NASA Guidelines for Assuring ihie A -dequacy
and Appropriateness of Security Safeguards
in Sensitive Applications

F. G. Tompkins

September 1984

MTR-84W179

SPONSOR:
NASA
CONTRACT NO.:
NASW-3425
PRCJECT NO.:
1915L
DEPT.:

V.27

The MITRE Corporation
Metr: k Division
1820 Dolley Madison Boulevard
McLean, Virginia 22120

ABSTRACT

The Office of Management and Budget (OMB) Circular A-71, Trans-
mittal Memorandum No. 1, requires that each agency establish a
management control process to assure that appropriate administrative,
physice: and technical safeguards are incorporated into all new
computer applicatiors. In addition to security specifications, the
management control process should assure that the safeguards are
ad-quate for the application. This document examines the security
ac.ivities that should be integral to the system development
process and the software quality assurance process to assure that
adequate and appropriate controls are incorporated into sensitive
applications. Security for software packages in also discussed.

iid

ACKNOWLEDGEMENT

The author wishes to thank R.S. Rice of NASA who provided assistance
to MITRE during the writing of this report and the following who
provided background information: R. Martian, General Electric
Company; F. Mayo, UNINET; A. Sorkowitz, Department of Housing and
Urban Development; and G. Mevius, Peer Services. The author would
also like to thank MITRE associates W.T. Bisignani, B.A. Christoph,
H.R. Keough, and S.F. Levitas for suggestions and _eview of the
final report; N. Cosgrove and D. Violett for graphics and
publication assistance; D. Chambers and R. Rosenzweig, for editorial
suggestions and clerical support.

iv

| T

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS

1.

2,

INTRODUCTION

1.1 Background
1.2 Security Issues in the Software Development
Life Cycle

1.2.1 1I1ssue #1--Sufficiency of Review and Approval
of Security Specifications and Systems Tests

1.2.2 Issue #2--What Activities Are Required To
Assure the Quality of Application Systems
Security Safeguards?

1.2.3 1Issue #3—How Visible Shcould Safeguards be in
the Application Code and Ducumentation

1.2.4 Issue #4--Security Safeguards i Fackaged Software

THE SOFTWARE DEVELOPMENT LIFE CYCLE AND SECURITY

2.1 OMB Circular A-71, Transmittal Memorandum No. 1l
Requirements for Applications Software Security
2.2 The Software Development Life Cycle

2.2.1 The Initiation Phase

2.2.2 The Development Phase
2.2.2.1 The Definition Stage
2.2.2.2 The Design Stage

2.2.2.3 The Programming Stage
2,2.2.4 The Test Stage

2.2.3 The Operations Phase
2.2.3.1 The Implementation Stage
2.2.3.2 The Maintenance Stage

2.3 Software Development Life Cycle Security Activities

2.3.1 Security Activities

1.1

1.2 Determine The Security Cbjective(s)
1.3 Asgess the Security Risks

1.4 Security Feasibility Study

1.5 Define Security Requirements

Determine The Sensitivity of the Data/Application

Pa;e
viii

1-7

1-7

1-8
1-9

2-1

2-10

2-12
2-16
2-17
2-25
2-26

3.

TABLE OF CONTENTS

Devealop the Security Test Plan
Design the Security Specifications
Develop Security Test Procedures
Write Security Relevant Code
0 Document Security Safeguards
1 Conduct Security Test and Evaluation
2
3

OO

Write Security Test and Evaluation Report
Prepare the Proposed Certification Statement

LWLWLWWwWWw LW
e e
L]

NN BNNIVMNDNN

SOFTWARE QUALITY ASSURANCE AND SECURITY

3.1 The Cost of Software Errors

3.2 Software Quality Assur.nce
2.1 Software Quality Factors

+2.2 Software Quality Factors and the Life Cycle
3

The Software Quality Assurance Process

3.1 Software Quality Assurance Baselines
3.2 Reviews and Audits

3
3
3.
3
3.
3.4 Software Quality Assurance Life Cycle Security
Activities

3.4.1 Security Safeguard Characteristics (Factors)
3.4.2 Security Assurance Activities

2.1 Security Requirements Review

2.2 Security Design Review

2.3 Security Specifications Review

2.4 Security Test Readiness Review

2.5 Security Test and Evaluation Review

SAFEGUARD VISIBILITY

The Needs of the Application Owmer
The Needs of Systems Designers

The Needs of Systems Developers
The Needs of System Maintainers
The Needs of Computer Operators
The Needs of Data Users

The Needs of Data Providers

I - - N
NoOownsLwWNE

vi

Page

2-35
2-39
2-46
2-57
2-61
2-63
2-64
2-66

3-2
3-6

3-7
3-8

3-8

3-11
3-13

3-14

3-15
3-16

3-16
3-16
3-18
3-19
3-19

4-1

4-3
4-3

4-4
4-4
4-5
4-5

Ry

TABLE GF CONTENTS

4.8 The Needs of Data Custodians

4,9 The Needs of Auditors

4.10 The Needs for Protection Against Potential
Perpetrators

5. SECURITY SAFEGUARDS IN PACKAGED SOFTWARE

5.1 System Development Life Cycle Activities for
Packaged Software

5.2 Approaches for Addressing Security in Software
Packages

5.3 Security Assurance and Certification of Packaged
Software

APPENDIX A: SAMPLE SECURITY TEST PLAN

APPENDIX B: REFERENCES

vii

Pigure Number
1-1

3-5

3-6
3-7

LIST OF ILLUSTRATIONS

ASSURING SECURITY THOUGH THE SOFTWARE
DEVELOPMENT LIFE CYCLE, AND SOFTWARE
QUALITY ASSURANCE

SURVEY OF SOFTWARE LIFE-CYCLE MODELS

THE SOFTWARE LIFECYCLE

SOFTWARE DEVELOPMENT LIFECYCLE SECURITY
AWARENESS

SENSITIVE APPLICATION SECURITY OBJECTIVES

OUTLINE OF INTRODUCTORY COMMENTS BY
MODERATOR AT FIRST THREAT SESSION

CERTIFICATION PROCESS

SAMPLE OUTLINE FOR A SECURITY EVALUATION
REPORT

RELATIONSHIPS BETWEEN ERROR CORRECTIONS
AND TIME

RELATIONSHIPS BETWEEN ERROR CORRECTIONS
AND POTENTIAL LOSS OF EXPLOITED ERRORED
SOFTWARE SAFEGUARD

RELATIONSHIP OF SOFTWARE QUALITY FACTCRS

" TO THE SOFTWARE LIFE CYCLE

RELATIONSHIP OF FACTORS TU FILE-CYCLE
PHASES

SOFTWARE QUALITY ASSURANCE REVIEWS AND
BASELINES

SECURITY ASSURANCE REVIEWS AND BASELINES

CRITERIA FOR ASSESSING SECURITY EVALUATION
REPORTS

viig

Page

1-5
2-4

2-5

2-11
2-18

2-23
2-38

2-65

3-4

3-5

3-10

3-12
3-17

3-20

mr‘:@rw st

Figure Number
4-1
5-1

LIST OF ILLUSTRATIONS

SECURITY SAFEGUARD VISIBILITY REQUIREMENTS

THE SOFTWARE LIFE CYCLE FOR PACKAGED
SOFTWARE

ix

NEXT PAGE BLAK

Page
4-2

5-7

1.

INTRODUCTION

The O0ffice of Management and Budget (OMB) Circular A-71,
Transmittal Memorandum (TM) No. 1, dated 27 July 1978, requires
each agency to develop and implement a computer security

program. One of the specific requirements of OMB Circular A-71,
TM No. 1 is that eich agency must establish a management control
process to assure that appropriate administrative, physical and
technical safeguards are incorporated into all new computer
applications. The objective of the management control process is
to assure that, in addition to the security specifications
(and/or security safeguards) meeting all applicable Federal
policies, regulations and standards, the security provisions must

be adequate for the application.

NASA has made significant progress in the development and
implementation of an agency~wide computer security program in
compliance with OMB Circular A-71, TM No. 1. NASA Management
Instruction (NMI) 2410.7, "Assuring the Security and Integrity of
NASA Data Pracessing” has been issued. Guidance to the NASA
Centers for the development and implementation of NASA Center
Computer Security Programs has been incorporated in NASA Handbook
(NHB) 2410.1, "Computer Resources Management.” Additionally,
NASA Headquarters and the Centers have published guidelines in
the areas of certification of existing applications software,
computer security training, contingency planning and risk
management. One of the remaining areas where guidance is
required is assuring that appropriate attention is given to
security safeguards in the design, development and operations
phases of the software life cycle for both internally developed

and purchased application software.

1-1

1.1 Background

Computer services must be protected not only from physical
threats such as damage and theft but also from internal
vulnerabilities such as programming errors and misuse by
unauthorized users [1]. Inadequacies in the design and
operation of computer applications are a very frequent source
of harmful effects associated with _ mputers, and in most cases
the effort to improve security should concentrate on the
applications systems. Security concerns should be an integral
part of the entire pianning, development, and operation of a
computer application. Much of what needs to be done to improve
security is not clearly separable from what is needed to
improve the usefulness, reliability, effectiveness, and
efficiency of the computer application [2]. When system
developers, users and data processing mana, ement address the
security concerns as part of the software life cycle procese,

there are a number of issues which should be reviewed.

1.2 Security Issues in the Software Development Life Cycle

The software development 1life cycle (SDiC) is a technique used
to divide the system development process into distinct phases
with formal management control points placed between and during
each phase. The objectives in using an SDLC technique are
twofold: to provide a more structured managemen: scheme for
controlling costs and schedules, and to ensure proper and
responsive communications channels among users, auditors,
hardware planning personnel, top management and the data
processing personnel responsible for develcping the application
systems [3). From a computer security perspective, the SDLC
technique, when combined with a software quality assurance

process, provides the structure to assure that rev’>w points
1-2

are established to permit computer securitr management
personnel to review and approve the design specifications and
the security tests as required by OMB Circular A-7%, TM No. :
(Pigure 1-1). While complying with OMB poliry is an important
consideration, there are a number of other issues that have not
been previously well-defined that wili ultimately dete:mine
whether the security safeguzrds incorporated 1nto applications
systems are operationally effestive. The issues that must be
addressed during the planning, deeign, development, test’ng,
integration, implementation and operational stages oI the

software life cycle are:

e Is review and approval of security specifications and
system tests suificient to ensure that the safeguards
arc adequate and apprcpriate? If not, what other
reviews and/or appiovals are necessary and where in the
SDLC should they be accomplished?

® What syeiem develcpment life cycle and/or softwa:e
qualicy assurance activities are required to ensure the
quality of application system security safeguards?

® How visible should safeguards be in the application
code and the documentation? To the user, the
developer, the maintainers, auditors and potential
perpetraior?

NASA, like most organizations, does not rely solely upon
internally or contractor-developed applications. A significant
amount of applications software iz acquired commercially in
packaged form. Adaptations must be mzde to the system
development life cycle to facilitate packaged software. From a
security viewpoint, there ig concern about how NASA can ensure
that packaged software includes the gecurity safeguards that
are appropriate and adequate for the applications. This area
of packaged software suggests that there is an additional issue
that must be addressed:

1--3

NEXT PAGE BLANK

SOFTWARE DEVELOPMENT
LIFECYCLE

DEVELOPMENT PHASE
DEFINITION DESIGN PROGRAMMING TEST
STAGE STAGE STAGE STAGE
~ Project Request - F Requi — System/Subey — Users Monwai
Document ~ Data Requirements Specifications — Operations Menusl
= Foasibillty Stugy = Program Spacifications | __ program Maintenance
~ Cost-Bonefit Analysis — Deta Base Specifications| Manysi
' — Programming — Test Analysis Report
Test Plan
pro e ws G v —— . E— o ——— — (i — —— — — w— . o v — ——— — — — — .
— Securlty Feasibility = Define Security — Security Design — Security Programming ~ Securlty Test &
— Initial Assessment of Requirements Specifications Documentation Evaluation Report
Risks — Programming Practices

STAE Plan J
\ Al ANA) \
\ N
N
¢ System Requirsments | @ System Design Review | @ System Spacificetion | @ Teet Readiness Review | o Functiona Configuration
Review ® Preliminary Design Review - Unit Audit1
Review ® Critical Design Review - m’d\l" . mm.‘ Configuratica
— System
¢ Formal Qualification
Rv. 1
\ ® Functionsl Baseline ® Allocated Baseline o Allocated Bassline © Developmentsl Baseline | ® Product Baseline
N \N \-——————-—o———————-- —————— —f e e amn - — e - — - — -—
N\ ¢ Security Requirments | @ Security Design Review | o uecurity Sperifications | o g ity Test Readi ® Security Test &
N \1)\ ovie Review Revigw Evalustion Review
"N
N

SECURITY SECURITY DESIGN SECURITY SECURITY TEST & | gecypiry SAFEGUARD
REQUIREMENTS SPECIFICATIONS | EVALUATION PLAN \
APPROVAL APPROVAL APPROVAL APPROVAL CERTIFICATION

—

EVELOPMENT

"YCLE

—T PHASE

OPERATIONS PHASE
PROGRANMING TEST IMPLEMENTATION MAINTENANCE
STAGE STAGE STAGE STAGE
Users Manusi
Operations Manual BASIC
— Pmgram Maintens\s SOFTWARE
Munua LIFECYCLE
— Prgnmming ~ Test Analysis Report e —
:- ————— —f o o ———— - - o . ———— — — — > —
~- Data Control
— I ~— Security Test &
&‘.‘.’.'n'm?o':" e Evdwlon Report — Employment Practices
_ . — Security Training
Pramnning prctices . Securty Voo SECURITY
Analysis LIFECYCLE
—~ Softwa's & Hardware
Configuration Control
- an — Contingency Planning
N N \
= Test Roadincss Review | e Fynctional Configuration| @ F | Conf
— Unit Audit Audit-2
— Module ¢ Physical Configuration | Physicai Configuration mﬁi
- 's"y':"'::' Audit Audit-2 ASSURANCE
Formai Qualifi Formal Qualif
. Form alification . mzu ification ACTIVITIES
= Developmental Baseiine | ¢ Product Baseline o Operstional Baseline
D Security Test Readiness L4 ::ur:y‘o:unl.:
Review ui ow
SECURITY
ASSURANCE
ACTIVITIES
SECURITY TEST &
EVALIATION PLAN S T APPROVALS
FIGURE 11
ASSURING SECURITY
THROUGH THE SOFTWARE

DEVELOPMENT LIFECYCLE, AND
SOFTWARE QUALITY ASSURANCE

1-5

NEXT PAGE BLANK

e What activities are required to ensure the l!nclusion,
adequacy and appropriateness of security safeguards in
purchased/leased software packages?

1.2.1 1Issue #1--Sufficiency of Review and Approval of
Security Specifications and Systems Tests

This issue focuses on the need or desirability of security
review points beyond or in addition to those required in
current OMB policy. Currently, OMB A-71, TM No. 1 requires
that security specifications should be approved prior to
programming and that system tests be approved prior to using
the system operationally. The concern assoclated with this
issue is that the system development life cycle approach
includes a number of activities that are accomplished before
the generation of specifications that have Jirect bearing on
the ultimate adequacy, appropriateness and effectiveress of
security safeguards The question could also be p~sed as to
whether the review and approval of specification should be
accomplished at the preliminary system specifications level or
at the detailed (program) specifications level. Some facets of
this issue are founded in the variety of terms and SDLC phases
used throughout the data processing industry as a whole.

Section 2 of this document discusses the SDLC activities, the
activities associated with the SDLC that pertain specifically
to the area of security safeguards and the requirements for

review of security concerns throughout the SDLC,

1.2.2 Issue #2--What Activities Are Required To Assure the
Quality of Application System Security Safeguards?

This issue focuses on the concern that security safeguards,
sometimes referred to as internal controla, are most often

1-7

judged or evaluated in terms of effectiveness, adequacy or
appropriateness. The concern surrounding this issue is that
unless the security safeguards that are resident in
applications softvare code are developed with quality as a
developmental criteria, they may have flaws that will allow the
safeguards to be bypassed or penetrated. Therefore, ~he cost
of loss that may be incurred from exploitation of a fiawed
safeguard wi.l not only increase the cust to fix the flawed
software, but will probably exceed the cost to fix the flaw.
The cost to fix a software flaw has been well documented by
G.H. Myers and is estimated to be as much as two—and-one-half
times more costly to repair in the design, development/test
phase and 36 times more costly in the integration phase than if
found in the requirements phase of the SDLC [4].

Section 3 of this document will address the areas of how

quality software is defined and achieved and how the concept of

quality is applied to the case of security safeguards.

1.2.3 Issue #3--How Visible Should Safeguards be in the
Application Code and Documentation?

This issue focuses on the requirements by various populations
(e.g., users, auditors, programmers, penetrators) to be able to
have access to the security safeguards as thev appear in the
software code, both within the computer and in 1ist.ngs, and in
the various pleces of documentation. The concern is that in
some cases security safeguards need to be transparent to
certain populations so that performance and human engineering
attributes are not unnecessarily constrained. At the same
time, certain populations require relatively unconstrained or
unencumbered access to the safeguards to ensure that the

safeguards can be tested, reviewed, maintained, and audited.

1-8

Section 4 of this document provides a discussion of the
raquirements of the various contending populations and the
alternatives available for providing the level of visibility
that will meet most of the requirements of the population.

1.2.4 1Issve #4—-Security Safeguards in Packaged Software

This issue focuses on the concern that purchased/leased
software packages may not provide, or have sufficient
flexibility to prov de, security safeguards to meet the
security requirements of NASA applications. There is also a
concern that insufficient emphasis will be placed on the
planning, design, testing, and implementation of security
safeguards when acquisition of a software package is chosen in

lieu of in-house development.

Section 5 of this document provides a discussion of the
modifications that should be made to classic system development
1ife cycle and security activities when addre:sing the area of

security sefeguards in software packages.

1-9

NEXT PAGE BLAKX

THE SOFTWARE DEVELOPMENT LIFE CYCLE AND SECURITY

While it is common practice for systems developers to think of
system functionality first and to delay security concerns until
later, many opportunities to include effective controls are lost
1f not considered early [2]. To assure that system developers
consider security throughout the software development 1ife cycle
(SDLC), OMB A-71, TM No. 1 requires the establishment of a
management control process to assure that appropriate and

adequate controls are incorporated into all applications.

2.1 OMB Circular A-71, Transmittal Memorandum No. 1
Requirements for Applications Software Security

OMB Circular A-71, T™ No. 1 states that the head of each
executive branch department and agency is responsible for
assuriug an adequate level of gecurity for all agency data
whether processed in-house or commercially. This includes
responsibility for the establishment of physical,
administrative, and technical safeguards required to adequately
protect perrsonal, proprietary or other sensitive data not
subject to national security regulations, as well as national
security data. It also includes responsibility for assuring
that automated processes operate effectively and accurately.
...In consideration of problems which have been identified in
relation to existing practices, each agency's computer security
program shall at a minimum: ...Establish a mana; went control
process to assure that appropriate administrative, physical and
technical safeguards are incorporated into all new computer
applications and significant modifications to existing computer
applications. This control process should evaluate the
sengitivity ol each application. For sensicive applications,

parc’cularly those which process sensitive data or which
2-1

have a high potential for loss, such as automated decisionmaking
systems, specific centrols should, at a minimum, include
reponsibilities for: (1) Defining and approving security
specifications prior to programming the applications or
changes. The views and recommendations of the computer user
organization, the computer installation and the individual
responsible for security of the computer installation shall be
sought and considered prior to the approval of the security
specifications for the application. (2) Conducting and
approving design reviews and application systems tests prior to
using the systems operationally. The objective of the design
reviews should be to ascertain that the proposed design meets
the approved security specifications. The objective of the
system tests should be to verify that the planned
administrative, physical and technical security requirements are
operationally adequate prior to use of the system. The results
of the des’4n review and system test shall be fully documented
and maintained as part of the official records of the agency.
Upon completion of the system test, an official of the agency
shall certify that the system meets the documented ard approved
security specifications, meets all applicable Federal policies,
regulations and standards, and that the results of the test
demonstrate that the security provisions are adequate for the

application.

While the terminology used within OMB Circular A-71, TM No. 1 is
not consistent with respect to the terms requirements, design
and specifications, it is clear that the intent of the overall
requirement for a management control process for the security of
computer applications software is directed at ensuring that
steps are taken to include security concerns and safeguards as
an integral, albeit identifiable, part of the software

development life cycle process.
2-2

2.2 The Software Dcvelopment Life Cycle

As noted previously, the software development life cycle (SDLC)
is a technique used to divide the system development process
into distinct phases. Figure 2-1 shows some 15 different
software life cycle models. None of these models uses exactly
the seme terminology for all phases in the cycle. However it is
important to note ...the management structure represented by the
models 1s a proven method for enabling a project manager to:

(1) estimate the cost/time to complete a system or software
project; (2) make use of existing industry and government
standards and guidelines; (3) assess the progress of a project
at discrete points in the life cycle by conducting formal
reviews and audits; and, (4) control system development by
requiring go/no-go decision points throughout the life cycle [5].

Figure 2-2 presents a generic life cycle which is based upon the
model presented in the National Bureau of Standards FIPS PUBs 38
and 64 [6,7]. The basic software life cycle, as depicted,
identifies three major phases: initiation, development and
operation. The development phase is divided into four stages:
definition, design, programming and test. For the purpose of
this document, the operations phase has been divided into two

stages: implementation and maintenance.

2.2.1 The Initiation Phase

During the Initiation Phase, the objectives and general

definitions of the requirement§ are established. First, there
is an initial user definition activity. During this activity
there 18 a determination of what's currently being done; what

needs to be done; understanding the problem; definiug of the

2-3

ST13AON 31303411 3YVMIL40S 40 A3AUNS

‘LSEL ‘M01’VeIRiMI

-2 3UNOL4
._F.,VV oy u—!‘ uhh-nwz
Eewaini i/ uanacdea] TGWOTAIG TIV05 Tind T Wivariva [mouvitinn] oineeis e
2owi] wold . WO12VinMI0T sy
—-E.!H§~g—&82 T:s MO — WO1830 — ivsodoud _ I wigrton
f FONELATW] Jncowlisi jisai MB1S)S] 1S31/ON1Miveoosd | w1520 1 NO11IN1430] ViVa 0WN0D
Tw0ddns WD1530
TVROLs veas0 _ — .Euﬁ ns _tnESEEa uﬁatcmm INVALIOS M WOILINISIO MGLSAS 1_ (08/9) wal
TONWMLLLIVE GV D1 Taasuval ; (O8/S2/9)
~M1VISNS ‘SWOIiveado | ? iSLl NOIlvexalN) — 011300084 3 KO1SK _ SLKGMG Y 02N 4 (.$1-004) 1ar
[sevauaw I ISl T N1G00 T 01530 T SL@QAVINad B (Masa) 382
SLNIEYI nbay SLaY100ay (845 wodeap)
m F2UVLII0V hr su “ DNIRIVEO0Nd H.n:wu: HvuO0ud — TMVIH0AUEd NVUOONd ﬁ AAVN 6(97 Q4S-TIN
TIBL01430 01530 145800
LANIOTIARG
ﬁ /011900084 h DIV 1SULd aniviza NOLLVGI'TVA walsas E"TL)
“IRARG AQGY
TOUVIIION 23908
— Qo BIIYo12ITYID NO11VaITVA M VL4200 _ (/e (as2)das
fr———————— $54008d_LIGNI0O ARG FTVOS-TIN
Pty ’ -
H TVHO1 iVERO MaLSLS M MO LLVEIGLNT H 1100 3 3009 w0Isa WOLIVGITVA —._S.Euu.eu_ 19/$1/¢ - (vaa)musL
j————————— uGKIoTIAX uTaNING -
('Qe "Iup pue
— luu”“na‘ﬂ!; _.B:S:«»— ¥O11WD141MA — 50430 9 3000 M n91S30 —E._SS.H?E..BB _ Yew vis) (62/1/2)
4 2°4'S TIVNSIW
w1lvesdo w1sad LONd012A20 | LIN1 " toNd
LXM4012AB0 i .
— Qv 1eBu0N — NiLSAS /WO1L1N143a a0 | 1wy .mw:._ 1-0z6 ga0a
ENVIJIZOV @V | vsva
— N011ViERdO MOIIVG1TVA MRLSAS WO1LVANLIIAN _ %1530 _ wllluldaa M..S::.:: (96€1-¥) (0Re1 "¥rw)
ANOLVEORYT Wadvea

SN Y WOLLIVYTViSHI M5 IVEI8d _ 91520 — NO11rN1d3a \~ NOLIVILIN} d. $-1°$(6L 000

N011IVE340 1 Ty 1 MIAVEOONd 1 ¥1530 1 woiiimiasa | woliviiim) o€ and Sd1s

*SISVMd H011VZ12VON0

2-4

¢°'C 3UNOI4

313803417 IUYVML40S 3HL

{9€ Bnd Sdi4 :8unoG)

uodey ~
sisipuy usid 180}
isey
enuen uswnosoq

ouUBULBUIB W uoedI2edsS sjuswnbey risleuy
wwiBaug oseg ejeQ ejeQq ljeueg-180)
enuey uonedyioeds Apmg
suojwedo wesBoid Awnqisesy
uoedy10eds juswnooq ewnaog
sisenbey jenuepy wasAsgng sjuswauinbey 1senbay
sbBueyn sesn woasAg feuoijoun 4 [IRL T YY)

obwis oduis obe)s obeig obeis ebeis

SIURUSIURYY uoRueweIdw)| 11778 SujwwesBaouyg ubiseq uopiuyeq
oseYyy oSy
vonesedo o88Yd luswdoleasq uoneniuy

25

scope, objectives and operating environment; definition of

functional, performance, and methodological requirements; and,

aczceptance criteria.

The second activity conducted during the Initiation Phase is
evaluation and initiation of necessary documents to formally
commence the software development project. This activity
includes performing a comprehensive study of technical,
cperational and ecoromic feasibility; performence of a
cost/benefit analysis; analysis of general design approaches,

and generating a development plan.

Documentation produced during the Initiation Phase requires user
involvement to define the project and its worth. Typically, a
Project Request Document is developed as a means for the user
organization to request the development, procurement Or
modification of software or other ADP-related gervices. It
serves as the initiating document in the software 1life cycle,
and provides a basis for communicating with the requesting
organization to further analyze requirements and assess

impacts. The second document produced {2 usually the
Feasibility Study Document. The purpose of this document is to
provide: (1) an analysis of the objectives, requirements and
system concepts; (2) an evaluation of alternative approaches for
reasonably achieving the objectives; and (3) identification of a
proposed approach. The third document, Cost/Benefit Analysis
provides managers, users, designers and auditors with adequate
cost and benefit information to analyze and evaluate alternative

approaches.

All documentation is widely reviewea and is followed by a

management declsion of whether to continue on to the

2-6

Definition Stage. For externsl procurements, a Request for
Proposal (RFP) is issued, proposals are evaluated and a contract

18 awarded.

2.2,2 The Development Phase

During the Development Phase, the requirements for software are
determined and the software is then defined, specified,
programmed and tested. The Development Phase is broken down

into four stages: Definitica, Design, Programming and Test.

2,2.2.1 The Definition Stage

The activities during the Definition Stage include: translation
of the user requirements into detailed function requirements and
a functional architecture defining the operating environment,
functional modules, inputs, outputs, processing requirements and
system performance requirements (as needed to meet user
performance requirements); definition of data requirements;
completion of a general top-level design; definition of
functional interfaces (man/machine, system/systeam,
functlon/function); identiftcation of required equipment; and,
planning for development activities. Documents typically
produced during the Definition Stage include the Functional

Requirements Document and the Data Requirements Document.

2.2.2.2 The Design Stage

During the Design Stage, the Systems and Program Specifications
are developed. Activities at this point include: designing the
system to meet functional requirements; dividing functional

modules into program modules identifying the inputs, processing

2-7

and outputs of each; definition o the conctrol and data
structures and protocols; and, specification of interfacee in
detail. Documents typically produced during this stage iaclude
the System/Subsystem Specifications, Program Specifications,

Data Base Specifications and the Test Plan.

2.2.2.3 The Programming Stage

During the Programming Stage, the soitwaie is coded and
debugged. Activities may include obtaining of the required
hardware; writing, testing and debugging of software programs;
preparation of manuels; and, completion of test procedures.
Documentation typically produced during the Programming Stage
includes the Users Manual, Operations Manual, Program

Maintenance Manual and the Test Plan.

2.2.2.4 The Test Stage

During the Test Stage the software is tested and the related
documentation is reviewed. The software and documentation are
evaluated in terms of readiness for implementation. Activities
include: performance of integration and acceptance testing;
training of users and operators; installation in the operational
environment; data base conversion; and testing ir the
operational environment. Documentation produced during this

stage is the Test Analysis Report.

2.2.3 The Operations Phase

During the Operations Phase, software is maintained and enhanced
as additional requirements are identified. The Operations Phase
can be viewed as two distinct stages: Ianplementation and

Maintenance.
2-8

and efficiency of computer applications [2]. While security
concerns should be integrated in the life cycle of a computer
application, the steps taken to ensure the appropriateness,
adequacy and reasonableness of security sateguards should be
separately idencifiable activities within each stage or phase
of the SDLC.

2.3.1 Security Activities

System planners, developers and users should accomplish a
series of security-related actions throughout the SDLC. While
the order in which the actions should be accomplished is
presented sequentially, it should be recognized that there will
be much .nteraction between a particular step and the preceding
steps. The process for incorporating security safeguards in an
application is not substantially different from the SDLC
activities identified in Section 2.2. It should also be noted
that i{f during development, any change occurs in a software
requirement o:r specification, the change must be reviewed to
determine if coincidental changes are required in the security

requirements or specifications.

The security activities (Figure 2-3) tc be completed throughout
the SDLC are:

e Determine Senesitivity of Data/Application

o Determine the Security Objective(s)
e Assess the Security Risks

® Conduct a Security Feasibility Study
o Define the Security Requirements

e Develop the Security Test Plan

Activities

Determine
Sensitivity of
Data/Application

i

Determine
Security
Objective(s)

Assess
Security Risns

Conduct
Socurllg
Feasibility Study

]

Define Security
Requiremaents

Oevelop
Security
Test Pian

]

Design Security
Specifications

|

Develo
Security Test
Procedures

Write Security
Relevant
Code

Document
Security
Safeguards

1

Conduct Security
Test and
Evaivation

|

Write Security
Test Report

) I

Prepare Securnty
Certitication
Report

Accomplished by

Users
Application/DP1 CSO

Users
Apphication/OPt CSO

User
System Planners
Applicatron/OP1 C8O

User
System Pianners
Application/OP1 CSO

User
System Pianners

Approved by Application CSO

QA
Audit
vav

{Rev

v CSO)

PP

Systam Developers

(Reviewed/Approved by Application CSO)

Programmers

Programmer
System Developer
{Reviewed by Appiication/DPI CSO)

VAV
Audit

1vav
QA
Audit

System Developer
(Certitication issued by Apphcation CSO)

FIGURE 2-3

SOFTWARE DEVELOPMENT LIFECYCLE SECURITY ACTIVITIES

¢z-11

o Design Security Specifications

e Develop the Security Test Procedures
e Write Security Relevant Code

e Document Security Safeguards

e Conduct Security Test & Evaluation

e Write Security Test Analysis Report

o Prepare Security Certification Report

Much of the information provided in the description of the
security activities is presen.ed in FIPS PUB 73 [2]. The

information is incorporated herein to provide the reader with a

complete discussicn.

2.3.1.1 Determine the Sensitivity of Data/Application

The degree of sensitivity of an application system depends upon
the data it will process and/or the types of functions to be
accomplished by the software. For example, data may be
personal in nature, represent valuable tangible assets such as
high~dollar value inventory or represent real dollars.
Application proceeses which perform critical operations may
include formulas or algorithms that must always be executed
exactly the same, such as engineering calculations or on-board

software for a space vehicle.

FIPS PUB 73, Section 2.3, provides categories of sensitive
systems with some examples of the types of applications that
would fall under each of the categories. The categories and

examples are:

e Applications Providing General Processiag Support - The
primary concern is for accidents, errors and
ommissions. Health, safety, welfare and lives may

2-12

depend on the correctness of output from thcse
applications. Thus Cata integrity, including integrity
of the software, is critical.

- Engineering calculations used in aircraft design
= Query systems that support health care decisionmakiug
- Automated wind tunnel control systems

- Simulation of the dispersion of toxic substances

Funds Disbursement, Accounting, Asset Management
Systems - These systems frequently involve personal or
other confidential data. In these applicationms,
deliberate and accidental acts are a major concern.
Data integrity is the major objective. Data
confidentiality may also be required.

~ Payroll
- Financial accounting
= Procurement support

- Equipment inventory control

General-Purpose Information Systems - The simultaneous
use by different user populations makes data
confidentiality critical as well as data irtegrity.
Tue generality of such systems and their associated
security requirements also make it more difficult tc
design effective security controls.

- Generalized data management systems
~ Centralized management information systems

Automated Decisionmaking Systems -~ Manual review is
more difficult, so that errors made by the automated
systems are less likely to be detected before they lead
to serious harm. The major objective is rigorous data
integrity.

- PFully automated funds disbursement and accounting
systems

~ Automated inveutory reordering

- Automated scheduling for maintenance
2-13

e Real-Time Cont 1 Systems - These systems have all the
security concei. of automated decisionmaking systems
plus a rigcrous requirement for constant availability
and very rapid response times. Basic controls plus
automated fault detection, backup, and recovery in
conjunction with redundant hardware support may be
required.

-~ Alr traffic control
- NASA mission control
- Rapid transit system control

- Automated production control

¢ Systems Affecting Naticnal Security or Well-Being -
These aystems must be protected against hostile acts by
unauthorized persons who have considerable resources.
Data integrity, confidentiality, and ADP availability
are all required plus techniques for formal development
and verification of controls in operating systems as
well as application systems.

- Military command and control
-~ Management of multilevel classified information
- Integrated electronic funda transfer

- Nuclear material control and accountability

Additional guidance on determining the sensitivity of the
data/application can be found in NASA Handbook (NHB) 2410.1
[10]. Por the purposes of the NASA Computer Security Program,
a sensitive application is defined as the use of a computer
system for processing classified, proprietary, Jdollar
sensitive, time sensitive, or Privacy Act data. All other
computer system use, such as that for scientific, technical,
research, or developuent activity, may be considered as a
nonsensitive application; however, this does not preclude such
uses as being designated a sensitive application 1f this will

provide necessary and useful controls. Designation of a test

2-14

and mission control application as a sensitive application is
within the prerogative of responsible personnel. For test and
mission control applications, it is recommended that security
measures be proviled for as an element of mission or test
plans. This will allow any necessary security measures to be
tailored to specific test and mission needs in a manner that
provides a sound balance between requirements for controls and
for operational flexibility.

To assist in decermining whether an application may be
sensitive, NHB 2410.1 provides the following guidance. First,
careful exercise of judgement is required in evaluating the
sensitivity of applications. In those instances where it is
not clear that an application is sensitive, it is necessary to
weigh the intangible costs of potential loss against the cost
to protect the application 1f it is categorized as sensitive.
This type of cost-venefit analysis is especially critical in
evaluating research, development, test. and mission control
applications. The possibility that applications are sensitive
only under certain conditions should not be overlooked. For
example, it could be useful to categorize unique mission
control applications as being sensitive only during e specific

period of the mission.

Essentiually, the objective of this step is to determine whether
or not the application or the data is sensitive. If the data
or application is sensitive, the rationale should be
documented. When reviewing the data, one should attempt to
Jetermine the potential gain to persons from unauthorized
access to or use of the data or the application process. This
step should be accomplished by the owner or intended user in

concert with the application and/or DPI CSO.

2-15

If the application is determined to be sensitive, the next step
in the process is to determine the security objective or
objectives.

2.3.1.2 Determine The Security Objective(s)

There are two types of events that can have unwanted or
undesirable effects on sensitive data or applications;

adve . :nt (deliberate) or inadvertent (accidental). The
advertent or inadvertent events may result in the modificationm,
destruction, or disclosure of data or a>prlications software
programs, or the unavailability of computing resources. A
useful approach for assuring that appropriate and adequate
safeguards are incorporated in sensitive applications is to
eatablish security objectives that, if achieved, will
reasonably mitigate advertent or inadvertent events. Generally
speaking, five security objectives should satisfy all types of
events and effects: data integrity, application integrity,
data confidentiality, application confidentiality and ADP
availability.

«» Data Integrity - The state that exists when
computerized data i3 the same as that in the source
documents or has been correctly computed from source
data and has not been exposed to accidental or
malicious alteration or destruction [2].

e Applications Integrity -~ The state that exists when the
source and object code are the same as originally
developed and certified/accredited or, have been
nodified and tested in accordance with established
standards and procedures and recertified/reaccredited,
and have not been exposed to accidental or malicious
alteration or destruction.

e Data Confidentiality - The state that exists when data
is held in confidence and is protected from
unauthorized disclosure [2].

2-16

o Application Confidenriality - The state that exists
when application source and object code and
documentation 1is held in confidence and is protected
from unauthorized Jdisclosure.

® ADP Availability - The state that exists when required
ADP services can be obtained within an acceptable
period of time [2].

Figure 2-4 provides a guide for determining sensitive
application security objectives. First, determine the category
of sensitive application. Second, refer to Figure 2-4 and
determine the possible security objective that may have to be
achieved. It should be noted that this i1s a preliminary
determination. The assessment of risks and security
feasibility study may surface concerans or limitations that

would require a modification of the security objectives.

This step should be accomplished by the owner or intended user
in concert with the application and/or DPI CSO.

2.3.1.3 Assess the Security Risks

The types of controls that will uitimately be incorporated into
an appiication system should be determined based upon the
potential loss or harm that could be suffered if the data or
the application were modified, destroyed or disclosed or is
caugsed to become unavailable due unauthorized or undesirable
events. FIPS PUB 102 [8] provides an introductory discussion
of the usefulness of risk analysis for assessing the risks to a

new application.

The primary purpose of risk analysis is to understand

the security problem by identifying security risks,
determining their magnitude, and identifying areas
where safeguards or controls are needed. It can also

2-17

SIALLOIME0 ALINNOAS NOLLYDITddV 3AILISNIS

2 24NOI1d
Aureuepyjuoy uonediddy = OV
Aybeyu) uopedyddy = |V
Alnqeieay dav = vV
Awreniuepyuod wie@ = 0Q
Aubeju neg = 10
‘puebe
\Ad w vy \Ad usueapeu) seunosey Bupndwo)
LA vy L A J UAZ JUSLIGADY j0 Aunqejieasun
a0 w 20 HUeUeAPBL| neq
ov 00 o v 20 20 UOLISADY }0 21n$01981Q
1a iv Q' 1Q 10 eueApey| |ddyreiea
1ty 1a v v v 10 JUBLIOADY 10 UoNINIESD
v 19 IV a 1aiv v 10 UUIBADE U} jddvrereq
Q'Y 1a v v 10 Iv 10 v JUSLAPY 10 UCHIEILIPOW
Bujeg-liem 1o1uoD SweisAs Sweisis Wby 1988y uoddns ueA3
10 A)pnoes owi Loy Suprewuoisioea| uopeuuoju | Bununoddy Buissec0id 10 9dAL 19843
fSUOjIeN pejswolny esoding 'ueo | QsiIa spundg |RI0USD)

uoyied|iddy 8apIsues jo nobdeyel

2-18

be used to determine how many resources to budget for
security and, with user inputs and policy
requirements, can provide the basis fcr choosing
system gecurity requirements.

Risk analysis can also be useful in validating
requirements. If requirements are defined to the
functional safeguards level, risk analysis can be
used to determine whether the protection embodied in
the controls reduces expected loss to su acceptable
level at acceptance cost.

In the initial assessment of risk, the concern is for the
impact and frequency of major failures. The impact of rajor
failures can be described in any convenlent terms--dol.ar value
of loss, extent of inconvenience or hardship, lives Jost or

degree of disruptior. to the national security or agency mission.

The impact of at least the following failures should be
assessed for each major body of information that is to be

processed by the proposed system [2].

® Inaccurate Data - Data {programs) could be corrupted
with errors, but the system continues to function while
producing erroneous outputs. Estimate the potential
impact of erromeous actions that might result assuming
only that the output of the ADP system is not so
obviously out of line with reality that the errors
would be noticed. Consider both the impact of a few
very serious errors and the cumulative effect of many
small errors.

@ Falsified Data - An individual could falsify data in
order to gain some advantage. The falsifications may
be limited only by the fact that they are subtle enough
80 they are not detected manually. Estimate the total
impact that could occur over an extended period of time.

e Disclosed Data ~ Sensitive data in the system becomes
avallable publicly or to certain individuals. The
unauthorized disclosure of data is not necessarily
discovered.

2-19

e Lost Data or Application Software Code or

Documentation - Data, source code, object code or
documentation are destroyed or corrupted. Backup
versions are nonexistent or not usable, and the data
must be reconstructed manually or software code or
documentation mvst be rewritten. Estimate the impact
of losing the data, source code, object code or
documentation. If manual reconstruction 1is obviously
not feasible and if backup in depth is anticipated,
estimate the impact of using old version, inaccuracies,
and the temporary unavailability that would result
while recovering from an old copy on the assumption
that all current or recent backup copies have been
destroyed.

e Unavailable Data Services - Estimate the impact if the
computer hardware or related equipment in the computer
facility (DPI) 1s disabled and the system is not
available until it can be brought up in another
facility.

An estimate of the impact of a major security failure is not
particularly meaningful without some estimate of how frequently
it might occur. Unfortunately, during the initial planning for
an application system, it is difficult, if not impossible, to
estimate the frequency of a major failure by evaluating the
controls in place. However, it is poseible to develop rough
estimates based upon experience with manual system activities
and by looking at the experience of failures or disruptions
with similar types of systems. FIPS PUB 73 [2] ,rovides the
following guidance:

If the proposed system is generally comparable to
other computer applications, then a ma jor security
fallure of the sort described above can be estimated
to occur once in a hundred years. This simple
estimate is based on the following line of reasoning:

Available security controls (if they are properly
managed) can prevent major security failures from
reoccurring as frequently as once every 10 years.
On the other hand, any ADP system has several

2-20

vulnerabilities againsc which there is little
defense; most rystems can be manipulated by any
one of several individuals who are in a position
of trust--pro_rammers, those responsible for
security, the computer operators, and others.
There are enough instances of ma jor security
fajlures in computer applications so that an
expected fregyuency of once in a thousand years is
very optimistic. The estimate of once in a
hundred years 1s only intended to be accurate
within an order of magnitude.

An alternate approach for estimating frequency 1s to use a low,
medium or high frequency rather than orders of magnitude. This
approach when used as part of the Threat Team Analysis should
provide sufficient data to provide an assessment of the impact
of major failures.

A threat team is composed of key employees within an
organization who meet as a task force to search for threats and
vulnerabilities in a system and who create possible acenarios
for attacking the system. Use of such teams 18 based on the
premigse that people in the best position to discover how to
beat the system arz those who work with it every day. The
objective is to capitalize on their knowledge. Threat analysis
unlocks this potential through the use of a moderator familfar
with computer abuge methods. The threat sessions seek a
symbiosis between the moderator's genaral knowledge of typical
schemes and the participants’ specific knowledge of data
processing operations and functional experience with the system
under evaluation [1]. The threat team/analysis approach has

been used successfully in NASA in the evaluation/certification
of existing sensitive systems [12].

Actual threat scenario development is accomplished through a

series, usually two, informal team meetings. The first meeting

2-21

should be scheduled for two to two and one-half houre. The
second meeting should last for one to twe hours. At the
beginning of the first meeting of the team, a basic set of
ground rules and background information must be given. The key
elements of this background are summarized in Figure 2--5 [11].
The moderator should give a brief summary of the atatistics of
computer abuse, an outline of major schemes that have been
perpetrated against similar types of applications and how they
were accomplished (modus operandi). The objective is to "prime
the pump” and stimulate the participants in developing possible

attacks againet their system.

Flip charts should be used to record the following information:

e What is being attacked or compromised in the system?

e What vulnerabilities would permit the attack to be
accomplished?

e What methods or procedures would be utilized?

e What types of safeguards or controls could be used to
prevent or reduce loss?

e What is the likelihood that this scenario will work
(high, medium, low)?

e What is the impact on the system or organization if the
scepario were successfully executed (order of magnitude
dollars, delays, etc.)? Note: Quantification of
impact while desirable is not mandatory.

One alternate approach is for each threat team participant to

keep notes, summarize each scenario and turn the notes over to
the moderator for summarizing. The summary would be reviewed

by each team member at the second meeting. Another

alternative, is for the moderator, or other designated person,

2-22

Introduction

Summary

Moderator's

Identification

Why this
Organizction?

Why these
Participants?

Warning abou*
Secrecy

Schedule

The moderator is introduced by a NASA
manageaent cfficial. Participants have not
veen informed in edvance of the subject of the
meeting. The official then leaves. The
meeting place should be around a large table in
a comfortable room, such as the board ruvom
(thus giving status and approval to the
prcject).

Tie objectives of the study are expla’ned; the
time frame and the responsibilities of the
participants are outlindd.

The moderator should establish his position
within the grouy and define his own role, which
is that of a resource person. He knows a good
deal about computer abuse schemes in general,
but little about how this particular
organization operates.

Participants should be put at ease by explaining
that the study is simply a precautionary
excerise; there is no reason to suspect an
on-going perpetration.

Participants often wonder "why me” at

this stage. Again they must be reaassured.

They have beer. selected for the study because
of their knowledge and experience; they are the
people who "really know how this business
works.”

Participants are asked not to discuss the
subject or content of the meetings outside
the group.

The group will meet for several hours. A
transcript will be prepared and circulated for
changes. A second meeting of the same group is
scheduled in about one week, and a final report
cfrculated in the same fashion.

FIGURE 2-5

OUTLINE OF INTRODUCTORY COMMENTS
BY MODERATOR AT FIRST THREAT SESSICN

to act as a recorder, to keep a "transcript” of the meeting.
The transcript would then be reviewed by each participant after

each meeting and firalized as a consensus record.

The second meeting should be conducted within one to two weeks
after the initial session. The initial sessicn provices a
"sensitizing” of the participants. Between the two sessions,
participants can review the proposed system with some new
perspectives and will usually provide additional scenarios. At
the conclusion of the second meeting, conclusiors about the
scenarios should be agreed upon by all participants. A report
of the sessions should be written. The report should be
closely held, distribution extremely limited and copies

protected.

Upon completion of the threat scenario analysis exercise, it is
suggested that the security objectives be reviewed to determine
if the preliminary security objectives are still valid. When
reviewing the security objectives, the following items should
be considered to ensure that major concerns about security have

been addressed [2].

e Source data accuracy — Will the data supplied to the
ADP system be accurate and complete enough to support
its intended uses without harmful side effects?

e User identity verification - Can users of the systems
be adequately identified and authenticated so they can
be held accountable for their actions?

e Restricted interfaces — Are the user interfaces to the
system sufficiently restricted sc that adequate
security 1is feasible?

e Separation of duties - Do the boundaries between ADP
and related manual activities provide maximum

separation of duties and independent review?

2-24

¢ Facllity security - Is the proposed processing facility
adequately s=cure?

The next step in the security life cycle is to determine the
types of controls that should be incorporated into the
applice ‘fon that will achieve the security objectives.

2.3.1.4 Security Feasibility Study

The purpose of the security feasibility study is to determine
if controls are availsble to meet the security objectives, how
well they will satisfy the objectives, whether the controls
should be preventive, detective or recuperative in nature and
what mix of administrative, physical and technical controls is
most feasible. Cost, performance degradation, and impact on
requirements for user friendliness should be considered. In
other words, what types cof controls are appropriate for the

proposed application.

A key to the feasibility study is the use of an appreoriate

methodology to analyze the proposed application to d:termine
what security controls are available and how well they meet the

security objectives. Brill, in "Building Controls Intc
Structured Systems™ [13], divides applicatin controls into
three major classes: controls over inputs, controls over
processing and controls over output. Brill's methodology is
basud on a hierarchical approach that ieads the user through a
tree siructure to address a variety of control issues such as
input authorization, internal data movement, operator

intervention, and oucput distribution.

At this point in the 1ife cycle with the determination of
sensitivity completed, the identification of security

2-25

objectives, the assessement of risks and security feasibility

completed, definition of security requirements is the next step.

2.3.1.5 Define Security Requirements

Definition of security requirements takes place during the
definition stage of the development phase of the system
development life cycle. The term "requirements” can be used at
many different levels. The requirements defined at this point
should include everything that the users and other responsible
parties want to require of the application software. The
gecurity requirements should be expressed in a way that permits
the software designers to choose the best way of implementing
them. It should be remembered that security coatrols can be
enforced either by software or by physical or administrative
procedures. For example, data integrity can be checked by
bhuman review or by automated bounds and consistency checks.
When possible, it is recommended that controls be implemented
in software for the following reasons: once controls have been
automated, the continuing cost to enforce the controls is
usually lower than when enforced minually, and, automated

controls will be applied more consistently.

It should be noted that FIPS PUB 73 [2] indicates that the
documentation of security requirements constitutes the security
specification called for in OMB Circular A-71, Transmittal
Memorandum No. 1, paragraph 4.c (1). Also, security
specifications may be incorporated into the functional
requirements document and the data requirements document as
called for in FIPS PUB 38 [6], or it may be an independent

document.

2-26

The first step in defining security requirements is to conduct
in analysis of the "current system” to identify and develop an

understanding of the principle functions and to identify
sources of input and the flow of data through the system. When

the current system is reasonably understood, the user and
system requirements should be documented. The sources of input
and the flow of data through the system are two of the most
important sources of data for defining security requirements.
Brill [13] indicates that systems analysts can use four
different sources to identify controls that belong in the new
system: stated user poulicy, unstated user policy, the current

system and external constraints.

e Stated user policy--The best way to begin to
determine the controls needed in a system is to
ask the users about the need for controls. Users
have a genuine stake in the new system as well as
thorough knowledge of their owan requirements.
Users should be asked how they handle errors in
the present system, the kinds of errors or
problems they suspect they don't know about (that
is, those that are slipping through undetected).
Users should also be asked about laws or
regulations that affect the way system processes
must be done as well as questions about the value
and cri~icality of their data.

e Unstated user policy—Users expect couprehensive
controls to be built into their system without
ever mentioning controls in discussions with the
analysis team. For example, the need to test
check digits on account numbers may never b:
stated because the present manusl system may not
have facilities to permit it. But users may
assume that an automated system tests check digits
as 2 matter of course and that you don't need to
be told to build such tests into the systenm.
Systems planners must learn the system—and
understand the problem--well enough to chalienge
the unstated assumptions of the users and turn
unstated requirements into stated ones.

2-27

e The current system——New systems tend to do many of
the same things as the systems they replace. O0f
course, they may do them differently (via a
terminal, for example, rather than through
batch-produced reports). So, while the specific
controls in the new system may differ from those
in the old system, there are goiag to be
overlaps. But, you have to look tor them, and
have to recognize them as controls and to assess
their suitability for transplantation into the new
syste=,

e External constraints--Various laws and regulations
can directly affect a system. (This area would
include agency policy for security, financial
accounting, etc.)

FIPS PUB 73 [2] suggests that the following areas be addressed
vhen developing security requirements: identification and
definition of systems interfaces (to include responsibilities
associated with each interface and a separation of duties),
identification of the sensitive objects to be processed,
determination of error tolerances and definitionm of

availability requirements.

o Identification and definition of systems
interfaces—Identify each job function which is
related to the application system. Consider each
job function as an interface to the application.
Define the nature of the interaction between each
job function and the system. Also identify and
define any interfaces to other automated systems.
Include all job functions (or cther autcmated
systems) that are to be supported by this
system~-even if the people performing those jobs
only receive reports from it. Also include all
job functiors (or other automated systems) thac
supply information to the application system or
that support its operation. Be sure to include
critical job functions such as: source data
collection, input preparation, data entry, output
dissemination, data base administration, system
security planning and control, intermal audit,

2-28

application program maintenance, archival or
backup data storage, computer operations, and
system programming.

Define the responsibilities of the individuals who
interact with the application system through each
defined interface. Identify the constraints on
the use of each interface that must be enforced if
security 18 to be preserved. Comnsider the
likelikood of errors occurring in the use of the
interface and identify the consequences. Comnsider
the consequences of deliberate misuse of the
interface. Identify the management and
administrative controls that will be available to
ensure that the interface is used properly.

Examine interfaces to ensure that security
exposure will be minimized even if an interface 1is
misused. Ideally, any action that could result in
serious harm should be checked or approved from an
independent interface.

Identification of sensitive objects to be
processed-—Identify the objects to be
processed~—include input data, stored data and
output data. Determine the gensitivity and asset
value of the data objects. Identify the
operations or functions that users will perform on
this data.

Determination of error tolerances—Determine the
application's error tolerance by taking into
consideration the expected reliability and
validity of the data and the intended objectives
of the application. For example, funds
disbursement or electronic funds transfer systems
may have a low tolerance for data error since such
errors directly translate into dollars. Real-time
control systems such as air traffic control have
virtually no margin for errc- since human lives
may be lost. Some management information systems,
particularly those used to predict future demands
and resource requirements, may not be as
susceptible to errors in data. However,
algorithms in the code may have less tolerance for
errors. The application's tolerance for error and
the requirements for maintaining error levels
within acceptable tolerance must be defined.

2-29

e Definition of availability requirements——Determine
the user tolerance for interruption of output data
and the potential harm that could be a result due
to non-availability of the application output.

The preceding discussion in thi: section has addressed the
collection and analysis of data t.uat precedes the actual
documentation of security requireuents. Requirements
should define what is required by the user not how it is
to be accomplished.

—

FIPS PUB 73 [2] desciibes some basic controls that can be
used to achieve security objectives. It is relevant at
this point in this discussion to summarize these basic
controls since the descriptions provided, with some
modification, can be used as security requirements. The
basic controls provided in FIPS PUB 73 are: data
validation, user ’‘dentity verification, authorizatiom,

journaling, variance detection, and encryption.

e Data validation-—-Invalid data may lead to
erroneous outputs, can destroy the credibility of
the system, demoralize those trying to use it,
cause excessive system maintenance costs, and, in
extreme cases, cause the system to become
unavailable or unusable.

Data validation involves the examination of
computerized data to determine if it 1s accurate,
complete, consistent, unambiguous, and

reasonable. Direct evaluation methods (discussed
below) are not able to find all errors. Data
integrity depends on the correctness and integrity
of all the activities by which the data is
collected and processed. Data validation is a
very basic control, but it should only be expected
to detect gross errors and it will not compensate
for poor control over other aspects of the
application system. Data should be validated

2-30

during data collection and entry-—prior to its use
by the system; and, continuously, as new data is
generated or used during processing.

Data validation should be required during data
entry and during processing. Automated editing
and validation should ve used in both batch and
on-line systems. In batch processing systems,
validation routines may run against input data
before it is processed. Alternately, validation
can occur as each transaction is processed.
Transactions that contain errors should be
recorded on a file for correction at a later

time. On-line systeams can provide the data entry
personnel with immediate validation information so
detected errors can be corrected immediately.
During the definition stage the editing and
validation technique to be employed is not
specified, rather the requirement should state
that all data originating from hard copy should be
validated prior to the transaction being entered
into the system.

For a batch system a typical requiremert statement might read:

All source data will be keyed twice and automatically
compared with the transcribed source data previously
keyed.

For an on-line system where transactions are entered 1in

real-time, a typical security requirement might read:

All keyed transactions (or tramnsactions of a certain type)
will be visually verified prior to transmission to the
systenm.

Data may also be validated during processing. Moust of the
techniques that are appropriate to validation during data entry
may be appiled during processing. An example of a requirement

that related to validation during processing is:

2-31

Transaction with errors detected during the data
processing phase need to be controlled to ensure they are
corrected and reentered in a tisely phase.

e User identity verification—-Identification occurs when
the user provides =n identifier-the name by which the
ugser is known tu the system. The user's identifier 1s
unique, unlikely to change and need not be kept
secret. It 1s used during processing fcr authorization
controls, variance detection and for other purpose such
as accounting and billing. Verification occurs when
the individual passes some further test which "proves”
that the user is actually the person associated with
the identifier. This is also called user
authentication.

Examples of requirements for user identification and/cr

verification might be as follows:

For batch submissions, users must be visually identificd
by a control clerk and all jobs logged.

For on-line submission of transactions, all users must
have an individual identifier and password for initial
logging on.

e Authorization--Once a user's identity has been
verified, the application may still need to check each
request for service to determine whether it is a
legitimate request by that user. Some users may be
authorized to perform some functions but not others and
to have access to perform some functions but not others
and to have access to some data but not to other data.
In some cases, the authorization decision may depend on
not only WHO is requesting what MODE OF ACCESS to which
OBJECT, but also on other easily testable conditions.
The time of day, the day of the week, previously
detected serurity variances, or other concurrent
activity might be used to affect the authorization
decision.

An example of this type of authorization when stated as a

gecurity requirement might read:

2-32

The system must be able to restrict update access to
specific time of the day and days of the week.

e Journaling--Journals may be employed to log activities
or events external to the operational environment or
those internal to the application system. Journals of
external events in the operational environment can be
maintained manually while journals used to record
activities internal to the application must be
automated. From a security standpoint, the ideal
journal would include ¢ 100 percent recording of all
events relating to data, software, and system
resources. From a practical standpoint, such a journal
may, in some systems, be out of the question since the
overhead to record all events would reduce system
response to less than acceptable levels of
performance. Requirements for journaling should be
carefully considered, reduced to formal statements and
be stated in positive terms. Items that should be
included are:

- definitions of what kind of data is to be protected
and how the system will recognize such data,

~ the degrea of accuracy that is necessary for various
types of data, and

- the definition of who i1s authorized to access
protected data and how the system would recognize an
authorized user.

Examp.-<s of a security requirement for journaling are:

The system will log all accesses by payroll personnel to
any employee's payroll record. The system will log all
initial log-ons, final log-cff at the end of the normal
work day and all log-ons and log-offs on weekends.

The system will log all opening and closings of the
payroll master file and payroll transaction upiate files.

e Varlance detection-——The objective of variance detection
is to allow management to detect and react to
departures from established rules and procedures that
it has determined may constitute hazards. Variance
detection acts as a strong deterrent to authorized

2-33

users abusing their privileges since they perceive the
risk of detection to be unacceptably high. Variance
detection 1s useful whenever it is not practical to
prevent the undesirable activity by =zans of an
authorization mechanism. In some cases, there may be
no way to determine in advance whether an action should
be prevented. 7The mechanisms required to support
variance detection are related to mechanisms needed for
other purposes. Recovery, accounting, load-balancing,
tuning and the identificatlion of recurring user
difficulties all require some of the same capabilities.

A security requirements for variance detection might read:

The system must be capable of providing post-processing
analysis of all or selected activity initiated from a
given terminal or by a given employee.

The system must provide an interaction capability to
identify attempted accesses to restricted files by
unauthorized users.

The preceding are examples of static monitoring. Some

variances can and should be detected in real-time so that
responses can be immediate. An example of a dynamic monitoring

requirement might read:

The system must be capable of real-time display at a

designated console of the full interactive traffic of any
terminal or user.

e Encryption—The applications that are most likely to
need encryption are those that transait highly
confidential data across communication lines.
Applications that transmit financial transactions or
other critical data may also need encryption if some is
likely to derive enough benefit from modifying ithe data
during transmission to compensate for the risk and cost
of the effort. Encryption of data in storage is an
alternative that may be more cost effective than other
storage securi:, controls——especially when appropriate
support for encryption is readily available.

2-34

A security requirement for encryption might reed:

All data transmitted between the host computer and remote
site will be protected from unauthorized disclosure and
modification during transmission.

Following the definition of security requirements, two
activities ehould be initiated: development of the test plan
and the design of the security specifications. While they are
shown in Figure 2-3 as sequential events, they can be

accomplished in parallel since two different groups of people

are involved.

2.3.1.6 Develop the Security Test Plan

Testing and evailuation attempts to demonstrate that a system is
reliable, meets specifications, and meets the requirements of
the user. Sorkowitz [14] provides the following comments on

testing:

The main problem in program testing becomes clear
when we try to define the word "testing.” To many
programmers, testing is a process of proving that a
progran is correct {i.e., the program performs
according to specification). However, experience
leads us to the belief that there really is no
practical way to demonstrate that a program is
correct. The best we can say is that at some point
in time, there are no known errors. Myers [4] gives
a different definition of testing: “"Testing is the
process of executing a program with the intention of
finding errors.”

Careful and thorough testing and evaluation can improve system
gsecurity by uncovering errors, omissions and other flaws in the
system's design and ccde [2]. From a security perspective, the

testing of security controls shouid focus on ensuring that

2-35

security controls are invoked when required, that they cannot

be easily bypassed, that they are auditable and that they are
appropriate in view of the sensitivity of the data or the
application.

The test plan for security should describe what is to be
tested, the testing schedule, resource requirements, testing
materlals, requirements for test training, the location of the
test, the functional security requirements, the tests to be
performed on the software and their relationship to the
functional security requirements, the testing methodclogy, the
evaluation criteria, data reduction techniques and a
description of each test to be performed. The test plan format
provided in FIPS PUB 38 [6], with slight modification, can be
used to develop the security test plan. A suggested test plan
format is provided in Appendix A.

At this point in the system development life cycle, only
portions of the test plan can be developed. If the format at
Appendix A is utilized, the follewing sections can be generated
at this time. Section 1, General Information, can be
completed. JIn Section 2, Plan, the software description cau be
written; tentative milestones can be developed; and,
preliminary development of the testing subsection can be
started. Omne of the rritical items in Section 2 is the area of
test training. Specificslly, the types of training for the
test team should be identified as soon as possible. In

Section 3, under Specifications and Evaluation, tlLe functiomal
gsecurity requirements and the security functions to be tested
can be identified. Additional portions of the test plan will
not be able to be developed until such time as the

2-36

system/subsystem specifications, program specifications, data

base specifications and security specifications have been

generated.

One of the major objectives of the s-curity test and evaluation
of an application under development is to provide some of the
data to suppurt the certification of the security controls as
required by OMB Circular A-71, Transmittal Memorandum Nc. 1.
FIPS PUB 102, Guideline for Computer Security Certification and
Accreditation (8], describes how to establish and carry out a
certification and accreditation program for computer security.
FIPS PUB 102 also provides some guidance that is useful in
developing security test plans. It should be noted that in the
NASA environment a different set of terminology is used 'n the
area of certification and accreditation. In NASA, the term
avaluation is used to identify the technical evaluation of the
security of an application (synonymous with the FIPS PUB 192
term certification), and certification is used to identify the
official management authorization for operation of the
application (synonymous with the FIPS }UB 102 term

accreditation).

FIPS PUB 102 defines the certification (evaluation) proceas as
consisting of five activities: planning, data collection,
bagic evaluation, detailed evaluation, and report of findings.
The process is summarized in Figure 2-6. The certification
(evaluation) process is an iterative process. That is, based
on findings from each stage, previous states might have to be
reentered and work performed over. For example, basic
evaluation might identify a function chat is not included
within evaluation boundaries but is important for security.

This can require revision of the bovnindaries defined during

2-37

- §$S3004d NOILV3!411430
g-Z 3UNON

2-38

NOILYYALITY ANV NOvdaddd

— _ _ _ _] Nowwvn1vaz _—— &l |||||| ﬂ |||||| |
r deﬁmo —_—— |
| ._ | m

Y + y

SONIGNId | o NOTLVNTYAY NOT 1091105 Alln_l —
Grreenreramced N !

planning, along with additional data collection. The work is
not sequential as suggested in the figure. Typically, most or
all stages are ongoing &t the same time. The intent of the

figure is to show the shift in emphasis as work progresses.

It should be noted that basic evaluation or general evaluation
is the minimum necesssry for certification (evaluation) to take
place. In general, basic evaluation suffices for most aspects
of an application under review. However, most certifications
(evaluatiou) also require detailed work in problem areas, and
therefore require detailed evaluaticn as well. (For NASA,
security tests are considered to be a detailed evaluation.)
Minimum products required for certification and accreditation

are a security evaluation report and an accreditation report.

2.3.1.7 Deaign the Security Specifications

The design stage 1a the time to make detailed decisions about
how the security requirements will be implewented. There are
usually a variety of ways to achieve an adequate level of
gecurity. In designing security controls, the age-old maxim of
"Keep It Simple” is most applicable. A primary source of
security problems is excessively complex design that cannot be
implemented easily or correctly, and cannot be maintained nor
audited. Lonsonsky [15]) and Wong [16] suggest that, for any
sensitive application, a thorough risk analysis, including
safeguard selection, should be performed at the beginning of
the design phase to assure that appropriate cost-effective
controls are integral to the system's desigc. Tha guidance in
FIPS PUB 65 [17]) can be tailored for a risk analysis of an
application system design [2]. FIPS PUB 73 [2] provides some .
ideas that apply to the overall security desigu effort.

2-39

Unnecessary Programming. Terminals should be
interfaced with the application system so as to
minimize the danger that users can get unneeded
programming capability. Users who can execute
their own programs usually have the potential to
bypass any security controls.

Restricted User Interfaces. User interfaces
should be taillored as specifically as possible to
fulfill the user's requirements. Unneeded
tlexibility makes it more difficult to trein users
and to get them to accept the system. Flexibility
also hurts security. The greatest danger occurs
rthen users are given unnecessary access to a
general purpose programming language; ...Once the
user's needs are understood, interfaces should be
designed to meet these needs as simply as possitle
with no urcnecessary capabilities that complicate
things both for the users and for the security
analyst.

Human Engineer'ng. To preserve security and
integrity, user interfaces must be designed so
they are easy to understand and use. This can
forestall many uszr errors, and it decreases the
chances that users will neglect or bypass controls
which they view as cumbersome and annoying.

Shared Computer Facilities. It is easier to
protect the code and data of the application
system if it does not share computer facilities
with other applicaticns. It is especially useful
to exclude all program development activities from
the machine that runs the application-including
the development and maintenance of the
application's programs themselves.

Isolation of Critical Code. The code and system
data that is critical to security should be well
identified so it can be more easily audited and
protected. When possible, security controls
should be isolated in modules that have few
interactions with the rest of the application
gsoftware. This makes it easier to audit these
modules and protect them from unauthorized

2-40

modifications during operations. Sometimes

automated controls can be used to protect these
modules:

* Checksums of the object code can be used to try

to detect unauthorized changes.

* Hardware protection states or protection
donmains can protect code and data critical to
eecurity. :

* If security-critical code always regides in a
fixed area of memory, then read-only memory can
be used.

%

Recent experimental languages, called type safe
languages, may soon be available. Compilers
for these languages can protect modules and
their data from unexpected interactions with
other modules.

identification and partial isolation of critical
code and data are reasonably easy; however,
rigorous isolation is more difficult than it
sounds. Without very careful planning, all system
code and data will end up being relevant to
security becaure errors or deliberate traps
elsevhere can still cause security failures. This
other software includes:

* The operating system and other software that
supports any of the sernrity functionms.

* All parts of the application system needed to
guarantee that the security controls are
invoked at the appropriate time,

* Compilers and other software used to develop
and maintain any security-relevant software.

When code relevant to security is rigorously
isolated from the bulk of the software, it is
called a secu:iity kermel. Security kernels that
protect data from unauthorized disclosure are
feasible, but they require specially designed
operating systems.

2-41

e Backup and Recovery. With appropriate coatingency
planning, the services of a computer application
can usually be restored within a few houra after a
failure. I1f availability requirements are more
rigorous than that, then automatic backup and
recovery mechanisms may need to be included in the
application software.

e Use of Available Controls. The operat ng system
and the facili.y management may already p >vide a
variety of coutrols such as:

* User identity verificatiom.

* Authorization for access to system files.
* Journaling of operating system activities.

* Backup and recovery operatiomns.

While the application system usually needs to
supplement these controls, available controls
should be used to the fullest extent possible. Imn
too many cases, controls are needlessly
reimplemented because controls that are available
are not understood or not utilized.

Since the security controls of an operating system
are not absolutely reliable, the application
system should use some data integrity checks to
try to identify whether critical data has been
altered; however, in general, there is no reason
to believe that controls implemented in the
application will be any more reliable than those
already provided by an operating system.

The purpose of ihe design stage 1s to translate the security
functional requirements into security specifications that can
be used by programmers to develop the security-relevant code.
Freeman [18) offers the following comments on the purpose of
technical design.

2-42

...three basic purposes of dvsign can be discerned...:
~ discovery of problem structure;

= creation of the outlines (architecture, logical
structure) of a solution for the problem;

~ review of the results to ascertain if they meet
the stated goals.

Once we understand the problem, the next major step
is to develop outlines of the solution. This is the
creative aspect of design in the strict sense of the
word, altbough developing an accurate understanding
of the problem requires just as much creativityv in
many cases.

The major activity is the establishment of the
architecture of the system. That is, we engage in a
combination of spelling out, in general terms, how
the artifact will look to the user—the functions it
will perform—-and how it will be built--the major
algorithms and data representations it will use.

Scme parts of this procese of spelling out the
overall structure may require that we extend the
design to a very detailed level in order to determine
the feasibility of performing certain functions.

But, in general, we are establishing the major pleces
of the system, their relationships, interfaces to
cther systems and the outside world, and carefully
specifying what must be done along with rough
indications of how it is to be dcae.

The third purpose of design is to review repeatedly
what has been done so far, to compare it to what is
desired, and thus to evaluate progress. Review takes
place at all atages of the development cycle, of
course, but it is most central to the design phase.
Review cf code production is intended to determine
that what has been implemented is what was specified;
review of test results is meant to confirm that a
sufficient set of tests has been run; review of
specifications seeks to determine if the loosely
stated requirements of the customer have been
captured in operatioral terms. Review at the design
phase, though, goes beyond just deiermining 1f
scmething that Las been previously spelled out has

2-43

been done--it is an integral part of the process of
discovering the nature of the problem and the proper
structure of the solution.

Freeman goes on to describe the software lifecycle as
consisting of six stages: analysis, functional specificaiion,
architectural design, detailed design, implementation and
evolution. Freeman's analysis of the development process,
ﬁarticularly the architectural design and detailed design are
appropriate to understanding how to develop specifications for

security requ rements.

...For each stage, we will 1ist the primary inputs (I),

cutputs (0), and major operations (OP)...

Architectural Design

I: specifications, general context of desired system,
knowledge of similar systems

0: structural description of inside of system
(definition of modules and interfaces)

OP: discovery of problem structure, identification of
ma jor pleces of system, establishment of
relationships between parts, abstraction,
decomposition

Detailed Design

I: architectural description, programming environment
details

0: blueprints for programs

OP: abstraction, elaboration, choice of alternatives

2-44

In developing security specifications, there should be a normal
evolution from architectural specifications to design
specifications. Whether there will be an explicit distinction

between architectural-type specifications an< detailed
specifications will depend on each organization's or Center's
stacdards for scftware life cycle development. It should be
noted that the terms logical design and physical design, used
in some methodologies, correspond to SDLC architectural design

and detailed design, respectively.

In Section 2.3.1.5, examples of security requirements were
provided based on the basic controls described in FIPS PUB

73 {2]). The types of basic controls included: data

validation, user identity verificatior, authorizationm,

journaling, variance detection, and encryption. The following

discussion will provide examples of specifications for some of

the security requirements previously discussed.

® Requirement - All source data will be keyed twice
and antomatically compared with the transcribed
source data previously keyed.

® Specification - A second person will key the data
into a verifier. Only those fields containing
transaction code, employee name, SSN, and grade
will be verified. Any record containing a
discrepaucy between the irnitZal keying and the
verifying keying will be recorded on a discrepancy
file. The discrepancy file will be forwarded to
the input control group. Each record containing
an error will be visually compared to the original
source document and the input control group will
resolve any discrepancy. The corrected
transaction record will then be submitted input to
the system.

(The operations manual would indicate the record
positions of the fields to be verified and the

2-45

specific instructions for incorporating the
correct record/transaction into the batching
process.)

e Requirement - All keyed transactions (or
transaction of a certain type) will be visually
verified prior to transmission to the systenm.

e Specification - Data entry personnel will visually
verify that the transaction code is equal to a 1,
2, or 3; the name field contains no arabic numeric
data (note romanic number such as I, II, III,
etc., are legal); the SSN field contains no alpha
or speclal characters, no blanks; and that the
grade field contains no alpha, special characters
or blanks; that grade field contains only one of
the following: 01, 03, 04, 05, 07, 09, 10, 1J.
13, or 14.

If any field is not correct, the operator wii.
check the scurce document for the correct data.
If the source document is in error, the document
will be returned to the point of origination for
correction and resubmission.

e Requirement - All data transmitted between the
host computer and remote site will be protected
from unauthorized disclosure and modification
during transmicsion.

e Specification - All data will be encrypted using

the Data Encryption Standard as specified in FIPS
PUB 46.

After the security specifications have been developed and

approved, the development of test procedures can begin.

2.3.1.8 Develop Security Test Procedures

At this point in the life cycle, following the definition of
the securcity specifications, Section 3 and 4 of the Security
Test Plan can be developed. Using the test plan format at

2-46

Appendix A, the next step is to complete the sections dealing

with methods and constraints and evaluation.

The methodology should indicate whether static or dynamic
testing or both will be used, whether live or test data and an
indication of the volume of data that is required to adequately
test the security controls. The method for recording test
resulte shculd be identified as well as any constraints that
may limit the scope of the test. Under the evaluation section,
the criteria for each type of test should be identified. Data
reduction methods should also be described.

FIPS PUB 73 [2] offers some guidance on static and dynamic
testing that 1s useful to this discussion of developing

test procedures.

Static Evaluation. These techniques, which involve
examination and analysis of the systems documentation and
code, represent the most effective way to detect
deliberate traps or other unauthorized modificatioans.
However, due to the complexity of most systems and the
limitations of automated techniques, and tools, it is not
currently practical to analyze systems completely using
static evaluation methods. In addition, static evaluation
does not examine the system ia a "live" or operational
mode so that errors .n the execution environment are not

detected. Specific techniques and tools include:

* Code Review. Portions of the source code are evaluated
to determine if they implement the Jdesign
specifications and are free from errors. In most

cases, it will be impossible to review all of the

2-47

system's code. Generally, samples of code will be

reviewed—especially critical modules or critical
portions of the code. The code review can be done by
an internal test and evaluation team that is involved
in the system development or by an independent (third
pacriy) team eliker internal or externsl to the
organization. Code review differs from peer review,
...in that the code review ig performed by individuals
who were aot involved with the design and programming
of the application.

Penetration Studies. A few individnals caa be
challenged to find unknown weaknesses in the securicy
controls. Penetration studies to identify programming

errors can be expensive and are useful only if{ someone
believes that there are no remaining errors that can

affect security.

Source Code Analyzers. These software tools aid the
evaluation process by providing details about specific

characteristics of the source pregram.

Examples include:

- cross reference listings are an aid to code
review and may be useful to identify "suspicious”

variables and source statement references.

- the variables which can influence control flow
decisions can all be identified or variables

which could be read before eny value has been
assigned to them can be identified.

2-48

Dynamic Testing. These techniques involve executing the

application system, or portions of the system, with test
data and comparing the actual results with expected or
known results. ...Dynamic testing is only cractical for
selected test cases. Fundamental questinns such as,
"Which test cases should be choseun?” and "How many test
cases are enough?” must be answered. The answers tc these
questions “epend upon the systum being tested anu upon the

experience of the test team.

The following tools can be used to aid the dynamic testing

process:

* Progran Analyzers. A program analyzer is a computer
program that ccllects data about another program's
operation while that program is executing. Program
analyzers can be particularly useful for evaluating how
thoroughly the test data has exercised the program
being tested. In addition, they can be used co
ideatify extraneous code that might be an unauthorized

insertion.

* Flaw Hypothesis Method. Security flaws can be
hypothesized based on analogous flaws found in other
systens and then tested for existence in this system.
This 1s an effective approach for seiecting test cases
that are likely to find flaws.

The following exceipts for FIPS PUB 102 [8] on basic and
detailed evaluation provide guidance that should be useful in

developing test procedures.

2-49

...The general distinction between basic and detailed
evaluatiun 1s that basic evaluation is primarily concerned
with the overall functional security posture, not with the
gpecific quality of individual controls. ...Basic
evaluation is also concerned with verifying that security
functions actually exist and that the implementation
method is of sufficient quality to be reiied upon.
Petailed evaluation, on the other hand, is concerned with
whether security functions work properly, satisfy
performance criteria, and acceptably resist penetration.

There are four tasks in basic evaluation:

1. security requirements evaluation (are application
security requirements acceptable?)

2. security function evaluation (do application
security functions satisfy requirements?)

3. control exisctence determination (do the security
functions exist?)

4. methodology review (does the implementation method
provide assurance that security functions are
acceptably implemented?)

Security Requirements Evaluation In both formulating and
evaluating security requirements for ar application, two
classes of needs are cousidered: policy needs and
sltuational needs. Policy needs derive from tke
princirles and required practices that the application is
obliged to puisue, such as Federal laws, regulatious,
standards and agency policies. Situational needs are
those deriving fron the application's chsracteristics and
environmenc. To determine situational needs, fou: primary
areas are considered: assets, threats, exposure and
controls,

1. Asset. What should be protected?
2. Threats. What are assets being piotected against?

3. Exposrures. What might haeppen to assets if a threat
is realized?

4. Controls. How effective are security safeguards in
reducing exposures?

2-50

Security Function Evaluation. Given well-defined security
requirements, function evaluation becomes the most
important task in basic evaluation. It determines whether
security functioas (control techniques) such a
authentication, authorization, monicoring, security
management, and security labeling satisfy security
requirements., The primary method 1is simply to use tne
stated requirements as a checklist to follow in assessing
whether they are satiafied.

In some cases, requirements specify only the need for
generic functions such as authentication. In other cases
the requirements call for use of specific mechanism, such
as particular password technique. In hoth situations,
fwmction evaluation identifies the defined security
function and examines it for acceptability,

An important concern for function evaluation is the
appropriate level of detail., The recommendation is that
basic evaluations be complete (all applicable control
features) down through the functional level, where
"functional level” is the logical level represeuted by
functions as defined in (or appropriate for definition) in
the Functional Requirements Document. This notion applies
to both controls within the computer and physical/
administrative controls external to it (although the
latter might not actually be defined in ¢ Functional
Requirements Document).

Control Existence Determination. The fact that functions
are described in a document cr discussed in an interview
does not prove that thev have been implemented. Basic
evaluations require assurance that gaecurity function
controls exist. The existence of most physical and
administrative controls can be determined via visual
inspection. For controls internmal to the computer,
testing is needed. ...The intent is to cimply verify that
tiie fuuctions exist.

Test for control existence determination are
straight-forward. In many cases, a short operational
demonstration suffices. For example, the existence of a
password functiou can be determined by attempting to use
the application and verirying that a valid password is
required.

Methodology Review. Even though this 1s a high-level
overview-type evaluation, it 1s st1ll desira.le to gain

2-51

some assurance that controls are acceptably implemented.
The best way to do this without becoming immersed in
testing or detailed analysis i1s to examine the methodology
used to develcep the application.

The areas of concern in reviewing a development
methodology for cert’‘iication are summarized below.

1. Documentation. Is there current, complete and
acceptable—quailty documentation?

2. Cbjectives. Was security expliritly stated and
treated as an objective, with an appropriate amount
of emphasis for the situation? Were security
requirements defined?

3. Project Control. Was development weli-controlled?
Werc independent review and testing performed and
did they consider security? Was an effective
change control program used?

4., Tools and Techniques. Wszre structure design
techniques used (e.g., modularization, formal
specifications)? Were established prcgramming
practices and standards used (e.g., high order
languages, structured walk-tizroughs)?

5. Resources. Hecw experiernced in security were the
people who developed the application? What were
the sensitivity levels or clearances associated
with their positions?

Detailed evaluaticns involve analysis of the quality of
security safeguards. Primary tasks are examinations of
the application from three poicts of view:

1. Functional Opevation (Do controls function
properly?)

2. Performance (Do controls satisfy performance
criteria?)

3. Penetration Resistence (How readily can controls be
broken or circumvented?)

Detailed evaluation consists of a collection of
approaches. Selection of which to use depends prlmarily

on the threats and exposures of concern, rather than oa
the general characteristics or overall semsitivity of the
application. To illustrate, if the primary c ncern is to

protect secrets from an external penetrator, pemetration
reslstance 1s stressed.

Functional Operation. Functional speration is the point
of view most often emphasized in detailed evaluation since
it assesses protection against human errors and casual
attempts to misuse the application. Evaluations of
function operation assess whether controls acceptably
perform their required functions. Although testing is the
primary technique in evaluating functional operatiom,
otner validation and verification techniques must also be
used. particularly to provide adequate analysis and review
in early phases of the application 1life cycle. Testing
for functiomal operation examine areas such as the
following:

1. Control operation (e.g., do controls work?)

2, Parameter checking (e.g., are invalid or improbable
parameters detected and properly handled?)

3. Common error conditions (e.g., are invalid or
out-of~sequence commands detected and properly
handled?)

4. Control monitoring (e.g., are security events such
as errors and file accesses properly recorded; are
performance measurement of characteristics such as
resource utilization and response time properly
recorded?)

5. Control management (e.g., do security procedures
for changing the security table work?)

To 1llustrate this testing, consider several of the tests
needed to examine control operation of a password function:

1. Test whether access without a password is
disallowed.

2. Test whether vaiid passwords are accepted and
invalid passwords are rejected.

3. ...Test the interface between the password function
and the access authorization function by testing

2-53

whether access is properly allowed or disallowed.
For exemple, verify that valid passwords allow
proper access and do ancrt allow improper access, and
that invalid passwords result in proper access
restriction.

4. Test whether the system responds correctly to
multiple invalid nasswords.

5. Test whether systeminitiated reauthentication
functions correctly.

Functional operation includes the appiication's resistance
tc external errors. Therefore the test areas of primary
interest include those interfaces across which errors
might propagate:

1. man-man (e.g., operator messages)

2. man-system (e.g., commands, procedures)

3. system-system (e.g., intersystem dialogue)
4., process-system (e.g., calls)

5. process—process (e.g., interprocess calls)

Besides testing, there are other security evaluation tools
and techniques that can be of use in examining functional
operations. For example, software tools for program
analysis, can be helpful in documentation analysis.
Matrices can suggest ideas for test cases and scenarios.
Checklists have utility in providiug quick training as
well as suggesting ideas for tests.

Formal verification is a technique that may be used during
a detailed evaluation. Formal verification offers the
hope of being able to mathematically "prove" that a
functional design abides by a few simple security rules,
and that lower levels of abstraction are consistent with
the proven higher-level design performance. A number of
qualitative factors are listed under the general heading
of performance, which is the second area of concern in
detailed evaluation. These are availability,
survivability, accuracy, response time, and throughput.
They can be applied to either individual controls or
entire applications.

1. Availability. What proportion of time is the
application available to perform critical or full
services: Availability incorporates many aspects
of reliability, redundancy, and maintainability.
It 18 often more important than accuracy. It is
especially relevant to applications with denial of
service exposures as primary concerns (e.g., air
traffic control, automatic funds disbursement,
production control). Security coatrols usually
require higher availability than other portions of
an application.

2. Survivability. How well does the application or
control withstand major failures or naturai
disasters? "Withstand" includes the support of
emergency operations afterwards, and recovery
actions to return to normal operation.

3. Accuracy. How accurate is the application or
control? Accuracy encompasses the number,
frequency and significance of errors. Controls for
which accuracy weesures are especially applicable
are ldentity verification tzchaniques and
communication line handling techniques.

4. Response Time. Are response times acceptable?
Slow control response time can entice users to
bypass the controls. Examples of controls for
which response time is critical are passwords
(especially i distributed networks) and identity
verification techniques.

5. Throughput. Does the application or control
support required usage capacities? Capacity
includes the peak and average loading of such
things as users and service requests.

Penetration Resistance. The task here is to assess
resistance against the breaking or circumventing of
controls, where resistance 1is the extent to which the
application and controls must block or delay attacks.

Assessment of penetration resistaace can be the most
technically complex of the detailed evaluation
categories. It is best done to establish confidence in
security safeguards. It can also be done to find and fix
flaws. In both cases it:

provides an assesswent of an application's
penetration resistauce;

helps to determine the difficulties involved in
actually exploiting flaws; and

provides a clear demonstration of flaw
exploitability (since it might not be clear from
analysis whether, say, an asynchronous timing flaw
can be exploited).

The objective of penetration-resistance evaluation 1is to

identify externally exploitable flaws in internal security
functions and the interfaces to them. Following are

11lustrative areas for this detalled examination:

Additional

complex interfaces

change control process

limits and prohibitions

error handling

gide effects

dependencies

design modifications/extensions
control on security descriptors
execution chain of security gervices

access to residual information

information on these areas can be found in the

IBM Systems Journal paper entitled: "Penctrating aa
Operating System: A Study of VM/370 Integrity” /19].

The finalization of the test procedures will be a

simultaneous activity by the test team while system

developers are writing the security code and documenting

the security safeguards.

2-56

2.3.1.9 Write Security Relevant Code

The precise way in which security safeguards will actually
be implemented in the software code will depend to a great
extent on the programming language used, installation
standards, and persoual programming style. ''ithin the
foregoing limitations there are some practices that should
be followed to ensure that securitv relevant code is

understandable auditable, maintainable and testable.

The System Auditability and Coutrol (SAC) Study [3] in
discussing application system development controls

provides some guidance that is useful to the development

of security relevant code,

The adequacy and effectiveness of controls
included in computer application systems are
affected by the methods and procedures used ducing
the system development process.

Jne of the areas discussed in some depth i1s the use of

structured programming. The following is a summary of the SAC
discussion of structured programming.

The objective in using structured programming
techniques is to develop more usable and effective
programs. "Usable" implies that the program can
be read and understood by technical persons who
di1d not write it, including users and EDP
auditors. "Effective” implies that the program is
designed to fit into an overall application system
scheme s0 as to reduce redundancy and ensure
processing efficiency.*

Stiuctured programming is a technique for system
builders that renders systems easier to build,
maintain and alter. It is a discipline that is
used primarily in the detail design and

programming states of the development process. As
such, it uses a stepwise top—down approach, in
which program modules are organized by functional
specifications into a balanced hierarchical
structure with minimum side effects on each module.

Structured programming involves a team approach to
detailed design, with team members being used to
"walk-through™ the design and coding of
components. The effect is that the design and
code can be viewed by cther than the originator to
detect faulty iogic, hard-to~follow code and the

extent to which the design meets prespecified
o>jectives.

Stanford Research Institute, authors of the SAC study, found

the following major techniques were used by many organizations:

e Program Structure. A semistrict program structure

allowing GO TO statements in a downward direction
within a section domain.

o Statement Formatting. Fixed column indentation
for both processor division and data division
sections; in addition, a maximum of one verb per
line and specific columns for operators.

® Peer Reviews. Structured walk-throughs whereby at
least two peers ~ompletely trace or walk through
the code generated by another programmer.

o Team Organization. The establishment of an
integrated team consisting of one project
leader/analyst, two programmer analysts, one to
three programmers and cne programmer librarian.

Security controls should meet the usable objective. To be
effective, in the above context, security controls should
not unnecessarily reduce processing efficiency and be
implemented in a way that they are part of the overall
application scheme, and do not appear or operate as an
interruption to the normal flow of the program or
application processes.

2-58

o Top-Down Design. This technique consists of
designing program logic by specifying higher level
functions first and determining the subfunctions
required to implement these higher level functioms.

® Segmentation. During detail design and
programmng, it is advantageous to keep programs
ana modules in the form of routines called
segments, with each segment having but ore entry
and exit.*

® Structured Coding. This approach or discipline is
used to depinrt the process of coding whereby there
are conventions used for syntax, program format,
restricted and controlled braaching, and
disciplines on logic.

e Walk-throughs. The walk-through consists cf a
planned review of all system specifications and
coding by peers of the developers. Walk-throughs
have been found to be instrumental in uncovering a
majority of errors during the pre-installation and
test phases of a system. It is usually worthwhile
to ellow others to review specifications and code
befcre a joint meeting. The review meeting can
then become mainly a question answering and
resolution session.

® Programmer Librarian. The programmer librarian
actually serves the purpose of documenting all
source codes. This function is responsible for
getting codes keyed, updating the source library,
and other general program documentation.

FIPS PUB 73 (2] recommends the following practices to
enhance the security of application systems:

e Program Libraries. The program library catalogs and
controls access to all -ersions of program modules as
they are being developed. These control functions can

* The segmentation techuiqua 18 particularly applicable to the
coding of security relevant code.

2-59

be carried out by either manual or automated means.
The program library can provide the following types of
security controls during the programming stage:

* permit only authorized persons access to program
modules,

* record all accesses (especially modifications) to
program modules,

®* aggoclate coatrol data, such as record and byte
counts, with program modules to facilitate detection
of changes, and

* enable comparison of current versions of modules
with previous versions to identify code that has
been changed.

More rigorous controls are needed as the program modules near

completion, especially once review and testing has begun.

o Redundant Computation. Critical computations can be

checked by redundant processing to verify correctmness
of the result. Examples of local redundancy checks
include:

®* recalculation of a critical result by am altermnate
method;

* checking a calculated result for reasonableness and
consistency with other data items; and

* examining extra attributes in retrieved data to
ensure that the data item found was the one that was
gearched for.

Program Development Tools. The choice of the
programming language and of other programming tools can
enhance the reliability and correctuness of the final
products. Proper selection and utilization of such

2-60

tcols will help prevent programming errors from
ent:ring the source code. Some specific program
development tools include:

* High Level Programming Languages. Programming
languages are especially useful if they support
structured control flow, extensive data definition
facilities, strong type checking, restricted scopes
for program variables, and well-defined module
calling coni-~utions. Compilers for such languages
can do extensive checking to identify program errors.

* Preprocessors. Many of the advantages of high-level
programming languages can be accomplished through a
prepraocessor. A preprocessor can be used to:

- eliminate some of the more restrictive conditions
in an existing language (e.g., allow structured
flow in FORTRAN programs), and

- provide automated quality control by cl cking

that program modules meet the coding standards of
this project.

- Other Tools. Program development tools such as
those that reformat source code, produce
cross-reference listings and aid debugging are

useful to help programmers manage the
complexities.

2.3.1.10 Document Security Safeguards

Program documentation is needed during any software

development; it 18 especially necessary for security-relevant

code. FIPS PUB 73 [2] defines security-relevant code as:

e code that implements security controls;

e code that performs critical processing (e.g., check
disbursement, real-time controls); and

e code that has access tc critical or sensitive data
during its execution.

2-61

Brill [13) discusses the documentation of security controls as

follows:

You plan your controls; verify them through reviews
with users ana management; verify the operabilicy of
the controls through tests where you can; and make
whatever modifications are necessary to get the best
overall workable set of controls. Then make
sure—again by review and test—that your
documentation properly reflects the controls you want
and the way that you want them to work.

The SAC [3] study provides the following thoughts on
documentation that are applicable to the documentation of

security controls.

Documentation is the process of describing on paper what
functions an application systew performs, hcw it perforas
them, and how the funct -ms are to be used. The
objectives of good docume tation are to provide
application system design< ‘s, implementers, testers, users
and EDP auditors with a clear meane of understanding all
aspects of the application system.

Documentation...is important because it helps ensure
correct and efficient processing within both data
processing and user areas; it increases the case and
accuracy of computer program maintenance, and it provides

auditors with an independent basis for ¢valuating
application control.

One approach to documentation is used by a large focd
manufacturer. This organization makes use of a
documentation test to be administered throughout the
phases of system development. The primary pui,use is to
ensure that appropriate documentation exists for the major
phcses of system development;...

In addition to verifying the existence of sufficient
documentation, this technique also assesses various
aspects of the documentation, including the following:

- Does the documentation give evidence that processing
controls will be adequate?

=62

- Have sufficient controls been built into the system to
allow effective operation and maintenance?

- Can the documentation be used as a basis to prove that
controls over operation and maintenance are adnquate?

it 18 recommended that the documentation of security-relevant

code be contained in an independent document. The sensitivity

of security-relevint code ig such that it should be

well-protected and access to the documentation should be

restricied.

2.3.1.11 Conduct Security Test and Evaluation

Ideally, the conduct of the actual security test and evaluation
will be performed by an organization independent of the system
developers and users; that is, an independent validation and
verification (IV&V) team, quality assurance personnel or an
audit group. If such grcups do not formally exist within the
organizatio., a team of security evaluators may be formed for
the purpose of conducting the security test and evaiuationm.
Tean skills that will be required include application analysts,
testers, programmers, penetration specilalists, VV&T specialists

and security.

The actual test will consists of some combination of the
following: document reviews, intersiews, dynamic tests and
penetration resistance tests. Each of these have been

previously discussed.

Regardless of what combination of tests is used, it is
inportant that the test team keep a 1ist of documents reviewed,
document all interviews, and document and maintain the results

of any tests run against the application.

2-63

2.3.1.12 Write Security Test and Evaluation Report

The purpose of the Security Test aund Evaluation Report 1is to
document the test and evaluation results and fiadings; present
the demonstrated capabilities and deficiencies of the security
controls; and provide a basis for preparing the proposed

security certificetion report.

The Security Test and Evaluation Keport should be prepared by,
or under the direction of, the security team leader. It will
then be transmitted to the application computer security
official (CSO). FIPS IUB 103 [8], provides a sample outline
that can be used to d2velop the Security Test and Evsluation
Report (see Figure 2-7). As noted in Figure 2-8, the sawple
outline contains five sections. Sectlon i, Introduction and
Summary, briefly describes :ihe application and summarizes the

evaluation findings and recommendations. Section 2,
Background, provides contextual information for the Application
CSO including the security standards and policies .hat were
applied. Also, it should include a list of the general
functional characteristics of the application that generally
influence its certifiability (e.g., the absence or presence of
user programming). The scope of the evaluation and the

assumptions and constraints on the test should be jdentified.

Section 3, Major Findings, should summarize the controis in
place and their role in protecting the data and/or the
application. It should emphasize those controls that were
found to be effective. Any vulnerabilities found duriag the
test should also be documented. Ti2 report should identify
those vulnerabilities which should be accepted avd those which

shouic be corrected.

2-64

1. TNTRODUCTION AND SUMMARY
2. BACKGROUND
3. MAJOR FINDINGS

3.1 General Control Posture
3.2 Vulnpera:‘litiesg

4. RECOMMENDED CORRECTIVE ACTIONS

E¥ALUATION PROCESS

Ln

Attachment A: Proposed Certification Statement

—

FIGURE 2-7
SAMPLE OUTLINE FOR A SECURITY EVALUATION REPGORT

Section 4, Recommended Corrective Actions, identifies what
additional controls should be ccnsidered and the anticipated
costa of such recommendations. Section 5, Evaluarion Process,
should gsummarize the security rest and evaluation process to

include the types of tests that were conducted.

2.3.1.13 Frepare the Proposed Certificatiou Statement

The proposed Certification Statement should summarize the
recommendations, the acceptabiiity cf applications’' security

safeguards, restrictions (e.g., applications must be run as a

stand-al. "~ system), and/or corrective actions that must be
accompl:-~ ¢ prior to allowing the application to commence
running

2-606

3. SOFTWARE QUALITY ASSURANCE AND SECURITY

G. H. Myers, in Software Reliability, Principles and Practices
[4]), begins a discussion of the definition of software
reliability as follows:

The most significant problem facing the data
processing business today is the software problem
that 1s marifested in two major complaints: software
is too expensive and software is unreliable. Most
computer professionals recognize the former problem
as largely a symptom of the latter....

It 18 interesting to note that the software
reliability problem as it exists today was observed
in the early days of computing:

Those who regularly code for fast electronic
computers wil ' have learned from bitter experience
that a large rraction of the time spent in
preparing ca culations for the machine is taken up
in removing blunders that have been made in
drawing up the pregrams. With the aid of common
sense and checking subroutines, the majority
mistakes are quickly found and rectified. Some
errors, however, are sufficiently obscure to
escape detection for a surprisingly long time [20].

This observation was published by three British
nathematicians in 1552. Although software errors
were encountered before 1952, this seems to be the
first recognition of the reiiability problem, tliat
is, a consliderable amount of time is required for
testing, and, even after this, some software errors
will remain undetected.

The immediate problem encountered in dealing with
software reliability 1s one of the definition: What
is a software error? What 18 software reliability?

Myers provides the following definitiom:
A software error is present when the software does

not do what the user reascnably expects it to do. A
software fallure is an occurrence of a software error.

3-1

Software reliability is the probability that the
software will execute for a particular period of time
without failure, weighted by the cost to the user of
each failure encountered.

One of the areas of software where errors can be least
tolerated is that of security safeguards. One of the
techniques that is currently being employed to improve the
reliability of software is software quality assurance. This
section provides a discussion of software quality assurance,
the software quality assurance life cycle, and how software
quality assurance can be employed to reduce the potential for

incorporating unreliable security safeguards in application

systems.

3.1 The Cost of Software Errors

Sorkowitz [14] indicates that to better manage the development
and maintenance of ADP systems, it is important to nave an
understanding of how software costs are distributed throughout
the total software life cycle. Sorkowitz provides the
following:

Life cycle costs are documented as follows:

a. Initiation Phase

Very little research has been done in this area.

b. Devel>pment Phase

A number of independent studies [21] divide the
development costs as follows:

1. analysis and design--40%

2. coding and unit testing--20%
3. system test and integration--20%

3-2

The above figures have sometimes been described in
the literature as the 40-20-20 rule.

Testing

Studies have shown that the various testing phases
can account for up to 50% of the total resources
spent for the development of a software system.

In discussing :he detection of errors, Sorkowitz indicates that:

The phase in the life in which errors are detected is
very important. This may sound obvious, but there
are severe penalties if this simple point is not well
understood. The cost of correcting an error
increases with time.

Myers [4] shows two relationships concerning error correction
versus schedule times (Figure 3-1). The first relationship
shows that the cost of correcting an error increases rapidly
during the latter parts of the development cycle. However, a
second and less-known relationship also follows the same
general curve. The probability of fixing a known error

incorrectly also increases rapidly during the latter stages.

In the first relatiorship, Wolverton and Putnam [21] noted that
a requirement error detected in the design stage is 2-1/2 times
more costly to fix than if detected in the requirement stage.
This same error detected in the Unit test stage 18 five times
more costly and if found during integration testing is 36 times
more costly. If we consider the very speclal case of a
security safeguard that is embedded in the software cnd that
safeguard contains an error, we can see that the ultimate

potential cost can increase dramatically (Figure 3-2).

3-3

The Probability Fixing An Error lncorrectly

Cost Of Pixing An Error And

1 1 1 i
Design Unit Funct.on System Acceptance Test
Reviews Test Test Test And In Use
FIGURE 31

RELATIONSHiIPS BETWEEN ERROR CORRECTIONS AND TIME

3-4

Cost of Loss

The Probability Fixing An Error Incorrectly

Cost Of Fixing An Error And

1 L i | 1
Design Unit Function Systea Acceptance Test
Reviews Test Test Test And In Use
FIGURE 3-2

RELATIONSHIPS BETWEEN ERROR CORRECTIONS AND POTENTIAL
LOSS OF EXPLOITED ERRORED SOFTWARE SAFEGUARD

3-5

Not only will the organization incur the cost to fix the flawed
software, but in addition, could incur a loss which may well

exceed the cnst to fix the flaw.

From the security perspective, the concern then is how do we
ensure that the safeguards that are incorporated into
application's software are free from errors and are reliable.
From the system designer's and system developer's perspective,
the concern is how do we define, design and develop error-free
and reliable safeguards. In other words, how do we define and
develop quality safeguards? One of the techniques 1s the use

of a quality assurance process or function.

3.2 Software Quality Assurance

Perry, in Effective Methods of EDP Quality Assurance [22],
provides some introductory comments on quality assurance that

are appropriate to this discussion.

Organizations continually quest for quality

products. Organizations that achieve a high level of
quality in their products first establish an
acceptable level of quality and then build a
mechanism that assures this level is maintained.

That mechanism in manufacturing is known as quality
control. ...Quality control includes more than an
evaluation of the end product. It begins with the
examination of the raw materials and continues
throughout the manufacturing cycle.

Data processing organizations must equate cheir
function to manufacturing a product in order to see
the need for a quality control function. Data
processing must assume the responsibility of
determining an acceptable level of quality, and then
establish the mechanism (e.g., quality assurance
function) to assure that level is maintained.

3-6

+..the quality assurance function is an evolutionary
step along the path of moving data processing from an
art to a science.

One of the questions that comes to mind in any initial
discussion of software quality assurance 1s: What is quality?
Perry provides the following thoughts:

Quality is defined in the dictionary as an attribute
or characteristic that is associated with something.
Thus quality cannot be universally defined, but
rather, must be defined for the item in question.
Quality becomes a stated list of attributes and
characteristics.

3.2.1 Software Quality Factors

To improve the quality of software, it is important to have an
understanding of the attributes and characteristics, sometimes
referred to as factors, that contribute to software quality.

Sorkowitz [23] provides the following list of software quality

factors.

® Correctness - the extent to wkich a program
satisfies its spccifications and fulfills the
user's mission o.jectives.

® Reliability - the extent to which a program can be
expected to perform its intended function with
required precision.

e Efficiency - the amount of computing resources and
code required by a program to perform a function.

o Integrity - ‘he extent to which access to software
or data by unauthorized persons can be controlled.

e Usability - the effort required to learn, operate,
prepare input, and interpret output of a program.

3-7

e Maintainability - the effort required to locate
and fix an error in an operational program.

e Testability - the effort required to test a
program to ensure it performs its intended
function.

e Flexibility - the effort required to modify an
operational program.

e Portability - the effort required to transfer a
program from one hardware configuration and/or
software system enviroument to another.

e Reusability - the extent to which a program can be
used in other applications--related to the
packaging £ ! scope of functions that programs
perform.

e Interoperability - the effort required to couple
one system with another.

3.2.2 Software Quality Factors and the Life Cycle

The points in the system development life cycle where each of
the factors is of concern is illustrated in Figure 3-3.

Figure 3-4 {23] identifies the relationship of software quality
factors to the life cycle phases in termsa of where quality
factors should be measured and where the impact of poor quality
1s realized. It should be noted that software quality factors
should be included in the functional requirements document and

ultimately viewed as performance criteria.

3.3 The Software Quality Assurance Process

The purpose of employing a software quality assurance process
18 to improve computer software products that are produced via
the software development process. Software quality assurance

activities should be accomplished at pertinent points during

3-8

3710A03417 3HVMLH0S 3H1 OL
SHOLOVL ALITVND FUVMLIOS 40 dIHSNOLLY13Y

€€ 3HNOIA
(iWALSAS ¥JHLONV HLIM LI
4IVANALINI Ol #'189V 39 1 T1IM) ALI'TIGVI3dO¥ILINI
(¢A¥VMLA0S FHL 40 FAWOS

3sn3d ol 19V 3§ I TIIM) ALI119vVSn3ad
(LANIHOVW ¥3HIONV NO (¢11 NMY 1 NVD)

11 450 Ol 379V 349 1 17IM) AL1719V1¥0d
(¢3¥9n03dS 11 SI1)
(¢NVD 11 SV T1dM SV
FAVMAEVH AW NO NN¥ 11 T1IM)
NOIS¥IANOD ((4W11 FHL 40 TIV

AT14LVdNOOV LI 04 11 S30a)

((LNVM 1
4VHM 0CQ 11 S30d)

(¢L1 1S3L I NVD) ALITIAVISAL
(¢L1 d9NVHD 1 NVD) ALITIEIXALS

({11 XId 1 NVD) ALITIGVNIVINIVR

JONVNILINIVKH

ALITIgVSA

ALT¥93dINI

ADNJIOI14dd

ALITIEVITIY

SSANLOAYAOD

LNIWJOTIAZA

S3SVHd 3T10AD3417 OL SHOLIVH 40 ditiSNOILVIIY

¥-€ 3UNOIS

pezyTesa 8y A3yTenb 10od jo joedwy arxeym ¥
painsvowm 9q prnoys 81030®3F A37Tenb azaym ¢

:pualan

L1yTIqeaadoaazur

£37T7qUenay

£3yTI99130d

4) 4 4

A£37TTqIX91d

q

£17179w3I83L

—

q

4] 4} 4| 4] 4! 4

£ITTTqQUUTeIvTON

4

A371.998n

q

£1y1833u]

Kouwato1333

X

v

AITTTQOI T

X

v

v

883U303110)

NOILISNVAL

NOTI1V¥3d0

1saL
WALSAS

2
quqqq

430D

NOISad

SISATVNY
SLNANTAINDTY

SH0LIVE
SASVH
A1OAD-34T1

NOLIVEZdO

NOIIVirIVAd

INARJOTAAIQ

3-10

the system development life cycle. Also, procedures should be
established to control and track changes generated during the
development cycle. Software quality assurance involves the use
of various reviews and the establishment of baselines
throughout the development cycle. The reviews and baselines

are depicted in Figure 3-5.

3.3.1 Software Quality Assurance Baselines

The characteristics of an evolving system and its configuration
items are defined and documented in increasing detail at
logical transition points, or baselines, in the system
development life cycle. At any time in the life cycle, all of
the previously established baselines, together with approved
changes to these baselines, constitutes the identification of
the system arnd its configuration items. Five baselines are
usually defined in the software assurance life cycle:

functional, allocated, developmental, product and operational.

9 Functional Baseline ~ marks the end of the initiation
phase and the start of the definition stage of the
development phase.

e Allocated Baseline — marks the end of the design stage
and the start of the programming stage and is
established by the detailed design specifications.

e Developmental Baseline - marks the end of the
programning stage aaxi the sta~t of the test phase.

® Product Baseline - marks the end of the test stage and
the start of the operations phase.

o Operational Baseline - marks the end of the
implementation stage and the start of the maintenance
phase and 1s established by the satisfactory
demonstration of the application system in the
operational environment.

3-11

SIANITISVE ANY SMIIAIY FONVHNSSY ALITVAD JdVMLL0S

S-€ 3UNOI4
sujTveng Lo M sujTeevy ! duyTeeRg suyiesey JuTTIeg
1euojIvandg © |[-seog 1ompoig & | YvIvemdoyaasC o pPIIWOITV @ peIWOIIY o Tvuojldong o
T-aviany 1-As3ay
woTIRIITIRd 0TIV ITIMD
Tarod © Toml04 ©
T-3TpeyY 1-3TP W 9334g
woy3Ivand] Jeo) wjisarsSyjoo) 909723307 -~
Teotedyy © TeIsiyg o STNPON -
fon -
-3y 1-31p°Y APTASY SSWN] AITANY
wopIv. ol Jec) w0§303n8} Jwo) -pieyg 189 © |AITAIY UOTIWOY ABTADY s30ama1;nbay
To03310URg & 1veoiidung © ~3123ds maieks e | udjeaq waiess e ®231045 ©
TNIS avis aovis ANIS FVIS aNIS F5VHa
FNMALNTIW ROLLVINDE TSN 1sdl N INNVEO0dS NO1S3d NOILINTJ3d ROILVILINI

ISVid SNOTIVERIO

3SVHd LNANd0TEAZd

3-12

3.3.2 Reviews and Audits

The various reviews and audits that should take place
throughout the syster development life cycle include the system
requirements review (SRR), system design review (SDR),
preliminary design review (PDR), critical design review (CRD),
test readiness review (TRR), functional configuration audit
(FCA), physical configuration audit (PCA), and formal
qualificar'on review (FQR).

e Systems Requirements Review (SRR) - the objective of
this review 1s to ascertain the adequacy cf the system
requirements. It should be conducted when a
significant portion of the system functional
requirements have been established.

e System Design Review (SDR) - this review should be
conducted to evaluate the optimization, correlation,
completeness and risks associated with the allocated
technical requirements. Also included is a summary
review of the system process which produced the
allocated technical requirements of of the planning for
the next phase of the effort. This review siould be
conducted when the system definition effort has

proceeded to the point where system characteristics are
defined.

e Preliminary Design Review (PDR) - this review should be
conducted for each system element to (1) evaluate the
progress, technical adequacy, and risk resolution (om a
technical, cost and schedule basis) of the selected
design approach, (2) determine its compatability wita
performance and requirements of the develcpment
specification, and (3) establish the existence and
compatibility of the physical and functional interfaces
among the other elemeats (persounel, equipment,
faciiities and computer programs).

e Critical Design Review (CDR) - this review should be
conducted for each element when the detailed design is
easertially complete. The purpose of this review is to
(1) determine that the detailed design of the elements
under review satisfies the performance requirements of
the development soecifications, (2) establish the

3-13

detailed design compatibility among the elements, (3)
assess the prodvcibility and risk areas (on technical,
cost and schedule perspective), and (4) review the
preliminary product specifications.

Test Readiness Review (TRR) - a formal review should be
conducted to validate the plan and the test procedures
to include the test conditions, the extent of testing
and the criteria for acceptance.

Functional Configuration Audit (FCA) - a formal audit
should be conducted to validate that the development of
an element has been completed satisfactorily and that
the element has achieved the performance and functional
characteristics specified in the functional and design
specifications.

Physical Configuration Audit (PCA) - a technical
examinatiopn of a designated element should be
conducted to verify that the element "as built”
conforms to the technical documentation which defines
thr element.

Formal Qualification Review (FQR) - this review should
consist of a test, inspection or analytical process by
which products at the end item or critical end item
level are verified to have met specific requirements
(specifications or equivalent). This review does not
apply to requirements verified during the FCA.

Reviews and audits should be conducted by personnel or an

organizational entity independent of the development team.

3.4 Software Quality Assurance Life Cycle Security Activities

It is not sufficient to incorporate security safeguards in

application systems. Safeguards should possess many of the

same characteriscics previously identified in the discussion of

software quality factors. Also, security concerns should be

integrated into the software quality assurance process in the

gsame manner that security concerns should be incoporated into

the system development life cycle process.

3-14

3.4.1 Security Safeguard Characteristics {(Factors)

Security safeguards should possess the following
characteristics: correctness, reliability, efficiency,
integrity, usability, maintainability, testability, flexibility
and interoperability.

e Correctness - the extent to which a security safeguard
satisfies its specifications and fulfills the
application security objectives.

e Reliability - the extent to which a security safeguard
can be expected to perform its intended functicn with
required precision.

e Efficiency -~ the amount of computing resources and code

required by a security safeguard to perform its
function.

o Integrity - tha extent to which accees to the security
safeguard by unauthorized persons can be controlled.

e Usability - the effort required to learn, operate,

prepare input and interpret output from a security
safeguard.

e Maintainability - the effort required to locate and fix
an error in or to determine the impaczt of other system
changes on a security safeguard.

o Testability - the effort required to test or audit a
security safeguard to ensure that it perforas its
intended function.

o Flexibility ~ the effor: required to modify an
operation security safeguard.

e Interoperability - the effort required to couple to or

integrate security safeguards into the application
system.

3.4.2 Security Assurance Activities

The security activities that should be an integral part of the
software quality assurance process consist of a set of defined
reviews and audits and approvals. The reviews and audits to be
accomplished throughout the software quality assurance 1ife
cycle can be viewnrd as an integral part of the software quality
assurance process but are separately identifiable actioms. The
security activities (Figure 3-6) to be completed in con junction
with software quality assurance activities are: security
requirements review, security design review, security
specification. . lew, security test readiness review, and the

security test and evaluation review.

3.4,2.1 Security Requirements Review

The objective of this review is to ascertain the adequacy of
the security objectives, security feasibility and the
preliminary security requirements. It should be conducted when
a significiant portion of the security requirements have been
defined and in ccnjunction with the system requirements review
(SRR).

The security requirements should be reviewed and approved by

the application computer security official.

3.4.2.2 Security Design Review

This review ahculd be conducted to evaluate the completeness
and appropriatenesa of the technical security requirements.
The review should also evaluate the technical risks of the

safeguards that are being considered to mest the security

3-16

SINITASVE GNV SM3IIAIY FIONVHNSSY ALIMND3S

ISVid SNOIIVERLO

ASVid ININAOTIAZG

9-€ 3UNOIS
WOTIWITITIIN) Teaocyddy weyd Teaocaddy Teacaddy Teacaddy
pasaSaes NojIenieag 3 SUOTIWI] §IdS uSjeaq sysemaagnbay
£333m005 ¢ | 388 L37andeg © £31andes © £33an095 © £35an095 @
asyaARy ADTAY
vojINNTeAT sssujpevy ASTATY nITA7 g nITAIY
9 3eag 3L suoTIwITJYoads uBysaq siusmsaTnday
Lazandeg © L3tandeg ¢ A1jandas @ K3tandas o K3yandasg o
suyTeesy L 141 syjeseq JujTIewy JuTTIeNg aujTIey
Tworinasdp ¢ | -sewg 3Iompoig © | TeIvamdoTIANg © PIIWDOTIV © PIIMOTIV @ Teucjidong @
T-astjany T-noTAY
wOTIWIFITIND wOFIWIFFTTOND
Tom30d ¢ TomI04 ©
T-IIpwy T1-371pW wiskg
woj3eandyyeo) vojIeansirus) sdejialul -~
TeIeiyg o 19I8dyy o s[npoy -
g -
-1 1-3T1pW AITATY s} ASTAY
203393087 JUo) wotisandijuo) -peey 1831 @ |[mataay wOTIWIY nITAY sjusmainbay
TUBOTIOWRN] ¢ TPOOIIIUN] © -31o0ds 184S ¢ | uSisaq wayeks o w3ishs @
VIS AOVLS T ANLS 2OV1S 2OVIS ANLS ASVHd
BONVIERINT W NOLLVINDG 1A 1S3l ONINNVEOONd NO1S3a NOILINIAZG NOIIVILINT

3-17

L e A

requirements. The review should be conducted when the security
definition effort has progressed to the point where the types
of security controls that are proposed for the system have been
{dentified and the initial or draft architectural security
specifications have been developed. The system process which
produced the architectural specifications should be reviewed.
This review should be conducted in conjunction with the
preliminary design review. The architectural specifications
should be approved by the application computer security
official.

3.4.2.3 Security Specifications Review

This review should be conducted for each security safeguard
when the detailed security specifications are essentially
complete. The purpose of the review is to (1) determine that
the detailed design of the safeguards under review satisfy the
performance requirements of the architectural specifications,
(2) establish that the detailed design of the safeguards is
compatible with the application system detailed design, (3)
assess the producibility and risk areas (from a technical, cost
and schedule perspective), and (4) review the preliminary

security product specifications.

This review should be conducted in conjunction with the
critical design review. The detailed design security
specifications should be approved by the application computer
gecurity official.

3.4.2.4 Security Test Readiness Review

The purpose of this review is to validate the security test
plan and test procedures to include the test conditionms, the
extent of the security test and the criteria for acceptance.
The review should also determine the readiness of the security
controls for testing to ensure that the security test and
evaluation schedule can be met. The review should be conducted
in conjunction with the test readiness review. The test plan
and test procedures should be approved by the applications

computer security official.

3.4.2.5 Security Test and Evaluation Review

The purpose of the security test and evaluation review is to
evaluate the auditability of the records of the procedures, “he
accuracy of the data resulting from the tests, and the
effectiveness of the tools and techniques used during the

test. A useful set of criteria evaluating the security test
and evaluation report is provided by FIPS PUB 102 [8] (Figure
3-7).

Resource Quesations

1. How much of resources (e.g., time, money) were expanded in the
evaluation?

2. Who performed the evaluation? What are their qualifications?
Might there be any reasons to question their objectivity?

Process Questions
1. What technical reviev mechanisms were used?
). Have t'e find'‘ngs and recommendations been properly coordinated?

3. What major tools and techniques were used? What other
sxperiences have there been with them? Have resources been

effectively allocated to tools, analysis, and presentation of
findings?

Content Questions
1. Are the findings and recommencdations reasonable?

2. What are other agencies doing in similar situations? Are
Federal and agency requirements applicable to this application?
Are there recent or proposed policy changes that are
applicable? Do agency needs override user needs? What are the
penalties for not complying with policies and requirements?

3. Did the evaluation focus on the those things of primary
importance? What assurances are there that major problem areas
have not been overlooked? Are there safeguards not considered
by the evaluation activity that might influence the findings?

Are the recommendations prioritized? What was the basis for
prioritization?

4. Many residual vulnerabilities will exist. Have they been
identified?

5. Are recommendations and judgments supported? 1s the quality of
supporting data shown?

FIGURE 3-7
CRITERIA FOR ASSESSING SECURITY EVALUATION REPORTS

3-20

SAFEGUARD VISIBILITY

mer b

Most application systems manage and control valuab!e assets
(1.e, financial data, data about people, data on phy:-ical goods
or other management or technical information). The need for
comprehensive, cost-effective controls or safeguards 1is
generally obvious. Applicatione traditionally get controls by
chance, by user insistence, by auditor involvement or by system
developer's recognition of the problem, Brill [13] has found:

As an auditor, 1 sometimes encounter systems that
have pretty good controls even though not one of the
systems developers ever thought about them. The
controls somehow evolved.

Brill has also observed that some people assume th.:> controls
are different from everything else in the system, and that they
stand out like a proverbial sore thumb. On the other hand,
some people have claimed that controls aren't different; they
are part of the solution to the user's problem and juat mingle
in with other aystems resquirements.

Brill's observations raise some interesting questions about how
visable or identifigble security controls should be in the code
(particularly the source code) and the documentation of an
application system. This notion of visibility is driven by the
needs of the application owner, system designers, system
developers, syetem maintainers, operators, users, data
providers, data custodians, auditors, and last, but by no means
least, the need to protect the application and its data from
the potential perpetrator. The requirements for visibility of
safeguards is depicted in Figure 4-1.

SININIVINDIY ALITISISIA GHYNDILVYS ALIWNIAS

¥ 3UNOI4
I n0 N1 A1 AN [g no1 [s303w338diyug
Ausa i 7 AsiA luma lyia 23A by, T 3su3ely 8031293012
|)¢] BOIN 80T ROIN BO1d HOIN BOIH WOIN 2301TPpAY
| ~ t| suwypoasnd ®3Ind
[28 saspiacid vIwg
ar o ROIN s1sef)
[+ 4 sxo3wiadg M_
| 24) HWINH I2OTH sisureuymy we3sis
aom ROIN WOIH sisdoyeasg we3sds
ROIN WOIR sisuyoeq weisds
DI I WM HOTH s3sunp woyISOTTddY
KRIS3S TV TVNRNW TVNNW a0 eodEe 3| $31dS (3] SHIATNa
MOIIVOTIddY | IMTW O0ud | SMOXIVESJ0 | §,8ESn Iounos | Nwid isil | A1Tundds | A1NWNJIS ALTTIGISIA
TW0 LI VERI0 $01IVILOBINI0G INENJIOTIASA-180d NOIIVINTND00 LMENJ0OTIANG

4.1 The Needs of the Application Owner

For systers in development, the application owner has
responsibiiity for identifying the sensitivity of the
application and data, the security objectives, assessing the
security risks, participating in the security feasibility
analysis, and assisting in defining the security requirements.
Application owners need to be able to see the articulation of
the security concerns in a very visable sense. Once the system
is developed, the owner needs to be assured that all other
persons who use or have access to the system are properly
controlled. Therefore, the application owner needs to be able
to see that security concerns are sufficiently visible in the
user manuals in order to discharge their responsibility for
controlling access, modification, use and publication of
specific data elements within an application. The owner must
also have some way of assuring that they can properly discharge
their responsibility relative to special handling and
disposition of output products, and other administrative
controls over the functional user. Functional users who
interact and use the application in the discharge of their
duties do not want security safeguards to be highly visible
when the application is in operational use. The concern is
that if security is too visible and users perceive that
security will constrain them or unnecessarily or interfere with
their use of the systew, the users will attempt to find ways to
bypass security or dilute the effectiveness of security (e.g.,

sharing of passwords).

4.2 The Needs of Systems Designers

System planners and designers have responsibtility for
developing the security requirements and specifications in

4-3

concert with the user based upon the security objectives. As
{in the case of the application owners, planners and designers
need a clear and very visible articulation of the security

safeguards in the documents they help to produce.

4.3 The Needs of Systems Developers

Systems devclopers (programmers) will need a clear
understanding of the security requirements and specifications
in nrder to develop the software source code. The
security-relevant source code needs to be very identifable for
thoee who will be iavolved in the review (e.g., structured

walkthrougns) of the code.

4.4 The Needs of System Maintainers

The personnel who will be responsible for maintaining the
software over the operational 1life of the application will, in
all likelihood, not be the personnel who were involved in the
development of the software. The maintainers must have clear
and understandable source code and documentation (requirements
and epecifications) to work with, so they can fully understand
the nature of changes required in the gsecurity safeguards or
the potential impact of other software changes that may affect

the security safeguards.

4.5 The Needs of Computer Operators

The computer operators who will be involved in the actual
operation of the application software need little or no
understanding of how safeguards in the gsoftware actually work.
Rather, they need only enough instruction in the operator's

manual to be able to respond to and report security vioclations.
4=-4

4.6 Tne Needs of Data Users

Data users may be required to participate in the identification
of sensitive data, security requirements and back-up
requirements. Their need for visibility will vary throughout
the system development life cycle from high during the
requirements definition phase to low in the sperations phase.
The articulation of the security controls in user documentation
must be suffic’ently identifiable and understandable so that
user's managemcnt ccn be assured that their data is properly
protected. However, the visibility of the security controls
during the operation of the application should not be so
vigible that user's perceive that they are being unduly
restricted or constrained in the ability to have access to the

application and their data.

4.7 The Needs of Data Providers

Data providers are organizations that provide data to the
application in order that the appiication an achieve its
intended purpose. Data providers need only a basic knowledge
about the requirements for security controls as it affects
protecting data during the inputting operation cf the
application.

4.8 The Needs of Data Custodians

Data custodians are organizations or organizational elzments
that are responsible for naintaining the security and integrity
of data and software while it is under the control of that
organization. Data custodians must have a thorough
understanding of the safeguards employed to protect data while
it is in their custody.

4-5

4,9 The Needs of Auditors

Auditors are responsible for reviewing the adequacy of computer
security programs, the adequacy of internal controls
incorporated in applications systems and may be involved in the
development of application software to ensure that the
application is auditable once it is in operation. The auditors
needs for visibility cf safeguards is high throughout every
activity connected with the life of an application.

4.10 The Needs for Protection Against Potential Perpetrators

<

Since the objective of potential perpetrators is to affectc
personal gain in the form of money or informaticn, information
about how safeguards are designed and implemented in the code
should be protected from the potential perpetrator. The one
area where safeguards should be highly visible to the
perpetrator are in the actual operation of the application.
Systems which have good security controls that are visible to
the unauthorized user and the authorized user who might attempt
t0 use the system in an unauthorized mapner tend to discourage

attempts t> abuse or misuse the system.

46

SECURITY SAFEGUARDS IN PACKAGED SOFTWARE

NASA, like most organizations, does not rely solely upon
internally or contractor-developed applicaticuz. The recent
advances in technology have made micro and perscnal computers a
viable solution for many of NASA's data processing needs.

Along with the acquisition of micro and personal computers has
come a number of software packages that have substantially
decreased the time from identification of a problem until
implementation of a computer-based solution. Unfortunately,
not enough attention has beea given to the problems inherent in
applying a generalized application design to a specific
organization's unique set of objectives and constraints. Bloom
and Schneider [25] refer to part of the problem as the "package
trap.’

The "packaze trap” is the idea that a package itself
solves the business problem. Its greatest danger 1is
that once an application has been identified as
azenable to a package-based solution, too little
emphasis will be put on the analysis of the business
problems that dictate the need for the system.

Bloom and Schneider [25] also obsrrved:

Adaptations must be made to the systems development
life cycle to facilitate a package-based solution.

McMenemy [26] points out another major concern with software

packages:

Software packages are snld as a fast and easy
4lternative to in-house development. That impression
is aided by claims of software vendors that their
packages can be installed and running in three days.
For your own protection, you must clarify the
important difference between "installed” and
"{aplemented.” 51

"Installed” means that the software programs will
reside on your computer, awaiting the information to
make them functioning systems.

In other words, the programming and debugging are
done. "Implemented” means that all informatiom is
loaded, all necessary interfaces have been programmed
and tested, all systems and user personnel are
competent in operating the systenm, all documentation
is completed and the system has paralleled the old

sy "tem, all documentation is completed and the systea
has paralleled the old system to prove the validity
of the functions and information.

As you can see, the terms are very different in thelr
definition, and more importantly, in their impact on
the purchaser. Therefore, it should be better to
think of a software package as a means of eliminating
only the time spent on initial system design and
progromming, remembering that mass amounts of
information must still be entered into the system.

As McMenemy [26) points out, acquiring packaged software
eliminates only the systems design and programming stages of
the classic systems development life cycle. The Initiation
Phase, the Definition and Testing Stages of the Development
Phase, and the Implementation Stage of the Operations Phase of
the system development life cycle should still be completed.

5.1 System Development Life Cycle Activities for
Packaged Software

Schick [27] indicates that the steps invoived in selecting
specific software packages vary with each situation, but a
general procedure is applicable in almost all cases. Schick

adviged that the steps to be followed in selecting software
packages include:

5-2

Classifying Needs. If the computer must accomodate
several different applications, decide which
application is most important and choose the software
for it first. Then check to see what good software
is available to handle the less important
applications on the same computer. I1f two or more
applications have equal priority, you may have to
compromise by selecting software to handle both
applications adequately.

It is also useful to decide how essential the
requirements are. Requirements may be categorized as
fixed, flexitle, and optional. A fixed requirement
means that certain functions must be perfrrmed 1: a
specific way.

After defining and classifying requiremenrs, write
them down so that they can serve as guide iln
evaluating software packages.

Make a Requirements Chart. You can make a
requirements chart by using the specifications
already developed, paying particular attention to
fixed requirements. The result of this step will be
a uniform means of evaluating products.

Define Software Capacity. The amount of data you
expect the software to handle needs to be added to
the requirements chart. Software capacity limits are
set by the software author to ensure that the program
can run in the memery available on the computer
configuration for which it was designed. The present
and anticipated data capacity for the next year or
two should be estimated, and these numbers added to
the requirements chart.

Locate the Packages. Identify goftware products that
meet, or come close to meeting, the requirements.
Read product reviews in computer magazines, scan
product advertisements in trade periodicals, visit
local computer dealers, contact your industry or
trade association, talk to associates who have bought
computer software for requirements similar to yours
or call your accounting firm. Another scurce of
information 1s published directories of software.

5 3

Rank the Products. This based on a tabulation of how
closely the products meet the requirements. To be
sure that the software is right for your business:

e Purchase or borrow the manual, and read it to
understand the capabilities and limitations of
the software

e Attend a demonstration of the software, — if
possible using some of your own data

e Consider whether the people who will use the
software can tollow the instructions provided
or will require apecial training

One area of critical importance in considering a package”
software solution ;s the potential for some customizing. For
example, now can a package be modified to accommcdate a
function outeide the package's scope such as security? Bloom
and Schneider [25] offer some advice on the subject of
modification.

Even beyond the consideration of package
wodifications in the near term, it is important to
look at the package as the basis of future system
enhancements. The user must understand what
functionality the system will support immediately and
what functions the system may be modified to support
in the future. The user must also recognize that the
relative difficulty of accommodating new features
will depend heavily on the package's technical
architecture.

One significant opportunity presented by a
package-based implementation is the ability to get
some software up almost immediately. The vendor's
~vanilla” software should be installed as socn a8
possible on the user's equipm .t. Once in place,
this beseline software can be ised to perfora a wide
array of functions, from mcdeling the production
environment for hardware and communications analyges
to prototyping user interfaces.

A corollary benefit of installing the package sooner
is that it can be tested sooner. Do not assume that
since a particular piece of software is ia operation
at several sites it will not contain bugs or
undocumented features. A healthy dose of skepticism
pays dividends. Develop a set of representative test
data, and subject the "vanilla" package to thorough
testing.

When designing mecdifications and enhancements to
software packages, there are a few subleties to keep
in aind. To achieve the true cost/benefit of 1
package-based application, efforts should b2 made to
minimize the amount of modification. This approach
will frequently require the user to choose between
restructuring existing procedures to work with the
package and customizing the package. During the
system design phase, provision should be made for the
way in which future vendor releases will be
incorporated into the system.

Extensive testing is just as necessary for
package-based applications for custom systems. While
the classic unit- or module-level test is not truly
applicable to unchanged portions of the software
package, it is appropriate for modules containing new
or modified code. Consequently, a test plan should
be developed during the system design phase which
addresses the modular design of the new system as
well as the business function it 1s meant to serve.
It 1s crucial that the user participate heavily in
all phases of testing.

Structured walk-throughs are also a necessity; even
more so when they address modifications to the
package. These dcsign walk-throughs should include
not only the project development team, but also the
system's immediate uaers and those in the DP

organization who will be charged with maintainirg the
new system.

As can be secen by the preceding advice of a number of experts,

the purchase, installation and implementation of a software

package should follow the classi~ systems development life

cycle, with the exception of the Design and Programming Stages

5-5

L ———
T T ———— ln——xl—lmmm

(See Figure 5-1). When addressing the area of security, it 1is
important that the life cycle activities not be overlooked or

ignored.

5.2 Approaches for Addressing Security in Software Packages

Software packages present a special concern when it comes to
security. Since packages attempt to present a somewhat generic
solution for a large base of users, vendors have only a limited
perspective of the sensitivity of the data that will be
processed by their package once that package is installed and
implemented in the user's organization. The organization
considering the purchase of a packaged software product must
initially assume that the product will not be able to provide
an adequate and appropriate level of security. It is crucial
that the potential buyer accomplish most of the security
activities previously 1dentified in Section 2.4 of these
guidelines. In particular, the following activities should be

accomplished:

Determine the Sensitivity of the Data/Application

Determine the Security Objective(s)

°

e Assess the Security Risks

e Conduct a Security Feasibility Study

e Define the Security Requirements

e FEvaluate the Security Features of the Package
e Develop the Security Test Plan

e Develop the Security Test Procedures

e Document the Security Safeguards

e Conduct the Security Test and Evaluation

e Write the Security Test Analysis Report

o Prepare the Security Certification Report

5-6

JUVYMLS0S AIOMIOVd HOd 313403417 IUVMLIOS IHL

S 3UNOY
syonpoad
uey
safeyord
938007
A3poude)
Suygasa]l d1em330§
uoplvivawaTduI-21d autyaq
8uyzywoisny uoyIEeNTRAZ 3I%UD
/UOTITTITPOR » Burasal s1mby 8urA3y¥8881D
ASVHA FOVIS dovIs FOVILS ASVHd
NOIIV9ad0 NOIIVINAWTTINI-T¥d ONIISHL 1ONd0¥d | NOILINIZAd NOIIVILINI

ASVHd INIWIOTAAAA

5-7

The major difference in the activities identified above and the
gsecurity activities discussed in Section 2.4 is the evaluation
of security features of the package. To aid ic the evaluatilon
of the package's security features, it might be helpful to
draft a set of architectural level specifications for

gsecurity. These specifications could then be used as a
"checklist” to determire if the package does provide the type
of security asafeguards required. If the package contains no
security gafequards or only partially satisfies the security
requirements and specifications, the potential buyer must look
to other alternatives for providing the requisite level of
protection. In large part, the alternatives will depend upon
the type of security not provided by the applicaticen. For
example, if the package does not provide for user
identification and validation, a stand-alone security package
designed especially for the micro or personal computer that
will ultimately run the package should be considered, if such a

gecurity package is available.

5.3 Sccurity Assurance and Certification of Packaged Software

The one activity that has the greatest potential for being
overlooked when acquiring, installing and implementing a
software package is thal of quality assurance. The concern for
gsoftware quality assurance, particularly with respect to the
security activities, is based on the fact that those who use
the application, in many cases, will be the ones who are
actually designing, evaluating and operating the package. When
systems are developed in-house from scratch, there is usually a
very formalized developmert and software quality assurance
process as described ir Sections 2 and 3 of these guidelines.

Users who acquire, install and implement software packages that

5-8

process sensitive data/applications are also required to have

those systems certified by an application computer security
official.

There 18 also concern for the integrity of the safeguards that
are implemented in conjunction with the software package. It
is, therefore, critical that some form of quality assurance be
performed during the pre-acquisition, acquisition, testing and
installation of a software package. Software package users
should review Section 3 of these guidelines and develop a
software quality assurance process at a level of detail
appropriate for their package. Specificslly, the following
reviews and approvals should be accomplished:

¢ Security Requirements Review and Approval

¢ Security Design Review and Approval of the Inherent or
Added Security Features

e Security Test Readiness Review
e Security Test and Evaluatrion Plan Approval
e Security Test and Evaluation Review

e Security Safeguard Certification

NEXT Phec BLANK

APPENDIX A

SAMPLE SECURITY TEST PLAN

NEXT PAGE BLANK

1.

APPENDIX A

SAMPLE SECURITY TEST PLAN

GENERAL INFORMATION

1.1

1.2

103

PLAN

2.1

2.2

2.3

Summary. Summarize the security functions of the software
and the tests to be performed.

Environment and Pretest Background. Summarize the history
of the project. Identify the user organization and
computer center where the testing will be performed.

Describe any prior securiry testing and note results that
may affect this testing.

References. List applicable references, such as:

a. Project request (authorization).

b. Previously published documents on the project.
c. Documentation concerning related projects.

d. FIPS publications and other reference documents.

Software Description. Provide a chart and briefly describe
the inputs, outputs, and functions of the software being
tested as a frame of reference for the test descriptions.

Milestones. List the locations, milestones events, and
dates for the testing.

Testing (Identify Location). Identify the participating
organizations and the location where the software will be
tested.

2.3.1 Schedule. Show the detailed schedule of dates and
events for the testing at this location. Such
events may include familiarization, training, data,
as well as the volume and frequency of the input.

2.3.2 Requiremeats. State the resource requirements,
including:

a. Equipment. Show the expected period of use,
types, and quantities of the equipment needed.

2.3.3

2.3.4

b. Software. List other software that will be
needed to support the testing that is not part
of the software to be tested.

¢. Personnel. List the numbers and skill types of
personnel that are expected to be available
during the test from both the user and
development groups. Include any special
requirements such as multi-shift operation or
key personnel.

Testing Materials. List the materials needed for
the test, such as:

a. Documentation.

h. Software to be tested and its m jium.
c. Test inputs and sample outputs.

d. Test control software and worksheets.

Test Training. Describe or reference the plan for
providing training in the use of the software being
tested. Specify the types of training, personnel to
be trained, and the training staff.

2.4 Testing (Identify Location). Describe the plan for the
second and subsequent locations where the software will be
tested in a manner similar to paragraph 2.3.

3. SECURITY SPECIFICATIONS AND EVALUATION:

3.1 Specifications

3.1.1 Requirements. List the security functional

3.1.2

3.1.3

3.1.4

requirements established by earlier documentation.

Software Functiona. List the detailed security
functions to be exercised during the overall test.

Test/Punction Relationships. List the tests to be
performed on the software zuid relate them to the
functions in paragraph 3.1.2.

Test Progression. Describe the manner in which
progression is made from one test to another so that
the entire test cycle is completed.

4'

3.2 Methods and Constraints.

3.3

3.2.1

3.2.2

3.2.3

3.2.4

3.2.5

Methodology. Describe the general method or
strategy of the testing.

Conditions Specify the type of input to be used,
such as live or test data, as well as the voluwe and
frequency of the input.

Extent. Indicate the extent of the testing, such as
total or partial. Include any rationale for partial
testing.

Data Recording. Discuss the method to be used for
recording the test results and other information
about the testing.

Constraints. Indicate anticipated limitations on
the test due to test conditions, such as interfaces,
equipment, personnel, data bases.

Evaluation.

3.3.1

3.3.2

Criteria. Describe the rules to be used to evaluate
test results, such as range of data values used,
combinations of input types used, maximum number of
allowable interrupts or halts.

Data Reduction. Describe the techniques to be used
for manipulating the test data into a form suitable
for evaluation, such as manual or automated methods,
to allow comp -ison of the results that should be
produced to t..ose that are produced.

SECURITY TEST DESCRIPTIONS

4.1

Test (Identify). Describe the test to be performcd.

4.1.1

4.1.2

4.1.5

Control. Describe the test control, such as manual,
semi-automatic, or automatic insertion of inputs,
sequencing of operations, and irecording of results.

Inputs. Describe the input data and input commands
used during the test.

Outputs. Describe the vutput data expected as a
result of the test and any intermediate messages
that may be produced.

A-5

4.2

4.1.4 Procedures. %jecify the step-by-step procedures to
accomplish the test. Include test setup,
initialization, steps, and termination.

Test (Identify). Describe the second and subsequent tests
in & manner similar to that used in paragraph 4.1.

A-6

ATPENDIX B

REFERENCES

NEXT PAGE BLANK

10.

11.

APPENDIX B

REFERENCES

U.S. General Accounting Office. Report to Congress by the
Comptroller General of the United States: Automated Systems
Security - Federal Agencies Should Strengthen Safeguards Over
Personal and Other Sensitive Data. Washington, D.C, U.S.
General Accounting Office, 1979 January 23, LCD-78-123

National Bureau of Standards. Guidelines for Security of
Computer Applications. Washington, D.C., GPO, 1980 June 30,
FIPS PUB 73

Institute of Internal Auditors. System Auditability and
Control Study - Control Practices. Altamonte Springs, FL, 1977

Glenford J. Myers. Software Reliability, Principles and
Practices. John Wiley and Sons, New York, NY, 1976

Frank Mayo, Frederick G. Tompkins, Dana L. Hall. NASA Software
Development and Assurance--Survey of Problems and Practices,
MIR-82W205. The MXITRE Corporation, McLean, VA, 1982

National Bureau of Standards. Guidelines for Documentation of
Computer Programs and Automated Data Systems. Washington,
D.C., GPO, 1976 February 15, FIPS PUB 38

National Bureau of Standards. Guidelines for Documentation of

Computer Programe and Automated Data Systems for the Initiation
Phase. Washington, D.C., GPO, August 1979

National Bureau of Standards. Guidelines for Computer Security
Certification and Accreditation. Washington, D.C., GPO,
September 1983

Alfred R. Sorkowitz. Software Life Cycle Costing. Proceedings
Trends and Applications 1979. IEEE Computer Soclety, New York,
NY, 1979

National Aeronautics and Space Administration. Computer
Resources)inagement. NASA, Washington, D.C., NHB 2410.1

Brandt Allen. Threat Teams: A Technique for the Detection and
Prevention of Fraud in Automated and Manual Systems. Computer
Security Journal, Volume 1, Number 1, Spring 1981

B3-3

12.

13'

14.

15.

16.

17.

18.

19.

20.

23.

24.

25,

Paul A. Giragosian, David W. Mastbrook, Frederick G. Tompkins.
Guidelines for Certification of Existing Systems, MTW-82wi8.
The MITRE Corporation, McLean, VA, July 1932

Alan E. Brill. Building Controls into Structured Systems.
YOURDON Press, New York, NY, 1983

Alfred G. Sorkowitz. Certification Testing: A Procedure to
Improve the Quality of Software Testing. Computer, IEEE,
August 1979

Terrance M. Losonsky. Automated Information System Security:
A Comparative Analysis of Risk Management Procedures: Florida
State University, DNecember 1974

K. K. Wong. Computer Security Risk Analysis and Control, A
Guide for the DP Manager, Manchester, England: The {ational
Computing Center Limited; 1977. ISBN 0-8104-5466-1

National Bureau of Standards. Guideline f.r Automatic Data
Processing Risk Analysis. Washingtoa, D.C., GPO, Acgust 1679.
FIPS PUB 65

Peter Freeman. Introduction to: Tutorial on Software Design
Techniques, Fourth Edition. Silver Spring, Maryland; :EEE
Computer Socilety Press, 1983

C. R. Attanasio, P. W. Markstein, R. J. Phillips "Penetrating
an Operating System: A Study of VM/370 Integrity.” I1BM
Systems Journal, No. 1, 1976

R. A. Brooker, S. Gill, and D. J. Wheeler, "The Adventulres of a
Blunder,” Mathematical Tables and Other Aids to Computation,
VOL. 6 Nol 28, 112-113, 1952

R. W. Wolverton and L. Putnam, "Quantitative Management:
Software Ccst Estimating,”™ IEEE COMPSAC 77, Nov. 1977

William E. Perry. Effective Methodology of EDP Quality
Assurance. Wellesley, M.A., QED Information Sciences, Inc., 1981

Alfred E. Sorkowitz. Life Cycle Quality Assurance Workshop,
Potomac Forum, Alexandria, VA., 1984

Richard McCall. Factors in Software Quality, RADC-TR-77-369,
VCL. I-II1, Nov. 1977

Naomi Lee Bloum and Richard Schneider. Avoiding the ®'package
trap': Caution Advised, COMPUTERWORLD Special Report, January
30, 1984

B-4

26.

27.

K. J. McMenemy. Package Implementation Commands Planning,
COMPUTERWORLD Special Report. January 30, 1984

Brian R. Schich. Tips on Shopping for Software, COMPUTERWORLD
Special Report, January 30, 1984

BR-5

Department Approval:

This document has been peer reviewed by:

- S
- S/
"’f 1;,'/5{(:}/ Z ,/ /_/{

=

(e

~“Barbara A. Christoph

ii

7

-/ 7
e

P

