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OPTIMAL DESIGN AND USE OF RETRY IN FAULT TOLERANT
REAL-TIME COMPUTER SYSTEMS!

Yann-Hang Lee and Karg G. Shin

ABSTRACT

and (it) using retry for fault characterization,

I"irst, we derive an optimal retry policy for a given fault characteristic, which deter-
mines the maximum allowable retry durations so as to minimize the total task comple-
tion time. Then, we carry out the combined fault characterization and retry decision, in
which the characteristics of fault are estimated simultancously with the determination of
the optimal retry policy. We have developed two solution approaches; one is based on
the point cstimation and the other on the Bayes sequential decision. The maximum
likelihood estimators are used for the first approach, and the backward induction for
testing hypotheses in the second approach.

We also present numerical examples in which all the durations associated with
faults (i.e. active, benign, and inter-failure durations) have monotone hazard rate funec-
tions, c.g., exponential, Weibull and gamma distributions, These are standard distribu-
tions commonly used for madeling and analyses of fauits,

Categories and Subject Descriptors: B.2.3 [Arithmetic and Logic Structures]: Relia-
bility, Testing and Fault-Tolerance -- hazard rate function, recovery overlicad, optimal
relry policy, faull characteristic; G.3 [Probability and Statistics] -- estimation, cen-
sored sampling, likelihood ratio, sequential or Bayes decision problem, hypotheases testing.
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1. INTRODUCTION

There are three types of fault in computer systems: transient, inlermitient, shd

]
K}

permaneni 1), Transient faults die within a certain time of their generation, intermit-
ient Taults cycle between being active and inactive, and permancat faults are (as the
term indicates) permanent. It has been found that permanent faults form but a small
fraction of the faults in computer systems (2,3), This makes the purging of any faulty
components as soon as they have been discovered an inefficient means for handling
redundancy, If the active duration of a transicnt or intermittent fault is short, the con-
tinuation of the task with the same resource after the disappearance of the fault may be
more efficient than that of using other recovery methods. Unfortunately, it is impossible
to tell at its first occurrence whether or not the fault is permanent and also impossible
to know its active duration if the fault is intermittent or transient. Moreover, it would
be much more cfficient (time-wise) and accurate to charactesize faults on-line, and then
take the appropriate recovery actions. In this paper, we propose (i) determining an
optimal retry policy so as to minimize the task completion time, and (ii) using retry in
conjunction with statistical estimation and decision theory to characterize faults, We
obtain the optimal retry duration in the face of uncertainty about the nature of a
detected fault. Since our focus is on real-time systems, we are principally concerned with
skewing the density function of the task completion time as much to the left as possible.

For this reason, we shall concentrate on maximizing reductions in response time.

As the term implies, retry consists of restoring the affected process to some fault-
free initial state, and then re-running it on the same processor. Clearly, retry is only
applicable when the error induced by a fault is confined and the process can be restored

to integrity. The tost efficient means for fault confinemen: are signal-level detection
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mechanisms which can detect faults immediately upon their occurrence [4]. For the pro-
cess to be restorable to integrity, scratchpad registers are needed. Results obtained by
Carter, ¢! al. [6] indicate that self-checking and retry mechanisms can be incorporated

into processors inexpensively, and without substantially degrading verformance,

Currently, several commercial machines incorporate retry. In the Honeywell 6000
[8], instruction retry is reported to approach an cffectiveness rate of 100%. Retry in the
[BM 360 and 370 scries machines is widely used in the peripheral areas (1/O and storage)
as well as in the central processor 7). The UNIVAC 1100/60 uses s hardware timer that
goes off after an interval judged to be long enough to allow transient faults to die out,
upon which retry can be effected [8). However, no discussion or justification about the

retry duration or the number of retry attempts used has been addressed.

The usefulness of retry mechanisms arises, as we said above, from (i) the smallness
of the proportion of permanent faults in any computer system, and (ii) the fast recovery
from non-permanent faults and thus the small task completion time. In the case of a
permanent fault, to retry a process on the affected processor is worse than useless: it is a
waste of time. To hasten the completion of the exccuting task when a fault js detected,
we must control the duration of retry to maximize the difference between the expected
gain in response time that results from using retry when the fault is transient or inter-
mittent (in some cases), and the expected loss that results from using it when the fault is
permanent or intermittent {in other cases). Our object in this paper is to derive the max-

imum allowable retry duration r* when a fault is detected. If the retry succeeds with this
duration, the execution continues. If not, other methods for error recovery, e.g., rollback

or restart following the system recoufiguration, must be used.
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In addition to the performance gain in case of a successful retry, the characteristic
of n fault can be monitored through retries. For instance, a retry which succeeds after
the retry duration r’ implics that the active duration of the fault is also iess than or
equal to r°.2 Even when the retry fails, it indicates that the active duration of the fault
is greater than r'. On the other hand, the detection of fault gives information regarding
the duration of fault occurrence and tie benign duration of an intermittent fault. Thus,
it becomes possible to observe tie nature of fault throngh both retry and detection
mechanisms, Note, however, that the information obtained from retry is censored, since
for example, in case of an nnsuccessful retry, the sampling via retry is stopped while the
associated foult is still netive. With the censored information, the problem of estimating
the nature of fault 1s the same as the design of experiments in the sequential analysis
where the experiments are described by the retry policy, and the sampling is analogous

to detection and retry.

The paper first presents a briel description of fault models in Section 2. [t should
be obvious that r’ will depend on fault behavior, and in Scction 3, we begin with how to
derive it, given the fault characteristics, When quantitative descriptions of fault hehavior
arc hard to come by in the real environments, the combination of retry and detection
cnables us to observe the fault characteristics, while determining the optimal retry pol-
icy. We counter this in Sccti.on 4 by showing how to use statistical estimation theory to
create a system that learns via retry the fault characteristics as it goes, and therefore
rbecomes increasingly more "optimal” in the sense of minimizing the task completion
time. Due to its repetitive reappearances, retry of an intermittent fault is a renewal pro-

cess. In Section 5, we apply the Bayes sequential decision to fault characterization and

®This is not really true due to the fault latency, The fault latency [4] which is defined as the interval
between the moments of fault occurrence and error generation has no effect on retry. Thus, we simply ig-
nore the fault latency in the consideration of retry.
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retry decision. The backward induction for testing hypotheses is also presented as a

solution to the sequential decision probler. The paper concludes with Scction 6.

In what follows, we will use continuous retry durations instead of the number of

retry attcmpts."’

2. BASIC MODEL OF FAULTS

Let a unit be the smallest hardware system component that the detection mechan-
isms czn distinguish when a fault is detected, e.g., a processor module can be viswed as
an assembly of such units. Hence, the term "module” will mean a system component
larger thanr a unit. Typically, a module is formed by a set of units. For cach unit, the
fault’s behavior can be modeled by a three-state stochastic process as in Figure I.
Denote these three states, namely non-faulty, fault-active, and fault-benign by NF, F
and FB (see [4] for their detailed descriptions). At NF, no fault exists in the unit.
Transition from N¥ to F indicates the occurrence of a fault. If the fault is intermittent
and becomes benign following an active duration, the state of the unit changes to FB.
The unit may move back to F* when this intermittent fault recurs -- this is referred to as
the reappearance of the intermittent fault. If the fault is transient and disappears, the
unit will transfer from F back to NF, The model similar to this has been widely used in

the reliability znalyses and the modeling of faults {4,9,10].

Let Ty T3, T7 and T% denote the duration between two successive fault occurrences,
-the active duration of a transient fault, and the active and benign durations of an inter-
mittent fault, respectively., These durations are random variahles with distributions 7,

F? F? and 7%, and density functions Ip fi, f] and ﬁ, rcspcct.ivc!y. For stmplicity, we

Conversion between a retry duration and its corresponding number of retry attempts is not difficult as
diseussed in Conclusion.

e e g e e




Lece and Shin May 4, 1984

assume that these durations are mutually independent and that the causes of triggering
different types of fault are not correlated, The latter assumption implies that the
occurrence of any type of fault can be modeled as a Bernoulli process with probabilitics
Py piy and p, for transient, intermittent and permanent faults, respectively. Thus, the
characteristics  of a fault  can be  represented by a  T-tuple
Cr€ {(Po P Pp Fp Fy By FY) | petpitpp=1}.

Usually, the mean time between the occurrences of fault, E[T, is much larger than
any other durations., Thus, it is reasonably accurate to assume that there is at most one
fault in a given unit at any moment. In addition, it is assumed that the rcappearance of
an intermittent fault is never mistaken for the occurrence of a new fault within a unit.!
Following a successful retry, the detection mechanisms should be able to recognize the
type of fault in a unit by continuously monitoring normal operation. When the detec-
tion mechanisms find the same unit failing again within a short period, the unit is
declared to have an intermittent fault, If the l‘au!ﬁ has disappeared for a long period, it is

regarded as a transient fanlt.

3. OPTIMAL RETRY POLICY FOR GIVEN C;

3.1. General Prdb!em Statement

Once a fault is detected, it is necessary to take a proper sequence of actions such as
fault isolation, system reconfiguration, and recovery., For convenience, define the
.recauery overhead as the total time required to resume the normal system operation in
case of the detection of a fault; this is a aystem-oriented view, On the other hand, the

occurrence of fault may delay the completion of the executing task; this is a task-

“This is the very reason why the term "unit” is Introduced here.
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oriented view. These twa views are equivalent when the fault is transient or permanent,
For an intermittent fault, since it appears and disappears repetitively, the accumulated
overhiead of retry could become unaceeptably large (eventually infinite), In view of this
fact, an intermittent fsult lins the same undesirable effects on computer performance as
a permanent fault when retry is used as the sole means of recovery. Conscquently, as
far as the minimization of the expected recovery overhead (i.e. the system-oriented view)
is concerned, an intermittent fault can be regarded as a permanent fault and hence retry
should no! be used when detection mechanisms find again the same fault that was
detected but became inactive during the last retry. Once intermitient faults are treated
just like permanent faults, the optimal retry policy of minimizing the total recovery
overhead becomes equivalent to a special retry policy (for transient faults) which minim-
izes the task completion time. More on this will be diseussed near the exd of this subsece-

tion.

A most attractive gain from retry is the rescuing of the executing task, i.c., the
task-oriented view of retry. Suppose there is enough redundancy so that the system
may be rcconfigured and the affected task may be migrated to other fault-free modules
when a module becomes faulty (due to one or more faulty units within the module), It is
obvious that ne task should be started on any faulty or potentially faulty module (hav-
ing one or more units with benign intermittent fault(s)), Consider a practical case in
which a module (i) becomes faulty once and gets back to normal during execution of a
task, and (ii) never becomes faulty again before the task is completed. In such a case, it
is possible to avoid the overhead of migrating and restarting the task by means of a suc-
cessful retry, leading to a {ast completion of the task. Even if the fault that occuired
was intermittent, retry is the best recovery method when its active duration is short and

benign duration is Jong, insofar as the completion time of the executing task is

8
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concerned,

Considering the task-oriented view of retry, we will derive an optimal retry policy
for a given fault characteristic, €, which minimizes the expected task completion time
when a fault is detected during the task execution, Such an optimal policy would be of
significant value to real-timc applications where smull task completion times are of

paramount importance,

Let 7, denote the computation time initially needed to cotnplete the task under a
fault-free condition. When a fault is detected, the amount of computation remaining to
complete the task, ie., reaidual computation, is denoted by z, where 0<z<z,. For the
n-th detection of the same fault when the residual computation z and the characteristic
Cy are hoth given, the optimal retry policy should speeily a mazimum allowable retry
duration, r,(z,Cj). When n=1, the detected fault may be transient, intermittent, or per-
manent, since the fault type is unknown; but it is intermittent if #2>2. Since the
nptimal retry policy is to minimize the time necessary to complete the residual computa-

tion z regardless of what has happened in the past, we have the following lemma.

Lemma 1:  r{(z,C) = r(2,C)) forall i, 7 > 2,

Thus, we have to consider two maximum retry durstions for two different cases:
the case when a new fault is detected, and the case when an old intermittent fault is
detccted again, Let R = {(rz,C)), ri(2,Cp)) | 0<z<} be a retry policy where the

-maximum retry durations is ry(s,C)) or ryz,C)) for the detection of a new {ault or an old
intermittent fault with the residual computation z and fault characteristic C;. For nota-
tional simplicity, we shall use r;, whenever convenient, in the sequel, to represent

r{z,Cp), #=1,2, Also, denote the expected times needed to complete the residual compu-
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tation z by Vi(z,04R), Va(e,CpR), Vi(2,CpR), and Vi(,CpR) when the system is in the
following situations: exccution starts/resumes on a non-faulty module, a new fault is
detected, an old intermittent fault is detected again, and exceution continues following a
successful retry for an intermittent fault, respectively., Based on transitions among these

situntions, one can derive the following recursive equations:

Vi(2,CpR) = {1-Fy(2)}= + J:,z{f + Val2-4,CpR)) dFy (1) (1)

L8 r
V‘.’(z) OJ:R) =M J; {H' Vl(zroﬁn)} dF‘f’(t) + Py _’; 1{H' V.;(Z,GI,R)} dF:l(‘)

+ {1 = po Fi(ry) = o Fe)H{ Vil (@), G R) + 1y o+ 4) (2)
Vi(m,Gpl) = (1=FXra}{Vi{ala), CpRI+rott + [ (b4 Vi(z,C,R))AFY) (3)
Vit OpR) = (1-FHD)fz + [, {t+ Vila-t, CuR)} ) (4)

where afz) is the residual computation needed when the system applies recovery methods
other than retry, e.g., o{#z)==, if restart is used following an unsuccessful retry, and ¢, is
the sct-up time nccessary for system reconfiguration and re-initialization, The optimal
retry policy, R*={(r{(z,Cy), rs(2,C;)) | 0<z<x)}, should minimize both Vy(z,C}R) and
Va(=, Oy R) for all z, since retry is directly applicable only to the second and third situa-
tions, {As such, they are explicitly dependent on r; and r,.) Obviously, this policy also
minimizes Vy(z,04R) and V(z,04R).

Since the mean time between failures is usually much longer than the other dura-
'tions, Vi(2,C,R) can be accurately approximated by z. In gencral, there are no closed
form solutions for r(z,C}) and re'(z,C}). However, thése optimal retry durations can be
calculated numerically without difficulty as explained below. With the initial condition

V4(0,CR)=0, Vy(z,CpR) and Vi(z,CyR) can be calculated iteratively using Eqs. (3) and
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(4) for any given R. Thus, one can numericaliy determine rf(z,C)) so as to minimize
Vo(2, € R); Vi(=,CpR) is also determined, Once V(2,C;R) is known, one ean casily com-
pute Voz,CyR) and therefore ri(z,C)).

When the recovery overhead in place of the task completion time is to be minim-
ized, r)(z,Cp)==0 for all z€(0,%). In this casc, the recovery overhead can be expressed as
Vo(2,C4R) = Vi(2,CpR), which is the time spent to restore the system to its state
immediately before the fault is detected. The optimal retry duration r((z,C) can be
determined through Eqs. (1)-(4) just as we can compute that for minimizing the task
completion time, Consequently, we will in the sequel deal with the task completion time

only,

3.2, Fault Active Durations with Monotone Hazard Rate Functions

Since TV is a continuous random variable, one can assume that f(?) is continuvous in
[0,00). The hazard rate function of the active duration of an intermittent fault is

fi(Y)

defined by A C)E’TIT(;) . When the hazard rate function of the active duration of an
— f’-

intermittent fault is monotonically increasing, constant, or monotonically decreasing, the
optimal retry duration ry exhibits interesting properties. These propertics play a signifi-
cant role in determining the optimal retry policy, since the time durations associated
with faults are usually modeled to have monotone hazard rate functions. Typical distri-
butions with monotonically increasing hazard rate functiﬁns include the gamma and the
.Wcibull distributions with the shape parameters greater than 1. When their shape
parameters are less than 1, they have monotonically decreasing hazard rate functions.
The ecxponential distribution has a constant hazard rate. Consider first the non-

decreasing hazard rate function which leads to the following theorem,
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Theorem 1: When A%(!) is monotonically non-decreasing in {, ry==0 or ry=00,

Proof: Differentinting Eq. (3) with respect to ry, we obtain

aVy(z,CpR
a(;re! ) = ﬁ(re)[l’4(2,0;,ﬂ) + .’:.;(Ll‘:: - {Vi(d2), 0}, R) + 1,}]
= fira) Vi(z,0)R) + 7;3'(17..) = {e{a) + 1,}] (5)

Since V(z,CpR) is independent of the past and current retry durations r(y,Cp) where

y212,° Vi(z,CR) + -,—a-(l—-) - {a{z)+1,} is non-increasing in ro(2,C)). If there is an r such
(H 4

that Vi(5,CpR) + -ﬁ) - {o(z)+1,} <0, then the first derivative of Vi(z,CfpR) with
HEs

respect to rp is negative for afl wp>r, Thus, rg==co. If such an r does not cxist, the
derivative is always non-negative, implying that Vy(z,C4R) is monotonically non-

decreasing. This results in r;=0. Q.E.D,

Following the definition of ri(z,G’,), ra(z,Cy)=0 implies that no retry be attempted
for reappearing intermittent faults, whereas ry(z,Cj)=co mecans that the retry should be

applied until tLz intermittent fanlt becomes benign.

Corollary 1: When A%(¢) is monotonically non.decreasing in ¢ and if there exists an z,
such that o{zg) + t, - 23 - (RY(24)-1)E[T]] = 0 where Rl(z) is the renewal function [11]
corresponding to the distribution F’?(t), then ri(z,C))=o00 if <zs and ryfz,0)=0 other-

“wise.

Proof: From Theorem 1, ry(z,C)) is either oo or 0. When ry{z,C))=c0, there exists an r

5 Note that the prabability of having a zero berign duration of an intermittent fault should be zero, i.c.
Pr :b( Tt=0)==0, Otherwise, no useful computation can be done.

10
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such that I3q, (5) becomes negative, Since ¥y(2,%,R’) is monotonically nen-decrensing
functions of z, thefe also exists an ¢ such thut Eq. (5) becomes negative when the resi-
dual computation is less then 2. Thus, rfy,Cp)==co for all y<z. Since both the nctive

and benign durations are mutually independent, we have

Vi(,CpR) = 2 + {B[Ma)] - 1)E(T]
where M) is the number of reappearances of the intermittent fault during the residual
computation z, namely N{z)=inf {n; kéle{gaz} where Tf-',g is the benign duration fol-

lowing the Ath occurrence of the intermittent fault, The expected value of N{z),
E[M4)], 18 equivalent to the renewal function R¥z) corresponding to the distribution

FY(1). Also, rj{z,C))=o0 if and only if V{2, Cp)| pymoo S Va1 CpR) o B0y

(2]
fo (14 Vi, CuRNAFNY) = BLCT+Vi(2,C4R") < a2+,

From the equality in the right-hand side of the above equation, we obtain 23 and thus

the Corollary is proved. Q.E.D,

Theorem 1 can also be viewed as below using the concept of astochastic ordering
between two random variables, A random variable X is snid. to bhe stochasiically larger
than the other random variable Y if Prob{X> )2 Proi{ ¥Y>¢) for all ¢ [12]. Let TY(|r) be
the remaining life of the inlermittent fault after retry has been applied for the duration
r. When the hazard rate function is non-decreasing, T{(|r) is stochastically larger than
T{(|s) provided r<s. Thus, for all 42y, if it is worth continning retry beyond the retry

.dumtion r (in the sense of minimizing the task completion time), then we should con-
tinue the retry even after the retry duration s. Consequently, the retry continues until

the intermitt=nt fault disappears.

11
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Note that when the hazard rate function is non-decreasing, 25 is determined by the
mean active duration and is independent of the shape of the distribution, z; could
become negative when E[7Y] is large, that is, intermittent faults have a long nctive durrn.
tion, In such a case, Corollary 1 implies that no retry be applicd for intermittent fauls,
On the other hand, if the set-up overhead ¢, is large, 2; could be even larger than =,

implying that retry be used as a sole means of recovering from an intermittent fault.

When the hazard rate AX!) is decreasing, the nice properties stated in both
Theorom 1 and Corollary 1 do not exist. However, there exists at most one root of Eq,
(6) that minimizes V,. In such a case, since there is no closed form expression of
Vi(z,CpR'), we have to resort to (less elegant) numerical techniques for determining both
ra(z,Cy) and r{(z,C)) as was previously mentioned,

Several numerical examples, in which restart is used a3 a sole means of backup
rpesyery, ie. a(z)==1y, are shown in Figures 2 to 4. In these figures, the durations are
normalized with respect to z;, and the active duration of the intermittent fault is
assumed to have the gamma or Weibull distribution. Figure 2 presents z,'s when the
shape parameters a's of the gamma and Weibull distributions, respectively, are greater
than or equal to 1. Figures 3 and 4 show the optimal retry duration rg(z,C}); the solid

lines for <1 and the dashed lines for a=1. Note that for the gamma distribution A1)

approaches J as {—o00 where 4 is the seale parameter. Thus, it is possible for the

A

derivative of ¥; to be negative, (i.e. Eq. (§) becomes negative), implying r{z, Cj)=co.
"For the Weibull distribution with a <1, r, never becomes co since 4% oc0)==0,

Consider the case where 1%, T¢ and T? are all exponentially distributed with the
parameters r, s, v for the transient fault disappearance rate, the intermittent fauit

disapprarance and reappearance rates, respectively. Since j‘f(!}::ue"”, the renewal

12
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function RYz) becomes 1+vz. From Corollary 1, we have rz,C)=00 if zZ2; and

r{z,C) )=0 il x> 25, where 73 = ﬁ-’(zo + ¢, - -,-I-‘ ). Since V,(z,C),R) implicitly depends

on ry via Vy, we can express V(z,C,R") ns:

v
L+ ) | it 2<al o

v (1' C ,R., == - » +

1 ,l a.o+"+_l'_cp(z‘"3(_l+_l) ll' 2>_

. v g
The derivative of Vy(z,CyR) with respect to r; becomes:
9 Valz C,R - -
THGE) ™1 ablitl) + 5™ - (gt Via G (1)
1

With r(.C)) as determined in Corollary 1 and Vi(z,C,R’) as in Eq. (8), Eq. (7) can have
at most two roots. The optimal retry duration r{z,C) can be obtained by examining
Vo(z,Cp R} at the boundaries, ry==0 and r;==c0, and the roots of Eq. (7). Note that r;
cannot be infinite as long as p,>0, Unlike r, ry docs not have to he zero when z>as.
Several eases of Vyz,C4R) as a function of r; are shown in Figure § where all parameters
are normalized with respect to z5. The case 2 in Figure 5 shows an example for which
two positive roots of Bq. (7) exist, Figure 0 presents some numerical results on ri(z,C)
a3 a function of z. Note that z, depends upon the ratio of v to p, whereas r) aries as

py pyand p, change,

4, OPTIMAL RETRY POLICY AND PARAMETER ESTIMATION

In Section 3, we have derived an optimal retry policy for a given fault characteristic
¢y 1t is, however, very difficult in practice to know a priors the fault characteristic.
Even if the fault characteristic is measured during device manufacture, it may well vary

as the execution environment and the executing tasks change, Another factor that

13
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makes the fault characteristics time-variant is the aging of components, e.g., the bathtub
curve of the failure rate as a function of time [1]. Thus, it is important to determine an
optimal retry policy for uncertain fault characteristics, Note that retry not only pro-
vides an cfficient recovery of task exccution, but also monitors the behavior of a fault
present in a hardware unit. Naturally, it is desirable to integrate the estimation of the
fault characteristics and the control of the maximum retry durations into a single deci-
sion problem. In such a case, the computer system has to adjust its retry policy using

the information on the faul® L-havior collected during its past retries.

& can be useful in estimating the duration between two

The detection mechanisms
successive fault occurrences or the benign duration of an intermittent fault. Note that
this information is crucial in specifying the behavior of fault occurrence or reappearance,
Consequently, the fault characteristics would become well-defined if a good estimator
were used. Moreover, retry may lead to an indication of the act—ivc duration of a tran-
sient or intermittent fault, which is, on the other hand, affected by the retry policy
applied. The information collected is incomplete in case of an unsuccessful retry, since
the retry is stopped while the associated fanlt is active, In what follows, we consider the

estimation of the characteristic of an active fault and the simultaneous determination of

an optimal retry policy which minimizes the task completion time,

Note that the probabilitics of having a permanent, transient, or intermittent fault
arc crucial to the determination of ri(z,C)) but unrelated to that of ra(z,Cp). It implies
that correlations among successive retry durations during the execution of a task do not
depend on these probabilities. Thus, to minimize the task complction time, it is

assumed that these probabilities are determined a priori from the previous observations

®As was pointed out, we mean here the signal-level detection of faults [4],

14
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of fault occurrence. These probabilities can be estimated accurately if a sufficiently large
amount of data of fault occurrence were collected, If a sufficient number of samples has

not yet been obtained, the measured results as in [2,3] have to be used instead,

Recall that in the determination of ry, the transient fault is excluded. Also, if py, p,
pp are determined a priori, the effects of retry on the task completion time is a linear
combination of the effects of transient and intermittent faults when a new fault is
detected. This implies that the same technique can essentially be used to deal with the
unknown parameters for both transient and intermittent faults. Consequently, we con-
fine ourselves to the case where the density functicn of the active durations of trapsient
faults is known and the active durations of intermittent faults have the density function
form f{(!|0) with the parameter # unknown, (Note that ¢ could be a vector il there are
two or more parameters, e.g., the shape parameter a and the scale parameter g for the

Weibull and gamma distributions.)

The samples obtained from retry can be represented by a 2-tuple (/, {) where 7is a
single-bit flag and ¢ indicates a duration. /=0 represents a successful retry, and hence ¢
indicates the active duration of the fault., On the other hand, when a retry fails, /=1
and ¢ is the retry duration. Let ([, t;) /==1,2,..n dcnote the past samples related to the
active duration of an intermittent fault. These resulting samples are type [ progressively
censored, following Cohen's definition in [13] with continusus censoring times, There
are several different types of estimators conceivable for estimating the parameter ¢ on
the basis of these progressively censored samples. For the Weibull and gamma distribu-
tions, the maximum likelikood estimators have been \%idcly studied as in [13-17] when
the samples are progressively ccnsorcd.. For simplicity (but not because of difficulty), we

shall employ the maximum likelihood estimator 8 of 0 in the sequel,

15
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When the fault is still active even after the current retry has been applied for the
duration r, we shall have collected an additional sample (1, r) via the current retry, Let
ﬂ(r) be the maximum likelihood estimator of # which is based on the samples including
up to the surrent sample (1, r). Following the current retry duration r, the maximum

likelihood function becomes

1{0) = {n nu,-,n.v)} wL,n0) (8)

i3]

where 5(/,1,0) is defined as:

£40) i
n{[40) = 1-FY(1]9) i

The maximum likelihood estimator a(r) should maximize L{0) or log L(0).

Let the optimal retry durations based on the estimated ﬂ(r) i)c denoted by ri(z,a(r))
k=1,2 for a newly detected fault and an old intermittent fault, respectively. Use the
notation Oﬂ‘?(r)) to indicate that the active durations of intermittent faults have the
density function j}’(t|£7(r)), and let R(r) denote the policy that the maximum allowable
retry duration for the current retry is r. Then, the direct solution of the optimal retry
duration is to find the minimum of V;,(z,C',(&(r)),R(r)) #=1,2,34. Notice that the retry
c'luration r not only appears in the integral equations (2) and (3), but also affects the

fault characteristic Cy

Under certain conditions, it can be proven that rgz,0(r)) is a non-increasing func-
tion of r. We will first derive the results under such conditions, the application of which
to a more general case is then discussed later in this section. For the former case, the

optimal retry duration r; for the current retry can be readily obtained by the following

18
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theorem.

Theorem 2: When (a) the active duration of an intermittent fault has the density

F40(1)
)

[18] -~ is non-decreasing iu ¢, then the optimal retry duration iz determined by:

function f{(!|0), and (b) for 21, the ratio -- 3 non-decreasing likelihood ratio

rf = inf {r; #(z,Hr)<r) (9)

To prove this theorem, we need the following three lemmas,

Lemma 2.  Under the same conditions as in Theorem 2, let 7} and T} be random
variables with the density functious j:'(lla(t,-)) and j‘,-’(tl&(lk)), respectively, and ¥(¢) be a

uon-decreasing function of ¢, then E[W(T)]|>E{¥(T})] provided ¢ t,.

Proof of this lemma follows immediately from Lemma 2 of Chapter 3 in [18).

Let h}’(t|£'?(!j)) be the hazard rate function when the density function of I¥ is

f,"(l]b(!,-)). The following Lemma gives the ordering of hf(t]b(t,')) with respect to /i

Lemma 3. Under the same conditions as in Theorem 2, h}’(t[??(tj)) is a non-decreasing
function of ¢ for every fixed &

) . eli)
Fo(e) — falo(t))

L I L) L S U0
HO) T [ puloqe)de 1-FHH0)

Proof: For t;>1;, we have for all ¢zt This incquality implics

Thus, KAL) K1) i >4,

Q.IE.D.

17
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Let V{(z,&(!)) o= m,;n V;(:r,&(l),f?) k==2,3.4 where &(t) is used in place of GA&(I))

Note in this case that the active duration of the intermittent fault js distributed with

the parameter E?(t) and that all the other distributions are known.

Lemma 4. Under the same conditions defined as in Theorem 2, if ty>1ty, then
(i) V(1)) 2 Via(t)) k=2,34,

(i) ri{20(1)) & ri(wd(ts)) for k=1,2.

Proof:  The proof for k=3, is done by mathewmstical induction. Let Vl'u(z,a(t,-),rg(n,f))
k==3,4 be the expected times nceded to complete the residual computation z when there
are at most n retries to be attempted following the current one, and let ro(n,4) be the
maximum retry duration allowed. Also, let the optimal retry duration to achieve the

minimum V[',,(z,a(t,-)) be ro{n,j). For n=0, V_,'o(z,f?(t,-))=z and

Vioa0(0)) = Vaalad(thrt(0,0)) = [ W(t2,ef(0,1)) {41} e

where ¥(4,z,y)=(+z when t<y and p+ep+¢, when (> y. Since ¥(4,z,r}) is non-decreasing
in ¢, the right-hand side of the above equation is non-negative as a result of Lemma 2.
Also, since Va"g(z,&(fg)) is the minimum when the active duration of the intermittent
fault has the density function j;"(t,b(tg)), then
Vis(adlt)) 2 Vaolmdt)rd0,0)) 2 Viglallt).
Suppose that Vs'.,,(z,a(tl)) > V;,",,(z,a(tg)) and V;'n(x,a(l,)) bt V;.,,(z,f}{tg)) for all z
provided 4, 21,. It is obvious to sce from Eq. (4) that V;',,H(:c,b(tl)) > V4'.,,+1(z,b(t2)) for

all z. Thus,

Vanst(20()) = Vy p (20t} ri{1,1)) 2

[ Vim0 D) 1,1)) (R0~ i)}

18
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(¢, V;',,.,.,(:c,b(q)),rf_f(n+l,1)) is non-decreasing in {<ry(n+1,1). Also, since ri(n+1,1) is
the optimal retry duration, V;.,,H(z,&(t,)) < zp+!,. tlence, (1, V4"n+1(:r,5(t|)),r.j(n+l,l)) is
always non-decreasing in &, The right-hand side of the above equation becomes non-
negative, resulting in VJJ,,.,,,(::,&(!I))Z Va'ﬂ“(:,b(fg),r.j(u-{-l,l))a V:.,'.,,H(z,&(tg)). By
mathematical induction, we have Vi(z,0(,))2> Vi(z,0(t)) for k=3,4.

To prove ré(z,é(tl))s_ rof z,&( t)), the following cases are examined. Wihen
rg'(z,b(l,))=0, the relation is always true. When r;(z,Ev(:,))>o, using Lemma 3 and the
first part of this proof, the derivative of V;,(z,&(t,-),[i’) with respect to the retry duration r

has the following ordering relationship for all rand ;2 t,.

Vil T T 0( o) (@) +1)} 2 Vi) e 0( ) -{d2)+t}

where all retries after the current one are assumed to employ the optimal policy. Thus,
for (> 1, rg(z,b(!g))=oo when rg'(z,b(llj)=oo, and rg(;,b(tg));: re'(z,-b(tl)) when rg'(:c,a(t,)) is
finite. |

For the case of k=2, it is easy to sec that Vg(z,z?(tj),R) is a linear combination of
the effects of both transient and intermittent faults, Thus, VQ(I,&(!:‘),R')Z Vg(z,a(tk),ﬁ").
Also, the handling of V, with respect to ry has the same ordering relationship as that of
Vs with respect to r,. Thus, Vg(z,ﬂ(t)}?')> Vi 2,0 #(t),R"), and r;(l?( ))<rl( 0(t)) when

t’f">- ‘k- QIE.DU‘

Lemma 4 shows that ri(z,0(t)) is non-increasing in t; for k==1,2. Thus, there exists

an r such that rari(z,b(r)). The proof of Theorem 2 is given as follows:

Proof of Theorem 2: Suppose that the retry has been applied for the period r but the

fault is still active. When ri(z,0(r))>r, the retry should be continued since it decreases
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the expeeted task completion time. Thus, ri(z)>esup {r; ri(z,a(r))'pr}. Suppose there is

an r€{n ri{#,0(r)})<r}., Then Vp (z,b(r,-),r,-)?,i’{: (z,&(r,-))gv;, (z,&(r;’]) where rf is

defined in Eq, (9) and ¥ =/++1, Thus, the theorem follows, Q.E.D.

For the same example in Section 3.2, suppose the active duration of an intermittent
fault is exponentially distributed with an unknown disappearance rate g, Using a
method similar to the Cohen's derivation in {13}, the maximum likelihood estimator pi(r)
for an exponential distribution -- which maximizes log L{t) -« is obtained as:

) = (=53 1) =2
Elt, +r

Theorem 2 gives the optimal stopping time for the current retry. Note that the
true value of st is unknown and its maximum likelihood cstimnt'or is to determine the
optirial retry duration., In the case of retry for a reappearing intermittent fault, the
optimal retry duration for a given j is either 0 or co as shown in Corollary 1. Using
Theorem 2 and Eq. (10), we get the optimal retry duration as follows:

ry === mnxliO, {(n—-}ﬁﬂ‘,}.-)—:':—0—-{:-5':.—z - Sn‘_,t,-}] | (11)

Y L =

Note that the gamma distribution bas a non-decrzasing likelihood ratio for both o
and @ [18]. Furthermore, the estimators provided by Cohen [15] show that both the
estimated & and § are increasing in the current retry period #. Thus, Theorem 2 can be
applied directly when the active duration of the intermittent fault has the gamma distri-
bution. When the distribution of the active duration is Weibull, Theorem 2 cannot be
applied dircetly, but still provides a good approximate solution. This is due to the fact

that the Weibull distribution has a non-decreasing likelihood ratio with respect to its
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scale parameter only, Since (i) the variation of the estimated shape parameter a with
respect to the current retry duration r is always less than that of the cstimated seale
paramecter A, and (ii) the estimated f is increasing in r when a is fixed, a reasonably
good approximation can be obtained by assuming that a is constant during the current
retry and § is estimated using both the past and current samples as discussed in the

above,

There are some shortcomings when the maximum likelihood estimator is used for
the progressively censored samples, Particularly, the estimator is biased when the sam-
ples are censored. Also, in the case of the exponential distribution, jt does not contain
sulficient statistics of p when the samples are censored and incomplete, i.c., when there
exists at least one sample (/,4;} with J==1. These shortcomings can be scen easily from
a trivial example: g becomes zero when [=1 for all i=1,2,..n. In fact, as shown by van
Zwet [19), for most practical cases it i3 impossible to obtain unbiased cstimators when
the samples are Type I censored in a semi-infinite interval. Note, however, that there is
no restriction about which estimator to be used in the foregoing determination of the
optimal retry policy, meaning that estimators other than the maximum likelikood esti-

mator can be used without altering our method described thus far,

6. BAYES SEQUENTIAL ANALYSIS AND OPTIMAL RETRY

In the previons section, the unknown parameters of a distribution are estimated
first, and the optimal retry policy is then determined using the estimated results. In this
section, the same problem is attacked by taking the Bayes approach. Since the reap-
pearances of an intermittent fault during the exccution of a task are a renewal process,

there could be 2 sequence of retries for the same intermittent fault, Thus, it is natural
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to incorporate the Bayes sequential analysis to both characterize the intermittent fault
and determine the optimal retry policy. Retry is then considered ns sampling of the
fault behavior, and the retry duration controls both the task completion time and the
information to be collected. Since the retry for a newly detected fanlt only occurs once
within the exccution of a task (under the assumption that E[Z}] is much larger than the
other durations), we focus on the behavior of intermittent faults and thus the determi-

nation of ry,

5.1, Optimal Retry and Bayes Decision

Let the distribution of T{ be governed by some unknown parameters W Note
that W, may be a scalar (e.g. for the exponential distribution) or a vector (e.g5, for the
gamma or Weibull distribution). The a priorf information concerning 1V is expressed in
terms of a probability distribution function defined on Q. Lclb the density function of W;
be £(w). Denote further the fauit characteristics, given w; and the prior density function

£y by Cpy and Cpe, respectively.

To apply the Bayes decision theory, the risk with o retry policy R, given £; and the

residual computation z, is defined as follows:

pz,EyR) = fn Vi{z,Cp,R) E(w)dw k=34 (12)
"I‘hus, the (optimal) Bayea risk is given as

pi(,&) = inf oz §R) k=34 (13)

Since we are now concerned only with the retry for an intermittent fault, R consists of ry
only. The optimal retry duration in case of the detection of an old intermittent fault,

ro(#,Cpe))s abbreviated by ra(z,€}), viclds the Bayes risk pg(z,€). Similarly, the Bayes
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risk of the retry for a newly detected fault can be defined with Eqs, (12) and (13), How-
ever, the determination of ry(z,§) is o one stage Bayes decision problem. Once py(z,€)
and ry2,€)) are obtained, the normal form of analysis [22] can be applied dircctly for the

solution of r|(z,€,).

Following a retry attempt for an intermittent fault, regardless whether it fails or
succeeds, an cvent related to the fault active duration IV is observed, The event
observed during a retry of the duration r is either "success” or "fail", The "succeas”
event, denoted by e'(¢), occurs when the detected fault disappears after the retry dura-
tion { which is less than or cqual to the maximum allowable retry duration r. The "fail”
event, denoted by ¢{r), occurs when the detected fault does not disappear by the end of
the retry duration r. Let S(r)=={e({); t<r} | {e{(r)}. With the prior density function
£(w), the posterior density function following the observation of e&S(r), denoted by
£(w|c) =1,2, becomes ‘

ol elw) & w)

El(wlg) =
[ dele) €(w) duw

(14)

where g{cjw) is the generalized conditional density function for the cvent ¢ as in [20], i.e.,

The density function of TJ ab {  if e=¢/(f) and t<r

oelv) ={ Prob(e/(r)) e=elr) (15)

This posterior density function will become the prior density for the next retry. Consc-
quently, the system's behavior is similar te a sequential decision procedure which deter-
mines first a retry policy and then observes the resulting sample. The procedure will be
repeated with a new prior distribution which is determined on the basis of the new sam-
ple observed and the old prior distribution, The decision on retry and the sampling for

fault characterization will continue as long as there is an occurrence of fault,
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The problem of selecting the optimal retry policy can clso be treated as the of timal
stopping problem with continuons observations [21]. Suppose an intermittent fault is
detected again when the residual computation is 2, Then, retry is applied for n apecificd
stopping time r, The task will be continued, without applying recovery methods other
than retry, if the fault disappeors during the retry period r. Otherwise, it has to be res.
tarted from the beginning.” The posterior density function of w; becomes £fw|e(!)) or
¢(wlelr)), depending on the outcome of retry., The cost of an observation is the nmount
of time used for monitoring the fault unti] its disappearance, i.e., c( ()=, or until the
end of retry, i, c(e{r))=r. The costs associated with the termination of retry are
defined as the amount of time neccssary to complete the residual computation z as fol-

lows:

{z,5,&le'(t)) = ﬂ;(f')fl(wlc‘(t)))
L(z.r.&lcl(f)) =x+ !,

The expected loss for the stopping time rs is the same as the Bayes risk defined in
Eq. (13). According to the theory presented by Irle in [21], there always exists an
optimal stopping time, ry€[0, oo), satisfying Eq. (13).

We will in the next section solve the sequentinl decision problem using the back-
ward induction [20] for testing hypotheses where the prior and posterior distributions are
c;onl'incd within the open unit interval, i.e., (0,1). Note that the minimax 1cthod in [22)
cannot be used to solve Eqs. (12) and (13), since the decision space -- which consists of

all possible maximum retry durations -- is neither compact nor finite.

"For simplicity, it is assumed that there is only one alternative to the retry recovery, Le., restart.
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5.2, Optimal Retry and Hypotheses Testing

Suppose that there arc o primary and some alternative hypotheses coneerning the
characteristiecs of an Intermittent fault, Consider the sequential testing of these
hypotheses and the simultancous determinotion of the optimal retry policy; this is not
difficult to solve since both the prior and posterior probabilities lie in the same unit
interval {0,1). For given hypotheses, the initial prior distribution ¢an be assumed to be

cqually likely among the hypotheses,

To be more specific, take a demonstrative example® in which the active duration of
an intermittent foult is assumed to be cxponentislly distributed with an unknown
parameter jt. Let there be two hypotheses on g, Ify and [} Tor =1y and jr==p), respee-
tively, and let pp>pty. The uncertainty sssociated with these hypotheses can be
represented by the probabiliyy & of having p=p, We will first determine the optimal
retry policy for all /€(0,1). Then, we will consider the problem of testing hypotheses as
well as estimating the expected sample size to reach a certain significance level under the
optimal retry policy.

Consider the opiimal retry duration r3(z,4) upon detection of an old intermittent
fault. In this case, we get the posterior probabilities given the events ¢/(!) and ¢{),

denoted by h(t) and A(r), raspectively as follows:

. hﬂoc"pol
K )= = = where (S (16)
hitge " +(1-h)p e
_ “bor
Rry=—t (17)

he " (1=h)e ™"

®As will be pointed out near the end of this section, the results obtained from this example are
applicable/extendable to more general cases,
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As was discussed in Section 3.2, we can compute z; for a given s, denoted by
z2(p1;) 7=0,1, such that (i} ra{z,1)e=00 if 2K 25(1tg), or 0 otherwise, and (i) ri(2,0)=00 if
2 23(1y), or O otherwise, Siuee z(pg)>a3(j1y), ra(z,h)==00 if 2<23(p1), and ry(z,h)=0 if
22 23(jtg). Note that the above represents cxtreme cases of retry, i.c,, retries of duration

zero or infinite.

For the non-cxtreme ease, i, the case of =z(p)<z<zn,), let
h' = sup{h] r(x,h)=0}., Since ryz,1)=00 and ry(2,0)=0 for z(pe)<r<2s(pt;), we get
0<h'<1. Forall A> A", ri(2,h)>0, i.c,, retry niust be applied upon deteetion of  fault,
Suppose retry has been applied for a small duration ér<ry(z;A). Then, the memoryless

property of the cxp'onential distribution leads to the following equation;

- ér
pa(2,h) = (1 = FY(6rI0)) (8 + ps(=h(6r))) + [ FLUR) (1 + pyl=h(0) (18a)
By letting 6r—0 and changing variables, Eq, (18a) becomes

‘ - “l
dﬂaj:,h) _ {-jﬁ'(OIh) (pl(2,H0)) - pa'(z,h))} {._i_z!(r_r) lrmo}

_ hpg + (1A,

+ ’ 1
_ m {[M(Z,IJ(O)\ - pa(z,h) + — } (181))

hpg-(1-A)pty

On the other hand, py{z,h) = 2, + ¢, for all <A’ Using the same approach as in

Theorem 1, we can prove that ° satisfies the following equation

1

A2,h(0) = 24 + 1, ~ ~——erme——n
P-i( J( )) 0 ' h.llo'*'(l“h‘)l‘l (10)
"From Eq, (1) and the definition of pf in Eq. (13), p(2,h) is expressed as:
z
pilzh) = -;l,( 1-e™) + e[ vepi(y,h)dy (20)

With the initial conditions r)(z,1}=00, p3(z,h) and pi(z,4) for z<z(p,), ond Eqs. (18)-
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(20}, we can caleulate pg(z,h) A==3,4 for all 2€(za(p1y), 23(o)) with the following numeri-

eal algorithm;
Al, Set h==],
A2. Calculate py{z,1) and pJ{(z1) for all 26(za(p,), 23(110))-

z,h)

padh using Eq|. (18) and py(z,k-64) for all 2€(2(p), 22(ny)). (Note

A3. Calculate

a(z,h) and p(z,4(0)) are both known.)

Ad. Calculate pyz,/-6h) using Bq. (20) for all 2€(z3(py), 24(s00)). (Note piz,h-8h) is
known for all z.)

AS. Set h=h-h, 1f h<O, terminate the algorithm.

1

AG. 1 pi(2 () < 20 + b = o

: o to A3,

Otherwise, set p3(z,h-6h) = z, + !, and go to Ad,

From the test at A6, one can determine A’ for all ¥€(z3(j1,), 22(s1)) 50 as to satisfy
Eq. (19). Due to the memoryless property of the exponential distribution, rg(z,h)==0
when h<h’ or satisfies Eq. (17) with A{r}=5'if A>h'. In Pigure 7, rj versus the prior
probability & is plotted for various values of the rcsidunl computation z. Intersections of
the curves in Figure 7 with the horizontal axis give the values of &° for different values

of .

Remark 1:in case the active duration of an intermittent fault has a general distribu-
tion (instead of an exponentinl distribution), a differential equation similar to Eq. (18b)
cannot be obtained. In such a case, the original integral equation of py(2,€)), i.e., the

combination of Eqs. (3) and (12), has to be used instead.
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From the foregoing discussion we can determine the optimal retry policy that is
based on the prior probability & Under this optimal retry policy, we can also determine
trajectorics of the posterior probabilities alter a large number of occurrences and reap-
pearances of intermittent faults have been observed, Let each retry be numbered by a
two-tuple (m,n,,) on the basis of occurrences and reappearances of intermittent faults,
The (m,n,)-th retry is used to recover from the m-th occurrence of fault in case of n,=0
or from the n,-th reappearance of the m-th intermittent fault if n, %0, For the
hypotheses [f; y==0,1, let h{m,n,) represent the posterior probability after the (m,n,)-th
reiry is applied, Also, let nf, be the total number of reappearances of an intermittent
fault during the excecution of a task and s{m) be the prior probability before the m-th
occurrence of fault, which is equal to A{m=L,nf_;) by definition, There are now two
main problems to be addressed: (i) Will A{m) converge to either 0 or 1, namely to the
true fault characieristic as m—oo 1 (ii) If converges, how fast will it converge ? For con-

vergence, we get the following theorem.

Theorem 3. Let M == inf {m | h{m)si-¢, or h{m)<e} where 0<e<C1. If 0<A{0)<1,

and a'o-f-t,w}-l‘- >0 for all hypotheses H; and all tasks, then Prob{M<oo)==1 and

E[M| <o,

h{m)

Proof: Let S(m)=log——v ) for j5£i, Thus, M can be defined as inf {m | |S{(m)]|> K},

g[c(mrnm”!‘i]
g[f(m:"m)ll‘;')]

observed at the (m,n,)-th retry and g{e|u;) is the generalized conditional density function

.where Kmlog(—-l-i-"-‘E . Let z{mn,)=log where ¢(m,n,) is the event

defined in Eq. (15). (When the retry duration defined by a retry policy is zcro, e{m,n,;)

is pull and z{m,n,)=0. Also, when n,==0, the retry duration is ry since the fault type is
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not known at its first occurrence,) From Bayes theorem, we have

nf,,- 0
S )= S{m' 1)+ ¥ z(m )= 2 E 2{m,n} + log—m— 4{(0)
' n=:0 ma=al n==0 h (0)
i
Let y(m)= Y, z{m,n) under the optimal retry policy, S{m) becomes the sum of indepen-
n=0

dent random variables. After au event is observed, the expected value of z{m,n,,) is the
Kullback-Leibler information number and is greater than or equal to zero when H; is

true [23). In this case, L[z{mn,)]==0 if and only if the prior prolybility before the

(smynpy)-th retry is 0 or 1. Since zg-f-t‘,—-’-l‘- >0 for all hypotheses H; and all tasks exe-

;
euted, Prob(ri%0)>0 i=1,2. Hence, Probly{m)==0]<1 for all m< M. Following the
proof in [24) that the sampling of a sequential probability-ratio test (SPRT) terminates

with probability 1, Prof{M<co)==1 and E[M]<oo ate obtained. Q.E.D.

Remark 2: Since the tasks affected by intermittent faults do not have to be identical,
the random variables y(1), y(2), * -+ are independently but not identically distributed.
Moreover, for a fixed m, z{m,n,)'s are dependent on one another because the events

observed are controlled by the retry duration which is in turn a function of the moment

of reappearance. However, all z{m,n,)>0 when H;is true. The condition, :ro-l»t,—-& >0
i

for all hypotheses H; and all tasks executed, indicates that retry is always a useful
recovery when an intermittent fault is detected, In fact, this condition is not necessary

-true for all tasks, but Theorem 3 holds as Inng as Prob(r/>0)540.

Theorem 3 shows that the expected number of faults observed -- that makes the
posterior probability reach either ¢ or I-¢ -- is finite. This also holds for other distribu-

tions and retry policies as long as r;540 and ry5%0 for some z, However, it does not pro-

20
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vide the average sample size, E[Af| H)], that is necessary to reach these termination
boundariee K and ~JC. Also, one has to justify whether or not the posterior probability
at the termination implies the true faunlt characteristic., In other words, it is important
to know the error probability, Prol{ S{M)<-K | I1)).

There are two difficult aspects in the evaluation of E[M|H] and
Prol{ S{M)<-K | I1;); onr is that y{m)'s are not identically disiributed, and the other is

the non-existence of closed form solutions for both r} and rs. If the same task is exer

cuted repeatedly under the condition :ro+t,--£~ >0 for all hypotheses, then y(m)'s

]
become independently and identically distributed. Assume further that initially, both

hypotheses are equally likely, i.c., h(0)==h,(0)=0.5. Using the characteristics of SPRT

in [20], the error probability is approximated by:

— l_e"l( ot "'K
Prol{ SIM)<~-K | H) = —r—. = ¢
[Aaeed 4

Even if the same task is executed repeatedly, it is very difficult to obtain an exact
solution for E[y] because of the dependency between the optimal retry durations and the
observed samples of the active durations. This fact in turn makes it impossible to
obtain the exact solution of E[Af| H]. Due to the above difficultics, in what follows, we

will derive upper and lower bounds of E[M | H instead of an exact solution.

Suppose there are two reiry policics R° and R' with the retry durations (r9,r3) and

(rl,r3), respectively. ri(z,4) and ri(2,h) are defined the same as ry(z,h). rh(z,k) is equal to

{

O
oo il z<2zy(p;) and O otherwise for j=0,1. Let yi{m) and M be ¥ z{m,n} and the
n==0

number of faults observed to reach the termination boundaries under the retry policy R/,

respectively. Then, (i) Prob(M<oo)=1 and E[M]<oo, and (ii) Ely!)<Ely]<ElH.
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(Note that the indices m are omitted because of the distributions being identical.) Once
Elgi | H,] j==0,1 is colculated as in the Appendix, the expected sample size to reach the

houndaries 1-¢ und ¢ is bounded as:
EMVH] < BIM| H) < EIM | H]

K

where E[ﬁf | H,‘] ~ m]
ot )

j=0,1 (see [20] for more on this).

The above equations give the error probability and the bounds of the expected sam-
ple size when a certain level of significance is to be achieved. These bounds of EfAf| ]
become tight when the difference between py and iy is small, Of course, the expected
sample size under the optimal retry policy is larger than that for the case whex the com-

plete information about active duration is observed, i.c., ri=ry=c0,

Thus far, we have discussed solutions o the problem of sequential retry decision
and hypotheses testing only for the case of exponentially distributed durations. Notice,
however, that (i) the same method, with little modification, can be applied to the cases
with any other kind of distributions, and (ii) Theorem 3 holds as long as
Prob[y(m)=0]<1. Moreover, the method can be extended to the testing of multiple
alternative hypotheses by specifying the prior and posterior probabilitics as a vector,
gach clement of which represents the probability that the corresponding hypothesis is

true,

6. CONCLUSION

In this paper, we have investigated optimal retry policies with Anown and unknown
fault characteristics. Retry not only saves the recovery overhead but provides a means
to estimate the unknown characteristics, Although the data resulting from retrics are

censored, they are the only significant means of monitoring the fault characteristics.

31



May 4, 1984

Naturally, the monitored results are different from those obtained during device

manufacture,

In the discussion of retry policies, retry durations are assumed to be continuous. In
fact, the retry durations should be discrete since the time required for repeated execution
of an operation cannot be cascaded into a single continuous duration, Since the
expected risk is a continuous function of the retry duration, it is not difficult to find the

optimal retry policy which is specified as a number of retry attempts,

As was pointed out in the discussion of the expected sample size for reaching a cer-
tain level of confidence in hypotheses testing, the test under the optimal retry policy
turns out to be inefficient in the sense of maximizing the information observed, This is
due to the fact that the optimal retry policy is defined to minimize the total completion
time of the task affected by the occurrence of fault. Thus, the retry policy is a local
optimum; "optimal” only for the task involved. Clearly, the retry policy which gives
complete maximum information should have infinite retry durations, although such a
retry policy is totally unacceptable in reality. It would be interesting to examine the
trade-off between the two extreme objectives, i.e., minimizing the local task completion

time and maximizing the information to be collected. This problem can be formulated

m ,
as the minimization of the asymptatically accumulated risk, lim 1 Y Elpi{2,CY)), where
m=ca 11 ;
j=1

7 and m are used to number the successive retries and C‘} is the measured fault charac-
teristic at the j-th retry. It can also indicates that the global optimal retry policy should
collect more information (it is definitely not complete though) from the beginning to
speed up the estimation of the true fault characteristics and then implement the local

optimal retry policy once the true characteristics are obtained,
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Another important aspect is the choice of an accurate model for the fault behavior,
As was discussed in Scctions 4 and 5, the optimal retry policy and the measurement of
the fault characteristics are dependent on the family of density functions that are ini-
tially selected, The suitability of choser models can be validated through goodness-of-fit
tests, e.g., chi-square goodness-of-fit. Although sometimes the expeeted task completion
time may not be minimized because of the poor choice of model, the information col-
lected via retries can still be used to check the suitability of the model. Thus, after s
Jarge number of samples have been obtained, it is possible to select an appropriate form
of density function and then achieve the minimum task completion time, The other
approach is to begin with hypotheses of various forms of density functions. As sampling
progresses, the parameters associated with the density function forms are estimated and

then the hypotheses are tested.

Thc work presented in this paper is to incorporate the capability of real-time esti-
mation (of the fault characteristics) and decision (on optimal retry policics) into the com-
puter system. The results are a self-adjustable (thus intelligent) system and a powerful
measurement of the fault characteristics. This idea can also be extended to other appli-
cations, c.g. the measurement of program behavicr and the simultaneous decision of sys-
tem configuration or scheduling. Such extensions would be significant contributions

towards the construction of highly intelligent computer systems.
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Appendix: The Expression of Efy{|H]

The retry duration rlz under the retry policy ' is equal to oo if 2< 2:(p;) and 0 oth-
erwise. Thus, the complete information will be gathered if an old intermittent fault is
detected again at z<z(p;) and no information will be obtained if detected at 2> z(p,).
Hence, if the retry for a newly detected intermittent fault when the residual coiaputa.
tion is z succeeds, we expect to collect information from the successive retries before the

task completion as follows:

T L )
: v s T ) it 2<ai(p;)
A2l = E[ Y a(m,n)|z] = J i S oy
EI ..! ] {ngl l( ) )I ] c-;(z-:,_'(pl))ums(”j) (Iog%i ~ jt:ﬂj) otherwise
J i

Let the maximum retry duration for a newly detected fault be ry(z) when the resi-
dual computation is 2. Also, let ¥{z,) be the density function of the detection time of a

new intermittent fault, z, given that it is detected during the task execution. Then,

. ] .
We)=—— ;. where Mi=p\. Thus, we have E[y]|H] as follows:
l ¥

1ori(2)

Blyi|H) = {wzo-z)e'"""":{(r;(z))dz +]] i€ M 2g-2){ B+ E 1]} dede

where If(r)-—--—(;z,—;tj)r is the information collected from an unsuccessful retry of the max-

- T
imum retry duration r and I{(r)=log%' - -‘i;-‘—’-’ v i3 the resulting information when the
) {

.retry succeeds after the duration r.
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