets having similar statistics
would be detected. This .interpretation is consistent
with, and analogous to, the familiar blip-scan criterion
used in radar detection.

*Raining Clouds
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Table 1. Metal objects detected from Earth orbit
(Microwave Flux Measurements) (continued)

t

LEGEND (continued)
ORBIT Id.	 Orbit identifier. When the orbit number is prefixed by the

letter N the data are taken from the Nimbus-7 spacecraft
receivers. Otherwise, the data are taken from Seasat
spacecraft receivers.

GSF	 Gain scale factor = 8 (digital counts)/kelvin.

SENSOR	 o Microwave flux imager
o Articulating collecting aperture - 0.49 m2
o Operating wavelength = 0.008 meters

In addition to the metal objects participating in the controlled

experiments over seawater, Table 1 contains the measured results of some

land-based metal objects for the purpose of gai-wing additional experience in

the observation of metal objects as a category. The physical characteristics

of the land-based metal objects and their geodetic coordinates are precisely

known. For this reason they serve as excellent test targets with surface

truth incorporated as an intrinsic feature.

The experience gained by these observations of metal objects, both during

planned experiments over seawater and on land sites, serves importantly to

provide the interpretation for the signatures shown in the flux image.

C.	 BUOYS

From north to south:

Buoy 44005 lies between Cape Cod and Nova Scotia at 42.8/68.2. It

is a 12-meter diameter Discus type and appears as a medium-blue dot.

S/C = 7.3 dB, Pd = 0.32.

13	 Hti



Buoy 44003 is moored at 40 . 7/68.4, southeast of Cape Cod.	 It is a

6-meter Boat type and appears as a yellow dot.

S/C - 8.9 dB.

Buoy 44001 is moored at 38.6/73.3, southeast of the Delaware

River.	 It is a 6-meter Boat type. 	 Buoy 44001 is not visible in the
i

image because its flux signature is coded with a yellow dot that is
'=a

superposed on an ambiguous yellow isoflux contour.

S/C - 7.5 dB.	 j
y^ f

Buoy 41001 is moored at 32.3/75.4, 	 southeast of Cape Wstteras.	 It	
k,

is a 6-meter Boat type. 	 It appears as a dot with medium-blue and

light-blue shades.

M,:	 !
S/C - 10.9 dB,	 P	 = 0.58.

d

Buoy 44002 is moored at 40.1/73, about 70 km southeast of New York

City.	 It is a 6-meter Boat type.	 The region surrounding 44002, is

saturated IT) shades of pink because of the occurrence of raining clouds

in the local area.	 For this reason 44002 is not visible in the image.

Rain-cloud attenuation reduces the S/C ratio, as expected. 	 From they

digital data record, the S/C is computed for this buoy.

S/C = 4.3 dB.

Figure 4 shows an operational 12-meter Discus buoy, and Figure 5 shows an 	 !

operational 6-meter Boat buoy.

The scattering cross sections of NOAA data buoys are typically enhanced

by corner reflectors.

Buoys are important objects because:
i

o They are abundantly distributed and have scheduled in situ

availability.

1
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Figure 5. A 6-meter Boat buoy
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Figure 4. A 12-meter Discus buoy
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o They are moored and their coordinates are precisely known.

o They are constructed as simple geometrical figures (disks and

rectangles) that produce useful and well-defined scattering

properties. The scattering properties of buoys are enhanced by

jappending corner reflectors.

D.	 SHIPS AND WAKES

A ship and its wake are identified in the flux image as a uniform colored

ribbon with a dot near one end. The ribbon characterizes the wake, and the

dot, the ship.

An inspection of the flux image shows many signatures of ships and
C

wakes. For example, within the rectangle bounded by (26 to 28) north
I,

latitude/(74 to 76) west longitude are the signatures of several ships and

their wakes. Within the same rectangle, and near 28 0 latitude, a red ship

with a yellow wake follows a light-blue ship with a medium-blue wake. Both

are on a course of about 100 0 true. The yellow wake radiates a higher flux

level than the green surfaces that surround it. Similarl/, the medium-blue

wake radiates a higher flux than the adjacent lavender surfaces. The precise

coordinates of the light-blue ship are determined and the S/C ratio is

computed from the digital data record: 5.5 dB (Pd = 0.20).

Relative flux intensity comparisons between ships and wakes are not

permissible with the replicating 10-color code. It is to be emphasized that

the signatures and fluxes of emissive objects and metal objects are produced

by different phenomena, and they are uncorrelated in the color code.

16



Immediately to the south of the medium-blue wake, and on a course

parallel to it, is another medium-blue wake with a light-blue inner wake. The

d

ship, as a dot, is not apparent in the flux image.

Wakes with higher flux levels than their surrounding surfaces are,

typically, characterized by the presence of foam. Foam operates to increase

the emissivity of the wake and the level of the flux. The development of the

foam pattern for a wake-in-the-making is illustrated in Figure 6.

Ships that are underway, with no way on, or ships that are moving slowly

produce little foam, and their wakes radiate a lower flux level than the

adjacent medium.

Within the rectangle bounded by (42 to 44)/(66 to 48) are several ships

with wake fluxes that are lower than the surrounding media. The wakes are

shown in light blue. The ships are shaded with a medium blue. The

surrounding media are shaded in green, gold, and yellow, which signify higher

flux levels than the wakes. This area is characterized by commercial fishing

activities.

Within the rectangle bounded by (32 to 34)/(76 to 78), off the coast of

the Carolinas, are examples of several ships (dots) and their ribbon-like 	 y

wakes.

The ship at 40.3/71.3, departing from the New Jersey/New York City area,

bearing 0900 true, appears to be extremely large . . . judging from the size
i

of the wide wake and the elongated representation for the ship. The S/C ratio

was computed for this ship from the digital record: 2.44 dB (P d = 0.07).

Because of the near proximity of the ship to the land, the magnitude of the

i
clutter entering the sidelobes is high, and for this reason, the S/C ratio is

smaller than expected.

17
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Figure 6. Wake and foam pattern produced by a fishing boat

at 12 knots. Width of the stern is 6 meters.
San Clemente Island is in the background.

1
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E. AIRCRAFT

Aircraft signatures appear in the flux image as colored dots. They are

easily distinguished from ships because there is no evidence of a wake.

Aircraft signatures are ambiguous with the signatures of buoys. Thea	' r
w 

p	
ambiguity is easily resolved, however, because the locations of moored buoys

are precisely known.
I.

The ambiguity between an aircraft and a ship that produces no detectable

wake can sometimes be resolved. That is, a ship at anchor, or one that is

underway with no way on would not be expected to produce a wake. Frequently,

however, a wake is produced by the interaction of the ship's hull with the

movements of local currents.

r
Sometimes buoys produce wakes. When strong local currents drive a buoy

^=	 against its tether, a smooth wake is produced for a short distance behind.

r	
Because of the absence of foam a smooth wake will produce a lower flux level

k

than the adjacent water.

Experience, and familiarity with the interpretation of the features in

the flux image, are enormously important for resolving signature ambiguities.

From the flux image, three aircraft are identified from their signatures:

• At 42.2/68.5, a blue dot, northeast of Cape Cod. From the digital

data record the S/C ratio is computed:

S/C = 7.5 dB, Pd = 0.34.

• At 39.1/71.8, a violet dot, southeast of Long Island.

S/C = 10.5 dB.

• At 26.7/75.3, a medium-blue dot, east of the Bahamas.

S/C = 10.8 dB, P d = 0.57.

Other candidate aircraft signatures are identifiable in the image.
-1

i
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Without concurrent surface truth or previous information there is always

the risk of error in the identification of aircraft. Again, risks reduce as

experience increases.

Aircraft in the region of the Western North Atlantic Ocean can be

expected to operate well above the attenuating effects of clouds and other

attenuating media. For this reason the metal surfaces of the aircraft are

fully exposed to the irradiance of the cosmic background, and the reradiated

flux levels produce signal-to-noise ratios that portend useful probabilities

of detection even with relatively small collecting apertures operating in

Earth orbit.

Comparisons between the S/C ratios for aircraft and buoys are interesting
i

and relevant -- especially, as relative detccCability is affected. The

bistatic, scattering cross sections of buoys are enhanced because of their

symmetrical geometry and because they sometimes incorporate corner reflectors
I

to improve detectability. Buoy detectability suffers the attenuating effects

)f rain in the downwelling and upwelling paths through the atmosphere.

The physical areas of the reflecting surfaces of commercial aircraft are 	 i

larger than buoys. Typically, commercial aircraft expose hundreds of square

meters of metal surface on their topsides. The largest Discus-type buoys

expose less than 115 m 2 . The reflecting surfaces of aircraft functionally 	 j

operate as an ensemble of random scatterers where only a small fraction of the

aircraft area participates in the bistatic scattering process. Per contra,

buoys possess a basic symmetrical figure that causes more of the scattering

surfaces to participate; the scattering coefficients are greater than for

aircraft. For this reason the scattering cross sections for buoys and

aircraft are quite similar.
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F. THERMAL FEATURES AND CLOUDS

Raining cloudforms appear as small areas that are saturated in pink.
r

Three of them are particularly noticeable:

• 40/73.5, near the New Jersey coast.

• 36/70, at the eastern perimeter of the image and extending into the

. g Sargasso Sea.

• 51/72.3, also near the eastern perimeter of the image in the Sargasso

Sea.

F	 ^

Rain cloudforms, in the Western North Atlantic, usually occur over a

small area; typically, they are less than 100 km in diameter. Widespread

precipitation is rare . . . at least, insofar as it is detectable by microwave 	 I

	

r	 I

flux. Raining clouds produce rain within their own volume. As viewed from

orbit it is unclear when, or if, the water particulates formed in rain clouds
I

ever reach the surface.
J
	r	 Cloud coverage for a portion of the Western North Atlantic is shown in

I

the infrared image, Figure 3. The infrared and microwave images were taken

	

fff ^	 I
within the same hour. Microwave flux penetrates nonraining cloudforms with

low attenuation losses as compared to visible and infrared wavelengths. There

is no evidence of the cumulus cloudforms snown 5n the infrared in Figures 2

and 3 in the microwave flux image (Figure 1).

Flux levels increase when the central response of the collecting aperture
1

or some of the sidelobes interact with the shore and the land. The steep rise

in flux caused by the shore is shown by the closely packed color contours

along the coast from the Carolinas to Nova Scotia. High flux levels from the

land saturate in pink. 	 E

The clear shallow water surrounding the Bahamas is very warm; it radiates

high flux levels that are shown in pink.
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SECTION II

DETECTABILITY CRITERIA

The detection capability of the receiver for emitting objects on the

surface is specified by the flux density (radiant emittance) of a Lambertian

Disk Emitter whose diameter is 1640 motors and whose temperature difference,

with respect to the Earth's background temperature, is 2 kolvins.

The irradiance of the Lambertian Disk Emitter arrives in the wavefront at

the collecting aperture after transiting a slant range of 1000 km. 	 At this

slant range, the irradiance is sufficient to produce a 10-dB signal-to-noise 	 j

j (SIN) ratio.

s l̀ The model and the range equations that explain the detection capability

for emissive objects are derived from first principles, and the results are

i
summarized in Figure 7.

} The detection capability of the receiver for metal objects is specified;
F

by the flux density (radiant emittance) scattered by a metallic surface whose S

'

1

scattering area is 158 m 2 , which is further modified (reAuced) by a
V

X

I

reflectivity factor of 0.06 (-12.2 dB). 	 r

The scattered flux from the metal object arrives at the collecting }

aperture after transiting a slant range of 1000 km. 	 At this slant range, the 	 E,

collected irradiance is sufficient to produce a 10-dB SIN ratio. 	 j
F
t	 , i	 h	 l i	 h	 d	 ti	 capabilityThe model and the range equations that explain the detection capay 	 1

for metal objects are derived from first principles, and the results are
ii

h summarized in Figure 8.	 i

The N term, in SIN, is an orthogonal average (root sum of squares) of the

receiver noise power and the clutter power that arrives at, and is referenced

'I to, the phase center of the collecting aperture. 	 Typically, it t1ais receiving
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7r or e Cos eI T4T (Ao^q)
(S/N) =DIMrNSIONLESS

4(47TR
S2) 

Lau 
kT' B

(lla)

2.57 x 10 14 e Cos 
e1 

T
4

2
2
 (A C 71)

(S/N) _
RS2 T B Lau

WHERE

	

= 5.67032E+08	 STEFAN-BOLTZMANN CONSTANT.

e = EMISSIVITY OF EMITTING OBJECT (NORMAL INCIDENCE).

el = ANGLE OF INCIDENCE, DEG.

T = DIFFERENCE TEMPERATURE: EMITTING OBJECT
TEMPERATURE MINUS THE BACKGROUND
TEMPERATURE ITobj - T B I, K

= DIAMETER OF EMITTING OBJECT, m

A C = AREA OF COLLECTING APERTURE, m2

77 = SOLID ANGLE MAIN BEAM EFFICIENCY.

R S = SLANT RANGE, m

Lau = ATMOSPHERIC ATTENUATION, A NUMBER > 1.0.

	

k = 1.380662E-23	 BOLTZMANN CONSTANT.

T' = CLUTTER PLUS RECEIVER NOISE, ORTHOGONAL AVERAGE, K

B = PREDETECTION BANDWIDTH, HERTZ

Figure 7.b. Summary of the range equations for emitting objects

as observed from orbit. (Ref. 1)
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it

{

4vr(TB - T CA) (AT Z r)2 (Ac 
a 

sa)

R 2 x4 T 2+T21/2L
S	 (cluf	 R )	cu

, DIMENSIONLESS
S_

N

WHERE:

TB = BACKGROUND TEMPERATURE FOR TARGET, K
(<100 K FOR SMOOTH COLD SEAS TO > 300 K FOR TROPICAL FORESTS.)

TCA = EMISSION TEMPERATURE OF THE DOWNWELLING PATH AT THE SURFACE, K
(TYPICALLY 27 K, AT SEA LEVEL, AT MID-LATITUDES, CLEAR DAY, 8-mrn WAVELENGH)

AT = PROJECTED AREA OF TARGET AS VIEWED FROM THE ANTENNA SYSTEM, M2
(LARGE BUOYS AND AIRCRAFT TYPICALLY RANGE FROM 100 OVER 300 M2)

Z	 = REFLECTIVITY FACTOR FOR THE TARGET AREA, DIMENSIONLESS
(MEASURED VALUES FOR CERTAIN COMMON AIRCRAFT ARE TYPICALLY 0.06)

Ac = AREA OF THE COLLECTING APERTURE OF THE ANTENNA SYSTEM, M2)

Rs = SLANT RANGE, TARGET TO ANTENNA SYSTEM, M

Esa = SOLID ANGLE MAIN BEAM EFFICIENCY OF THE ANTENNA, DIMENSIONLESS
(0.6 TO > 0.95 FOR POOR AND EXCELLENT ANTENNA DESIGNS, RESPECTIVELY)

X = OPERATING WAVELENGTH OF THE ANTENNA SYSTEM, M

Tclut = RMS VALUE OF THE CLUTTER COMPONENTS ENTERING THE SIDELOBES
AND BACKLOBES OF THE ANTENNA SYSTEM AND FROM THE BACKGROUND, K
(TYPICAL RANGE: 1 TO 5 K, AS DEDUCED BY ACTUAL EXPERIENCE)

T 	 = RMS NOISE LEVEL OF THE ANTENNA SYSTEM RECEIVER, K
(TYPICALLY RANGES FROM 0.5 TO 1.5 K)

Lau = ATTENUATION IN THE UPWELLING PATH, DIMENSIONLESS
(A NUMBER > 1, TYPICALLY 1.08 [0.35 dB], AT 8-mm WAVELENGTH,
CLEAR DAY, MID-LATITUDES.)

Figure B.b. Summary of the range equations for metal objects

as observed from orbit. (Ref. 1)
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system, the clutter power easily dominates the magnitude of N. For this

reason the SIC is used as a preference.

The clutter power is estimated from the RMS variations (standard error of

estimate) of the background temperature hyperplane in the local vicinity of

the emitting object or metal scatterer.

The single-look probability of detection, P d , has been computed for

several metal objects of interest and has been expressed along with the

measured SIC.

Pd is based on the expression

Pd = 
Pn1/0 + S IN)

where P  is further defined as the false alarm probability and is expressed

for this particular receiving system as
i

_ Number of allowable false alarms in time T
Pn	 Number of independent samples in time T

As an arbitrary criterion for setting the threshold level of the

detector, we allow one false alarm every 60 seconds. During this period of

time the receiver and the articulating collector produce 1.377 independent

samples. From this, P  is estimated by 1/1377 = 7.26 x 10 4.

Conforming with the accepted interpretation of the probability of

detection for scanning collectors, a probability of detection of 0.5 expresses

the expectation that 5 out of every 10 targets having similar statistics would

be detected. This interpretation is consistent with, and analogous to, the

familiar blip-scan criterion used in radar detection.

I
J
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SECTION III

THE OBSERVATION

The observation occurred over the Western North Atlantic on June 29,

1979, at 0510 hours Universal time. The receiving system was carried by a

Nimbus spacecraft.

The collecting aperture articulates and possesses a physical aperture of

0.49 m2 ; the solid—angle, main—beam efficiency is 0.9; the operating

wavelength is 8 mm.

The flux image was computed from data taken from a public archive. 	 1
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