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NOMENCLATURE 

A(x) = associated function = Ax + Axl 

An(x) = n-point associated function = Ax + A x ,  + . . . + Axn-, 

f(x) = function whose zeroes are t o  be f ,und 

g(x) = Newton iteration function = x - f(x)/fl(x) 

1 = g(x), an alternate notation 

x ,x * = primary conjugzte points, x 
P P P < X ~ *  

Xz 
= x-axis location of a zero of f(x) 

Axi = ith Ax = -f(xi)/fl(xi) 



NASA TECHNICAL PAPER 

CONVERGENCE OF NEWTON'S METHOD FOR A SINGLE REAL EQUATION 

INTRODUCTION 

Newton's method is a well known technique for finding the zeroes of a nonlinear equation. For 
simple functions which can be differentiated, it can be easily programmed on a programmable calculator. 
This ease of programming permits an approach which is termed "experimental mathematics" in this 
paper. Experimental mathematics refers to the use of a computer with a user friendly graphics package. 
Much can be learned about extremely complex functions which are intractable using normal analytical 
methods. Using intuition, and experimental mathematics, a convergence conjecture for Newton's method 
was formulated. This conjecture is based on finding the zeroes of an associated function which is defined 
below. 

Newton's method has the following convenient geometric interpretation. Starting with initial guess 
x, calculate the slope of f at x, draw the line through f(x), with slope fl(x), and extend the line to the 
x-axis. Where the line hits the axis is the next iterate (Fig. 1). Now consider a specific example, f(x) = 
cos(x). For this periodic function, one zero is as good as another, so attention is focused on the zero at 
x, = pi/2. Near this zero, Newton's method clearly converges. As the initial guess moves away from the 

zero, convergence becomes less certain. Convergence of single point iteration functions is frequently 
investigated using the Contraction Mapping Theorem [ 1 I .  The theorem is stated as follows. 

Contraction Mapping Theorem [ 1 I : Let g be a continuous iteration function mapping a real 
closed interval, I into itself. Assume a positive constant L < 1 exists such that If(a) - f(b)l < Lla-bl 
for all a,b in I. Then in I there is a unique solution of the equation x = g(x) for any initial x in I. 

Figure 1. Newton's iteration. 



The Contraction Mapping Theorem provides sufficient, but not necessary conditions for con- 
vergence of the iteration function g(x). The conservative nature of the theorem will be demonstrated 
below. 

Consider again f(x) = cos(x). Let an initial guess near the zero xz = pi12 move gradually away 

from the zero. For a t:.ne as the initial guess moves away from xZ, Newton's method converges. 

Intuitively, a point can be reached where the first iterate is on the opposite side of xz from the initial 

guess and the second iterate is back at the first point. Without cornputational errors, then Newton's method 
would oscillaie back and forth between the two points forever. When two such points exist for a given func- 
tion, they will be called conjugate points and are said to be conjugate to each other. This terminology should 
not be confused with conjugates of the complex n~mbers.  Intuitively, Newton's method might be expected - 
to converge inside the conjugate points. The purpose of this paper is to demonstrate that under certain con- 
ditions, Newton's met!!od will converge within these conjugate points. 

The concept of conjugate points can be made more concrete with some analysis. Newton's d 
iteration is given by the following equation. 

The second iterate is given in terms of the first in the same fashion. 

If x2 = x is set, the following equation must be satisfied. 

A(x) is called the associated function in the remainder of this paper. By inspection, fixed points of g(x) 
are also solutions of A(x) = 0. For f(x) = cos(x), g(x) = x + cot(x), and A(x) = cot(x)+ cot((x)+ cot(x)). From 
the definition in equation (3), A(x) goes to ioo if fl(x) or fl(x go to zero (as long as f does not go to 

zero at x or x l )  If a function f has a zero at x,, and has a set of conjugate points, x and xp*, such P 
that x < xz < xp*, wit6 no other conjugate points falling in the interval (xp,xp*), then x and xp* P P' 
are called primary conjugate points. For f(x) = cos(x), a set of primary conjugate points exist around 
each zero. Figure 2 depicts Newton's iteration between the primary conjugate points around xz = pi/2. 

Intuitively, moving toward the origin from xp other conjugate points should exist corresponding to 

points on different waves of the periodic function cos(x). This is indeed the case, and f(x) = cos(x) has 
a countably infinite number of conjugate points on (O,pi/2). No pair of these points is conjugate to each 
other but are conjugate to points on the other side of x = pi/2. The first three conjugate points of f(x) = 
cos(x) are depicted in Figure 3. 

' 



Further examples of functions and associated functions will be given in the next section. With 
these examples, the behavior of the associated function will be illustrated. The purpose of the remainder 
of this paper is to illustrate properties of A(x), and to prove that under certain conditions Newton's 
method will converge inside primary conjugate points. 

Figure 2. Iteration between primary conjugate points for f(x) = cos(x). 

Figure 3. Iteration betwcen conjugate points for f(x) = cos(x). 



ASSOCIATED FUNCTION EXAMPLES 

L 

In the previous section, the Contraction Mapping Theorem was given, and described as overly 
conservative. Consider now the case for f(x) = cos(x), with corresponding iteration function g(x) = x + 

I cot(x). For the theorem to  app!y, g must satisfy a Lipschitz condition which may be restated as 
/gl(x) I < 1 on the convergence interval. For the fixed point at xZ = pi/2, the corresponding interval is 

(pi/4,3pi/4) which is approximately (0.7854, 2.3562). In actual fact the convergence interval is more 
like (0.4052, 2.736). Obviously, the Contraction Mapping Theorem is quite conservative. 

The actual convergence interval for f(x) = cos (x), is given by approximate values of the primary 
conjugate points asso~iated with the zero at pi/2. In the previous section, three sets of conjugate points 
were given graphically. Table I gives numerical values t o  several decimal places. These conjugate points 
were calculated using an HP 11C programmable calculator, and they may not be accurate in the last 
one or two decimal places given. In fact, for f(x) = cos (x) the zeroes of the associated function were 
found using Newton's method. For other more complicated functions, differentiation of A(x) is difficult, 
and solution by the secant method [2]  was convenient. 

TABLE 1. SOME CONJUGATE POINTS FOR f(x) = cos(x) 

While in principle, Newton's method will iterate for all time between the pairs of conjugate 
points given above, in practice the iteration begins t o  wander away from the points because of roundoff 
and function evaluation errors. For the primary conjugate points, on the author's HP I IC, the iteration 
wanders away only in the last decimal piace on the first iteration for the primary conjugate points. For 
succeeding iterations, the divergence continues. Intuitively, from the geometrical interpretation of 
Newton's method, one might expect that the farther the distance between the two conjugate points, the 
faster the divergence. This is indeed the case. If one takes the values for the primary conjugate paint xp 

and adds 1 in the last decimal place to put an initial guess infinitesimally inside the convergence interval, 
the iteration will begin to  converge. If on the other hand, 1 is subtracted from xp, in the last decimal 
place, the iteration begins to diverge. 

Location of the conjugate points of cos(x) is a hit or miss propositi?~, (mostly miss) and the 
higher order conjugate points are hard to find because of the discontinuous nature of A(x). A(x) can be 
studied quite easily, however, with a set of good computer graphics routines. If f(x) can be differentiated, 

f 

i 
A(x) can be plotted. The graphical exploration of the complex composite function A(x) falls in the 
realm of experimental mathematics and this section is devoted to  this exploration for several examples. 



The periodic function cos(x) is generalized by adding a constant so that f(x) = cos(x) + c. Figures 
4 and 5 are plots of f and A for different values of c. For xp = 0.405 . . . observe that A(x) crosses the 

x axis with positive slope. The slope of A(x) can be calculated in general. 

From equation (4), if f' does not go to 0 at s zero of f, then at the zero the slope of A is -1. If A is 
continuous on (x ,x *), then it is positive on (xp,xZ), and negative on (xz,xp*). For every zero of P P 
f(x) = cos(x), this situation applies. As one looks at examples, this behavior will be observed frequently. 

Figures 4 and 5 show that as long as c lies between 0, and 1, A(x) varies rather smoothly with c. 
As soon as c goes to 1 and then to greater values, the character of A(x) changes abruptly and radically. 
Since F(x) = cos(x) + 1.001 has no zeroes, the sudden change is not unexpected. Observe that just 

.: because a function has no zeroes, the function may still have co~jugate points as is the case for cos(x) + 
c where c is greater than 1. 

One of the purest examples possible of primary conjugate points and Newton's method converg- 
6' ence is given by f(x) = arctan(x). For this case, both f(x) and A(x) are continuous on the infinite interval, 
e f(x) has one zero, and A(x) has three zeroes corresponding to two primary conjugate points and one zero 
,- . at the origin. Figure 6 depicts these functions. Table 2 gives ilumericel values for the conjugate points of 

arctan(x), and the first few iterations for different guesses. 

TABLE 2. CONJUGATE POINTS AND ITERATIONS FOR 
f(x) = arctan(x) 

Iteration 

1 

2 
3 

4 

5 

6 

7 

The iterations given in Table 2 are a dramatic demonstration that Newton's method converges inside 
primary conjugate points. Althougl~ primary conjugate points exist for many functions, some functions 
do not have conjugate points, and the only solutions to A(x) = 0 are those for which f(x) = 0. 

2 The next example presented is f(x) = x + c which is shown in Figure 7. For c = -1, f has ziroes 
at *1. This is an example of function which is concave upward (f"(x) greater than 0) on the infinite 
interval. Functions which do not change curvature at least mice cannot have primary conjugate points. 
For the caw c = -1, the only discontinuity in A(x) occurs at f'(x) = 0, i.e., at x = 0. Because of the 
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Figure 4. f(x) and associated function for f(x) = cos(x) + c, c = O., 0.25, and 0.5. 



Figure 5. Function and associated function for f(x) = cor(x) + c, c = 0.75, 1 .O, and 1 . 1 .  
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3. 4l f (x) = arctan i x  + 1.0 i 

Figure 6 .  Function and associated function for f(x) = arctan(x) + c, c = 0. 1 .  



2 Figure 7. Function and associated function for f(x) = x + c, c = -I., O., 0.1. 



concavity of the function and its position relative to  the x axis, no Newton iterate x l  can be equal to 

zero. The spikes in A(x) normally associated with f r (x l )  = 0 do not occur for this case. The slope of 
A(x) at the two zeroes is -1 as before. 

For the case when c = 0 ,  the form of A(x) changes drastically. The spike disappears and A(x) 
becomes a straight line through the origin with slope -314. This is the case where both f and f' go to 

zero at xZ. Consider the general case of f = xn. In this situation, A(x) is always a straight line through 

the origin with the following slope. 

Notice that if n = 112 corresponding to f(x) = x1I2, A(x) = 0 for all x. In fact, if x is defined 

as (-x)lt2 for negative x, and x1I2 for positive x, it is found that every point is a conjugate point! 
This remarkable fact can be approached from another direction. Consider an odd function, i.e., f(x) = 
-f(-x). For every point t o  be a conjugate point, -x = x - f(xj/ft(x). Solving this little differential equation 

gives f = kx112. 

2 For the case, f(x) = x + 0.1, the character of A(x) again changes. When c was negative, A had 
one spike at the origin. When c was 0, A was a well behaved straight line. For c positix, A has three 
spikes. These three spikes correspond to the one place where fl(x) = 0, and the two places where f r (x l )  = 

0. Notice that there are two conjugate points on either side of the origin, but they are not primary con- 
jugate points because there is no zero in between. 

The next example. depicted in Figure 8, is f(x) = x j  - x + c. For c = 0, this function has three 
zeroes at -1, 0, and + l .  The function also has a point of inflection at the origin. A point of inflection 
is a necessary condition for the existence of primary conjugate points and the zero at  x, = 0,  has two 

primary conjugate points. Again, it is seen that the spikey nature of A(x) corresponds to ff(x), and 

f1(xl) = 0. The slope of f goes to zero at  t3-lIZ. For c = 0, Newton's method converges to the zeroes 
at  .tl for guesses outside the zeroes of f'(r). 

So far the fact that conjugate points can be overlapped has not been emphasized, i.e., xcl < xc2 

<xCl*<xc2*. In fact. the construction of a function with conjugate points aL any location, with any 

order of the conjugate points is possible. Geometrically, locations are chosen where conjugate points are 
desircd and the necessary line is drawn in with the correct slope that intersects the x axis at the desired 
location of the corresponding conjugate point. Do this for each set of desired conjugate points, and then 
draw in a curve through the desired values at the conjugate points and tangent at  these points to the 
previously drawn lines and the result is a function with the desired properties. Mathematically, one can 

d o  the same thing with a polynomial function. For example, consider the odd function f = c l x  + c2x3 + 
c3x5 + c4x7. This function should satisfy f(-2) = 2, f(-1) = I ,  f(0) = 0,  f(1) = -1, and f(2) = -2. In 

addition, corresponding conjugate points are needed at -2 and 1, and at -1 and 2. The required values of 
ci can be found and the result is given below. 



Figure 

-2. -1. 0. 1. 2. 

8. Function and associated function for fix) = x3 - x - c, c = -3lI2, 0. 



This fur~ction is plotted in Figure 9. One purpose of this exercise was to see if a function can have 
overlapping conjugate points without generating primary conjugate points inside the innermost con- 
structed conjugate points. For this example, a set of primary conjugate points were generated inside 
(-1 ,I). These occurred at xp = -0.7 1881058427 and xp* = 0.7 1881058427. This result raises the qties- 

tion of whether it is possible to have a well behaved associated function without primary conjqate points 
but having overlapping nonprimary conjugate points. In this simple example, the hypothesized situation 
did not materialize. This point is still under investigation because, if possible, it limits the usefulness of 
the convergence theorem to be proved in the next section. 

Usually, the composite associated function is more complex than f(x). For f(x) = tan(x) .t c, the 
opposite is true. The plot for this case is shown in Figure 10. For the tangent function, fixed points 
accur at 0, fpi/2, +pi, ... The fixed point at x = 0 is a legitirllate zero of tar,(x), but the futed point a1 
pi12 corresponds to tan(x) = -. Because f'(pil2) = -, Ax goes to zero. For any initial guess, other than 
where the tangent is +, Newton's iteration converges to the nearest zero of the function. 

Figure 11 corresponds to f(x) = arcsin(x). The associated function seems to  have the desirable 
fonn with three zeroes, expected of primary conjugate points and a zero. This is not the case because 
the two outside solutions correspond to fixed points of Newton iteration and, hence. are not conjugate 
points. 

In this section, the wonderfully varied nature of the associated function A(x) was investigated. 
The examples make plausible the hypothesis that when primary conjugate points exist around the zero 
of a function, then Newton iteration converges for initial guesses between xp and x *. Under certain 
conditions, this conjecture is proved in the next section. 

P 

CONVERGENCE INSIDE PRIMARY CONJUGATE POINTS 

The proof of the conjecture that Newton's method converges inside pr;,mary conjugate points 
will be outlined before the actual proof so that some understanding of the approach is possible. The 
hypotheses of the Theorem are chosen so that the "standard" form of A(x) is assured. This form is 
A(xp) = A(x,) = A(xp*) = 0, and A(x) negative on (xp.xZ), and positive on (xZ,xp*) Once this is 

achieved, then the only stumbling block is that the iteration once inside the conjectured convergence 
interval may wander back outside. For the "standard" form of A(x), this is shown to  be impossible by 
contradiction. Then, because an initial guess on either side of the zero and in the interval will two 
iterations later be closer to the zero because of the positive and negative nature of A(x), then 
convergence is assured. The theorem follows. 

Assumptions 

1. ffx) and f(xl)  are continuous, and have continuous first and second derivatives on an interval 

[a,b]. f(x) has a zero at xz and corresponding primary conjugate poipts at x and xp* lying inside 
the interval [a,b] . P 

2. f(xp)fl'(xp), f(xp*)fU(xp*), and fW(xp)f "(xp*) < 0. 

3. fl(x), and f1(x1) f 0 on [xp,xp*]. 



Fidure 9. Function and associated function for f(x) = (-39118)~ + (67/72)x3 + 
(-13!36)x5 + (1/24)x7 + c, c = 0.,1. 
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Figure 10. Function and associated function for f(x) = tiUl(x) + c, c = om, 1. 



Figure 1 1. Function and associated function for f(x) = arcsin(x). 

Conclusion 

Newton iteration converges to x, for initial guess x in (x x *). 
P' P 

From the hypotheses, g(x) is continuous on (x x *), and A(x) = 0 only at the two conjugate 
P' P 

points and at the zero. At the zero, A1(x,) = -1. Then A(x) is positive on (xp,xz), and negative on 

(x,,xp*). The proof f~ l lows  quickly, if no point XT in I = (x x *) exists such that g(xT) > x * or 
P' P P 

< xp. Consider the first case. Since g(xT) > x *, and since g is continuous, then there exists a point 
P 

xa on (xT,xz) such that g(xa) = x *. Then A(xa) = xp - xa < 0. This cannot be since it has already been P 
shown that A is positivc in the interval to the left of x,. In order to  have XT exist, another conjugate 

point is required which violates the hypotl-esis of primary conjugate points. Now for x on I and less than 
x,, x < x2 < x4 < ... < ~2~ where x, ..., xzn-2 are in Il = (xp,xz), and xzn is in 12 = (x x *). Thcn, 

Z' P 
because A is negative to the right of xz, xzn > xzn+2 > ... > x2i where the iterates from x2, to x2i-2 

are all in 12- x2i falls in l l .  This process is continued indefinitely, each time falling closer and closer to 

x,, so that convergence to  x, is clear. 

This..concludes the proof. The hypotheses are stringent and may be overly restrictive. From the 
examples of the previoils section, m a y  simple functions satisfy the hypotheses. 
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N POINT ITERATION CYCLES 

The form of the iteration function A(x) = Ax + Axl is suggestive. Do functions have three or  

more points that Newton iteration r l n  oscillate between? The answer is yes, and the form of a 
generalized associated function whose zeroes give these n point cycles is given as follows. 

With this notation, A(x) = A?(x). From the definition of A,,(x), zeroes of f(x) will also be zeroes of  An. 

Furthermore. zeroes of A2 will be zeroes of A4, A6, ..., and zeroes of A3 will be zeroes of  A6, ... and so 

on. An example for a three point cycle for f(x) = cos(x) is given in Table 3. 

TABLE 3. A THREE POINT CYCLE FOR f(x) = cos(x) 

SUMMARY 

A conjecture which gives improved convergence intervals for Newton's method was proved under 
certaln limiting conditions. The convergence intervals are defined by finding zeroes of an associated 
function. A(x). This function was given in general form for Piewton's method, and for specific functions 
f(x), can be quite complex. For any given example where f and its derivative can be calculated, A(x) 
can be plotted. From these plots, a wealth of information can be gleaned. The use of computer graphics 
to explore properties of complicated functions is one form of a technique that the author refers to as 
"experimental mathematics." 

The theorem develeped in this paper is encumbered by some stringent assumptions which can in 
all probability be relaxed. The properties of  the associated function are extremely n ~ h  and varied. The 
author has filled up one notebook in his explorations of A(x) and has certainly only scratched the 
surface. A(x) seems to be like unexplored territory, l ~ i t h  many secrets yet to be uncovered. 
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should be possible. A technique is described which, under certain conditions (frequently satisfied by 
well behaved functions) gives much larger zones where convergence is guaranteed. 
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