
NASA Guideline_ for Assuring d.. _dequacy
and Appropriateness of Security Safeguards

in Sensitive Applications

E G. Tompkins

September 1984

MTR-84WI79

SPONSOR:

NASA

CONTRACT NO.:

NASW-3425

PROJECT NO.:

1915L

DEPT.:

W-27

The MITRE Corporation

Mew k Division

1820 Dolley Madison Bo,devard

McLean, Virginia 22120

ABSTRACT

The Office of Management and Budget (OMB) Circular A-71, Trans-

mittal Memorandum No. I, requires that each agency establish a

management control process to assure that appropriate administrative,

physicv_ and technical safeguards are incorporated into all new

computer applications. In addition to security specifications, the

management control process should assure that the safeguards are

adequate for the application. This document examines the security

ac_ivitles that should be integral to the system development

process and the software quality assurance process to assure that

adequate and appropriate controls are incorporated into sensitive

applications. Security for software packages in also discussed.

ill

AC_O_E_E_NT

The author wishes to thank R.S. Rice of NASA who provided assistance

to MITRE during the writing of this report and the following who

provided background information: R. Martian, General Electric

Company; F. Mayo, UNINET; A. Sorkowitz, Department of Housing and
Urban Development; and G. Mevius, Feer Services. The author would

also llke to thank MITRE associates N.T. Bislgnani, B.A. Christoph,

H.R. Keough, and S.F. Levitas for suggestions and _eview of the

final report; N. Cosgrove and D. Violett for graphics and

publication assistance; D. Chambers and R. Rosenzwelg, for editorial

suggestions and clerical support.

_V

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS

1. INTRODUCTION

1.1 Background
1.2 Security Issues lu the Software Development

Life Cycle

Issue #l--Sufficiency of Review and Approval
of Security Specifications and Systems Testa
Issue #2--What Activities Are Required To

Assure the Quality of Application Systems
Security Safeguards?

Issue #3--How Visible Should Safeguards be in
the Application Code and Ducumentatlon

Issue #4--Securlty Safeguards In Packaged Software

2. THE SOFTWAP_ DEVELOPMENT LIFE CYCLE AND SECURITY

2.1 OMB Circular A-71, Trausmlttal Memorandum No. I

Requirements for Applications Software Security

2.2 The Software Development Life Cycle

2.2.1 The Inltiatlou Phase

2.2.2 The Development Phase

2.2.2 .i

2.2.2.2

2.2.2.3
2.2.2.4

The Definition Stage
The Design Stage

The Programming Stage
The Test Stage

2.2.3 The Operations Phase

2.2.3.1 The Implementatlon Stage

2.2.3.2 The Maintenance Stage

2.3 Software Development Life Cycle Security Activities

2.3.1 Security Activities

2.3.1.1
2.3.1.2

2.3.1.3
2.3.1.4

2.3.1.5

Determine The Sensitivity of the Data/Application
Determine The Security Objective(a)
Assess the Security Risks
Security Feasibility Study
Define Security Requirements

viii

1-1

1-2

1-2

1-7

1-7

1-8
1-9

2-1

2-1
2-3

2-3
2-7

2-7
2-7

2-8
2-8

2-8

2-9

2-9

2-9

2-10

2-12

2-16
2-17
2-25

2-26

V

.

.

TABLE OF CONTENTS

(CONTINUED)

2.3.1.6
2.3.1.7
2.3.1.8
2.3.1.9
2.3.1.10
2.3.1.11
2.3.1.12
2.3.1.13

Develop the Security Test Plan
Design the Security Specifications
Develop Security Test Procedures
Write Security Relevant Code

Document Security Safesttards
Conduct Security Test and Evaluation

Write Security Test and Evaluation Report
Prepare the Proposed Certification Statement

SOFTWARE QUALITY ASSURANCEAND SECURITY

3.1 The Cost of Software Errors

3.2 Sol,are _allty Assu_,.nce

3.2.1 Software Quality Factors
3.2.2 Software Quality Factors and the Life Cycle

3.3 The Software Quality Assurance Process

3.3.1 Software (_allty Assurance Baselines
3.3.2 Reviews and Audits

3.4 Software Quality Assurance Life Cycle Security
Activities

3.4.1 Security Safeguard Characteristics (Factors)
3.4.2 Security Assurance Activities

3.4.2.1
3.4.2.2

3.4.2.3
3.4.2.4

3.4.2.5

Security Requirements Review
Security Design Review

Security Specifications Review
Security Test Readiness Review
Security Test and Evaluation Review

SAFEGUARD VISIBILITY

4.1 The Needs of the Application Owner
4.2 The Needs of Systems Designers

4.3 The Needs of Systems Developers
4.4 The Needs of System Maintainers
4.5 The Needs of Computer Operators
4.6 The Needs of Data Users
4.7 The Needs of Data Providers

2-35
2-39
2-46
2-57
2-61
2-63
2-64
2-66

3-1

3-2
3-6

3-7
3-8

3-8

3-11
3-13

3-14

3-15

3-16

3-16
3-16
3-18
3-19
3-19

4-1

4-3

4-3

4--4

4-4
4-4

4-5

4-5

vl

TABLE OF CONTENTS
(CONCLUDED)

4.8
4.9
4.10

The Needs of Data Custodians

The Needs of Audltors

The Needs for Protection Asalnst Potential

Perpetrators

5. SECURITY SAFEGUARDS TN PACKAGED SOFTWARE

5.1 System Development Life Cycle Activities for

Packaged Software
5.2 Approaches for Addressing Security in Software

Packages
5.3 Security Assurance and Certification of Packased

Software

APPENDIX A: SAMPLE SECURITY TEST PLAN

APPENDIX B: REFERENCES

4-5
4-6

4"-6

5-1

5-2

5-6

5-8

A-1

5-1

vll

LIST OF ILLUSTRATIONS

2-1

2-2

2-3

3-1

3-2

3-3

3-4

3-5

ASSURING SECURITY THOUGH THE SOFTWARE

DEVELOPMENT LIFE CYCLE, AND SOFTWARE

QUALITY ASSURANCE

SURVEY OF SOFTWARE LIFE-CYCLE MODELS

THE SOFTWARE LIFECYCLE

SOFTWARE DEVELOPMENT LIPECYCLE SECURITY

AWARENESS

SENSITIVE APPLICATION SECURITY OBJECTIVES

OUTLINE OF INTEODUCTORY COt4_.RTS BY

MODERATOR AT FIEST THREAT SESSION

CEETIFICATION PROCESS

SAMPLE OUTLINE FOR A SECURITY EVALUATION

REPORT

RELATIONSHIPS BETWEEN ERROR CORRECTIONS
AND TIME

RELATIONSHIPS BETWEEN ERROR CORRECTIONS

AND POTENTIAL LOSS OF EXPLOITED ERROEED

SOFTWARESAFEGUARD

RELATIONSHIP OF SOFTWARE QUALITY FACTORS
TO THE SOFTWARE LIFE CYCLE

RELATIONSHIP OF FACTORS TO FILE-CYCLE

PHASES

SOFTWARE QUALITY ASSURANCE REVIEWS AND
BASELINES

SECURITY ASSURANCE REVIEWS AND BASELINES

CItZTER/A FOR ASSESSING SECURITY EVALUATION
REPORTS

1-5

2-4

2-5

2-11

2-18

2-23

2-38

2-65

3-4

3-5

3-9

3-10

3-12

3-17

3-20

vili

LIST OF ILLUSTRATIONS
(CONCLUDED)

FiEure Number

4-1

5-1

SECURITY SAFEGUARD VISIBILITY P,£QULqEMENTS

THE SOFTWARE LIFE CYCLE FOR PACKAGED

SOFTWARE 5-7

|

ix

NEXTPAEUI[

i. INTRODUCTION

Thq Office of Management and Budget (OMB) Circular A-?l,

Transmittal Memorandum (TM) No. I, dated 27 July 1978, requires

each agency to develop and implement a computer security

program. One of the specific requirements of 0MB Circular A-71,

TM No. I is that each agency must establish a management control

process to assure that appropriate administrative, physical and

technical safeguards are incorporated into all new computer

applications. The objective of the management control process is

to assure that, in addition to the security specifications

(and/or security safeguards) meeting all applicable Federal

policies, regulations and standards, the security provisions must

be adequate for the application.

NASA has made significant progress in the development and

implementation of an agency-wide computer security program in

compliance with 0MB Circular A-71, TM No. i. NASA Management

Instruction (NM£) 2410.7, "Assuring the Security and Integrity of

NASA Data Processing" has been issued. Guidance to the NASA

Centers for the development and implementation of NASA Center

Computer Security Programs has been incorporated in NASA Handbook

(NHB) 2410.1, "Computer Resources Management." Additionally,

NASA Headquarters and the Centers have published guidelines in

the areas of certification of existing applications software,

computer security training, contingency planning and risk

management. One of the remaining areas where guidance is

required is assuring that appropriate attention is given to

security safeguards in the design, development and opez_tlons

phases of the software llfe cycle for both internally developed

and purchased application _oftware.

i-I

I.I Back§round

Computer services must be protected not only from physical

threats such as damage and theft but also from internal

vulnerabllltles such as programming errors and misuse by

unauthorized users [1]. Inadequacies in the design and

operation of computer applications are a very frequent source

of harmful effects associated with _ _put_rs, and in most cases

the effort to improvf security should concentrate on the

applications systems. Security concerns should be an integral

part of the entire planning, development, and operation of a

computer applicatlon. Much of what needs to be done to improve

security is not clearly separable from what is needed to

improve the usefulness, reliability, effectiveness, and

efficiency of the computer application [2]. When system

developers, users and data processlngmana,_ment address the

security concerns as part of the software llfe cycle process,

there are a number of issues which should be reviewed.

1.2 Security Issues in the Software Development Life Cycle

The software development life cycle (SDLC) is a technique used

to divide the system development process into distinct phases

with formal managempnt contro] points placed between and during

each phase. The objectives in using an SDLC technique are

twofold: to provide a more structured managemen_ scheme for

controlling costs and schedules, and to ensure proper and

responsive communications channels among users, auditors,

hardware planning personnel, top management and the data

processing personnel responsible for developing the application

systems [3]. From a computer security perspective, the SDLC

technique, when combined with a software quality assurance

process, provides the structure to assure that rev." _w points

1-2

are established to permit comruter securitj management

personnel to review a_ approve the design specifications and

the security tests as required by O_B Circular A-7!, TM No. 1

(rlgure i-i), While complying with 0MB policy is an Important

consideration, there are a number of other issues that h_ve not

been previously well-deflned that will ultimately dete_mlne

whether the mecurity safegu_ds incorporated i,_to applications

systems are operatlon_.lly effective. The issues that must bo

addressed during the planning, deelgn, development, testing,

integration, Implementatlo_ and operational stages of the

software llfe cycle are:

Is review and approval of security specifications and

system tests sufficient ro ensure that the safeguards

ar_ adequate and approprtate_ If not, what other
reviews and/or appzovals are necessary and where in the

SDLC should they be accomplished?

• What system develcpment life cycle and/or software

qual_y assurance actlvltles are required to ensure the

qual_y of application system security safeguards7

How visible should safeguard_ be in the application

code and the documentation? To the user, the

developer, the maintainers, auditors and potential

perpetrator?

NASA, llke most organizations, does not rely solely upon

internally or contractor-developed applications. A significant

amount of applicatlons software _ acquired commercially in

packaged form. Adaptations must be made to the system

development llfe cycle to facilitate packaged software. From a

security vlewpolnt, there is concern about how NASA can ensure

that packaged software includes the security safeguards that

are appropriate and adequate for the applications. This area

of packaged software suggests that there is an additional issue

that must be addressed:

1-3

PAEII.WK

SOFTWARE DEVELOPMENT
LIFECYCLE

\

\

\

DEVELOPIdENTP_ASE

DE_GN " PI_RAMMINO

In'AGE ! .IrrAQE

Specif_.i_ -- og_ut_ Mw_i

-- _ _lcificilllOnl -- _ Ulllntot_#_¢O

- _ BmoSooclflcaalms Manual

-- P_ommmi_

Tosl _

- Security OoCgn : -- Secumy Progmnml_g

8T&E_m

Rover - Urdt

• CdtP.,i Deelg_ Rev_o_ - Idodule

• AIIocM_I Basollne • D_oc)_ent•l Bmoilne

• _,_¢url_ S_lflc_t_e • _h_ud_ Tut Rudl_

NCUAITY S_OURITYTESTi
• _EClFICATION$ EVAI.UAI10N.hi.AN

APPIIOVAL APPROVAL

TE.qT
SI"AQ£

-- TomAn_s Report

-- _ecudty Test &

Evld_mtlo_ Report

• Fu_ctlO_¢ Co_flOuration

• _ Co_flgunmc_

k_Nl-1

• _ Qu•llf_cldlon

• Pw(kct _l_e

• Secu,lty Test &

SECURITY_MFE_UAR
CERTIFICATION

EVELOPMENT
-YCLE

i

"r PHASE

PItOORAMMING
STAGE

Umrs M_u_

ONnI_s Mm'_

P_rtm Mlinterdf,_
Mmu_

P_r_nming

l

-SEud_ Progrl_mlno
DQcumont_to_

TEST
STAGE

OPERATIONSPHASE

- Test AnJy_z Report

-- Socudty T_ &
Evldumlon

IMPLEMENTATION
STAGE

-. Deta Control

- Employment Pmctlcm

MAINTENANCE
STAGE

- P_gm_ming PmctlcN

T_t Re_incu Review
Unit
Module
Interflce

-- S_dern

[_,e_tal B_:mr,

• _ud_ T_tReadin4NIs
Rwtm

SECURITYTEST&
EYAUJA110_PLAN

APPROVAL

• Functio_l Co_toundlon
k_llt4

• _ ConflOUrUlon
AudlH

• Forn_ Qualification
Rv. 1

• _ BaNIIne

• Secudty Tut &
Evllulllo_ I:k_dew

SECURrrYSAFEGUARD
CER11RCAT_ON

-- S_udP/Training

- Security V_mce
Anal•

-- Sol_w_l & HIIdwlM_

Conflguradlo_Control

-- Contlng•ncy Planning

• Functtomd Co_fl0urltlon
kzdit-2

• Phy_icat ConfiOUraUon
Audit-2

• Fo_ll Qualificldlon
Rv, 2

• Operational BMellne

B_GIC
SOFTWARE
LIFECYCLE

SECURITY
LIFECYCLE

SOFTWARE
QUALITY
ASSURANCE
_IVI11E$

SECURITY
ASSURANCE
ACTIVrnES

S[CUNTY
APPROVALS

FIGURE 1-I
ASSURING SECURITY

THROUGH THE SOFTWARE

DEVELOPMENT LIFECYCLE, AND
SOFTWARE QUALITY ASSURANCE

1-5

NEXTPAGEBLANK

• What activities are required to ensure the Inclusion,

adequacy and appropriateness of security safeguards in
purchased/leased software packages7

1.2.1 Issue #1--Sufficiency of Review and Approval of

Security Specifications and Systems Tests

This issue focuses on the need or desirability of security

review points beyond or in addition to those required in

current OMB policy. Currently, OMB A-71, TM No. 1 requires

that security specifications should be approved prior to

programming and that system tests be approved prior to using

the system operationally. The concern associated with this

issue is that the system development llfe cycle approach

includes a number of activities that are accomplished before

the generation of specifications that ha_e _irect bearing on

the ultimate adequacy, appropriateness and effectiveness of

security safeguards The question could also be posed as to

whether the review and approval of specification should be

accomplished at th_ preliminary system specifications level or

at the detailed (program) specifications level. Some facets of

this issue are founded in the variety of terms and SDLC phases

used throughout the data processing industry as a whole.

Section 2 of this document discusses the SDLC activities, the

activities associated with the SDLC that pertain specifically

to thp area of security safeguards and the requirements for

review of security concerns throughout the SDLC.

1.2.2 Issue #2--What Activities Are Required To Assure the

Quality of Application System Security Safeguards7

This issue focuses on the concern that security safeguards,

sometimes referred to as internal controls, are most often

judged or evaluated in terms of effectiveness, adequacy or

appropriateness. The concern surrounding this Issue is that

unless the security safeguards that are resident in

applications softvare code are developed with quality as a

developmental criteria, they may have flaws that will allow the

safeguards to be bypassed or penetrated. Therefore, ,he cost

of loss that may be incurred from exploitatlon of a fiawed

safeguard will not only increase the cost to fix the flawed

software, but will probably exceed the cost to fix the flaw.

The cost to fix a software flaw has been well documented by

G.H. Myers and is estimated to be as much as two-and-one-half

times more costly to repair in the design, developmeut/test

phase and 36 times more courtly in the integration phase than if

found in the requirpments phase of the SDLC [4].

Section 3 of this document will address the areas of how

quality software is defined and achieved and how the concept of

quality is applied to the case of security safeguards.

1.2.3 Issue #3--How Visible Should Safesuards be in the

Application Code and Documentation?

This issue focuses on the requirements by various populations

(e.g., users, auditors, programmers, penetrators) to be able to

have access to the security safeguards as they appear in the

software code, both within the computer and in lis:_nga, and in

the various pieces of documentation. The concern is that in

some cases security safeguards need to be transparent to

certain populations so that performance and human engineering

attributes are not unnecessarily constrained. At the same

time, certain populations require relatively unconstrained or

unencumbered access to the safeguards to ensure that the

safeguards can be tested, reviewed, maintained, and audited.

i-8

Section 4 of this document provides a dlscuasion of the

requlrements of the various contending populations and the

alternatives available for providing the level of vls_billty

that will meet moat of the requirements of the population.

1.2.4 Iss,:e #4--Security Safeguards in Packaged Software

This issue focuses on the concern that purchased/leased

software packages may not provide, or have sufficient

flexibility to prov de, security safeguards to meet the

security requirements of NASA applications, There is also a

concern that insufficient emphasis will be placed on the

planning, design, testing, and implementation of security

safeguards when acquisition of a software package is chosen in

lleu of In-house development.

Section 5 of this document provides a discussion of the

modifications that should be made to classic system development

llfe cycle and security activities when addretslng the area of

security safeguards in software packages.

I-9

2. THE SOFTWARE DEVELOPMENT LIFE CYCLE AND SECURITY

Uhile it is common practice for systems developers to think of

system functionality first and to delay security concerns until

later, many opportunities to include effective controls are lost

if not considered early [2]. To assure that system developers

consider security throughout the software development life cycle

(SDLC), OMB A-71, TM No. i requires the establishment of a

management control process to assure that appropriate and

adequate controls are incorporated into all applications.

2.1 OMB Circular A-71, Transmittal Memorandum No. 1

Requirements for Applications Software Security

OMB Circular A-71, TM No. I states that the head of each

executive branch department and agency is responsible for

assuring an adequate level of security for all agency data

whether processed in-house or commercially. This includes

responsibility for the establishment of physlca],

administrative, and technical safeguards required to adeql_tely

protect personal, proprietary or other sensitive data not

subject to national security regulations, as well as national

security data. It also includes responsibility for assuring

that automated processes operate effectively and accurately.

...In consideration of problems which have been identified in

relation to existing practices, each agency's computer security

program shall at a minimum: ...Establish a mana_ ment control

process to assure that appropriate administrative, physical and

technical safeguards are incorporated into all new computer

applications and slgnlflcant modifications to exlstlng computer

applications. This control process should evaluate the

_nsitivity of each application. For sensitive applications,

parL:cularly those which process sensitive data or which

2-I

have a high potential for loss, such as automated declslonmaklng

systems, specific controls should, at a minimum, include

reponslbllities for: (I) Defining and approving security

specifications prior to programming the applications or

changes. The views and recommendations of the computer user

organization, the computer installation and the individual

responsible for security of the computer installation shall be

sought and considered pr!or to the approval of the security

specifications for the application. (2) Conducting and

approving design reviews and application systems tests prior to

using the systems operationally. The objective of the design

reviews shoLld be to ascertain that the proposed design meets

the approved security specifications. The objective of the

system tests should be to verify that the planned

administrative, physical and technical security requirements are

operationally adequate prior to use of the system. The results

of the des_6n review and system test shall be fully documented

and maintained as part of the official records of the agency.

Upon completion of the system test, an official of the agency

shall certify that the system meets the documented a_d approved

security specifications, meets all applicable Federal policies,

regulations and standards, and that the results of the test

demonstrate that the security provisions are adequate for the

application.

While the terminology used within OMB Circular A-71, TM No. 1 is

not consistent with respect to the terms requirements, design

and specifications, it is clear that the intent of the overall

requirement for a management control process for the security of

computer applications software is directed at ensuring that

steps are taken to include security concerns and safeguards as

an intezral, albeit identifiable, part of the software

development life cycle process.

2-2

2.2 The Software Dcvelopment Life Cycle

As noted previously, the software development life cycle (SDLC)

is a technique used to divide the system development process

into distinct phases. Figure 2-1 shows some 15 different

software llfe cycle models. None of these models uses exactly

the seme teralnology for all phases in the cycle. However it Is

important to note ...the management structure represented by the

models is a proven method for enabling a project manager to:

(I) estimate the cost/tlme to couplete a system or software

project; (2) make use of existing industry and government

standards and guldellnes; (3) assess the progress of a project

at discrete points in the llfe cycle by conducting _ormal

reviews and audlts; aud, (4) control system development by

requiring go/no-go declslon points throughout the llfe cycle [5].

Figure 2-2 presents a generic llfe cycle which is based upon the

model presented in the National Bureau of Standards PIPS PUBs 38

and 64 [6,7]. The basic software llfe cycle, as depicted,

Identifies three major phases: initiation, development and

operation. The development phase is divided into four stages:

definition, design , programming and test. For the purpose of

this document_ the operations phase has been divided into two

stages: Implementation and maintenance.

2.2.1 The Inltlatlon Phase

During the Initiation Phase, the objectives and general

definitions of the requirements are established. First, there

is an initial user definition activity. During thls activity

there Is a determination of what's currently being done; what

needs to be done; understanding the problem; de_Inlug of the

2-3

-i i-i j ie.

I.__ '

_ !

i _ _. _.,_ _
pA

C{I}

]!
°i+

M

J+ JiJ

+ • !

t-
@

- +_+ +ii _.

i

<.

ID

u

2,5

scope, objectives and operating environment; definition of

functional, performance, and methodological requirements; and,

acceptance criteria.

The second activity conducted dt_rlng the Initiation Phase is

evaluation and inltlatlon of necessary documents to formally

commence the soltware development project. This activity

Includes performing a comprehensive study of technical,

operational and ecoLomic feasibility; performance of a

cost/benefit analysis; analysis of general design approaches,

and generating a development plan.

Documentation produced during the Initiation Phase requires user

involvement to define the project and its worth. Typically, a

Project Request Document is developed as a means for the user

organization to request the development, procurement or

modification of software or other ADP-related services. It

serves as the initiating document in the software llfe cycle,

and provides a basis for communicating with the requesting

organization to further analyze requirements and assess

impacts. The second document produced %_ usually the

Feasibility Study Document. The purpose of this document is to

provide: (1) an analysis of the objectives, requirements and

system concepts; (2) an evaluation of alternative approaches for

reasonably achieving the objectives; and (3) identification of a

proposed approach. The third document, Cost/Beneflt Analysis

provides managers, users, designers and auditors with adequate

cost and benefit information to analyze and evaluate alternative

approaches.

All documentation is widely reviewed and is followed by a

management decision of whether to continue on to the

2-6

Definition Stage. For external procurements, a Request for

Proposal (RFP) is issued, proposals are evaluated and a contract

is awarded.

2.2.2 The Development Phase

During the Development Phase, the requirements for software are

det_rmined and the software is then defined, specified,

programmed and tested. The Development Phase is broken down

into four stages: Definltlcn, Design, Programming and Test.

2.2.2.1 The Definition Stage

The activities during the Definition Stage include: translation

of the user requirements into detailed function requirements and

a functional architecture defining the operating environment,

functional modules, inputs, outputs, processing requirements and

system performance requirements (as needed to meet user

performance requirements); definition of data requirements;

completion of a general top-level design; definition of

functional interfaces (man/machlne, system/system,

functlon/function); identlflcation of required equipment; and,

planning for development activities. Documents typically

produced during the Definition Stage include the Functional

Requirements Document and the Data Requirements Document.

2.2.2.2 The Design Stage

During the Design Stage, the Systems and Program Specifications

are developed. Activities at this point include: designing the

system to meet functional requirements; dividing functional

modules into program modules identifying the inputs, processing

2-7

and outputs of each; definition of the control and data

structure8 and protocols; and, specification of _nterfaces in

detail. Documents typically produced duriug this stage i_clude

the System/Subsystem Specifications, Program _eclftca_ions,

Data Base Specifications and the Test Plan.

2.2.2.3 The Prosrammln_ Stage

During the Programming Stage, the software is coded and

debugged. Activities may include obtaining of the required

hardware; writing, testing and debugging of software programs;

preparation of manuals; and, completion of test procedures.

Documentation typically produced during the Programming Stage

includes the Users Manual, Operations Manual, Program

Maintenance Manual and the Test Plan.

2.2.2.4 The Test Sta_e

During the Test Stage the software is tested and the related

documentation is reviewed. The software and documentation are

evaluated in terms of readiness for implementation. Activities

include: performance of integration and acceptance testing;

training of users and operators; installation in the operational

environment; data base conversion; and testing Ir the

operational environment. Documentation produced during this

stage is the Test Analysis Report.

2.2.3 The Operations Phase

During the Operations Phase, software is maintained and etthanced

as additional requirements are identified. The Operations Phase

can be viewed as two distinct stages: Implementation and

Malnte_ance.

2-S

and efficiency of computer applications [2]. While security

concerns should be integrated in the llfe cycle of a computer

application, the steps taken to ensure the appropriateness,

adequacy and reasonableness of security saleguards should be

separately idet_Ifiable actlvltle• within each •tags or phase

of the SDLC.

2.3.,1 Security Activities

System planners, developers and user• should accomplish a

serle• of •ecurlty-related action• throughout the SDLC. While

the order in which the actions should be accomplished 18

presented sequentially, it should be recognized that there will

be much interaction between a particular step and the preceding

steps. The process for incorporating security safeguards in an

application is not substantially different from the SDLC

activities identified in Section 2.2. It should also be noted

that if during development, any change occurs in a software

requirement or specification, the change must be reviewed to

determine if coincidental changes ate required in the •ecurlty

requirements or specifications.

The security activities (Figure 2-3) tc be completed throughout

the SDI,C are:

• Determine Sensitivity of Data/Appllcation

• Determine the Security Objective(s)

• Assess the Security Risks

• Conduct a Security Feasibility Study

• Define the Security Requirements

• Develop the Security Test Plan

2-I0

+4_Cllvllllll

DQtenrt_ttle

Senslt ivlty Of
OllllllApphcllton

i

Determine J

S41¢unty

Oblecllv_s)

I
Alll@ell

S@CUrtly Rillm l

I

ConOucl J

_Icurily

Fe_iblllty SIuCIy

I

l_hne $4_ urlly 1
ReQuirllmenll

I

Develop I
S41curlIy
Test PI_n

i

D41sOgn S41¢k+rit y I
SPeciflcetlons

I

Develop I

Security Test
Procedures

I

Write S4_urit y J

Relevlnt
Code

I

Document J

Security
Safeguards

!

ConductTestSeCuritYend IE¥elulltion

!

Write Sec urrt y]
Test Report

I
PreDare Security

Cert +licahon

Report

Ac coml,,h sh_ by

Uelrs

Apphcltlon/OPI CSO

Ulenl

AppI*CIIIIOnlDPI CSO

Ueer

System PlennenB
AOpllcet _on/OPI C_*O

UNr

System Pl_ners
Ap01icetlo_/OPl

Ullr

System Pllnnenl

Approve_ by Appllcett0n CSO

QA
_drt

IV&V

(Reviewed/Al>pn:_lKI by ADOliCItIOn CSO)

Syst ,Ira Dex_llott)e tl

QA

Audit
IV&V

(Review(KI/Approve:l by Applica:ion CSO)

Prog r_nmers

Prog rammer

System Oeveloper

{Revfewed by Appi*cltlon/DPl CSO)

_V&V

QA
Aud*t

IV&V
Q,A

Audit

System [_Dvelo per
(Certification Issued by Apphcatlon CSO+

FIGURE 2-3

SOFTWARE DEVELOPMENT LIFECYCLE SECURITY ACTIVITIES

:/-11

• Design Security Specifications

• Develop the Security Test Procedures

• Write Security Relevant Code

• Document Security Safeguards

• Conduct Security Test & Evaluation

• Write Security Test Analysis Report

• Prepare Security Certification Report

Much of the information provided in tbe description of the

security activities is presen.ed In PIPS PUB 73 [2]. The

information is incorporated herein to provide the reader with a

complete dlscusslcn.

2.3.1.1 Determine the Sensitivity of Data/Appllcatlon

The degree of sensitivity of an application system depends upon

the data it will process and/or the types of functions to be

accomplished by the software. For example, data may be

personal in nature, represent valuable tangible assets such as

hlgh-dollar value inventory or represent real dollars.

Application processes which perform critical operations may

include formulas or algorithms that must always be executed

exactly the same, such as engineering calculations or on-board

software for a space vehicle.

FIPS PUB 73, Section 2.3, provides categories of sensitive

systems with some examples of the types of applications that

would fall under each of the categories. The categories and

examples are:

Applications Providing General l>rocessln_ Support - The

primary concern is for accidents, errors and

ommlssions. Health, safety, welfare and lives may

2-12

s

depend on the correctness of output from th<_se

applications. Thus Cats integrity, including integrity
of the software, is critical.

- Engineering calculations used in aircraft design

- Query systems that support health care declslonmaklug

- Automated wind tunnel control systems

- Simulation of the dispersion of toxic substances

Funds Disbursement t Accounting, Asset Management
Systems - These systems frequently involve personal or

other confidential data. In these applications,

deliberate and accidental acts are a major concern.

Data integrity is the major objective. Data

confidentiality may also be required.

- Payroll

- Financial accounting

- Procurement support

- Equipment inventory control

• General-Purpose Information Systems - The simultaneous

use by different user populations makes data

confidentiality crlt_cal as well as data integrity.

_te generality of such systems and their associated

security requirements also make it more difficult tc

design effective securlty controls.

- Generalized data management systems

- Centralized management information systems

Automated Decislonmaklng Systems - Manual review is

more dlfficult, so that errors made by the automated

systems are less likely to be detected before they lead

to serious harm. The major objective is rigorous data

integrity.

- Fully automated funds disbursement and accounting

systems

- Automated inventory reordering

- Automated scheduling for maintenance

2-13

s Real-Time Cont I Systems - These systems have all the
security conce_ of auto_sted declslonmaking systems
plus a rlgcrous requirement for constant availability

and very rapid response times. Basic controls plus
automated fault detection, backup, and recovery in

conjunction with redundant hardware support may be

required.

- Alr traffic control

- NASA mission control

- Rapid transit system control

- Automated production control

Systems Affectln i National Securlt 7 or Well-Belng -
These systems must be protected against hostile acts by

unauthorized persons who have conslderable resources.

Data integrity, confldentlallty, and ADP availability

are all required plus techniques for formal development

and verification of controls in operating systems as

well as application systems.

- Military command and control

- Management of multilevel classified information

- Integrated electronic funds transfer

- Nuclear material control and accountability

Additional guidance on determining the sensitivity of the

data/appllcatlon can be found in NASA Handbook (NHB) 2410.1

[i0]. For the purposes of the NASA Computer Security Program,

a sensitive application is defined as the use of a computer

system for processing classified, proprietary, dollar

sensitive, time sensitive, or Privacy Act data. All other

computer system use, such as that for scientific, technical,

research, or development activity, may be considered as a

nonsensitlve application; however, this does not preclude such

uses as being designated a sensitive application if this will

provide necessary and useful controls. Designation of a test

2-14

and mission control application as a sensitive appllcatlon is

within the prerogatlve of responsible personnel. For test and

mission control applications, it is recommended that security

measures be provided for as an element of mission or test

plans. This will allow any necessary security measures to be

tailored to specific test and mission needs in a manner that

provides a sound balance between requirements for controls and

for operational flexibility.

To assist In decerulnlng whether an application nay be

sensitive, NHB 2410.1 provides the following guidance. First,

careful exercise of Judgement is required in evaluating the

sensitivity of applications. In those instances where it is

not clear that an application Is sensitive, it is necessary to

weigh the intangible costs of potential loss against the cost

to protect the application If it is categorized as sensitive.

This type of cost-_eneflt analysis is especially critical in

evaluating research, development, test. snd mission control

applications. The possibility that applications are sensitive

only under certain conditions should not be overlooked. For

example, It could be useful to categorize unique mission

control applications as being sensitive only during _ specific

period of the mission.

Essentially, the objective of this step is to determine whether

or not the application or the data is sensitive. If the data

or application is sensitive, the rationale should be

documented. When reviewing the data, one should attempt to

Aetermtne the potential gain to persons fzom unauthorized

access to or use of the data or the application process. This

step should be accomplished by the owner or intended user in

concert with the application and/or DPI CSO.

2-15

!

If the application is determined to be sensitive, the next step

in the process is to determine the security objective or

objectives.

2.3.1.2 Determine The Securlt F 0bJective(s)

There are two types of events that can have unwanted or

undesirable effects on sensitive data or applications;

adve_ _nt (deliberate) or inadvertent (accidental). The

advertent or inadvertent events may result in the modification,

destruction, or disclosure of data or a)_lications software

programs, or the unavailability of computing resources. A

useful approach for assuring that appropriate and adequate

safeguards are incorporated in sensitive applications is to

establish security objectives that, if achieved, will

reasonably mitigate advertent or inadvertent events. Genera]ly

speaking, five security objectives should satisfy all types of

events and effects: data integrity, application integrity,

data confidentiality, application confidentiality and ADP

availability.

Data Intesrity - The state that exists when
computerized data is the same as that in the source

documents or has been correctly computed from source

data and has not been exposed to accidental or

malicious alteration or destruction [2].

• Applications Integrity - The state that exists when the
source and object code are the same as originally

developed and certified/accredited or, have been
modified and tested in accordance with established

standards and procedures and recertified/reaccredited,

and have not been exposed to accidental or malicious
alteration or destruction.

Data Confidentiality - The state that exists when data
is held in confidence and is protected from
unauthorized disclosure [2].

2-16

• Application Confidentiality - The state that exlata
when application source and object code and

documentation is held in confidence and is protected
from unauthorized disclosure.

ADP Availabllit_ - The state that exists when required

ADP servlces can be obtained _Ithln an acceptable
period of time [2].

Plgure 2-4 provides a 8ulde for determining sensitive

appllcatlon security objectives. First, determine the category

of sensitive application. Second, refer to Figure 2-4 and

determine the posslble securlty objective that may have to be

achieved. It should be noted that this Is a prellmlnary

determlnatlon. The assessment of risks and security

_easlbillty study may surface concorns or limltatlons that

would requlre a modification of the security objectives.

_lls step should be accomplished by the owner or intended user

In concert with the application and/or DPI CSO.

2.3.1.3 Assess the Security Risks

The types of controls that will ultimately be incorporated into

an application system should be determined based upon the

potential loss or harm that could be suffered if the data or

the appllcatlon were modified, destroyed or disclosed or is

caused to become unavailable due unauthorized or undesirable

events. FIPS PUB 102 [8] provides an introductory discussion

of the usefulness of risk analysis for assessing the risks to a

new application.

The primary purpose of rlsk analysis is to understand

the security problem by identifying security risks,

determining their magnitude, and identifying areas

where safeguards or controls are needed. It can also

2-17

2-18

be used to determine how many resources to budget for

security and, with user inputs and pol_cy

requlrements, can provide the basis fcr choosing

system security requirements.

Rlsk analysis can also be useful in _'alldating

requirements. If requirements are deflned to the

functional safeguards level, risk analysis can be

used to determine whether the protection embodied in

the controls reduces expected loss to _n acceptable
level at acceptance cost.

In the initial assessment of ciak, the concern is for the

impact and frequency of major failures. The impact of r_Jor

failures can be described In any convenient terms--dollar value

of loss, extent of inconvenience or hardship, llves lost or

degree of dis_ptior, to the national security or a_ncy mission.

The impact of at least the following failures should be

assessed for each major body of information that is to be

processed by the proposed system [2].

s Inaccurate Data - Data (programs) could be corrupted

with errors, but the system continues to functlonwhile

producing erroneous outputs. Estimate the potential

impact of erroneous actions that might result assuming

only that the output of the ADP system is not so

obviously out of llne with reality that the errors
would be noticed. Consider both the impact of a few

very serious errors and the cumulative effect of many
small errors.

Falslfled Data - An individual could falslfy data in

order to gain some advantage. The falsifications may

be limited only by the fact that they are subtle enough
so they are not detected manually. Estimate the total

impact that could occur over an extended period of time.

• Disclosed Data - Sensitive data in the system becomes
available publicly or to certain individuals. The

unauthorized disclosure of data is not necessarily
discovered.

2-19

Lost Data or Application Software Code or
Documentation - Data, source co_e, object code or

documentation are destroyed or corrupted. Backup

versions are nonexistent or not usable, and the data

must be reconstructed manually or software code or

documentation mvst be rewritten. Estimate the impact

of losing the data, source code, object code or
documentation. If manual reconstruction is obviously

not feasible _nd if backup in depth is anticipated,

estimate the impact of using old version, inaccuracies,

and the temporary unavailability that would result

while recovering from an old copy on the assumption

that all current or recent backup copies have been

destroyed.

Unavailable Data Services - Estimate the impact if the

computer hardware or related equipment in the computer

facility (DPI) is disabled and the system Is not

available until it can be brought up in another

facillty.

An estimate of the impact of a major security failure is not

particularly meaningful without some estimate of how frequently

it might occur_ Unfortunately, during the initial planning for

am application system, it is difficult, if not impossible, to

estimate the frequency of a major failure by evaluating the

controls in place. However, it is possible to develop rough

estimates based upon experience with manual system activities

and by looking at the experience of failures or disruptions

with similar types of systems. FIPS PUB v3 [2] _rovldes the

following guidance:

If the proposed system is generally comparable to

other computer applications, then a major security
failure of the sort described above can be estimated

to occur once in a hundred years. This simple

estimate is based on the following llne of reasoning:

Available security controls (if they are properly

managed) can prevent major security failures from

reoccurrlng as frequently as once every 10 years.
On the other hand, any ADP system has several

2-20

vulnerabllltles against which there is little

defense; most _ystems can be manipulated by any

one of several individuals who are in a position

of trust--proL_ammers, those responsible for

security, the computer operators, and others.

There _re enough instances of major security

failures In computer applications so that an

expected frequency of once in a thousand years is

very optimistic. The estimate of once in a

hundred years is only intended to be accurate

within an order of magnitude.

An alternate approach for estimating frequency is to use a low,

medium or high frequency rather than orders of magnitude. This

approach _en used as part of the Threat Team Analysis should

prov_e sufficie_ data to provide an assessment of the impact

of major failures.

A threat team is composed of key employees within an

organization who meet as a task force to search for threats and

vulnerabilities in a system and who create possible scenarios

for attacking the system. Use of such teams is based on the

premise that people in the best position to discover how to

beat the system are those who work with it every day. The

objective is _o capitalize on their knowledge. Threat analysis

unlocks this potential through the use of a moderator familiar

with computer abuse methods. The threat sessions seek a

symbiosis between the moderator's general knowledge of typical

schemes and the partlcipant_L' specific knowledge of data

processing operations and functional experience with the system

under evaluation [1]. The threat team/analysis approach has

been used successfully in NASA in the evaluation/certiflcation

of existing sensitive systems [12].

Actual threat scenario development is accomplished through a

series, usually two, informal team meetings. The first meeting

2-21

should be scheduled for two to two and one-half }_ours. The

second meeting should last for one to two hours. At the

beginning of the fJrst meeting of the team, a basic set of

ground rules and background information must be given. The key

elements of this background are summarized in Figure 2-5 [ii].

The moderator should give a brief summary of the statistics of

computer abuse, an outline of major schemes that have been

perpetrsted against similar types of applications and how they

were accomplished (modus operandi). The objective is to "prime

the pump" and stimulate the participants in developing possible

attacks against their system.

Flip charts should be used to record the following information:

• What is being attacked or compromised in the system?

• What vulnerabilltles would permit the attack to be

accomplished?

• What methods or procedures would be utilized?

• What types of safeguards or controls could be used to

prevent or reduce loss?

• What is the likelihood that this scenario will work

(hlgb, medium, low)?

• What is the impact on the system or organization if the

scenario were successfully executed (order of magnitude

dollars, delays, etc.)? Note: Quantification of

impact while desirable is not mandatory.

One alternate approach is for each threat team participant to

keep notes, summarize each scenario and turn the notes over to

the moderator for summarizing. The summary would be reviewed

by each team member at the second meeting. Another

alternative, is for the moderator, or other designated person,

2-22

1.

2.

3_

4.

5,

6.

7.

Introduction

Summary

Moderator's

Identification

Why this

Organizrtion?

Why these

Psrtlclpante?

Warning about

Secrecy

Schedule

The moderator is Introduced by a NASA

management cfflcisl. Participants have not

been informed in edvance of the subject of the

meeting. The offJclal tl,en leaves. The

meeting place should be around a large table in

a comfortable room, such as the board ruom

(thus giving status and approval to the

prcJect).

Tile objectives of the study are expla'ned; the

time frame and the responsibilities of the

participants are outl_n.d.

T_,e moderator should establish his position

within the group and define his own role, which

is that of a resource person. He knows a good

deal about computer abuse schemes in general,

but little about how this particular

organization operates.

Participants should be put at ease by explaining

that the _tudy Is simply a precautionary

excerlee; there is no reason to suspect an

on-golng perpetration.

Participants often wonder "why me" at

this stage. Again they must be reassured.

They have been selected for the study because

of their knowledge and experience; they are the

people who "really know how this business
works."

Participants are asked not to discuss the

subject or content of the meetings outside

the group.

The group will meet for several hours. A

transcript will be prepared and circulated for

changes. A second meeting of the same group is

scheduled in about one week, and a final report

cgrculated in the same fashion.

FIGURE 2-5
OUTLINE OF INTRODUCTORY COMMENTS

BY MODERATOR AT FIRST THREAT SESSION

2-23

to act as a recorder, to keep a "transcript" of the meeting.

The transcript would then be reviewed by each participant after

each meeting and flealized as a consensus record.

The second meeting should be conducted within one to two weeks

after the initial session. The initial session provides a

"sensitizing _"of the participants. Between the two sessions,

participants can review the proposed system with some new

perspectives and will usually provide additional scenarios. At

the conclusion of the second meeting, conclusioPs about the

scenarios should be agreed upon by all participants. A report

of the sessions should be written. The report should be

closely held, distribution extremely limited and copies

protected.

Upon completion of the threat scenario analysis exercise, it is

suggested that the security objectives be reviewed to determine

if the preliminary security objectives are still valid. When

reviewing the security objectives, the following items should

be considered to ensure that major concerns about security have

been addressed [2].

Source data accurac_ - Will the data supplied to the

ADP system be accurate and complete enough to support
its intended uses without harmful side effects?

User identity verification - _an users of the systems

be adequately identified and authenticated so they can

be held accountable for their actions?

• Restricted interfaces - Are the user interfaces to the

system sufficiently restricted so that adequate
security is feasible?

• Separation of duties - Do the boundaries between ADP
and related manual activities provide maximum

separation of duties and independent review?

2-24

• Facility security - Is the proposed processing facility
adequately s__cure?

The next step in the security llfe cycle is to determine the

types of controls that should be incorporated into the

applice ion that will achieve the security objectives.

2.3.1.4 Security Feasibility Study

The purpose of the security feasibility study is to determine

if controls are available to meet the security objectives, how

well they will satisfy the obJectlves_ whether the controls

should be preventice, detective or recuperative in nature and

what mix of administrative, physical and technical controls is

most feasible. Cost, performance degradation, and impact on

requirements for user friendliness should be considered. In

other words, what types of controls are appropriate for the

proposed application.

A key to the feasibility study is the use of an appropriate

methodology to analyze the proposed application to determine

what security controls are available and how well they meet the

security objectives. Brill, in "Building Controls lntc

Structured Systems" [13], divides applicatin controls into

three major classes: controls over inputs, controls over

processing and controls over output. Brill's methodology is

basud on a hierarchical approach that leads the user through a

tree structure to address a variety of control issues such as

input authorization, internal data movement, operator

intervention, and output distribution.

At this point in the llfe cycle with the determinatioD of

sensitivity completed, the identification of security

2-25

objectives, the assessement of risks and security feasibility

completed, definition of security requirements is the next step.

2.3.1.5 Define Security Re_ulrelents

Definition of security requirements takes place during the

definition stage of the development phase of the 8ysten

development llfe cycle. The term "requirements" can be used at

many different levels. The requirements defined at this point

should include everything that the users and other responsible

parties want to require of the application software. The

security requirements should be expressed in a way that permits

the software designers to choose the best way of implementlng

them. It should be remembered that security controls can be

enforced either by software or by physical or administrative

procedures. For example, data integrity can be checked by

human review or by automated bounds and conslztency checks.

When possible, it is recommended that controls be implemented

in software for the followin 8 reasons: once controls have been

automated, the continuing cost to enforce the controls is

usually lower than when enforced mlnually, and, automated

controls will be applied more consistently.

It should be noted that FIPS PUB 73 [2] indicates that the

documentation of security requirements constitutes the security

specification called for in OMB Circular A-71, Transmittal

Memorandum No. i, paragraph 4.c (I). Also, security

specifications may be incorporated into the functional

requirements document and the data requirements document as

called for in FIPS PUB 38 [6], or it may be an independent

document.

2-26

The first step in defining security requirements is to conduct

in awmlysls of the "current system" to identify and develop an

understanding of the principle functions and to identify

sources of input and the flow of data through the system. When

the current system is reasonably understood, the user and

system requirements should be documented. The sources of input

and the flow of data through the system are two of the most

important sources of data for defining security requirements.

Brill [13] indicates that systems analysts can use four

different sources to identify controls that belong in the new

system: stated user policy, unstated user pollcy, the current

system and external constraints.

Stated user pollcy--The best way to begin to

determine the controls needed in a system is to
ask the users about the need for controls. Users

have a genuine stake in the new system as well as

thorough knowledge of their own requirements.

Users should be asked how they handle errors in

the pr¢gent system, the kinds of errors or

problems they suspect they don't know about (that

Is, Those that are slipping through undetected).

Users should also be asked about laws or

regulations that affect the way system processes

must be done as well as questions about the value

and cri_Icallty of their data.

Unstated user policy--Users expect comprehensive

controls to be built into their system without

ever mentioning controls in discussions wlth the

analysis team. For example, the need to test

check digits on account numbers may never b:

stated because the present manu_l system may not

have facilities to permit it. But users may

assume that an automated system tests check digits

as P matter of course and that you don't need to

be told to build such tests into the system,

Systems plannsrs must learn the system--and

understand the problem--well enough to challenge

the unstated assumptions of the users and turn

unstated requirements into stated ones.

2-27

• The current systenr--New systems tend to do many of

the same thlugs as the systems they replace. Of

course, they-my do them dlfferently (via a

terminal, for example, rather tha_ through

batch-produced reports). So, while the specific

controls in the new system "my differ from those

in the old system, there are goID_ to be

overlaps. But, you have to look for them, and

have to recognize them as controls and to assess

their 3ultability for transplantation into the new

system.

External constralnts--Varlous laws and regulations

can dlrectly affect a system. (This area would

include agency policy for security, financial

accounting, etc.)

FIPS PUB 73 [2] sugEests that the following areas be addressed

when developing secu_'Ity requirements: identification and

definition of systems interfaces (to include responsibilities

associated with each interface and a separation of duties),

identification of the sensitive objects to be processed,

determination of error tolerances and definition of

availability requirements.

Identification and definition of systems

Interfaces--ldentlfy each Job function which is

related to the application system. Consider each

Job function as an interface to the application.

Define the nature of the Inter_ctlon between each

Job function and the system. Also identify and

define any interfaces to other auto-mted systems.

Include all Job functions (or other automated

systems) that are to be supported by this

system--even if the people performing those Jobs

only receive reports from it. Also include all

Job functiors (or other automated systems) tha_

supply information to the application system or

that support its operation. Be sure to include

critical Job functions such as: source data

collection, input preparation, data entry, output

dissemination, data base ada/nistratlon, system

security planning and control, internal audit,

2-28

application program maintenance, archival or

backup data storage , computer operation•, and

system programming.

Define the responsibilities of the individuals who

interact with the application system through each

defined interface. Identify the constraints on
the use of each interface that must be enforced if

security i• to he preserved. Consider the

likelihood of error• occurring in the use of the

interface and identify the consequences. Consider

the consequence• of deliberate misuse of the

interface. Identify the management and
administrative controls that will be available to

ensure that the interface i• used properly.

Examine interfaces to ensure that security

exposure will be minimized even if an interface is

misused. Ideally, any action that could result in

serious hara should be checked or approved from an
independent interface.

• Identification of sensitive objects to be

processed--Identlfy the objects to be

processed--include input data, stored data and

output data. Determine the sensitivity and asset

value of the data objects. Identify the

operations or functions that users will perform on
this data.

• Determination of error tolerances--Determlne the

application'• error tolerance by taking into

con•Ideratlon the expected reliability and

validity of the data and the intended objectives

of the application. For example, funds

disbursement or electronic funds transfer systems
may have a low tolerance for data error since such

errors directly translate into dollars. Real-tlme

control systems such as air traffic control have

virtually no margin for errc- since human lives

may be lost. Some management Informatlou systems,

particularly those used to predict future demands

and resource requirements, may not be as

susceptible to errors in data. However,

algorithms in the code may have less tolerance for

errors. The application's tolerance for error and

the requirements for maintain/ng error levels

within acceptable tolerance must be defined.

2-29

• Definition of availability requirements--Deterttne

the user tolerance for interruption of output data
and the potential harm that could be a result due

to non-availability of the application output.

The preceding discussion in tb!_ section has addressed the

collection and analysis of data t,mt precedes the actual

documentation of security requireuents. Requirements

should define what is required by the user not how it is

to be accomplished.

FIPS PUB 73 [2] describes some basic controls that can be

used to achieve security objectives. It is relevant at

this point in this discussion to summarize these basic

controls since the descriptions provided, wlth some

modification, can be used as security requirements. The

basic controls provided in FIPS PUB 73 are: data

validationj user _dentlty verification, authorization,

Journaling, variance detection, and encryption.

Data valldation--Invalld data umy lead to

erroneous outputs, can destroy the credibility of

the system_ demoralize those trying to use it,

cause excessive system meintenance costs, and, in

extreme cases, cause the system to become
unavallable or unusable.

Data validation involves the exaalnation of

computerized data to determine if it is accurate,

complete, consistent, unambiguous, and

reasonable. Direct evaJustion methods (discussed

below) are not able to find all errors. Data

integrity depends on the correctness and integrity

of all the activities by which the data is

collected and processed. Data validation is a

very basic control, but it should only be expected

to detect gross errors and it will not compensate

for poor control over other aspects of the

appllcatlon system. Data should be validated

2-30

during data collection and entry--prlor to its use

by the system; and, continuously, as new data is

generated or used during processing.

Data validation should be required durlng data

entry and during processing. Automated editing
and valldatlon should be used in both batch and

on-llne systems. In batch processing systems,

validation routines may run against input data

before it is processed. Alternate!yj valldatlon

can occur as each transaction is processed.

Transactions that contain errors should be

recorded on a file for correction at a later

time. 0n-llne systems can provide the da_a entry

personnel with Immedlate validation information so

detected errors can be corrected immediately.

During the definition stage the editing and

validation technique to be employed is not

specified, rather the requirement should state

that all data originating from hard copy should be

validated prior to the transaction beln@ entered

into the system.

For a batch system a typical requirem_T t statelent might read:

All source data will be keyed twice and automatically

compared with the transcribed source data prevfously

keyed.

For an on-llne system where transactions are entered zn

real-tlme_ a typical security requirement might read:

All keyed transactions (or transactions of a certain type)

will be visually verified prior to transa_sslon to the

systel.

Data may also be validated during processing. Moat of the

techniques that are approprlate to validation during data entry

may be appl!ed during processing. An example of a requirement

that related to validation during processing is:

2-31

Transaction with error• detected during the data

processing phase need to be controlled to ensure they are

corrected and reentered in a timely phase.

User identity verlfication--ldentlflcatlon occurs when

the user provides an identlfier-the name by which the

user i• known to the system. The user's identifier i•

unique, unlikely to change and need not be kept

secret. It i• used during processing fcr authorization

control•, variance detection and for other purpose such

a• accounting and billing. Verification occurs when

the individual passes some further test which "proves"

that the user is actually the per•on a••oclated with

the identifier. This i• also called user

authentication.

Example• of requirement• for user identification and/or

verification might be a• follow•:

For batch submission•, user• must be visually identified

by a control clerk and all Jobs logged.

For on-llne submission of transactions, all users must

have an individual identifier and password for initial

logging on.

Authorlzation--Once a user's identity has been

verified, the application may still need to check each
request for service to determine whether it is a

legitimate request by that user. Some users may be

authorized to perfo,rm some functions but not others and

to have access to perform some functions but not others
and to have access to some data but not to other data.

In some cases, the authorization decision may depend on
not only WHO is requesting what MODE OF ACCESS to which

OBJECT, but also on other easily testable conditions.

The time of day, the day of the week, previously

detected security variances, or other concurrent

activity might be used to affect the authorization
decision.

An example of this type of authorization when stated as a

security requirement might read:

2-32

The system must be able to restrict update access to

specific tile of the day and days of the week.

Journaling--Journals may be employed to log activities

or events external to the operational environment or

those internal to the application system. Journals of

external events in the operational environment can be
maintained manually while Journals used to record

activities internal to the application _dst be
automated. From a security standpoint, the ideal

Journal would include _ 100 percent recording of all

events relating to data, software, and system

resources. From a practical standpoint, such a Journal

may, in some systems, be ol_t of the question since the

overhead to record all events would reduce system

response to less than acceptable levels of

performance. Requirements for Journaling should be
carefully considered, reduced to formal statements and

be stated in positive terms. Items that should be
Included are:

- definitions of what kind of data is to be protected

and how the system will recognize such data,

- the deers3 of accuracy that is necessary for various
types of data, and

the definition of who is authorized to access

protected data and how the system would recognize an
authorized user.

Examp.,-s of a security requirement for Jourualing are:

The system will log all accesses by payroll personnel to

any employee's payroll record. The system will log all

initial log-ons, final log-off at the end of the normal

work day and all log-ons and log-offs on weeken6s.

The system will log all opening and closings of the

payroll master file and payroll transaction up%ate files.

Variance detection--The objective of variance detection

is to allow management to detect and react to

departures from established rules and procedures that

it l_s determined may constitute hazards. Variance

detection acts as a strong deterrent to authorized

2-33

users abusing their privileges since they perceive the

risk of detection to be unacceptably high. Variance

detection is useful whenever it is not practical to

prevent the undesirable activity by_aas of an

authorization mechanism. In some cases, there may be

no way to determine in advance whether an action should

be prevented. _e mechanisms required to support
variance detection are related to mechanisms needed for

other purposes. Recovery, accounting, load-balanclng,

tuning and the ideutlflcatlon of recurring user

difficulties all require some of the same capabilities.

A security requlreme_ts for variance detection mlght read:

The system must be capable of providing post-processlng

analysis of all or selected activity initiated from a

given terminal or by a given employee.

The system must provide an interaction capability to

identify attempted accesses to restricted files by
unauthorized users.

The preceding are examples of static monitoring. Some

variances can and should be detected in real-tlme so that

responses can be immediate. An example of a dynamic monitoring

requirement might read:

The system must be capable of real-time display at a

designated console of the full interactive traffic of any
terminal or user.

m Encryptlon--The applications that are most likely to

need encrypt$on are those that transmit highly
confidential data across communication lines.

Applications that transmit financial transactions or

other critical data may also need encryption if some is

likely to derive enough benefit from modlfyln_ _he data

during transmission to compensate for the risk and cost

of the effort. Encryption of data in storage is an

alternative that may be more cost effective than other

storage securi_f controls--especially when appropriate

support for encryption is readily available.

2-34

A security requirement for encryption might resd:

All data transmitted between the hose computer and remote

site will be protected from unauthorized disclosure and
modification during transmission.

Following the definition of security requirements, two

activities ehould be initiated: development of the test plan

and the design of the security specifications. While they are

shown in Figure 2-3 as sequential events, they can be

accomplished in parallel since two different groups of people

are Involved.

2.3.1.6 Develop the Security Test Plan

Testing and evaluation attempts to demonstrate that a system is

reliable, meets specifications, and meets the requirements of

the user. Sorkowitz [14] provides the following comments on

testing:

The main problem in program testing becomes clear

when we try to define the word "testlnE." To many

programmers, testing is a process of proving that a

program is correct Ci.e., the program performs

according to specification). However, experience

leads us to the belief that there really is no

practlcal way to demonstrate that a program is

correct. The best we can say is that at some point

in time, there are no known errors. Myers [4] gives

a different definition of testing: "Testing is the

process of executing a program with the intention of

finding errors."

Carefu/ and thorough testing and evaluation can improve system

security by uncovering errors, omissions and other flabs in the

system's design and code [2]. From a security perspective, the

testing of security controls should focus on ensurin& that

2-35

security controls are invoked when required, tlmt they cannot

be easily bypassed, that they are audltable and that they are

appropriate in view of the sensitivity of the data or the

application.

The test plan for security should describe what i6 to be

tested, the testing schedule, resource requlrenents, testing

materials, requirements for test training, the location of the

test, the functional security requirements, the tests to be

performed on the software and their relationship to the

functional security requirements, the testing methodology, the

evaluation criteria, data reduction techniques and a

description of each test to be performed. The test plan format

provided in FIPS PUB 38 [6], with sllght modification, can be

used to develop the security test plan. A suggested test plan

format Is provided in Appendix A.

At this point In the system development life cycle, only

portions of the test plan can be deceloped. If the format at

Appendix A is utilized, the following sections can be generated

at thls time. Section I, General Information, can be

completed. In Section 2, Plan, the software description can be

written; tentative milestones can be developed; and,

prel_minary development of the testing subsection can be

started. One of the _rltlcal items in Section 2 is the area of

test training. Speci_ic_lly, the types of training for the

test team should be identllied as soon as possible. In

Section 3, under Specifications and Evaluation, the functional

security requirements and the security functions to be tested

can be identified. Additional portions of the test plan wlll

not be able to be developed untll such time as the

2-36

system/subsystemspeclflcations, program specifications, data

base specifications and security specifications have been

generated.

One of the ma_or objectives of the s_curlty test and evaluation

of an application under development is to provide some of the

data to suppurt the certificaclon of the security controls as

required by OMB Circular A-71, Transmittal Memorandum No. i.

FIPS PUB 102, Guideline for Computer Security Certification and

_ccreditatlon [8], describes how to establish and carry out a

certification and accreditation program for computer securlty_

FIPS PUB 102 also provides some guidance that Is useful in

developing security test plans. It should be noted that in the

NASA environment a different set of terminology is used _n the

area of certification and accreditation. In NASA, the term

avaluatlon is used to identify the technical evaluation of the

security of an application (synonymous with the FIPS PUB 102

term certification), and certification is used to identify the

official management authorization for operation of the

application (synonymous with the FIPS _UB 102 term

_ccredltatlon).

FIPS PUB 102 defines the certification (evaluation) process as

consisting of five activities: planning, data collection,

basic evaluation, detailed evaluation, and report of findings.

The process is summarized in Figure 2-6. The certification

(evaluation) process Js an iterative process. That is, based

on findings from each stage, previous states might have to be

reentered and work performed over. For example, basic

evaluation might identify a function chat is not included

within evaluation boundaries but is important for security.

This can re0uire revision of the bo,mdarles defined during

2-37

0 r..n I

_1

_-4 I
_ I I

I
I
I

I I

<

tn

-qF i

__.I

Z
0

H

#

Z
<

<

e'J
w
o
0

_,n,,
_la..
wZ
r,, 0

,-to
I,,i.
I,,.-
Ix
I.i.,I
0

2-38

planning, along with additional data collection. The work is

not sequential as suggested in the figure. Typically, most or

all stages are ongoing at the same time. The intent of the

figure is to show the shift in emphasis as work progresses.

It should be noted that basic evaluation or general evaluation

is the minimum necessary for certification (evaluation) to take

place. In general, basic evaluation suffices for most aspects

of an application under review. However, most certifications

(evaluation) also require detailed work in problem areas, and

therefore require detailed evaluation as well. (For NASA,

security te_ts are considered to be a detailed evaluation.)

Minimum products required for certification and accreditation

are a security evaluation report and an accreditation report.

2.3.1.7 Desl_n the Security Specifications

The design stage is the time to make detailed decisions about

how the security requirements wil] be implemented. There are

usually a variety of ways to achieve an adequate level of

security. In designing security controls, the age-old maxim of

"Keep It Simple" is most applicable. A primary source of

security problems is excessively complex design that cannot be

implemented easily or correctly, and cannot be maintained nor

audited. Lonsonsky [15] and Wong [16] suggest that, for any

sensitive applicstioD, a thorough risk analysis, including

safeguard selection, should be performed at the beginning of

the design phase to assure that appropriate cost-effective

controls are integral to the system's design. The guidance in

FIPS PUB 65 [17] can be tailored for a risk snalysis of an

application system design [2] FIPS PUB 73 [2] provides some

ideas that apply to the overall security design effort.

2-39

UnnecessaryProgramming. Terminals should be

interfaced with the application system so as to

mln_mlze the danger that users can get unneeded

programming capability. Users who can execute

their own programs usually have the potential to

bypass any security controls.

Restricted User Interfaces. User interfaces

should be tailored as specifically as possible to

fulfill the user's requirements. Unneeded

flexibility makes it more difficult to trein users

and to get them to accept the system. Flexibility

also hurts security. _le greatest danger occurs

•_hen users are given unnecessary access to a

general purpose programming language; ...Once the

user's needs are understood, interfaces should be

designed to meet these needs as simply as possible

with no unnecessary capabilities that complicate

things both for the users and for the security

analyst.

Human Engineering. To preserve security and

integrity, user interfaces must be designed so

they are easy to understand and use. This can

foresta_l many user errors, and it decreases the

chances that users will neglect or bypass controls

which they view as cumbersome and annoying.

• Shared Computer Facilities. It is easier to

protect the code and data of the application

system if it does not share compvter facilities

with other applications. It is especially useful

to exclude all program development activltles from

the machine that runs the appllcatlon-lncludlng

the development and maintenance of the

applicatlou's programs themselves.

• Isolation of Critical Code. The code and system

data that is critical to security should be well

identified so it can be more easily audited and

protected. When possible, security controls

should be isolsted in modules that have few

interactions with the rest of the application

software. This makes it easier to audit these

modules and protect them from unauthorized

2-40

m

modifications during operations. Sometimes

automated controls can be used to protect these
modules:

* Checksums of the object code can be used to try

to detect unauthorized changes.

* Hardware protection states or protection

do_ains can protect code and data critical to

cecurity.

If security-critical code always resides in a

fixed area of memory, then read-only memory can
be used.

Recent experimental !an_n_ages, called typ_ safe

Languages, may soon be available. Compilers

for these languages can protect modules and

their data from unexpected interactions with

other modules.

Identification and partial isolation of critical

code and data are reasonably easy; however,

rigorous isolation is more difficult than it

sounds. Without very careful planning, all system

code and data will end up being relevant to

security because errors or deliberate traps

elsewhere can still cause security failures. This

other software includes:

* The operating system and other software that

supports any of the se_-rlty functions.

All parts of the application system needed to

guarantee that the _ecurlty controls are

invoked at the appropriate time.

Compilers and other software used to develop

•nd maintain any securlty-relevant software.

When code relevant to security Is rigorously

i8olsted from the bulk of the software, it i8

called a secu=ity kernel. Security kernels that

protect data from unauthorized disclosure are

feasible, but they require specially designed

operating systems.

2-41

@ Backup and Recovery. Wlth appropriate contingency

planning, the services of a computer application
can usually be restored wlthln a few hour= after m

failure. If availability requirements are lore

rigorous than thatp then automatic backup and

recovery mechanisms say need to be included in the

application software.

• Use of Available Controls. The operat n8 system

and the facility management may already p, >vlde a

variety of coutrols such as:

* User identity verification.

* Authorization for a_cess to systea files.

* Journaling of operating system activities.

* Backup and recovery operations.

Whlle the application system usually needs to

supplement these controls, available controls

should be used to the fullest extent possible. In

too many cases, controls are needlessly

relmplemented because controls tb_t are available

are not understood or not utilized.

Since the security controls of an operating system

are not absolutely reliable, the application

system should use some data integrity checks to

try to Identify whether crltlcal data has been

altered; however, in general, there is no reason

to believe that controls ImpleQented in the

applicatlonwi!l be any more rellable than those

already provided hy an operating _ystem.

The purpose of She design stage is :o translate the security

functlonel requirements into security specifications that can

be used by programmers to develop the securlty-relevant code.

D_ceeman [18] offers the followlng comments on the purpose of

technical design.

2-42

...three basic purposes of d_slgn can be discerned...:

- discovery of problem structure;

- creation of the outlines (architecture, logical
structure) of a solution for the problem;

- review of the results to ascertain if they meet

the stated goals.

Once we understand the problem, the next major step

is to develop outlines of the solution. This is the

creative aspect of design in the strict sense of the

word, although developln 8 an accurate understanding

of the problem requires Just as much creativity in

many cases.

The major activity is the establishment of the

architecture of the system. That is, we engage in a

combination of spelling out, in general terms, how

the artifact will look to the user--the functions it

will perform--and how it will be built--the major

algorithms and data representations it will use.

Some parts of this proces_ of spelling out the

overall _tructure may require that we extend the

design to a very detailed level in order to determine

the feasibility of performing certain functions.

But, in general, we are establishing the major pieces

of the system, their relationships, interfaces to

other systems and the outside world, and carefully

sp_clfylng what must be done along with rough
indications of how it is to be done.

The third purpose of design is to review repeatedly

what has been done so far, to compare it to what is

desired, and thus to evaluate progress. Review takes

place at all atages of the development cycle, of

course, but it is most central to the design phase.

Review cf code production is intended to determine

that what has been ImpleQented is what was specified;

review of test re_Its is meant to confirm that a

sufficient set of tests has been run; r_vlew of

specifications seeks to deterLine if the loosely

stated requirements of the customer have been

captured in operational terms. Review at the design

phase, though, goes beyond Juet determining if

scmethin8 that _s been previously spelled out has

2-43

been done--it is an integral part of the process of

discovering the nature of the problem and the proper
structure of the solution.

Freeman goes on to describe the software lifecycle as

consisting of six stages: analysis, functional specification,

arahitectural deRign, detailed design, implementation and

evolution. Freeman's analysis ok _he development process,

particularly the architectural design and detailed design are

appropriate to understanding how to develop specifications for

security requirements.

...For each stage, we will list the primary inputs (I),

outputs (0), and major operations (OP)...

Architectural Desi_u

I=

O=

OP:

speclficatio_s, general context of desired system,

knowledge of similar systems

structural description of inside of system
(definition of modules and interfaces)

discovery of problem structure, identification of

major pieces of system, establishment of

relationships between parts, abstraction,

decomposition

Detailed Design

I:

O:

OP:

architectural description, programming environment
details

blueprints for programs

abstraction, elaboration, choice of alternatives

2-44

In developing security specifications, there should be s normal

evolution from architectural specifications to design

specifications. Whether there will be an explicit distinction

between archltectural-type specifications an, _ detailed

specifications will depend on each organization's or Center's

standards for software llfe cycle development. It should be

noted that the terms logical design and physical design, used

in some methodologies, correspond to SDLC architectural design

and detailed design, respectively.

In Section 2.3.1.5, examples of security requirements were

provided based on the basic controls described in FIPS PUB

73 [2]. The types of basic controls included: data

validation, user identity verification, authorization,

Journallng, variance detection, and encryption. The following

discussion will provide examples of specifications for some of

the security requirements previously discussed.

Requirement - All source data will be keyed twice

and automatically compared with the transcribed

source data previously keyed.

Specification - A second person will key the data

into a verifier. Only those fields containing

transaction code, employee name, SSN, and grade

will be verified. Any record containing a

discrepancy between the initial keying and the

verifying keying will be recorded on a discrepancy

file. The discrepancy file will be forwarded to

the input control group. Each record containing

an error will be visually compared to the original

source document and the input control group will

resolve any discrepancy. The corrected

transaction record will then be submitted input to

the system.

(The operations manual would indicate the record

positions of the fields to be verified and the

2-45

specific instructions for incorporating the
correct record/transactlon into the batchlng

process.)

$ Requirement - All keyed transactions (or

transaction of a certain type) will be visually

verified prior to transmission to the system.

• Specification - Data entry personnel will visually

verify that the transaction code is equal to a i,

2, or 3; the name fleld contains no arabic numeric

data (note romanic number such as I, If, III,

etc., are legal); the SSN fleld contains no alpha

or special characters, no blanks; and that the

grade _leld contains no alpha, special characters

or blanks; that grade field contaIDs only one of

the following: 01, 03, 04, 05, 07, 09, 10, U.

13, or 14.

If any field is not correct, the operator wi_

check the source document for the correct data.

If the source document is in error, the document

will be returned to the point of origination for
correction and resubmlsslon.

• Requirement - All data transmitted between the

host computer and remote site will be protected
from unauthorized disclosure and modification

during transmigslon.

Specification - All data will be encrypted using

the Data Encryptlon Standard as specified in FIPS
PUB 46.

After the security specifications have been developed and

approved, the development of test procedures can begin.

2.3.1.8 Develop Securlt Z Test Procedures

At this point in the llfe cycle, following the definition of

the sec_city specifications, Section 3 and 4 of the Security

Test Plan can be developed_ Using the test plan format at

2-46

Appendix A, the next step is to complete the sections dealing

with methods and constraints and evaluation.

The methodology should indicate whether static or dynamic

testing or both will be used, whether llve or test data and an

indication of the volume of data that is required to adequately

test the security controls. The method for recording test

results shc_uld be identified as well as any constraints that

may limit the scope of the test. Under the evaluation section,

the criteria for each type of test should be identified. Data

reduction methods should also be described.

FIPS PUB 73 [2] offers some guidance on static and dynamic

testing that is useful to this discussion of developing

test procedures.

Static Evaluation. These techniques, which involve

examination and analysis of the systems documentation and

code, represeut the most effective way to detect

deliberate traps or other unauthorized modifications.

However, due to the complexity of most systems and the

limitations of automated techniques, and tools, it is not

currently practical to analyze systems completely using

static evaluation methods. In addition, static evaluation

does not examine the system in a "llve" or operational

mode so that errors .n the execution environment are not

detected. Specific techniques and tools include:

Code Review. Portions of the source code are evaluated

to determine if they implement _he design

specifications and are free from errors. In most

cases, it will be impossible to review all of the

2-47

system's code. Generally, samples of code will be

revlewed--especlally critlcal modules or crltical

portions of the code. The code review can be done by

an internal test and evaluation team that is involved

in the system development or by an independent (third

pa_ty) team _ItLer lnternal or external to the

organization. Code review differs fcom peer review,

...in that the code review is performed by individuals

who were not involved with the design and programming

of the application.

Penetration Studies. A few individ,mls can be

challenged to find unknown weaknesses in the security

controls. Penetration studies to Identify prozra_rtng

errors can be expensive and are useful only if someone

believes that there are no remlnlng errors that can

affect security.

Source Code Analyzers. These software tools aid the

evaluation process by providing details about specific

characteristics of the source program.

Examples include:

cross reference listings are an aid to code

review and may be useful to identify "suspicious"

variables and source statement references.

the variables which can influence control flow

decisions can all be identified or variables

which could be read before any value has been

assigned to them can be identified.

2-48

Dynamic Testing. These tec,hniques involve e_.catiag the

application system, or portions of the system, Kith test

data and comparing the actual results with expected or

known results Dynamic testing is only practical for

selected test cases. Fundamental questions such as,

"Which test cases should be chosen?" and "How s any test

cases are enough?" must be answered. The answers to these

questions "epend upon the eystcm being tested ann upon the

experience of the test team.

The following tools can be used to aid the dynamic testing

process:

ProgranAnalyzers. A program analyzer is a computer

program that collects data about another program'A

operation while that program is executing. Program

analyzers can be particularly useful for evaluating how

thoroughly the test data has elercised the program

being tested. In addition, they can be used co

Identify extraneous code that might be an unauthorized

insertion.

Flaw Hypothesis Method. Security fl&ws can be

hypothesized based on analogous flaws found in other

systems and then tested for existence in this system.

This is an effective approach for selecting test cades

that are likely to find flaws.

The following excelpts for FIPS PUB %02 [8] on basic and

detailed evaluation provide guidance that should be useful in

developing test procedures.

2-49

._.The general distinction between basic and detailed

evaluation is that basle evaluation is primarily concerned

with the overall functlonal security posture, not with the

specific quality of individual controls Basic

evaluatio_ is also concer%ed with verifying that security

functions actually exlst and that the implementation

method is of sufficient quality to be relied upon.

Detailed evaluation, on the other hand, is concerned with

whether security functions work properly, satisfy

performance criteria, and acceptably resist penetration.

_,ere are four tasks in basic evaluation:

I. security requirements evaluation (are application

security requirements acceptable?)

2. security function evaluation (do application

security functions satisfy requlrementsT)

3. control existence determination (do the security

functions exist?)

. methodology review (does the implementation method

provide assurance that security functlo.s are

acceptably implemented?)

Security Requirements Evaluation In both formulating and

evaluating security requirements for ar application, two

classes of needs are considered: policy needs and

situational needs. Policy needs derive from the

princiFles and required practices that the application is

obliged to pursue, such as Federal laws, regulations,

seandards and agency policies. Situational meeds are

those derivlng fro_ the application's characteristics and

environment. To determine situational needs, fou2 primary

areas are considered: assets, threats, exposure and
controls.

i. Asset. What should be protected?

2. Threats. What are assets being protected against?

3. Exposures. What might happen to assets if a threat

is realized7

4. Controls. How effective are security safeguards in

reducing exposures?

2-50

Security Function Evaluation. Given well-deflned security

requirement=, function evaluation becomes the most

important task in basic evaluation. It determines whether

security functions (control techniques) such a

authentication, authorization, monitoring, security

management, and security labeling satisfy security

requirements. The p_im_ry method is simply to use the

stated requirements as a checklist to follow in assessing

whether they are satisfied.

In some cases, requirements specify only the need for

generic functions such as authentication. In other cases

the requirements call for use of specific mechanism, such

as particular password technique. In bott: situations,

f.mction evaluation identlfies the defined security

function and examines it for acceptability.

An important concern for function evaluation is the

appropriate level of detail. The recommendation is that

basic evaluations be complete (all applicable control

features) down through the functional level, where

"functional level" is the logical level represented by

functions as defined in (or appropriate for definition) in

the Functional Requirements Document. This notion applies

to both controls within the computer and physical/

adml_istrative controls external to it (although =he

latter might not actually be defined in a Functional

Requirements Document).

Control Existence Determination. The fact that functions

are described in a document or discussed in an interview

does not prove that they have been Implemented. Basic

evaluations require assurance that security function

controls exist. The existence of most physical and
administrative controls can be determined via visual

inspection. For controls internal to the computer,

testing is needed _he intent is to _imply verify that
the functions exist.

Test for control existence determination are

straight-forward. In many cases, a short operational

demonstration suffices. For example, the existence of a

passwozJ function can be determined by attempting to use

the application and verifying that a valid password is

required.

Methodology Review. Even though this is a high-level

overview-type evalu_tlon, it is still desiralle to Fain

2--51

someassura_ce that controls are acceptably implemented.

The best way to do this without becoming immersed in

testing or detailed analysis is to examine the methodology

used to develop the application.

The areas of concern in reviewing a development

methodology for cart'S,cation are summarized below.

i. Documentation. Is there current, complete and

acceptable-quaAity documentation?

, Objectives. Was security explicitly stated and

treated as an objective, with an appropriate amount

of emphasis for the situation? Were security

requirements defined?

. Project Control. Was development weli-controlled?

Weru independent review and testing performed and

did they consider security? Was an effective

change control program used?

Tools and Techniques. Were structure design

techniques used (e.g., modularization_ formal

specifications)? Were established prcgramming

practices and standards used (e.g., high order

languages, structured walk-throughs)?

o Resources. Hcw experienced in security were the

people who developed the application? What were

the sensitivity levels or clearances associated

with their positions?

Detailed evaluations involve analysis of the quality of

security safeguards. Primary tasks are examinations of

the application from three poicts of view:

i. Functional Operation (Do controls function

properly?)

2. Performance (Do controls satisfy performance
criteria?)

3. Penetration Resistence (How readily can controls be

broken or circumvented?)

Detailed evaluation consists of a collection of

approaches. Selection of which to use depends pr!marily

2-52

on the threats and exposures of concern, rather than on

the general characteristics or overall sensitivity of the

application. To illustrate, if the primary c ,ncern is to

protect secrets from an external penetrator, penetration
resistance is stressed.

Functional Operation. Functional _Jperation is the point

of view most often emphasized in detailed evaluation since

it assesses protection against human errors and casL_l

attempts to misuse the application. Evaluations of

function cperatlon assess whether controls acceptably

perform their required functions. Although testing is the

primary technique in evaluating functional operation,

other validation and verification techniques must also be

used. particularly to provide adequate analysis and review

in esrly phases of the application llfe cycle° Testing

for functional operation examine areas such as the

following:

i. Control operation (e.g., do controls work?)

2. Parameter checking (e.g., are invalid or improbable

parameters detected and properly handled?)

t Common error conditions (e.g., are invalid or

out-of-sequence commands detected and properly
handled?)

, Control monitoring (e.g., are security events such

as errors and file accesses properly recorded; are

performance measurement of characteristics such as

resource utilization and response time properly

recorded?)

5. Control management (e.g., do security procedures

for changing the security table work?)

To illustrate this testing, consider several of the tests

needed to examine control operation of a password function:

i. Test whether access without a password is
disallowed.

,

o

Test whether valid passwords are accepted and

invalid passwords are rejected.

...Test the interface between the password function

and the access authorization function by testing

2-53

whether access is properly allowed or disallowed.

For example, verify that valid passwords allow

proper access and do Ll_'tallow improper access, and

that invalid passwords result in proper access
restriction.

4. Test whether the system responds correctly to

multiple invalid passwords.

5. Test whether system-initlated reauthenticatlon

functions correctly.

Functional operation includes the application's resistance

tc external errors. Therefore the t_st areas of primary

ihterest include those Interfaces across which errors

might propagate:

i. man-man (e.g., operator messages)

2. man-system (e.g., commands, procedures)

3. system-system (e.g., intersystem dialogue)

4. process-system (e.g., calls)

3. process-process (e.g., Interprocess calls)

Besides testing, there are other security evaluation tools

and techniques that can be of use in examining functional

operations. For example, software tools for program

analysis, can be helpful in documentation analysis.

Matrices can suggest ideas for test cases and scenarios.

Checklists have utility in provldlug quick training as

well as suggesting ideas for tests.

Formal verification is a technique that may be used during

a detailed evaluation. Formal verification offers the

hope of being able to mathematJcally "prove" that a

functional design abides by a few simple security rules,
and that lower levels of abstraction are consistent with

the proven higher-level design performance. A number of

qualitative factors are listed under the general heading

of performance, which is the second area of concern in

detailed evaluation. These are availability,

survl_abillty, accuracy, response time, and throughput.

They can be applied to either individual controls or

entire applications.

2-54

i. Availability. W_t proportion of time is the

application available to perform critical or full

services: Availability incorporates many aspects

of reliability, redundancy, and maintainability.

It is often more important than accuracy. It is

especially relevant to applications with denial of

service exposures as primary concerns (e.g., air

traffic control, automatic funds disbursement,

production control). Security controls usually

require higher availability than other portioss of

an application.

. Survivability. How well does the application or

control wlthstand major failures or natural

disasters? "Withstand" includes the support of

emergency operations afterwards, and recovery

actions to return to normal operation.

J Accuracy. How accurate is the application or

control? Accuracy encompasses the number,

frequency and significance of errors. Controls for

which accuracy measures are especially applicable

are identity veriflcatlo_ t_cnniques and

communication llne handling techniques.

, &esponse Time. Are response times acceptable?

Slow control response time can entice users to

bypass the controls. Examples of controls for

which response time is critical are passwords

(especially i distributed networks) and identity

verification techniques.

. Throughput. Does the application or control

support required usage capacities? Capacity

includes the peak and average loading of such

things as users and service requests.

Penetration Resistance. The task here is to assess

resistance against the breaking or circumventing of

controls, where resistance is the extent to which the

application and controls must block or delay attacks.

Assessment of penetration resistance can be the most

technically complex of _he detailed evaluation

categories. It is best done to establish confidence in

security safeguards. It can also be done to find and fix
flaws. In both cases it:

2-55

i. provides an assessment of an application's

penetration resistance;

2. helps to determine the difficulties involved in

actually exploiting flaws; and

. provides a clear demonstration of flaw

exploltability (since it might not be clear from

analyois whether, say, an asynchronous timing flaw

can be exploited).

The objective of penetration-reslstance evaluation is to

identify externally exploitable flaws in internal security
functions and the interfaces to them. Following are

illustrative areas for this detailed examination:

I. complex interfaces

2. change control process

3. limits and prohibitions

4. error handling

5. side effects

6. dependencies

7. design modlflcatlons/extenslons

8. control on security descriptors

9. execution chain of security services

i0. access to residual information

Additional information on these areas can be found in the

IBM Systems Journal paper entitled: "Penetrating am

Operating System: A Study of VM/370 integrity" ;19].

The finalization of the test procedures will be a

simultaneous activity by the test team while systLm

developers are writing the security code and documenting

the security safeguards.

2-56

2.3.1.9 Write Security Relevant Code

_ne precise way in which security safeguards will actually

be implemented in the software code will depend to a great

extent on the programming language used, installation

standards, and personal programming style. '_Ithln the

foregoing limitations there are some practices that should

be followed to ensure that security relevant code is

understandable audltable, maiutalnable and testable.

The System Auditabillty and Control (SAC) Study [3] in

discussing application system development controls

provides some guidance that is useful to the development

of security relevant code,

The adequacy and effectiveness of controls

included in computer application systems are

affected by the methods and procedures used during

the system development process.

One of the areas discussed in some depth is the use of

structured programming. The following is a summary of the SAC

discussion of structured programming.

The objective in using structured programming

techniques is to develop more usable and effective

programs. "Usable" implies that the program can

be read and understood by technical persons who

did not write it, including users and EDP

auditors. "Effective" implies that the program is

designed to fit into an overall application system

scheme so as to reduce redundancy and ensure

processing efficiency.*

Structured programming is a technique for system

builders that renders systems easier to build,

maintain and alter. It is a discipline that is

used primarily in the detail design and

2-57

prograau_ng states of the development process. As
such, it uses a stepwlse top-down approach, in

which program modules are organized by functional

specifications into a balanced hierarchical
structure with minimum side effects on each module.

Structured progra=_'ng involves a team approach to

_etailed design, with team members being used to

"walk-through" the design and coding of

components. The effec_ is that the design and

code can be viewed by other than the originator to

detect faulty logic, hard-to-follow code and the

extent to which the design meets prespeclfled

o)Jectlves.

Stanford Research Institute, authors of the SAC study, found

the following major techniques were used by many organizations:

Program Structure. A semlstrlct program structure

allowing GO TO statements in a downward direction
within a section domain.

Statement For_attlng. Fixed column indentation

for both processor division and data division

sections; in addition, a maximum of one verb per

line a_d specific columns for operators.

Peer Reviews. Structured walk-throughs whereby at

least two peers completely trace or walk through

the code generated by another programmer.

Team Organization. The establishment of an

integrated team consi_tlng of one project

leader/analyst, two programmer analysts, one to

three programmers and one programmer librarian.

Security controls should meet the usable objective. To be

effective, in the above context, security controls should

not unnecessarily reduce processing efficiency and be

implemented in a way that they are part of the overall

application scheme, and do not appear or operate as an

interruption to the normal flow of the program or

application processes.

2-58

• Top-Down Design. This technique consists of

designing program loglc by specifying higher level
functions flrst and determining the subfunctlons

required to implement these higher level functions.

• Segmentation. During detail design and

programmng, it is advantageous to keep programs
and modules in the form of routines called

segments, with each segment having but one entry
and exit.*

Structured Coding. This approach or discipline is

used to depict the process of coding whereby there

are conventions used for syntax, program format,

restricted and controlled branching, and

disciplines on logic.

• Walk-throughs. The walk-through consists of a

planned review of all system specifications and

coding by peers of the developers. Walk-throughs

have been found to be instrumental in uncovering a

majority of errors during the pre-installation and

test phases of a system. It is usually worthwhile

to ellow others to review specifications and code

before a Joint meeting. The review meeting can

then become mainly a question answering and
resolution session.

Programmer Librarian. The programmer librarian

actually serves the purpose of documenting all

source codes. This functloD is responsible for

getting codes keyed, updating the source library,

and other general program documentation.

FIPS PUB 73 t2] recommends the following practices to

enhance the security of application systems:

Program Libraries. The program library catalogs and

controls access to all %erslons of program modules as

they are being developed. These control functions can

* The segmentation technique is particularly applicable to the

coding of security relevant code.

2-59

be carried out by either manual or aatomated means.

The program library can provide the following types of

security controls during the programming stage:

* permlt only authorized persons access to program

modules,

* record all accesses (especially modifications) to

program modules,

associate control data, such as record and byte

counts, with program modules to facilitate detection

of changes, and

enable comparison of current versions of modules

with previous versions to identify code that has

been changed.

More rigorous controls are needed as the program modules near

completion, especially once review and testing has begun.

S

Redundant Computation. Critical computations can be

checked by redundant processing to verify correctness

of the result. Examples of local redundancy checks

include:

* recalculation of a critical result by an alternate

method;

* checking a calculated result for reasonableness and

consistency with other data items; and

* examining extra attributes in retrieved data to

ensure that the data item found was the one that was

searched for.

Program Development Tools. The choice of the

programming language and of other programming tools can
enhance the reliability and correctness of the final

products. Proper selection and utilization of such

2-60

m

tcols will help prevent programming errors from

ent_rlng the source code. Some specific program
development tools include:

High Level Programming Languages. Programming

languages are especially useful if they support

structured control flow, extensive data deflnltlon

facilities, strong type checking, restricted scopes

for program varlables, and well-deflned module

calllng con_utions. Compilers for such languages

can do extensive checking to identify program errors.

Preprocessors. Many of the advantages of hlgh-level

programming languages can be accomplished through a

preprocessor. A preprocessor can be used to:

eliminate some of the more restrictive conditions

in an existing language (e.g., allow structured

flow in FORTRAN programs), and

provide automated quality control by cl cking

that program modules meet the coding standards of

this project.

Other Tools. Program development tools such as

those that reformat source code, produce

cross-reference listings and aid debugging are

useful to help programmers manage the

complexities.

2.3.1.10 Document Security Safe_uard___ss

Program documentation is needed during any software

development; Jt is especially necessary for securlty-relevant

code. FIPS PUB 73 [2] defines security-relevant code as:

• code that implements security controls;

• code that performs critical processing (e.g., check

disbursement, real-tlme controls); and

• code that has access te critical or sensitive data

during its execution.

2-61

Brill [13] discusses the documentation of security controls as

follows:

You plan your controls; verify them through reviews

with users ana managempnt; verify the operability of

the controls through tests where you can; and make

whatever modifications are necessary to get the best

overall workable set of controls. Then make

sure--agaln by review and test--t_t your

documentation properly reflects the controls you want

and the way that you want them to work.

The SAC [3] study provides the following thoughts on

documentatlon that are applicable to the documentation of

security controls.

Documentation is the process of describing on paper what

functions an application system performs, hew it performs

them, and how the funct _ns are to be used. The

objectives of good docum_ tatlon are to provide

application system deslgnt s, implementers, testers, users

and EDP auditors with a clear means of understanding all

aspects of the application system.

Documentation...is importaut because it helps ensure

correct and efficient processing within both data

processing and user areas; it increases the ease and

accuracy of computer program maintenance, and it provides

auditors with an independent basis for cvaluating

application control.

One approach to documentation is used by a large focd

manufacturer. This organization makes use of a

documentation test to be administered throughout the

phases of system development. The primary put,use is to

ensure that appropriate documentation exists for the major

phases of system development;...

In addition to verifying the existence of sufficient

documentation, this technique also assesses various

aspects of the documentation, including the following:

- Does the documentation give evidence that processing

controls will be adequate?

z-62

_ave sufficient controls been built into tt,c system to

allow effective operatlon and maintenance?

Can the documentation be used ae a basis to prove that

controls over operation and maintenance are adequate?

It is recommended that the documentation of security-relevant

code be contained in an independent document. The sensitivity

of seccrity-relev_nt code is such that it should be

well-protected and access to the documentation should be

restricLed.

2.3.1.11 Conduct Security Test and Evaluation

Ideally, the conduct of the actual security test and evaluation

will be performed by an organization independent of the system

developers and users; that is, an independent validation and

verification (IV&V) team, quality assurance personnel or an

audit group. If such groups do not for_ally exist within the

organizatio.1, a team of security evaluators may be formed for

the purpose of conducting the security test and evaluation.

Tean skills that will be required include application analysts,

testers, programmers, penetration specialists, W&T specialists

and security.

_te actual test will consists of some combination of the

following: document reviews, interJiews, dynamic tests and

penetration resistance tests. Each of these have been

previously discussed.

Regardless of what combination of tests is used, it is

i_portant that the test team keep a llst of documents reviewed,

document all interviews, and document snd maintain the results

of any tests run against the application.

2-63

2.3o1.12 Write Security Teat and Evaluation Report

The purpose of the Security Test aLd Evaluation Report is to

document the test and evaluation results and ft_dlngs; present

the demonstrated capabilities ans deficiencies of the security

controls; and provlde a basis for preparing the proposed

security certification report.

The Security Test and Evaluation Report should be prepared by,

or under the direction of, the security team leader. It wlll

then be transmitted to the application computer aecurity

official (CS0). FIPS TUB 103 [8], provides a sample outline

that can be used to develop the Security Test and Evsluation

Re_9rt (see Figure 2-7). As noted in Figure 2-8, the sample

outline contains flve aectlons. Section i, Introduction and

Summary, briefly describes _he application and summarizes the

evaluation findings and recommendations. Section 2,

Background, provides contextual informatlon for the Application

CSO including the security standards and policies .hat were

applied. Also, it should include a llst of the general

functional characteristics of the application that generally

influence its certiflability (e.g., tile absence or presence of

user programming). The scope of the evaluation and the

assumptions and constraints on the test should be Jdentlfied.

Section 3, Major Findings, should summarize the controls in

place and their _ole in protecting tie data and/or the

appllcation. It should empLhasize those controls that were

found to be effective. Any vulnerabilities found during the

test should al_o be documented.]he report should identify

those vulnerabillties whJeh should be accepted aud those which

should be corrected.

2-6t_

l,

Z.

3.

,

5.

Attachment A_

TN-TRODSCTJON AND S_4MARY

BACKGROUND

MAJOR FINDINGS

3.1 General Control Posture

3.2 Vulnera:illties

RECOMMENDED CORRECTIVE ACTIONS

EVaLUaTION PROCESS

Proposed CertlficatJon Statement

F=GURE 2-7

SAMPLE OUTLINE FOR A SECURITY EVALUATION REPORT

265

Section 4, Recommended Corrective Actions, identifies what

additional controls should be considered and the anticipated

costa of such recommendations. Section 5, Evaluation Process,

should summarize the security test and evaluation process So

include the types of tests that were conducted.

2.3.1.13 Frepare the Proposed Certificatiou Statement

The proposed Certification Statement should summarize the

recommendations, the acceptability cf applications' security

safeguards, restrictions (e.g., applications must be run as a

stand-a1,_ system), and/or corrective actions that must be

accompl_k-'_,i prior to allowing the application to commence

running

2-66

3. SOFTWARE (_UALITY ASSURANCE AND SECURITY

G. H. Myers, in Software Reliability, Principles and Practices

[4], begins a discussion of the definition of software

reliability as follows:

l_e most significant problem facing the data

processing business today is the software problem

that is marifested in two major complaints; software

is too expensive and software is unreliable. Most

computer professionals recognize the former problem

as largely a symptom of the latter

It is Interesting to note that the software

reliability problem as it exists today was observed

in the early days of computing:

Those who regularly code for fast electronic

computers wil ' have learned from bitter experience

that a large rractlon of the time spent in

preparing ca culations for the machine is taken up

in removing blunders that have been made in

drawing up the programs. With the aid of common

sense and checking subroutines, the majority

mistakes are quickly found and rectified. Some

errors, however, are sufficiently obscure to

escape detection for a surprisingly long time [20].

This observation was published by three British

mathematicians in 1952. Although software errors

were encountered before 1952, this seems to be the

first recognition of the reliability problem, that

is, a considerable amount of time is required for

testing, and, even after this, some software errors
will remain undetected.

The immediate problem encountered in dealing with

software reliability is one of the definition: What

is a software error? What is software reliability?

Myers provides the following definition:

A software error is present when the software does

not do what the user reasonably expects it to do. A

_oftware failure is an occurrence of a software error.

3-I

Software reliability is the probablllty that the
software will execute for a particular period of time
without failure, weighted by the cost to the user of
each failure encountered.

Oneof the areas of software where errors can be least

tolerated is that of security safeguards. One of the

techniques that is currently being employed to improve the

reliability of software is software quality assurance. This

section provides a discussion of uoftware quality assurance,

the software quality assurance llfe cycle, and how software

quality assurance can be employed to reduce the potential for

incorporating unreliable security safeguards in application

systems.

3.1 The Cost of Software Errors

Sorkowitz [14] indicates that to better manage the development

and maintenance of ADP systems, it is important to have an

understanding of how software _'osts are distributed throughout

the total software llfe cycle. Sorkowltz provides the

following:

Life cycle costs are documented as follows:

a. Initiation Phase

Very little research has been done in this area.

b. Deve_)pment Phase

A number of independent studies [21] divide the

development costs as follows:

i. analysis and deslgn--40%

2. coding and unit testlng--20%

3. system test and integratlon--20%

3-2

The above figures have sometimes been described in
the literature as the 40-20-20 rule.

Testln8

Studies have shown that the various testing phases

can account for up to 50_ of the total resources

spent for the development of a software system.

In discussing _he detection of errors, Sorkowltz indicates that:

The phase in the life in which errors are detected is

very important. This may sound obvious, but there

are severe penalties if this simple point is not well

understood. The cost of ccrrectlng an error
increases with time.

Myers [4] shows two relatJonships concerning error correction

versus schedule times (Figure 3-i). The first relationship

shows that the cost of correcting an error increases rapidly

during the latter parts of the development cycle. However, a

second and less-known relationship also follows the same

general curve. The probability of fixing a known error

incorrectly also increases rapidly during the latter stages.

In the first relatloeshlp, Wolverton and Putnam [21] noted that

a requirement error detected in the design stage is 2-1/2 times

more costly to fix than if detected in the requirement stage.

This same error detected in the Unit test stage is five times

more costly and if found during integration testing is 36 times

more costly. If we consider the very special case of a

security safeguard that is embedded in the software cnd that

safeguard contains an error, we can see that the ultimate

potential cost can increase dramatically (Figure 3-2).

3-3

f-4

O

"O k_
C

• ¢

b. II
J_
0

0 I.,

U_

36

34

32

30

23

26

24

22

20

18

16

14

12

I0

8

6

4

2 p

I I I i

w

i

Design Unit Funcc£ou System Acceptance Test
Reviews Test Test Test And In Use

FIGURE 3-1
RELATIONSHIPS BETWEEN ERROR CORRECTIONS AND TIME

34

tt
s.,

0

36
t_
0

L 34
L

c 32
c

<

, 30

_',* 23

c_ 26

ao_ 24

D,, t
•_ 20

o,_ 16

14

12

10

| 1 I l

Design Unit Function System Acceptance Test
Reviews Test Test Test And In Use

FIGURE 3-2
RELATIONSHIPS BETWEEN ERROR CORRECTIONS AND POTENTIAL

LOSS OF EXPLOITED ERRORED SOFTWARE SAF[GUARD

3-5

Not only will the organization incur the cost to fix the flawed

software, but in addition, could incur a loss whlch may well

exceed the cost to fix the flaw.

From the security perspective, the concern then is how do we

ensure that the safeguards that are incorporated into

application's software are free from errors and are reliable.

From the system designer's and system developer's perspective,

the concern is how do we define, design and develop error-free

and reliable safeguards. In other words, how do we define and

develop quality safeguards? One of the techniques is the use

of a quality assurance process or function.

3.2 Software _uality Assurance

Perry, in Effective Methods of EDP Quality Assurance [22],

provides some introductory comments on quality assurance that

are appropriate to this d_scussion.

Organizations continually quest for quality

products. Organizations that achieve a high level of

quality in their products first establish an

acceptable level of quality and then build a
mechanism that assures this level is maintained.

That mechanJsm in manufacturing ls known as quality

control Quality control includes more than an

evaluation of the end product. It begins with the

examination of the raw materials and continues

throughout the manufacturing cycle.

Data processing organizations must equate _heir

function to manufacturing a product in order to see

the need for a quality control function. Data

processing must assume the responsibility of

determining an acceptable level of quality, and then

establish the mechanism (e.g., quality assurance

function) to assure that level is maintained.

3-6

...the quality assurance function is an evolutionary

step along the path of moving data processing from an
art to a science.

One of the questions that comes to mind in any initial

discussion of software quality assurance is: What is quality?

Perry provides the following thoughts:

Quality is defined iu the dictionary as an attribute
or characteristic that is associated with something.

Thus quality cannot be universally defined, but

rather, must be defined for the item in question.

Quality becomes a stated list of attributes and
characteristics.

3.2.1 Software _uality Factors

To improve the quali_y of software, it is important to have an

understanding of the attributes and characteristics, sometimes

referred to as factors, that contribute to software quality.

Sorkowitz [23] provides the following list of software quality

factors.

Correctness - the extent to w_ich a program

satisfies its specifications and fulfills the

user's mission o_Jectives.

• Reliability - the extent to which a program can be

expected to perform its intended function with

required precision.

s Efficiency - the amount of computing resources and

code required by a program to perform a function.

• Integrity - 'he extent to which access to software

or data by unauthorized persons can be controlled.

• Usability - the effort required to learn, operate,

prepare input, and interpret output of a program.

3-7

• _llntalnabillty - the effort required to locate

and fix an error in an operational program.

Testability - the effort required to test a

program to ensure it performs its intended
function.

• Flexibility - the effort required to modify an

operational program.

Portability - the effort required to transfer a
program from one hardware configuration and/or

software system envlroument to another.

s Reusability - the extent to which a program can be

used in other appllcations--related to the

packaging e'_ scope of functions that programs

perform.

• Inceroperabllity - the effort requlxed to couple

one system with another.

3,2,2 Software _uallty Factors and the Life Cycle

The points in the system development llfe cycle where each of

the factors is of concern is illustrated in Figure 3-3.

Figure 3-4 [23] identifies the relationship of software quality

factors to the llfe cycle phases in terms of where quality

factors should be measured and where the impact of poor quality

is realized. It should be noted that software quality factors

should be included in the functional requirements document and

ultimately viewed as performance criteria.

3.3 The Software Quality Assurance Process

The purpose of employing a software quality assurance process

is to improve computer software products that are produced via

the software development process. Software quality assurance

activities should be accomplished at pertinent points during

3-8

Z I-4

× _ m_ f,.1

Z Z

Z
0

0

-,...1
Z _-] ,--.1 /

/

t"-*

f"'---._ == _=
Z G

0

v v

Z
0

_ ,.-.1

,..1

_J

Z

0

0 _ r._

. _ __ t,_

OZ 0:_ '_

, _ ,,-__'_ < Oz

_0 _
v

,...1

r_ z

z

v v

--0

u.U)
Ou_
G. 2:
--I-

0

3-9

I

m ,--4

m

,-4

,-4

J
o"

m

o oo _.

•. _ _

,..I
.1

_ Z

_/

3-10

the system development llfe cycle. Also, procedures should be

established to control and track changes generated during the

development cycle. Software quality assurance involves the use

of various reviews and the establishment of baselines

throughout the development cycle. The reviews and baselines

are depicted in Figure 3-5.

3.3.1 Software quality Assurance Baselines

The chsractezistics of an evolving system and its configuration

items are defined and documented in increasing detail at

logical transition points, or baselines, in the system

development llfe cycle. At any time in the llfe cycle, all of

the previously established baselines, together with approved

changes to these baselines, constitutes the identification of

the system and its configuration items. Five baselines are

usually defined in the software assurance life cycle:

functional, allocated, developmental, product and operational.

Fuoctiona7 Basellnc - marks the end of _he initiation

phase and the start of the definition stage of the

developmel_t phase.

• Allocated Baseline - marks the end of the design stage

and the start of the programming stage and is

established by the detailed design specifications.

Developmental Baseline - marks the end of the

programming stage a_i the start of the test phase.

Product Baseline - marks the end of the test stage and

the ntart of the operations phase.

• Ope_atlonal Baseline - marks the end of the

implementation stage and the start of the maintenance

phase and is established by the satisfactory

demonstration of the application system in the

operational environment.

3-II

U

a

_Z

I

_z

3-12

3.3.2 Reviews snd Audits

The various reviews and audits that should take place

throughout the system development llfe cycle iuclude the system

requirements review (SRR), system design review (SDR),

preliminary design review (PDR), critical design review (CRD),

test readiness review (TRR), functional configuration audit

(FCA), physical configuration audit (PCA), and formal

qualifica_'on review (FQR).

Systems Requirements Review (SRR) - _he objective of

this review is to ascertain the adequacy of the system

requirements. It should be conducted when a

significant portion of the syBtem functional

requirements have been established.

System Design Review (SDR) - this review should be

conducted to evaluate the optimization, correlation,

completeness and risks associated with the allocated

technical requirements. Also included is a summary

review of the system process _ich produced the

aJlocated technical requirements of of the p]annlng for
the next phase of the effort. This review should be

conducted wben the system definition effort has

proceeded to the point where system characteristics arc
defined.

• Preliminary Design Review (PDR) - this review should be

conducted for each system element to (i) evaluate the

progress, technical adequacy, and risk resolurlon (on a

technical, cost and schedule basis) of the _elected

design approach, (2) determine its compatabillty with

performance and requirements of the develcpment

specification, and (3) establish the existence and

compatibility of the physical and functional interfaces

among the other elements (personnel, equipment,

faciiitles and computer programs).

• Critical Design Review (CDR) - this review should be

conducted for each element when the detailed design is

esseetially complete. The purpose of this review is to

(i) determine that the detailed design of the elements

under review satisfies the performance requirements of

the development soeclflcations, (2) establish the

3-13

detailed design compatibility amongthe element•, (3)

assess the produclbillty and risk areas Con technical,

cost and schedule perspective), and (4) review the

preliminary product specifications.

s Test Readlnes• Review (TRR) - a formal review should be

conducted to validate the plan and the test procedure•

to include the test conditions, the extent of testing

and the criteria for acceptance.

Functional Configuration Audit (FCA) - a formal audit

should be conducted to validate that the development of

an element ha• been completed satisfactorily and that

the element has achieved the performance and functional

characteristic• specified in the functional and design

specifications.

• Physical Configuration Audit (PCA) - a technical

examlnatlopn of a designated element should be

conducted to verify that the element "as built"

conforms to the technical documentation which defines

tho element.

s Formal Qualification Revlew (FQR) - this review should

consist of a test, inspection or analytical process by

which products at the end item or critical end item

level are verified to have met specific requirements
(specifications or equivalent). This review does not

apply to requirements verified during the FCA.

Reviews and audits should be conducted by personnel or an

organizational entity independent of the development team.

3.4 Software Quality Assurance Life Cycle Security Activities

It is not sufficient to incorporate security safeguards in

appllcatlon systems. Safeguards should possess many of the

same characterlsclcs previously identified in the discussion of

software quality factnrs. Also, security concerns should be

integrated into the software quality assurance process in the

same manner that security concerns should be Incoporated into

the system development life cycle process.

3-14

3.4.1 Security Safe§uard Characteristics (Factors)

Security safeguards should possess the following

characteristics: correctness, reliability, efficiency,

integrity, usability, maintainability, testabillty_ flexibility

and interoperabillty.

Correctness - the extent to which a security safeguard

satigfles its specifications and fulfills the

application security objectives.

• Reliability - the extent to which a security safeguard

can be expected to perform its intended function with

required precision.

Efficiency - the amount of computing resources and code

required by a security safeguard to perform its
function.

• Integrity - the extent to which access to the security

safeguard by unauthorized persons can be controlled.

• Usability - the effort required to learn, operate,

prepare input and interpret output from a security

safeguard.

• Maintainability - the effort required to locate and fix

an error in or to determine the impa_t of other system
changes on a security safeguard.

• Testability - the effort required to test or audit a

security safeguard to ensure that it performs Its

intended function.

• Flexibility - the effor; required to modify an

operation security safeguard.

Interoperabillty - the effort required to couple to or

integrate security safeguards into the application

system.

3-15

3.4.2 Security Assurance Activities

The security activities that should be an integral part of the

software quality assurance process consist of a set of deflned

reviews and audits and approvals. The reviews and audits to be

accomplished throughout the software quality assurance life

cycle can be viewed as an integral part of the software quality

assurance process but are separately identifiable actions. The

security activities (Figure 3-6) to be completed in conjunction

with software quality assurance activities ares security

requirements review, security design review, security

speclflcatlon_ few, security test readiness review, and the

security test and evaluation review.

3.4.2.1 Security Requlrements Review

The objective of this review is to ascertain the adequacy of

the security objectives, security feasibility and the

preliminary security requirements. It should be conducted when

a significlant portion of the security requirements ha_e been

defined and In conjunction with the system requirements review

(SRR).

The security requirements should be reviewed and approved by

the application computer security official.

3.4.2.2 Security Design Review

This review should be conducted to eval_ate the completeness

and appropriateness of the technical security requirements.

The review should also evaluate the techvical risks of the

safeguards that are being considered to meet the security

3-16

,0,
I' ! I! l,i'i' |

• • • •

I

_m,l K

_ II II IP

W

'-go _.
• P

lk: ii_

3-17

requirements. The review should be conducted when the security

definition effort has progressed to the point where the types

of security controls that are proposed for the system have been

identified and the initial or draft architectural security

specifications have been developed. The system process wblch

produced the architectural specifications should be reviewed.

This review should be conducted in conjunction with the

prellmlnary design review. The architectural specifications

should be approved by the application computer security

official.

3.4.2.3 Security Specifications Review

This review should be conducted for each security safeguard

when the detailed security specifications are essentially

complete. The purpose of the review is to (i) determine that

the detailed design of the safeguards under review satisfy the

performance requirements of the archltectural specifications,

(2) establish that the detailed design of the safeguards is

compatible with the application system detailed design, (3)

assess the produclbillty and risk areas (from a technlcal, cost

and schedule perspective), and (4) review the preliminary

security product specifications.

This review should be conducted in conjunction with the

crltical design review. The detailed design security

specifications should be approved by the application computer

security official.

3-18

3.4.2.4 Security Test Readiness Review

The purpose of this review is to validate the security test

plan and test procedures to include the test conditions, the

extent of the security test and the criteria for acceptance.

The review should also determine the readiness of the security

controls for testing to ensure that the security test and

evaluation schedule can be met. The review should be conducted

in conjunction with the test readiness review. The test plan

and test procedures should be approved by the applications

computer security official.

3.4.2.5 Security Test and Evaluation Review

The purpose of the security test and evaluation review is to

evaluate the audltablllty of the records of the procedures, the

accuracy of the data resulting from the tests, and the

effectiveness of the tools and techniques used during the

test. A useful set of criteria evaluating the security test

and evaluation report is provided by FIPS PUB 102 [8] (Figure

3-7).

3-19

Resource Queatlons

I. How much of resources (e.g., flue, money) were expanded in the
evaluatlon?

2. Who performed the evaluation? What are their qualifications?

Might there be any reasons to question their objectivity?

Process Questions

i. What technical review mechanisms were used?

2. Have t:,e flnd_ngs and recommendations been properly coordlnated7

3. What major tools and techniques were used? What other

_zperiencea have there been with them? Have resources been

effectively allocated to tools, analysis, and presentation of

findings?

Content Questions

i. Are the findings and rec_endatlons reasonable?

2, What are other a&eucles dolns In slnllar situations? Are

Federal and agency requirements applicable to this appllestlon?

Are there recent or proposed policy changes that are

applicable? Do agency needs override user needs? What are the

penalties for not complylnK with policies and requireuents?

3. Did the evaluation focus on the those thlnKs of primary

Importance? What assurances are there that major problen areas

have not b_en overlooked? Are there safeguards not considered

by the evaluation actlvity that might influence the flndlngs?

Are the recoumendatlons prlorltlzed? What was the basis for

prlorltization?

4. Many residual vulnerabilltle8 will exist. Have they been

identified?

5. Are rec_endatlons and Judpent8 supported? Is the quality of

supportlng data shorn7

FIGURE 3-7
CRITERIA FOR ASSESSING SECURITY EVALUATION REPORTS

3-20

-- S

4. SAFEGUARD VISIBILITY

Most application systems manage and control valuable assets

(i.e, financial data, data about people, data on phy;_tcal goods

or other management or technical information). The need for

comprehensive, cost-effective controls or safeguards ls

generally obvious. Applications traditionally get controls by

chance, by user insistence, by auditor Involvement or by system

developer's recognition of the problem. Brlll [13] has found:

As an auditor, I sometimes encounter systems that

have pretty good controls even though not one of the

systems developers ever thought about them. The
controls somehow evolved.

Brlll has also observed that some people assume that controls

are different from everything else in the system, and that they

stand out llke a proverbial sore thumb. On the other hand,

some people have clalmed that controls aren't different; they

are part of the solution to the user's problem and Just mingle

in wlth other systems requirements.

Brlll's observations raise some interesting questlons about how

vlsable or identifiable security controls should be in the code

(particularly the source code) and the documentation of an

application system. Thls notion of visibility ls driven by the

needs of the application owner, system designers, system

developers, syEtem maintainers, operators, users, data

providers, data custodians, auditors, and last, but by no means

least, the need to protect the application and Its data from

the potential perpetrator. The requirements for vlslbllity of

safeguards is depicted in Figure 4-1.

4-2

4.1 The Needs of th_ Application Owner

For systems in development, the application owner has

responsibility for identifying the sensitivity of the

application and data, the security objectives, assessing the

security risks, participating in the security feasibility

analysis, and assisting in defining the security requirements.

Application owners need to be able to see the articulation of

the security concerns in a very vlaable sense. Once the system

is developed, the owner needs to be assured that all other

persona who use or have access to the system are properly

controlled. Therefore, the application owner needs to be able

to see that security concerns are sufficiently visible in the

user manuals in order to discharge their responsibility for

controlling access, modification, use and publication of

specific data elements within an application. The owner must

also have some way of assuring that they can properly discharge

their responsibility relative to special handling and

disposition of output products, and other administrative

controls over the functional user. Functional users who

interact and use the application in the discharge of their

duties do not want security safeguards to be highly visible

when the application is in operational use. The concern is

that if security is too visible and users perceive that

security will constrain them or unnecessarily or interfere with

their use of the syste_, the users will attempt to find ways to

bypass security or dilute the effectiveness of security (e.g.,

sharing of passwords).

4.2 The Needs of Systems Designers

System planners and designers have responsibility for

developing the security requirements and specifications in

4-3

concert with the user based upon the security objectives. As

in the case of the application owners, planners and designers

need a clear and very visible articulation of the security

safeguards in the documents they help to produce.

4.3 The Needs of Systems Developers

Systems developers (programmers) will need a clear

understanding of the security requirements and specifications

in order to develop the software source code. The

security-relevant source code needs to be very identlfable for

those who will be involved in the review (e.g., structured

walkthrougns) of the code.

_.4 The Needs of System Maintainers

The personnel who w_ll be responsible for maintaining the

software over the operational llfe of the application will, in

all l_kelihood, not be tht personnel who were involved in the

development of the software. The maintainers must have clear

and understandable source code and documentation (requirements

_nd s_eclflcatlons) to work with, so they can fully understand

the nature of changes required in the security safeguards or

the potential impact of other software changes that may affect

the security safeguards.

4.5 The Needs of Computer Operators

The computer operators who will be involved in the actual

operation of the application software need little or no

understanding of how safeguards in the software actually work.

Rather, they need only enough instruction in the operator's

manual to be able to respond to and report security violations.

4-4

4.6 Tne Needs of Data Users

Data users may be required to participate in the identifJcation

of sensitive data, security lequirements and back-up

requirements. Their need for visibility will vary throughout

the system development llfe cycle from high during the

requirements definition phase to low in the operations phase,

The articulation of the security controls in user documentation

must be sufficiently identifiable and understandable so that

user's management can be assured that their data is properly

protected. However, the visibility of the security controls

during the operation of the application should not be so

visible that user's perceive that they are being unduly

restricted or constrained in the ability to have access to the

application and their data.

4.7 The Needs of Data Providers

Data providers are organizations that provide data to the

application in order that the application an achieve its

intended purpose. Data providers need only a basic knowledge

about the requirements for security controls as It affects

protecting data during the inputting operation of the

application,

4.8 _he Needs of Data Custodians

Data custodians are organizations or organizational elements

that are responsible for naintalnlng the security and integrity

of data and software while it is under the control of that

organization. Data custodians must have a thorough

understanding of the safeguards employed to protect data while

it is in their custody.

4-5

4.9 The Needs of Auditors

Auditocs are responsible for reviewing the adequacy of computer

security programs, lhe adequacy of internal controls

incorporated In applications systems and may be involved in the

development of application software to ensure that the

application i_ audltable once it is in operation. The auditors

needs for visibility cf _afeguards is high throughout every

activity connected with the llfe of an application.

4.10 The Needs for Protection A_alnst Potential Perpetrators

Since the objective of potential perpetrators is to affect

personal galn In the form of money or informatlcn, information

about how safeguards are designed and implemented in the code

should be protected from the potential perpet[ator. The one

area where safeguards should be highly visible to the

perpetrator aze in the actual operation of the application.

Systems which have good _ecurity controls that are visible to

the unauthorized user and the authorized user who might attempt

to use the system in an unauthorized maD_er tend to discourage

attempts t_ abuse or misuse the system.

4-6

5. SECURITY SAFEGUARDS IN PACKAGED SOFTWARE

NASA, like most organizations, does not rely solely upon

inte._nally or contractor-developed applicatio_. The recent

advances in technology have made micro and personal computers a

viable solution for _ny of NASA's data processing needs.

Along with the acquisition of micro and personal computers has

come a number of software packages that have substantially

decreased the time from identification of a problem unt_l

implementation of a computer-based solution. Unfortunately,

not enough attention has been given to the problems inherent in

applylng a generallzed appllcatlon design to a specific

organization's unique set of objectives and constraints. Bloom

and Schneider [25] refer to part of the problem as the "package

trap.'

The "package trap" is the idea that a package itself

solves the business problem. Its greatest danger is

that once an application has been identified as

amenable to a package-based solutlon, too little

emphasle will be put on the analysis of the business

problems that dictate the need for the system.

Bloom and Schneider [25] also observed:

Adaptations must be made to the systems development

life cycle to facilitate a package-based solution.

McMenemy [26] points out another major concern wlth software

packages:

S,_ftware packages are sold as a fast and easy

,iternatlve to In-house development. That impression

is aided by clalms of software vendors that their

packages can be Installed and running in three days.

For your own protection, you must clarify the

important difference between "installed" and

"_ mplemer, ted."
5-I

"Installed" means that the software programs wlll

reside on your computer, awaiting the information to

make them functioning systems.

In other words, the programming and debugging are

done. "I_plemented" means that all information is

loaded, all necessary interfaces have been programmed

and tested, all systems and user personnel are

competent in ope_atlng the system, all documentation

is completed and the system has paralleled the old

s) "tem, all documentation is completed and the system

has paralleled the old system to prove the validity
of the functions and information.

As you can see, the terms are very different in their

definition, and more importantly, in their impact on

the purchaser. Therefore, it should be better to

think of a software package as a means of eliminating

only the time spent on initial system design and

progrommlng, remembering that mass amounts of

information must still be entered into the system.

As McHenemy [26] points out, acquiring packaged software

eliminates only the systems design and programming stages of

the classic systems development llfe cycle. The Initiation

Phase, the Definition and Testing Stages of the Development

Phase, and the Implementation Stage of the Operations Phase of

the system development llfe cycle should still be completed.

5.1 System Development Life Cycle Activities for

Packaged Software

Schick [27] indicates that the steps involved in selecting

specific software packages vary with each situation, but a

general procedure is applicable in almost all cases. Schlck

advised that the steps to be followed in selecting software

packages include:

5-2

Classlfyln_ Needs. If the computer must accomodate

several different applications, decide which

application is most important and choose the software

for it first. Then check to see what good software

is available to handle the less important

applications o, the same computer. If two or more
applications have equal priority, you may have to

compromise by selecting software to handle both

applications adequately.

It is also useful to decide how essential the

requirements are. Requirements may be categorized as

fixed, flexible, and optional. A fixed requirement

means that certain functions must be perfnrmed is a

specific way.

After defining and classifying requiremen_:_, write

them down so that they can serve as guide in

evaluating software packages.

Make a Requirements Chart. You can make a

requirements chart by using the specificati,ms

already developed, paying particular atteution to

fixed requirements. The result of this step will be

a uniform means of evaluating products.

Deflne Software Capacity. The amount of data you

expect the software to handle needs to be added to

the requirements chart. Software capacity limits are

set by the software author to ensure that the program

can run in the memory available on the computer

configuration for which it was designed. The present

and anticipated data capacity for the next year or

two should be estimated, and these numbers added to

the requirements chart.

Locate the Packages. Identify software products that

meet, or come close to meeting, the requirements.

Read product reviews in computer magazines, scan
product advertisements in trade periodicals, visit

local computer dealers, contact your industry or

trade association, talk to associates who have bought

computer software for requirements similar to yours

or call your accounting firm, Another source of

information is published directories of software.

53

Rank the Products. This based on a tabulation of how

closely the products meet the requirements. To be

sure that the software is rlght for your buslnes•:

Purchase or borrow the manual, and read it to

understand the capabillties and limltation• of
the software

• Attend a demonstration of the software, - if

possible using some of your own data

Consider whether the people who will use the

software can follow the instructions provided

or will require special training

One area of critical importance in considering a package_

software solution :_s the potential for some customizing. For

example, now can a package be modified to accommodate a

function outside the package's scope such as security? Bloom

and Schneider [25] offer some advlce on the subject of

modification.

Even beyond the consideration of package

modlfi_catlons in the near term, it is important to

look at the package as the basis of future system

enhancements. The user must understand what

functionality the system will support immediately and

what functions the system m_ly be modified to support

in the future. The user muEtt also recognize that the

relatlve dlfflculty of accommodating new features

will depend heavily on the package's terhnical

architecture.

One significant opportunity presented by a

package-based implementation is the ability to _et

some software up almost immediately. The vendor'•

"vanilla" software should be installed as soon as

possible on the user's equlpm t. Once in place,

this baseline software can be med to perform a wide

array of functions, from modeling the production

environment for hardware and communications analyses

to prototypins user interfaces.

A corollary benefit of installing the package sooner
is that it can be tested sooner. Do not assume that

since a particular piece of software is in operation

at several sites it will not contain bugs or

undocumented features. A healthy dose of skepticism

pays dividends. Develop a set of representative test

data, and subject the "vanilla" package to thorough

testing.

When designing modifications and eDhancements to

software packages, there are a few subleties to keep
in mind. To achieve the true cost/beneflt of

package-based application, efforts should b_ made to

minimize the amount of modification. This approach

will frequently require the user to choose between

restructuring existing procedures to work with the

package and customizing the package During the

system design phase, provision should be made for the

way in whtch future vendor releases wlll be

incorporated into the system.

Extensive testing is Just as necessary for
package-based appllcatlons for custom systems. While

the classic unit- or module-level test is not truly

applicable to unchanged portions of the software

package, it is appropriate for modules containing new

or modified code. Consequently, a test plan should

be developed during the system design phase which

addresses the moduler design of the new system as

well as the business function it is meant to serve.

It is crucial that the user participate heavily in

all phases of testing.

Structured walk-throughs are also a nece6sity; even

more so when they address modifications to the

package. These dcsign walk-throughs should include

not only the project development team, but also the

system's immediate users and those in the DP

organization who will be charged with maintaining the

new system.

As can be seen by the preceding advice of a number of experts,

the purchase, installation and Imple_entatlon of a software

package should follow the classlc systems development llfe

cycle, with the exception of the Design and Programming Stages

5-5

(See Figure 5-1). When addressing the area of security, it is

important that the life cycle activities not be overlooked or

ignored.

5.2 Approaches for Addressln_ Securi_ in Software Packages

Software packages present a special concern when it co_es to

security. Since packages attempt to present a somewhat generic

solution for a large base of users, vendors have only a limited

perspective of the sensitivity of the data that will be

processed by their package once that package is installed and

implemented in the user's organization. The organization

considering the purchase of a packaged software product must

initially assume that the product will not be able to provide

an adequate and appropriate level of security, it is crucial

that the potential buyer accomplish most of the security

activities previously identified in Section 2.4 of these

guidelines, In particular, the following activities should be

accomplished:

• Determine the Sensitivity of the Data/Application

s Determine the Security Objective(s)

s Assess the Security Risks

• Conduct a Security Feasibility Study

• Define the Security Requirement•

• Evaluate the Security Features of the Package

• Develop the Security Test Plan

• Develop the Security Test Procedures

• Document the Security Safeguards

• Conduct the Security Test and Evaluation

• Write the Security Test Analysis Report

Prepare the Security Certification Report

5-6

4_

O0

_I_L, am

L.O

w

0
cIJ

-r
In

5-?

The major difference in the activities identified above and the

security activities discussed in Section 2.4 is the evaluation

of security features of the package. To aid in the evaluation

of the package's security features, it might be helpful to

draft a set of architectural level specifications for

security. These specifications could then be used as a

"checklist" to determine if the package does provide the type

of security _afeguards required. If the package contains no

security gafequards or only partially satisfies the security

requirements and specifications, the potential buyer must look

to other alternatives for providing the requisite level of

protection. In large part, the alternatives will depend upon

the type of security not provided by the application. For

example, if the package does not provide for user

identification and validation, a stand-alone security package

deslgned especlally for the micro or personal computer that

will ultimately run the package should be considered, if such a

security package is available.

5t3 Security Assurance and Certification of Packaged Software

The one activity that has the greatest potential for being

overlooked when acquiring, installing and implementing a

software package is that of quality assurance. The concern for

software quality assurance, particularly with respect to the

security activities, is based on the fact that those who use

the application, in many cases, will be the ones who are

actually designing, evaluating and operating the package. When

systems are developed in-house from scratch, there is usually a

very formalized development and software quality assurance

process as described in Sections 2 and 3 of these guidelines.

Users who acquire, install and implement software packages that

5-8

process sensitive data/applications are also required to have

those systems certified by an application computer security

official.

There is also concern for the integrity of the safeguards that

are implemented in conjunction with the software package. It

is, therefore, critical that some form of quality assurance be

performed durin& the pre-acquisition, acquisition, testing and

installation of a software package. Software package users

should review Section 3 of these guidelines and develop a

software quality assurance process at a level of detail

appropriate for their package. Speciflcally_ the following

reviews and approvals should be accompllshed:

• Security Requirements Review and Approval

• Security Design Review and Approval of the Inherent or
Added Security Features

• Security Test Readiness Review

• Security Test and Evaluation Plan Approval

• Security Test and Evaluation Review

• Security Safeguard Certification

5-9

DUBK

APPE_DIX A

SAHPLE SECURITY TEST PLAN

A-I

En P__

APPENDIX A

SAMPLE SECURITY TEST PLAN

i. GENERAL INFORMATION

.

i.i Summary. Summarize the security functions of the software

and the tests to be performed.

1.2 Environment and Pretest Background. Summarize the history

of the project. Identify the user organization and

computer center where the testing will be performed.
Describe any prior security testing and note results that

may affect this testing.

1.3 References. List appllcable references, such as:

_. Project request (authorization).

b. Previously published documents on the project.

c. Documentation concerning related projects.

d. FIPS publications and other reference documents.

PLAN

2.1 Software Description. Provide a chart and briefly describe

the inputs, outputs, and functions of the software being

tested as a frame of reference for the test descriptions.

2.2 Milestones. List the locations, milestones events, and
dates for the testing.

2.3 Testing (Identify Location). Identify the participating

organizations and the location where the software will be
tested.

2.3.1 Schedule. Show the detailed schedule of dates and

events for the testing at this location. Such

events may include familiarization, training, data,

as well as the volume and frequency of the input.

2.3.2 Requirements. State the resource requirements,

including:

a. Equipment. Show the expected period of use,

types, and quantities of the equipment needed.

A-3

bo Software. List other software that will be

needed to support the testing that is not part

of the software to be tested.

2.3.3

Ca Personnel. List the numbers and skill types of

personnel that are expected to be available
during the test from both the user and

development groups. Include any special

requirements such as multl-shift operation or

key personnel.

Testing Materials. List the materials needed for

the test, such as:

a. Documentation.

b. Software to be tested and Its m_ium.

c. Test inputs and sample outputs.

d. Test control software and worksheets.

2.3.4 Test Training. Describe or reference the plan for

providing training in the use of the software being

tested. Specify the types of training, personnel to

be trained, and the training staff.

2.4 Testing (Identify Location). Describe the plan for the

second and subsequent locations where the software will be

tested in a manner similar to paragraph 2.3.

3. SECURITY SPECIFICATIONS AND EVALUATION:_

3.1 Specifications

3.1.1 Requirements. List the security functional

requirements established by earlier documentation.

3.1.2 Software Functions. List the detailed security

functions to be exercised during the overall test.

3.1.3 Test/Functlon Relationships. List the tests to be

performed on the software and relate them to the

functions in paragraph 3.1.2.

3.1.4 Test Progression. Describe the manner inwhich

progression is made from one test to another so that

the entire test cycle is completed.

A-4

3.2 Hethods and Constraints.

3.2.1 Methodology. Describe the general method or

strategy of the testing.

3.2.2 Conditions Specify the type of Input to be used,

such as live or test data, as well as the volu_e and

frequency of the input.

3.2.3 Extent. Indicate the extent of the testing, such as

total or partial. Include any rationale for partial

testing.

3.2.4 Data Recording. Discuss the method to be used for

recording the test results and other information

about the testing.

3.2.5 Constraints. Indicate anticipated limi=ations on

the test due to test conditions, such as interfaces,
equipment, personnel, data bases.

3.3 Evaluation.

3.3.1 Criteria. Describe the rules to be used to evaluate

test results, such as range of data values used,

combinations of input types used, maximum number of

allowable interrupts or halts.

3.3.2 Data Reduction. Describe the techniques to be used

for manipulating the test data into a form suitable

for evaluation, such as manual or automated methods,

to allow comp "ison of the results that should be

produced to tose that are produced.

4. SECURITY TEST DESCRIPTIONS

4.1 Test (Identify). Describe the test to be performed.

4.1.1 Control. Describe the test control, such as manual,

semi-automatic, or automatic insertion of inputs,

sequencing of operations, and recording of results.

4.1.2 Inputs. Describe the input data and input commands

used during the test.

4.1.3 Outputs. Describe the output data ezpected as a

result of the test and any intermediate messages

that may be produced.

A-5

4.2

4.1.4 Procedures. _;peclfy the step-by-step procedures to

accomplish the test. Include test setups

initialization, steps, and termination.

Test (Identify). Describe the second and subsequent tests

in a manner similar to that used in paragraph 4.1.

A-6

APPENDIXB

REFERENCES

B-I

NEXTP_[

APPENDIX B

REFERENCES

.

.

.

.

.

.

.

.

10.

11.

U.S. General Accounting Office. Report to Congress by the

Comptroller General of the United States: Automated Systems

Securlty - Federal Agencies Should Strengthen Safeguards Over

Personal and Other Sensitive Data. Washington, D.C, U,S.

General Accounting Office, 1979 January 23, LCD-78-123

National Bureau of Standards. Guidelines for Security of

Computer Applications. Washington, D.C., GPO, 1980 June 30,
FIPS PUB 73

Institute of Internal _udltors. System Audltabillty and

Control Study - Control Practices. Altamonte Springs, FL, 1977

Glenford J° Myers. Software Reliability, Principles and

Practices. John Wiley and Sons, New York, NY, 1976

Frank Mayo, Frederick G. Tompklns, Dana L. Hall. NASA Software

Development and Assurance--Survey of Problems and Practices,

._TR-82W205. The MI'_RE Corporation, HcLean_ VA, 1982

National Bureau of Standards. Guidelines for Documentation of

Computer Programs and Automated Data Systems. Washington,

D.C., GPO, 1976 February 15, FIPS PUB 38

National Bureau of Standards. Guidelines for Documentation of

Computer Programs and Automated Data Systems for the Initiation

Phase. Washington, D.C., GPO, August 1979

National Bureau of Standards. Guidelines for Computer Security

Certification and Accreditation. Washington, D.C., GPO,

September 1983

Alfred R. Sorkowltz. Software Life Cycle Costing. Proceedings

Trends and Applications 1979. IEEE Computer Society, New York,

NY, 1979

National Aeronautics and Space Admlnlstratlou. Computer

Resources _nagement. NASA, Washington, D.C., NHB 2410.1

Brandt Allen. Threat Teams: A Technique for the Detection and

Prevention of Fraud in Automated and Manual Systems. Computer

Security Journal, Volume 1, Number 1, Spring 1981

_-3

12. Paul A. Glragosian, David W. Mastbrook, Frederick G. T_mpktns.

Guidelines for Certification of Existing Systems, MTW-82WI8.

The MITRE Corporation, McLean, VA, July 1982

13. Alan E. Brill. Building Controls into Structured Systems.

YOURDON Press, New York, NY, 1983

14. Alfred G. Sorkowitz. Certification Testing: A Procedure to

Improve the Quality of Software Testing. Computer, IEEE,

August 1979

15. Terrance M. Losonsky. Automated Information System Security:

A Comparative Analysis of Risk Management Procedures: Florida

State University, December 1974

16. K. K. Wong. Computer Security Rizk Analysis and Control, A

Guide for the DP Manager, Manchester, England: The i_atlonal

Computing Center Limited; 1977. ISBN 0-8104-5466-1

17. National Bureau of Standards. Guideline f.r Automatic Data

Processing Risk Analysis. Washington, D.C., GPO, Augu3t 1979.
FIPS PUB 65

18.

19.

Peter Freeman. Introduction to: Tutorial on Software Design

Techniques, Fourth Edition. Silver Spring, Maryland; _:EEE

Computer Society Press, 1983

C. R. Attanaslo, P. W. Marksteln, R. J. Phillips "Penetrating

an Operating System: A Study of VM/370 Integrity." IBM

Systems Journal, No. i, 1976

20. R. A. Brooker, S. Gill, and D. J. Wheeler, "The Adventuzes of a

Blunder," Mathematical Tables and Other Aids to Computation,

VOL. 6 Nol 28, 112-113, 1952

21. R. W. Wolverton and L. Putnam, "Quantitative Management:

Software Cest Estimating," IEEE COMPSAC 77, Nov. 1977

22.

23.

William E. Perry. Effective Methodology of EDP Quality

Assurance. Wellesley, M.A., QED Information Sciences, Inc., 1981

Alfred E. Sorkowitz. Life Cycle Quality Assurance Workshop,

Potomac Forum, Alexandria, VA., 1984

24. Richard McCall° Factors in Software Quality, RADC-TR-77-369,

VCL. I-II, Nov. i977

25. Naom_ Lee Bloom and Richard Schneider. Avoiding the 'package

trap': Caution Advised, COMPUTERWORLD Special Report, January

30,].984
B-4

26.

27.

K. J. McHeneay. Package Implementation Commands Planning,
COMPUTERW0RLDSpecial Report. January 30, 1984

Brian R. Schlch. Tips on Shopping for Software, COHPUTERWORLD
Special Report, January 30, 1984

B-5

This documenthas been peer reviewed by:

I ,,7 ' J" -- " /

• " _-Barbara A. Christoph

ii

