
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

i
t

t .	 4

SYNCHRONIZATION AND FAULT-MASKING
IN REDUNDANT REAL-TIME SYSTEMS'

O ti

,f,

!^ .DAA~`

C. M. Krishna, Kang G. Shin

Computing Research Laboratory
Department of Electrical and Computer Engineering

The University of Michigan
Ann Arbor, Michigan 18100

(313) 763-0391

and

Ricky W. Butler

NASA Langley Research Center
Hampton, VA 23605

(804) 865-3681

ABSTRACT

r , .0

jCZ,

u.

t
I

A real-time computer may fail because of (i) massive component failures or (ii) not
responding quickly enough to satisfy real-time requirements. An increase in redundancy
-- a conventional means of improving re liability -- can improve the former but can -- in
some cases -- degrade the latter consit trably due to the overhead associated with redun
Clancy management, namely the time delay resulting from synchronization and
voting/inicractive consistency techniques,

In this paper, we consider the implications of synchronization and
voting/interactive consistency algorithms in N-modular clusters on reliability. Ali these
Audies have been carried out in the context of real-time applications. As a demonstra-
tive example, we have analyzed results from experiments conducted at the NASA Airlab,
on the Software Implemented Fault-Tolerance (SIFT) computer. This analysis has
indeed indicated that. in most real-time applications, it is better to employ hardware syn-
chronization instead of software synchronization, and not allow reconfiguratiou.

Subject Index: Synchronization, Communication (1)

''Cho wort: reported in this paper was supporter) in part bAL.NZA Grant No.]I-2n6 Any opinion-, Find-
ings, and conclusions or recommendations expressed in this publication arc t toss of the authors and do not
necessarily reflect the view of NASA. All correspondence regarding this paper should be addressed to Profes-
sor hang G. Shin.

jNASA—TM-67478) SYNCBBONI2A4ION AND
FAULT—MASKING IN REDUNDANT BIAL—TIME SYSTEMS
jNASA) 34 p BC A03/MF A01	 CSCL 09B

N85-28644

Unclas
G3/62 23763

A
^S

November 14, 1983
tr

rt	 1. INTRODUCTION

The use of digital computers, particularly multiprocessors, has become common-
!/

place in such real-time applications as aircraft control, nuclear reactor control, power

distribution and monitoring, automated manufacturing, etc. Such computers are typi-

J

cally required to have very high reliability. (For example, the benchmark figure used at

NASA is 10-s probability of failure over a 10-hour flight period for an aircraft control

computer). Unlike their conventional counterparts, the failure probability of real-time

systems is not completely characterized by the probability of massive hardware failure	 1

alone : failure can also occur due to excessively long response times. In other words,

there are /lard deadlines for code execution that, if missed, can lead to catastrophic
	

^j

consequences. The probability of dynamic failure, pdp, introduced in [1) and further	 .t

refined in (5), integrates the two causes of failure and expresses their probability of

occurrence, pdy„ over some pre-defined operating period is defined as the probability that

the system will miss at least one hard deadline during this period.

As a solution to the reliability problem in real-time computers, N-Modular Redun-

dancy (NMR) has been widely used. In such cases, a task is executed in parallel by N

modules, and it is necessary to reach agreement even in the presence of faults among

some of these N modules. The traditional method to do this is by votiag. However, such

approaches are not guaranteed to work when it is required to unambiguously locate a

fault as well as to detect the consequent error. Indeed, simplistic analyses (e.g. [18,191)

are negated by the possibility that a malfunctioning device will act maliciously or disrup-

tively. A faulty device can do this by reporting different values to different receivers, i,e.

by lying. For this purpose Byzantine Generals (also known as it-,eractive consistency)

approaches [2-4) have been suggested. However, such algorithms have very high over-

ti

2

i^

November 14, 1983

Leads, and there are cases where Byzantine General algorithms actually make a mul-

tiprocessor more liable to failure by adding redundancy beyond a certain threshold.

That is, by adding redundancy it is possible to introduce too much overhead to meet the

p,ty„ requirement. There is therefore the need to examine carefully the implications of

various methods for handling NMR systems. In this paper, we critically compare several

approaches in the context of real-time applications.

The block diagram in Figure I shows a typical real-time system from an functional

point of view. Sensor input is treated by means of voting or interactive consistency

methods to ensure fault-tolerance, before being made available for execution by the

NMR cluster. Once execution is complete, voting or interactive consistency checks have

again to be performed. With that done, the output data can be passed on to the

actuator(s) or the displays. Throughout, synchrony must be maintained amongst the

processors that make up the NMR cluster.

Rceponee time is defined as the delay between the triggering of a job by the arrival

of the relevant sensor input to the actuator/display output that finally results. The

overall response time is the sum of the time for reaching agreement on the sensor data,

the execution time itself,,and the time for synchronization and reaching agreement on

the results generated by the processors in the NMR cluster before the data are fed to the

relevant actuators. Of these times, only the execution time is independent of the cluster

size, N.

In this paper, we present the results of a study of the delay overheads imposed by

voting/ interactive consistency and synchronization methods and quantify their impact

on computer reliability expressed through the probability of dynamic failure. This is the

probability that, over a certain given period of operation, either (a) the processor cluster

7

3

	 4

.	 1	 1	

November 14, 1083

has failed to the point that fault-masking no longer works, or (b) the hard deadline has

been violated although (a) has not occurred. In particular, we shall contrast the reliabili.

ties offered by reconfigurable and non-reconfigurable systems. It will turn out in some

cases, contrary to intuition, that non-reconfigurable systems are the more reliable type.

This poper is organized as follows. In the next section, we consider synchronization

and the delay it imposes. In doing so, we present a theorem that enables the design of an

arbitrarily large phase-locked, fault-tolerant clock. We show that software synchroniza-

tion techniques are excessively time-consuming, and indeed impose a limit on the size of

a cluster that can be thus syuchronized. In Section 3, the fault-masking techniques of

voting and interactive consistency are considered, and their delay overheads estimated.

In Section 4, we use the results of Section 3 to compare the reliabilities of reconfigurable

and non-reconfigurable systems, operating in real-time, under the constraints of a hard

deadline. We conclude with Section 5 which identifies a number of interesting unsolved

problems.

2. SYNCBRONIZA.TION

When a multiplicity of processors executes code in parallel, care must be taken to

keep them reasonably in step. Therefore, the issue of synchronization is focal to all

methods of forward error recovery. There are two basic methods of synchronization:

(1). Each processor has an ultra-precise clock. When the computer is switched on, the

clocks are synchronized. If the clocks are sufficiently precise, the processors will

continue to run in lock-step for an appreciable period. Unfortunately, such highly

precise clocks are extremely expensive, and unsuited to incorporation in computer

circuits. (For a description of highly precise clocks, see [7]). Clocks used in com-

puter circuits drift too rapidly for this method to be employed in practice. We shall

4

November 14, 1083

not consider this method any further.

(2). The synchronization is carried out mutually. There is no single component whose

functioning is critical to the security of the whole system. One may choose to syn-

chronize either the individual processor clocks or the processors at prc-defined

boundaries of software execution. In the first case, one has a system operating

more or less in lock-step, such as the FTMP system 18]. Both methods of synchroni-

zation are based on the same basic concepts; the only difference is the frequency

with which synchronization is carried out 2 The notion of virtunT'time sources now

arises naturally. These are not necessarily clocks in the traditional sense; they mark

the points at• which an individual processor performs synchronization. It is con-

venient to view them as virtual clocks, whose transitions represent either clock

"ticks" or execution of a stretch of code up to a pre-specified boundary. In the

sequel, unless it is otherwise stated, the term "clock" is used to mean "virtual

clock".

When synchronization is mutual, no "absolute" underlying time-source exists, only

a set of time-sources whose relative behavior must be kept in step. The synchronizer

(which may or may not be physically part of the processor and which may be imple-

mented either in hardware or in software) must therefore in each case have a perception

of the state of the other time-sources. This perception may or may not be identical to

that of the other synchronizers: if faulty modules necessarily behave consistently with

respect to all synchronizers, it is identical; otherwise it need not be so.

2 An important corollary of this is that the maximum clock drift rates permitted in the synchronization
at boundaries of a large stretch of code are smaller.

5
	 X

November 14, 1983

The synchronization process contributes to the system overhead in two ways.

Firstly, there is the overhead imposed by the synchronization task itself. Secondly, the

task-to-task communication overhead is proportional to the degree of synchronization

achieved, If hardware synchronization with phase-locked clocks is employed, the syn-

chronization overhead can be reduced to vanishing point. If software synchronization is

used, the overhead is significant. Both approaches to synchronization will be considered

in succeeding sections. First, however, we consider the impact on the communication

overhead.

Because of severe timing constraints, real-time systems do not generally use sophis-

ticated mechanisms for task-to-task communication. Typically, data are transmitted

from one task to another via timing rules agreed in advance. As a result, the receiving

task has to wait for a time equal to the sum of the maximum transmission time and the

maximum possible clock skew before it can read the data. For example, in the SIFT sys-

tem, a wait loop has to be added when the r.ormal dispatching overhead is less than the

maximum clock skew. Such a wait naturally degrades performance, and all the more so

since execution is supposed to be carried out in real-time. Where synchronization is car-

ried out in software and depends on the transmission of timing data on regular data

channels, this transmission delay feeds back to increase the synchronization delay itself.

We will consider this matter in detail in Section 2.2.

2.1. Hardware Synchronization

Probably the best way of keeping clocks synchronized in the presence of malicious

failures is to lock them in phase. For an introduction, see [12], and for a careful analysis,

see [14).

9

November 14, 1083

The philosophy behind the operation of plisse-locked clocks is simple. See Figure 2.

Given Nclocks to be synchronized in the face of up to m faulty clocks, the arrangement

consists of a receiver which monitors the clock pulses of the N-1 other clocks in the

arrangement, and uses them as a reference. This reference is treated as a measur e of the

phase error by the receiving clock. The estimated phase error is then put into an

appropriate filter, and the output of the filter is used to control the clock oscillator's fre-

quency. By appropriately controlling the frequency of the individual clocks, they can be

kept in phase-lock and therefore in synchrony.

For the arrangement to work properly, the phase error should be below some criti-

cal value. The magnitude of this value depends to a large extent on the nature of the

filter. A brief discussion of clock stability is provided in [12]. The arrangement for

N=A, m=1, is particularly simple and is, to our knowledge, the only phase-locked clock

constructed. Here, the reference used is the second incoming pulse (in temporal order),

i.e, the median pulse. Such a clock is proof against the malice of a single faulty clock.

Unfortunately, when one attempts to increase Nor in without sufficient care, syn-

chrony can be lost through malicious behavior and the consequent formation of a multi- 	 I

plicity of cliques, i.e. self-sustaining groups of clocks maintaining synchrony within their

individual cliques, but out of synchrony with the other non-faulty clocks in the cluster.

By definition, there must be one and only one clique to which all non-faulty clocks

belong. In this section, we show how phase-locked clocks may be safely expanded to

tolerate any given number of malicious clocks. In particular, we seek to determine N as a

function of m, and also the voting strategy.

A simple voting strategy is defined by an integer AM, which means that the

AN)—th incoming signal (in temporal order) is taken as the reference value against which

7

I&,

November 14, 1083

the receiving clock compares its own value. Our task is so to obtain N and AN) that

there is, in the face of up to m malicious clocks, exactly one clique in the whole system

to which every non-faulty clock belongs.

To begin with, note that as long as synchrony is maintained, every non-faulty

clock must belong to exactly one clique, while a maliciously faulty clock may belong to

any number of cliques. Using this requirement, we can obtain the following useful

theorem.

	

Theorem 1: Let N and m be the cluster size and the maximum number of faulty 	 i

members tolerable in the system, respectively, then (i) N > 3m and (ii) nth is the smal-

lest integer strictly greater than
2

(N+m) - 1.

Proof: For convenience, define the size of any clique as the number of non-faulty clocks

in it. Then, the minimum possible size of a clique is AM-m+1. There are at least N-m

non-faulty devices. The requirement that there be exactly one clique of non-faulty dev-

ices then yields:3

N-m	 1	 (1)
L AM-m+1 —

Also, since the AM-th incoming signal must either be a signal from a non-faulty clock or

from a fauity clock that is sandwiched between the signals of two non-faulty clocks, we

have AM < N-m-1. From (1) we get AM > 2 (N+m) - 1, thereby leading to an ine-

I	 ^

quality for RN):

° It is easy to show that if this expression is satisfied, there will be exactly one clique when the number
of maliciously malfunctioning clocks is less than m.

1

8

November 14, 1983

2 (N+m)-1 < AN) <_ N-in
	

(2)

This inequality implies N> 3rn. We may therefore define AM to be the smallest

integer strictly greater than
2 (

N+m) — 1 where N > 3m. Q.E.D.

With this arrangement, the possibility of forming multiple cliques vanishes, and tite sys-

teat remains in synchrony as long as the individual non-faulty clocks have sufficiently

low drift rates and are sufficiently well synchronized at start-up to maintain phase-lock.

As an illustration of the above theorem, consider the following example.

Example: This example is meant to illustrate why N > 3tn in a phase-locked clock.

Case 1: First, consider the case N=O, rn=2, and simple majority voting is used. Label

the clocks A, B, C, D, E, and P respectively. Let E and F be maliciously faulty clocks.

We present here a scenario in which cliques {A,B,E,P) and (C,D,E,I•) are formed, thus

destroying synchrony between, for example, B and C.

Let G(
"
) denote the moment in "absolute time"' at which clock a for

a=A,B,C,D,E,P puts out its i—th tick. Since even non-faulty clocks drift, these

moments will very likely be mutually different. Define the a-scenario, S O) as the ordering

of the clock values as seen by clock a in the r—lh clock cycle. In the sequel, we suppress

the superscript for convenience. Denote the reference clock by bold-face notation. The

following scenarios are possible for, say, the i— th clock cycle:

S A = C,t<CE<CF<CB<Cp<Co

I While it might seem a contradiction to invoke real or absolute time when we said that it has no
meaning in mutual synchronization, it is not so. The only role "absolute time" has to play here is in defining
a mutual ordering of the respective clock ticks.

i
F

9

.	 ,

November 14, 1083

Sp=
CB< CP< C A < CB< CD< CC

S C = CA<CQ<CD<CC<CP<CP

SD = CA< CD< CD<C C< CB< CP

and the scenarios S E and Sp are of no relo-Vince since G and r are faulty clocks. Note

that the mutual order of the non-faulty clocks is preserved for all four scenarios, while

that including the faulty clocks is not necessarily preserved.

It is easy now to see that this scenario can perpetuate itself and that the sets (A,B)

and (C,D) will then diverge, forming cliques {A,B,C,P} and {C,D,G,P}, et.ch of size two.

Phase-locking is no protection against this because of the malicious behavior of faulty

clocks G and P. Therefore, N=6 is not large enough to tolerate up to m=2 faults.

Case 2: Now consider N=7, m=2, and AM-4, with non-faulty clocks A,B,C,D, and C,

and faulty clocks G and P. We show that multiple cliques cannot form by systematically

eliminating all possibilities. Consider all possible 2-clique arrangements: {1,4}, and {2,3}

where the numbers denote the size of the candidate clique. It is easy to see that a clique	 l
of size one is not self-sustaining since even with the two faulty clocks thrown in, there

would only be two signals into the receiver circuit, which is less than AM. The {2,3}

arrangement can similarly be disposed off: while the clique of size 3 is self-sustaining,

that with size 2 is not. So, there is no two-clique arrangement that can be sustained. It is

easy to see that three-, four- and five-clique arrangements are also impossible. So,

N=7, m=2, and AM=4 has at most one clique.

Remark 1: A pathological curiosity

While the system is in phase-lock, it is possible for only z=AM-rn+1 non-faulty

processors to cause the whole system to drift monotonically in frequency. This can only

I

10

.	 -.. ^ ^~	 S'i •r Yoh ^{'^,. ^.
	 —	 -	 •	 -	 I,

November 14, 1983

happen, however, when z of the processors have a consistent drift in one direction.

Theoretically, the whole system could be dragged down to zero frequency or up to a very

high frequency, keeping perfect synchrony as it gets there. Since the drift of good cry-

stal -locks is only some few parts per million and the frequencies over which they can

range is• limited, this difficulty is no more.than academic. It does, however, serve to

emphasize that phase-locked clocks do not necessarily average out drifts.

Remark 2: Synchronization overhead

In the case of a phase-locked clock, there is some time overhead clue to the oscilla.

tions that are possible as a result of malicious behavior. However, these are minimal

when good crystal clocks are used, and so it is reasonable to treat the overhead of
r

hardware synchronization as negligible. Also, the clock skew is very small/ negligible in a

well-designed phase-locked clock.

Remark 3: An alternative design

The only other hardware arrangement that we are aware of for keeping synchrony
1

in the face of malicious behavior is the multi-stage synchronizer arrangement proposed

by Davies and Wakerly (6(. The idea is shown in Figure 3. It consists of nt stages of N

synchronizers each. The system works on the principle that with this redundancy, there

must be at least one level of synchronizers that assures proper synchronization in the

presence of malicious faults. An informal proof is provided in (6(.

This arrangement results in a proliferation of hardware. As readily be verified, the

total number of devices (processors and synchronizers) in the cluster is 2m 2+3m+1. The

total number of 1/0 ports required is given by 8m3+10rn2+10m+2. The potential enor-

ti

xx 4

November 14, 1083

mity of the above numbers should be driven home by the consideration that in order to

maximize returns fronA redundancy, the individual modules must be isolated from one

another as much as possible. This dictates that power supplies must also be replicated

in large numbers, and that the benefits of large-scale integration cannot be brought to

bear on the issue: individual synchronizers must be on separate devices -- even, perhaps,

on separate cards. Otherwise, correlated and common-cause failures could wipe out relia.

bility gains made by device redundancy.

Compared with the gargantuan redundancy required by the Davies and Wakerly

approach, the PJ=3m-i•1 requirement of phase locked clocks represents an extremely

elegant hardware solution to the problem of synchronization in the presence of malicious

faults.

2.2. Software Synchronization

The use of decentralized algorithms for synchronization offers an alternative to the

hardware methods described above. Such algorithms enable a system consisting of many

processors with their own clocks to operate in close synchrony. The degree of synchroni-

zation obtained by these algorithms depends primarily on the performance of the com•,

munications system, the precision of the clocks, and the frequency of resynchronization.

The task-to-task communications system's one-way message time is at least B+5 where

B is the maximum transmission time and h is the maximum clock skew, The most

time-efficient of the software synchronization algorithms that we know of is the interac-

live convergence algorithm (9].

In the interactive convergence algorithm, each processor in the system determines

its skew relative to every other processor in the system. If any relative skew is greater

12

it

^I

'r

i

ii
P

i

1.

7

November 14, 1.083

than a predetermined threshold, it is set to zero. An average of all the relative skews is

calculated and used to correct its clock.

The following theorem (a trivial adaptation of one proved in [01) characterizes tl:e

maximum clock skew of the system in terms of the system parameters defined below:

t - maximum error in reading another processor's clock

p - maximum drift rate between any two clocks in the system

N - number of clocks in the system.

m - maximum number of faulty clocks accommodated,

R - resynchronization period.

S(N) - execution time of the resynchronization task for an NMR cluster.

6s - maximum clock skew at start-up.

The. vern 2: Let the following conditions hold:

3m<N

6 > [1— 3m_ 2p(1•
m))-i[2E{I+n(1— "`)} + p (R + 2 Nm ,^N))1

N	 N	 N	 N

6>be+pR

max(b, S(N)) < R

p6«E

I

Then, the non-faulty clocks remain in synchrony, i.e, the maximum skew is 6.

The synchronization algorithm is run periodically, the major component of the exe-

cution time usually being the time required to read every other processor's clock in the

system. In the SIFT system, each processor's clock value is broadcast during a window

of time allocated to it. There are N such windows, one for each processor in the system.

13

I

November 14, 1083

All other processors wait during this window to receive the broadcast data value.

In order to accommodate the worst -case situation, each window must be at least

B+b long. The interactive convergence algorithm takes an execution time equal to

S(N)=N(B+6)+K, where K is the time needed to compute and carry out the clock

correction.

It should be noted that this execution time of the synchronization task affects the

synchronization process itself. Indeed, since this is a function of N, there is a maximum

cluster size that, can be synchronized in this way. To see this, substitute the above

expression for S(N) in the formula for 6, and obtain:

6 > N(N-3m-2p(N'+N-rnN-m))-' (2c+p{R+2(N-m)(B+ N)}^
	

(31

From this, one can (a) compute the minimum execution time of the synchronization task

as a function of the cluster size, (b) obtain the quality of synchronization (the smaller

the 6, the better the synchronization), and (c) determine the largest possible cluster that

can be thus synchronized: this is the largest N for which S(N) < R.

The values for the SIFT system are given by B=18.2 micro-seconds, and execution

time for the synchronization task is 1.760 milli-seconds. PIumerical results on the syn-

chronization overhead using these values are plotted in Figure 4. The curves in Fir-ire 4

show the dependence of the synchronization overhead on the maximum drift rate, p. The

maximum cluster size permissible for synchronization is tabulated in Table 1.

Although the expression S(N) = N(6+B)+K was presented as emanating from the

SIFT system, it is easy to see that in any system where communication is by broadcast,

and clock transmission slots are pre-determined, this expression will hold. It should also

be reiterated that such communication protocols are the most commonly used protocols

14

November 14, 1083

in real-time, systems. In any case, it is obvious that whatever the protocol used, S(N) is

very unlikely to be less than a first order function of N.

Even if, in a hypothetical case, S(N) were negligible (which, of course can never

happen but nevertheless represents an extreme case), b will continue to be a function of

N, and there will be a point for which b>R, at which synchrony will break down.

3. VOTING AND BYZANTINE GENERALS ALGORITHM

A complete analysis of real-time systems must take into account both the processor

synchronization overhead and the overhead associated with voting/interactive cou-

sistency techniques used for input and output functions. The former has been carefully

examined in the previous section. We now discuss the latter in detail.

3.1. Voting

Once the delay involved in synchronization is taken account of, there is very little

additional delay if the voting is carried out in hardware. With software voting, however,

the additional overhead can be significant.

Voting in software is carried out by individual processors placing data to be voted

on in pre-specified "mailboxes" or "pigeonholes". The voter searches the mailboxes for

valid data, fetches them, and then votes on them. The execution time in the retrieval

step is directly proportional to the number of processors in the cluster, N. The execution

time required to vote N values and diagnose up to m faults is known to be at least

(N-1)C, + C2 but less than [(N-1) + 2m — 21 C, + Cs = [5(3 1) —21 C, + C. where

C, C2 are some constants (see (13) for this).

Experimental data exist for 3-MR and 5-MR in SIFT. These data can easily be

introduced into the linear model obtained above. If s is the number of data values 	
ti

15

(.01

November 14, 1083

voted, and, Vda) the time taken for an N-way vote on a data values, the following

Depression was found to hold for SIFT:

VA(a) = 58.5 a N t 120.5 (q)

where the time unit is micro-seconds. This is a large overhead: in SIFT, voting is per-

formed at the beginning of a 3.2 milli-second subframe. If a=6, N=5, then 78% of the

subframe is consumed by the voting algorithm 1161.

3.2. Byzantine Generals Algorithms

The Byzantine Generals, or interactive consistency, algorithm must be used when it

is needed to isolate the sources of errors as well as to mask the errors themselves. It finds

use when reconfiguration upon failure is to be attempted and the executive is distri-

buted. The algorithm takes into account the fact that faulty processors may be mali-

cious, in other words, that they need not fail only in "safe" directions. To be absolutely

certain that faulty processors can be properly identified for isolation, it is necessary to

allow for every possible misbehavior. Thus the case when a faulty processor is malicious

-- that it actively and intelligently attempts to hide its malfunction -- must also be han-

dled. Such algorithms are typically used to reach agreement between processors in a clus-

ter on incoming sensor data, and in certain clock synchronization algorithms. For

further details, see [2-4].

The input of data is accomplished by every processor reading the external sources

independently or by one processor reading the external sources and then distributing the

obtained value to the rest of the processors. In the first case, each processor would very

probably get a different value -- even if they were in perfect synchrony -- due to the

inherent instability in reading analog data. Hence, a subsequent, exchange of values read

along with a mid-value selection is required to get a consistent value. However, this
y

10
	 4

17

November 1,4, 1983

process suffers from sensitivity to malicious faulty processors and interactive consistency

(or Byzantine Generals) algorithms are essential where fault isolation and reconfiguration

are required.

The interactive consistency algorithm consists of the following steps:

(1) 1,ic source value is distributed to the N processors,

(2) The received values are exchanged m times to handle up to in faulty processors.

(3) A consistent value is obtained by use of a recursive algorithm. When m=1, this

reduces to a majority calculation.

N must be at least 3m+1. The overhead for these interactive consistency algorithms

can be considerable. The number of messages required to obtain interactive consistency

is of the order of N"-'. To give an idea of the actual numbers incurred in practice, some

experiments on the SIFT computer were run.

In SIFT, with five-way voting, only one fault can be located. The simple flight-

control applications currently running in SIFT use 63 external sensor values, each of

which goes through the interactive consistency algorithm. From the data collected, exe-

cution times for steps (1) and (2) of the algorithm can be estimated, and a lower bound

determined for step (3). The following data were measured: step (1) : 3.05 ma, step (2)

: 2.22 ma, and step (3) : 6.57 ma (total 11.84 ma). For larger m, the step (1) execution

time should not change significantly, while the step (3) calculation would require at least

6.57 ma (very likely much more). The step (2) process consists of only message exchanges

and thus varies directly with the number of messages which are sent. The following for-

mula represents an approximate execution time for step (2) as a function of m:

2.22 NM" ma). We may add the timing values for steps (1) and steps (3) above to this

expression to obtain a lower bound for the overhead of the Byzantine Generals algorithm

November 14, 1083

in SIFT. Since the interactive consistency tasks must be executed at the data sample

rate, a large portion of the available CPU time is consumed, In Table 2 we present the

interactive consistency overhead in SIFT. It indicates that the percentage overhead

drastically increases as (i) the number of faults to be tolerated increases, or (ii) the major

frame (i.e. data sampling period) decreases.

It should be pointed out that there have lately been some more efficient implemen-

cations of the Byzantine Generals algorithm (18) than have been implemented on SIFT,

However, even such implementations exhibit high overheads as the number of faulty

modules to be accommodated increases.

4. RECONFIGUR_ABLE AND NON-RECONFIGURABLE SYSTEMS

In some cases, it is possible through encryption, to defeat malicious failures, thus

making interactive consistency algorithms unnecessary for locating faults. Unfor-

tunately, we know of no estimate of the probability of occurrence of malicious faults

that cannot be so defeated. In the absence of any such data, we must for safety, allow

all fault , to be so malicious that encryption cannot defeat them. This means that recon-

figurable systems in ultra-reliable applications must use the interactive consistency algo-

rithms to isolate faulty units.

Unfortunately, as we have seen, this algorithm is extremely time-consuming to run.

R.eronfigurable systems must therefore contend with a large overhead as compared to

non-reconfigurable systems.

However, reconfigurable systems have the advantage of dynamic redundancy

management. When widespread failures occur, it is possible to retire some clusters in

order to keep others at full strength. Also, by periodically purging itself of faulty com-

ponents, a reconfigurable system can survive in the face of more failures than can a

1s

November 14, 1083

	

{	 non-reconfigurable system. For example, if one started operation with a 7-cluster, the

` I reconfigurable system would not fail unless either (a) all but two processors fail, or (b)

more than rn (m=2 for a 7-cluster, and 1 for a 4-cluster) processors fail between succes-

sive tests, while the corresponding non-reconfigurable system would fail if more than 3

processors failed. This does not mean that a reconfigurable system is necessarily better

than a non-reconfigurable one, since as we shall see, timing requirements impose severe

constraints on the size of reconfigurable clusters.

We shall contrast the reliability of reconfigurable and non-reconfigurable systems
j

with the following example. Assume that there is a single critical task in the system that

requires 3.2 milli-seconds to run, and that this task is dispatched every 100 milli- 	 ! '1

seconds 5 The hard deadline is violated when a task is not completed before its successor

is dispatched. There is a total of N processors available. Processors fail according to an

exponential law with specified MTBF. The mission lifetime (duration between successive

service stages) is also specified.

Remark 4: It is usual in analyses of multiprocessors to assume that the service time is

exponentially distributed. This works well for general-purpose systems where it

represents a certain lack of information about the job mix, and where the long tail of the

exponential distribution does not seriously affect computations since these are generally

based on mean-value ay alysis and do involve hard deadlines. Real-time software, how-

ever, is written a^cording to strict timing requirements, and one must have a good idea

about the maximum execution time. One may choose to regard this maximum time as

the actual execution time in all instances for purposes of safety. The value of 3.2 milli-

seconds that we adopt here is the length of a single subframe in the SIFT system.

s 3.2 and 100 milli-seconds represent, respectively, the length of a subframe and frame in the SIFT sys-
tem.	 Y

19	 ,;,^`

November 14, 1083

In the following sections, we consider non-reconfigurable and reconfigurable systems

separately. In both cases, we assume that synchronization is by means of phase-locked

(physical, not virtual) clocks. Since these can be made arbitrarily reliable and are com-

mon to both reconfigurable and non-reconfigurablc systems, we do not consider the pro-

bability of clock failure in what follows. Numerical results in the section on reconfigur-

able systems are based on the lower bounds obtained from SIFT.

4.1. Non-Reconfigurable System

	

Under the above assumptions, the probability of dynamic failure is simply equal to 	 J

	

the probability of static failure, i.e. the probability that fewer than (2 i processors fail 	 ? t

over the mission lifetime. This probability for a number of mission lifetimes is graphed in

Figure 6. i

4.2. Reconfigurable System

Since, in a reconfigurable system, an execution of the Byzantine Generals Algorithm

must take place both at the input and the output, we have the time overhead bounded

1

	

below by 4.44N 1°-1 +19.24 milli-seconds (N > 3m). Since the task execution time is 3.2	
I
i

milli-seconds, an unreplenishable reserve of 100 -3.2=96.8 milli-seconds of time is avail-

able. If the overhead is smaller than this, the probability of dynamic failure is equal to
i

the probability of static failure, if not, it is equal to unity.

As may readily be seen, for clusters with m>2, the overhead exceeds the reserve of

time, so that the maximum allowed size of the cluster is N-7, m=2. For this reason, if

we start with more than 7 processors, the excess processors will have to be on stand-by

for inclusion upon a failure within the cluster. Failure occurs if either during a single

20

November 14, 1083

execution more than m failures occur in the cluster, or if the processor pool is exhausted,

i.e. if there is an insufficient number of processors left to make up a cluster.

The reconfiguration policy is simple. The system begins operation with either a 7-

MR or a 4-MR cluster (depending on the value of N). As processors fail, they are

replaced if spares are available. If the stock of spares is exhausted, further failures are

handled by the 7-M11 cluster reconfiguring into a 4-MR cluster (when the system began

operation with a 7-MR cluster). If N < 7, only a single failure can be tolerated. It is

thus a combination of hybrid and adaptive voting [171.

The analysis for the dynamic failure probability is straightforward, and differs from

previous analyses on reconfigurable NMR 118,101 in that the probability of more than m

failures over an execution cycle is taken into account here. We assume that the failure

rate of the stand-by processors is the same as that of functioning processors.

Numerical results for the probability of dynamic failure of reconfigurable systems

are plotted in Figure 5 for a ready comparison with their non-reconfigurable counter-

parts.

It is apparent from Figure 5 that while increasing the number of available proces-

sors in a non-reconfigurablo system -reduces its probability of dynamic failure, there is a

lower bound to the probability of dynamic failure for reconfigurable systems. This bound

is caused by the fact that the cluster eize is limited to 7, since the overhead exceeds

100% for larger clusters. There is therefore a point after which the probability of more

than m processor failures over a single execution (aggregated over the mission lifetime)

becomes the dominant component in, the probability of dynamic failure. As one might

expect, the reconfigurable system performs better than the non-reconfigurable system

when the mission lifetime is longer. This has been at the horrible price, in this case, of a

21

November 14, 1083

50,3% overhead,

Clearly, the results in Figure 5 are problem-specific, indeed, they are critically

dependent on the length of the inter-dispatch interval, the unreplenishable reserve of

time that is available, and the time taken to execute the Byzantine algorithm. Also,

while the reconfigurable system may appear to be the better performer in Figure 5, this

is largely due to the large reserve of time available. Suppose that the task, instead of

taking a maximum of 3.2 milli-seconds to perform, took 70 milli-seconds. Then, the

reserve of time is 100-70=30 milli-seconds, and the largest reconfigurable cluster that

could fit in this reserve is N=4, ra=1. In Figure 0, we display results for such a task,

Naturally, the reconfigurable system comes out much more poorly here.

In place of running the Byzantine Generals Algorithm every time the task is

dispatched, one might consider running it only when execution of a vote detected a fault.

While this would reduce the expected overhead, the worst-case overhead would still be

the same. For this reason, while such a scheme might reduce the expected critical task

execution time, and allow more (non-critical) tasks to be run, the maximum number of

critical tasks possible is not increased,

However, if one were interested in expected response time as a secondary attribute

of system performance, this scheme is worth exploring. In particular, such a scheme

would reduce the mean cost as defined in [1].

6. CONCLUSIONS

In this paper, we have considered various methods of synchronization and fault-

masking in redundant systems, with a view to using them in real-time applications.

We have presented a theorem that makes it possible to design fault-tolerant phase-

locked clocks of arbitrary size, thus making hardware synchronization of arbitrarily large

22

J%.

i
i

November 14, 1083

clusters possible; quantified the overheads due to software synchronization, showing that

these impose a large overhead, and that they break down beyond a certain cluster size.

We have presented experimental results obtained from the SIFT computer on the over-

heads connected with software synchronization, software voting and interactive con-

sistency algorithms. Finally, we have contrasted the reliabilitics of reconfigurable and

non-reconfigurable systems, under conditions of hard deadlines and unreplenishable

reserves of time, and shown that there are conditions under which the large overliead

connected with reconfigurable systems actually reduce their reliability below that of

their non-reconfigurable counter-parts.

A number of interesting and important questions remain open. We list a few of

them below.

(i) How can one definitively estimate or measure the probability that a processor fault

will act maliciously?

(ii) What effect will various coding algorithms have on the probability of malicious

failure?

(iii) The quantity 3rn-hl occurs repeatedly for the minimum number of elements in a

cluster that must maintain either synchrony or interactive consistency in the face

of up to m malicious failures: in this paper, we have added phase-locked clocks to

this family of structures. This would seem to be caused by some underlying com-

mon features or principle. As of this writing it is unknown, as to whether or not

this is so, and if it is, what the underlying principle is. The answer to this questiou

would very considerably add to our understanding of the behavior of distributed

systems.

23

November 14, 1083

Tito results and indications presented in this paper are useful in the quest for

appropriate modeling and analysis of real-time systems. Real-time systems have too

often been treated as an unimportant appendage of general multiprocessing. It is impor-

tant to recognize that real-time systems form a separate discipline of their own, and to

develop tools for their development. The work outlined in this paper forms part of such

an effort.

9

I

l

1

I

`l24

I

Alovembor 14, 1083

REVERENCES

(1) C. M. Krishna and K. 0. Shin, "Performance Measures for Multiprocessor Con-
trollers", Performance 'SS, edited by A. K. Agrawaln and S. K. Tripathi, North
Holland, pp. 224.250, 1083.

(2) M. Pease, R. Shostak, and L, Lamport, "Reaching Agreement in the Presence of
Faults," J. ACM, Vol, 27, No. 2, pp. 2M234, April 1080.

[3)	 L. Lamport, ft. Shostak, and M. Pease, "The Byzantine Generals Problem,"
ACM Trans. Prop. Lang. and Syat., Vol. 4, No. 3, pp. 382-401, July 1082.

(4)	 D. Dolev, "The Byzantine Generals Strike Again," J. Algorithms, Vol. 3, No. 1,
pp. 14.30, January 1080.

[bJ K. G. Shin, C. M. Krishna, and Y, 1, Lee, "The Application to the Aircraft
Landing Problem of a Unified Method for Characterizing Real-Time Systems;
Proc. IEEE Real-Time Systems Symp, Arlington, VA, Dec. 1083 (to appear).

[6)	 D. Davies and J. F. Wakerly, "Synchronization acid Matching in Redundant Sys-
tems; IEEE Trans. Comput,, Vol. C-27, No. 0, pp. 531-530, June 1078.

(7)	 L. Essen, "The Measurement of Frequency and Time Interval," Her hlafcaty'a
Stationery Office, London, 1073.

[8)	 A. L. Hopkins, et al., "FTMP -- A Highly Reliable Fault-Tolerant Multiprocessor
for Aircraft; Proc, IEEE, Vol. 06, No. 10, pp. 1221. 1230, October 1078.

[0)	 J. Goldberg, at al., "Development and Analysis of the Software Implemented
Fault-',Pulerance (SIFT) Computer," NASA CR-1721.E0, June 1083.

[10) J. H. Wensley, at al., "SIFT: Design and Analysis of a Fault-Tolerant Computer
for Aircraft Control," Pror.. IEEE, Vol. 66, No. 10, pp. 1240 - 1255, October
1078.

[11) D. P. Sieworek, "Reliability Modeling of Compensating Module Failures in
Majority Voted Redundancy," IEEE Trans. Comput., Vol. C-24, No. 5, pp. 525-
533, May 1075.

[12) T. B. Smith, "Fault-Tolerant Clocking System," Digest of FTCS-11, pp. 262 -
284, 1081.

(13) S. L. Hakimi and K. Nakajima, "Adaptive Diagnosis: A New Theory of L-Fault-
Diagnosable Systems," Twentieth Allerton Conf. Comm. Control, Comput., pp.
231-240, October 1082.

25

•

i

November 15, 1983	 1

11,11	 A. W. Molt and J. M. Myers, "An Approach to the Analysis of Clock Networks,"
R-1289, C.S.Draper Laboratory Contract Report (Preliminary), June 1978.

1161 N. A. Lynch, M. J. Fischer, and R. J. fowler, "A Simple and Efficient Byzantine
Generals Algorithm," Proc. Reliability in Dist. Soft. and Database Syst., pp. 49 -
b2, 1082.

(161	 D, Palumbo and R. W. Butler, "SIFT -- A Preliminary Evaluation," Proc, Fifth
Digital Avionics Symp., Seattle, WA, August 1083,

1171	 D, P. Sieworck and R. S. Swarz, The Theory and Practice of Reliable Sgaicm
Design, Digital Press, Bedford, MA, 1982.

1181	 J. Losq, "A Highly Efficient Redundancy Scheme; Self-Purging Redundancy,"
/LCC Trans. Cmnput., Vol. C-26, No. 0, pp. 690.678, June 1076.

1191	 F. P. Mathur and A. Avizienis, "Reliability Analysis and Architecture of a
Hybrid-Redundant Digital System: Generalized Triple Modular Redundancy with
Self-Repair," Spring JCC, APIPS Conf. Proc., Vol. 30, pp. 373-383, 1070, 	 I

t.
i
^i

i

i
i

I

1 60,

Maximum Cluster Sizetin ate

-0Ei
Drif

'13

-0 40

-0 X10

2 224X 10-4 •10

b X 10'0 37

1 X 10-" 34

6 X 10 22

1 X 10-5 16

+* Applies to SIFT.

Table 1. Maximum Cluster Size

ple Period m=1 m=2 m=3

0 ms 11.8% 25.1 % >380 %

0 ms

q26

23.7 % 50	 o >760%

36.0 % 70.2 0 > 11.100

 ms 47: f % > 100 0 > 1520%

m = number or faulty processors accommodated

Table 2, Interactive Consistency Overhead in SIFT.

I

i

I	 .

I

z O

O U O Nc
cn

U O
W O

a z
LO

z	 ^w	 z
w

a C7	 H ^ O
^ z z	 4 zzNoy
H

a, O	 H
E-1
	 a

0

sv
d

Cd
ti

0
W

b.0
V

.a

0
0.a
W
a
a

F*.

d
tia
en

W

.k 0
u ua
.2 O
U o

uv
O
u
pov
v
O
V)
N

a

q
m
F

0
44
.d

0

Cd
C.
0

q
d
q
Oa
0

ci
F

00

Pr4

i
y	 A

L)

0
U Z

^ q

d ^y
x

fi

:
1/" ^,!

^

^ ^	 \
\ J

0 -.-
J §

ri / 2
Ix

\ '& #
}

/ 7 N̂m ,

2
m0

!
m{ .

k §§ § §
E K) ^ƒ .. / .	 (({ / { }\ { ^

§ § 1 {j .

k I]E

..
\ \ (2 A § § A 4 .	 .

\1el a
\ 2\ ƒ\ \ƒ^ 2\^o

/ .	 (.
k i;

^j# \^ & ^

E __

§ §
.	 .

\\ §	 . . §
.	 ^

a
Z	 '	 r§

X 10'6

i

z

i
t

p=1 X 10'3 p-1 X 10"1

10.00	
01-OF PROLE MRS	

"Go

S

S

S

00
N

2 `.
CU

z

cLL.

C
CL

en
Cr

0

Liz
Ub
0
•r

Figure 4. Overhead of Interactive Convergence Algorithm

u.
Y ^

i

.	 1	 I

5.00	 10.00	 15.00	 20.00	 25.00	 30.00

NO. OF PROCESSORS

Figure 5. Comparison of reconfigurable and non -reconfigurable systems
with maximum reconfigurable cluster size	 i, hard deadline

100 milli-seconds, and task execution time = 3.2 milli-
seconds, but with different mission lifetimes.

1

10-2

10-6
vti

10-9
M
raw

v
g 10-12
a

A 10-1b
O

' 10-18

b
c 10-21

Md

10-24

10-27

10-a0

0.00

g

i
I	 I

it	

^I

I	 i

F

I

1y

i
I^

5.00	 10.00	 15.00	 20.00	 25.00	 30.00
NO. OF PROCESSORS

a

1	 1

I

I

,

i

9i

w'
a

u

^i

tiN

(B). Mission lifetime = 10 5 seconds1

10-3

10-5

H

Gsl 10-0

^. lo-12

la
m.
i1

10-15

.o

A

co. 10-18a

10-21

10-z4

0.00

5.00	 1100	 15.00	 20.00	 25.00	 30.00

NO. OF PROCESSORS

d

i

M

I

I

I	 ^
i	 1I

(C). Mission lifetime = 106 seconds

1

10-Z

w

° 10-4

M
W

10^

A 10-8

^I
.PI

b 10-l0
.ii

O
Fa

a

10'12

10-16 4--
O

	GeneralDisclaimer.pdf
	0001A02.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001A14.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf
	0001B11.pdf
	0001B12.pdf
	0001B13.pdf
	0001B14.pdf
	0001C01.pdf
	0001C02.pdf
	0001C03.pdf
	0001C04.pdf
	0001C05.pdf
	0001C06.pdf
	0001C07.pdf

