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Abstract

Optcal linear algebra processors are computationally eflicient computers for
solving matrix-matrix and maltrix-vecior oriented problems. Applications include missle
guidance, Kaiman filtering, linear-quadratic-regulators, and the solution of partal
ditferential  equations. Presently, the wmost substantially documented optical
processors are analog. Optica!l sysiem errors limit their dynamic range to 30-40
dB, which limits their accuracy to ©-12 bits. Large probiems, such as the finite
element problem in structural mechanics {(with iens or hundreds of thousands of
variables} which can exploit the speed of optical processors, require the 32-bit
accuracy obtainable from digital machines. To obtain this required 32-bit &ccuracy
with an optical processor, the data can be digitally encoded, thereby reducing the
dynamic range requirements of the optical system (i.e., decreasing the eflect of

optical errors on the data), while providing increased accuracy.

This reporl describes 8 new digitally encoded optical linear algebra processor
architecture for soiving finite element and banded matrix-vector problems. A linear
stalic plate bending case study is described which quantifies the processor
requirements, Multiplication by digital convolution is explained, and the digitally
encoded optical processor architecture 8 advanced. A banded matrix-vector
multiplication implementation is described for the ar:hitecture, and a direct solution
technique for solving finite element problems is detailed. Fabrication of the
processor with existing components is described. The results of opfical error
simulations for the processor implementation of selected mulliplications are described.
The dominant optical error sources are modelled in the simulation program, and the
rectits demonstrate the effect of optical errors in a digitaily encoded processor.
Finally, future research topics are discussed, including optical error simulation of the
case study solution, iterative algorithms, and data encoding in radices greater than

two (binary).



1. Introduction

1.1 Introduction

Many scientific and engineering problems require various types of linear
algebra calculations. The most basic and widely used linear algebra. operations ure
vector inner products, vector outer products, matrix-vector producls, and matrix-
matrix products. These operations can be performed in many ways on standard
digital computers. However, the sequential nature of digital processors does not
exploit the inherent pearillelism in finear algebra problems. For example, if the N
multiplications required for an -element vector inner product are performed in
parallel ratier than sequentially, the time needed is Tg vs. NTg. or a savings of
N-1 multipication times, where Tg is the time required for one multiplication. There
is a natural tendency and a practical need to make processing Systems solve
problems as fagt as possible.  This is driven by the large amount of computing
time needed to solve many of foday's significant engineering problems. Thus, the
development of new parallel processing archiiectures fo: linear 2lgebra problems has

become an important task.

The most promising parallel processing architectures are optical processors.
These systems represent numbers and values by light intensilies and the modulation
ot light. A multiplication is performed when one beam of light at a ceriain
intensity passes through a plane with a given fransmittance. Optical systems can
perform many mulliplications in paraliel and at high speed. With lenses, une can
form sums of the products of many pairs of numberé. Many optical processors
have been developed for the implementation of the linear algebra operations
described above [31). These processors &are capable of data throughput rates

much higher than those obtainable with digital processors.

Most of the optical prccessors Jeveloped so far represent each number with
an analog signal in the processor. A major limitation of these processors is that

they can only accurately represent numbers within a range of a few orders of

xd



magniiudge. in other words, their dynamic range is limited to 30-40 dB. A
soluton to this problem is 1o use encoded data in an opfical processor. In {his
case, theé numbers are encoded in binary or some other radix, and processed
accordingly. This can be done al the expense of some speed and the size or

complexily 0f the processor

One application area that would benefit from such high-gpeed parallel tlinear
algebra processors is finite element analvsis, These problems require large
dynamic range data and involve the solution of a large system of algebraic
equalions. in many cases, the malrices involved contain a few billion elements.
Often, solutions to thuzse problems require days of ~edicated operation by a digital
computer, Thus, the task is to solve a large set of linsar algebraic equations
quickly and accurately. For structural mechanics finite element problems, the matrix
depends on the structure, and the right-hand side vector depends on the stucture
loading. Generally, a s8olution with multiple right-hand sides is desired. Thus we

initially consider direct algorithms for the soiution of these problems.

Finite element probilems have specific properties that can be exploited using a
specialized processor. The goal ol this research is 1o develop a digitally encoded
optical linear algebra processor for solving finite element and other banded matrix-
vector problems. Specilically, we will be conterned with finite element problems in
siructural mechanics. However, the processor wil be developed to be general
enough to perform many linear algebra operations for other matrix problems. Once
developed, our cptical linear algebra processor (OLAP) will be referred to simply

as a high-accuracy OLAP.

1.2 Prior Work

A number of digitally encoded processing fechniques have been developed.
All of them involve using binary encoding only. Qur work will address the issue
of using other radices. in most proposed systems, the multiplication of two

digitally encoded numbers is performed by a convolution of the bits of each



number. Scme o! the proposed systems achieve the mutiplication with a vector
outer product operation. Our OLAP uses the basic ideas from these architectures,
but is wunique in many ways, specifically in the data flow, hardware, convolution

fechnique, encoding radix, and direct algorithm realization.

There has been some work by privale groups in developing dedicated digital
finite element machings, These i-ocessing systems are often composed of many
processors working in parallel with the hardware designed f{or maximum data
throughpu!, &nd wusually oriented tG implement a particular algorithm, There are
some specialized algorithms that are very eflicient when they are used with certain
hardware configurations. Such a machine is being developed at NASA Langley

Research Center in Mampton, Virginia [34].

Many algorithms have been developed for optical matrix-vector processors
which are applicable for solving finite element provlems [31]). These include both
direct and iterative algorithms. One of these (LU decomposition) will be
implemented on our QLAP for the research described in this report. |t forms an
upper triangular matrix from an N'"™ order matrix with N-1 matrix-matrix multiplications.
Cur OLAP will be suitable for other algarithms as well.  Some iteralive schemes

possibly useful for solving finite element problems are also discussed.

1.3 Report Outline

This report begins in Chapter 2 with a description of the finite element
method. The purpose of this chapter is to explain how finite element problems
are developed, and their specific characteristics. A brief history of finite elements
is included, and the {fundamentals of the method are explained. An example of a
finite element derivation is provided for & plane strain ftriangular finite element. The
emphasis o©of this chapter. and this report. is linear slatic problems in 6tructural
mechanics. The problem formulation process. stilfness matrix assembly, and stifiness
matrix properties are discussed in Chapter 2. Explanations of the various finite

element equation solvers are given, and remarks on their advantages and
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disadvantages are advanced. The last section of Chapter 2 discusses nonhnear

and dynamic linite element problems and their solutions.

Our finite element case study problem 1o ¢ santify our proposed OLAP's
requrements is descnbed in Chapter 3. It involves determining the plate bending
behavior of an aluminum plate. The plate bending flinite element is detailed and
the structure discretization is described. An exz.:ple of the assembly of one
element in the model intoc the structure stifiness maqix is  detailed. The

cheracteristics of the matrix for this particuiar problems are then discussed.

Qur proposed optical linear algebra processor is detalled in Chapter 4. The
timtations of analog optical processors arg discussed and then the multiplication of
digitally encoded numbers by optical convolution is explained. The processor
archilecture and its operation arg then detailed. Fabrication of the processing
system using existing components is discussed. The data flow through the
processor is detailed for solving banded matrix equations. A direct LU
decomposition  afgorithm is  described for solving finite element problems,
Substructuring in  finite element problem formulation and matrix partitioning are
discussed. it is shown how only one channel of our processor is needed fto
implement the LU decomposition algorithm. Hence, il is quite new and most

attractive.

The digital computer simulation of the optical processor is described in
Chapter & The signiticant error sources in the processor are discussed, and their
modelling is detailed. The simulation software components are then described, and
some general remarks are advanced abou! the error mechanisms in the processor.
The results ©of our error simulations on the multiplication of three sets of two
numbers are given, and the performance of the OLAP with optical errors is

evaluated.

Finally, the conclusiuvn and a summary of this research ere given in Chapter

6. The significant portions of the report are reviewed. Future work is discussed.



This includes optical error simulation of the case &ludy solution 1o ouantity the
processor performance, iterative algorithms, encoding in other radixes, nonlinear and

dynamic problems, and twos complemen! representation.

1.4 Contributions

This reporl containg soma new, Bsigniicant concepls in the area of optical
linmar algebra processing. Parhaps the mos! important is the digitally encoded
processor architecture infroduced in Chapter 4. |t is unique Iin ils data flow for
banded mairix problems, and the method used fo periorm the convolution of the
digital bits. The s&hift-and-add method of mulliplying binary numbers is used, with
the shift-and-add's being performed in the detector plane. This archilecture easily

partilions to allow processing of larger bandwidth mairices.

The <concept of encoding in radices other than two (binary) is als50
discussed. Although most of the report i8 concerned with binary encoding,
encoding in other radices is discussed in significant places. This has the potential
of increasing processor speed and decreasing processor size, while still  yielding

accurate results,

Another new concept intfroduced is that of a t-channel processor architeciure
capable of implementing the LU decomposiion algorithm with our banded matrix-
vector product realization, The implementation guarantees thalt only two0 inputs are
used at &any time, and one of them is known. The contribution of the known
input {which is always a 1) can be hardwired in the architecture, and thus only

one processer channel is needed for the wvariable input.

An optical error simulation program was developed. and error simulations were
performed for 1t e2e sets of 32-bit multiplications on our optical linear algebra
processor.  This is the first optical system error simnulation performed for a mulli-
purpose digitally encoded optical processor, and it provided some very useful
results. The simulations showed how optical errors alfect the performance of a

digitally encoded processor.
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1.5 Notation

This section is intended to clary the notation used in this report. The first
issue to be considerad 15 the definition of dB that is used throughout the report.
Optical processors compute with light, and the inlensity, rather than the &tphiude,
of the light is detected by all detector systems. The operations periormed in our
oplical processor will be entirely proportional to intensity. The conventional oB

definition for comparison of amplitudes A, and A, is
20L0G (A,/A;) = dB (1.1)
However, since intensity i8 amplitude squared, the dB definition we will use is
10LOG ol /1,) = ¢B (1.2)

where |, and l.‘, are the two intensities being compared. The definition in (1.2) is

used for all dB values given in this report.

Clarification needs 10 be mude concerning the matrix and vecior notation used
m this report. Chapters 2 and 3 deal with structural mechanics, and Chaplers 4
and 5 deal with linear algebra. The standard matrix-vectior notation usarf in these
two disciphnes is very dillerent. We feel that for continuity reasons, it is
important to use the conventional notation for each topic area in the appropriate
parts of the text. Thus, two types of matrix-vector notations are used, one type
in Chapters 2 and 3 ({for the exclusive structural mechanics information), and

standard linear algebra notation in the remaining chaplers.

Both notations are exiremely simple, and the presence of both should not
confuse the reader. in the structural mechanics literature, letters representing a
matrix or vector are explicitly shown within some type of bracket, the type of
bracket indicating a matrix or a vector, in standard linear algebra lerature
(including optical processing), a matrix is denoted by a boldface or underiined
upper-case letter, and a vector i5 denoted by a boldlace or underlined lower-case

letter. In this report, boldface will be used rather than underlining.

e e — e ne ke
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Thus, in Chapters 2 and 3, & matrix indexed by the lstter 2 is denoted by
4]
and a veclor indexed by the lelter z is denoted by
{z)

in this notation the matrix or vector i defined by the type of bracket only, and
not the type of leiter, To make the notation conversion clearer, all matrices are
also upper-case letters, and all vectors are also lower-case letters in Chaptlers 2

and 3.

in Chapters 4 and S5, a matrix indexed by the letter 2 is denoted by
4
and a vector indexed by the lelter z is de-oted by
z

By convention, square brackels enclosing a numier denote a reference paper.

These references can be found in the reference list in Chapter 7.

-

-

-
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2. The Finite Element Method

2.1 Introduction

This chapter contains a concise review of the linite element methoc, and it
emphasizes aspects of the method that ore of particular inlerect. A brie! history
(section 2.2}, a discussion of fundamentals (section 23), and the derivation of the
finite element equations (section 2.4) are given. The basic algorithm for solving
finite element problems and its details are then presented (sections 25 - 2.7)
Finally, nonlinear and dynamic problems are discussed (seclion 2.8). A specilic
finite element problem example is introduced in Chapter 3. Other problem

examples may he found in 1], [2], and [3).

2.2 Finite Element Method Background

Many problems that engineers must solve concern the slate or states of a
continuum, whose behavior is governed by one or more partial diflerential equations.
Examples of such problems are the eleciric field between two conductors, the
stresses within a building during an earthquake, and the modes of vibration of an
aircraft during fight.  Exact solutions to the equations governing such problems are
rare, requiring an approximate solution, it any, to the problem. Most approximate
solution techniques, such as finite differences, series representation, and finite
elements, require many algebraic operations, which poses a large computational
problem. Before the adven! of accessible digital computing in the 1860's, obtaining

accurate approximate solutions was not feasible.

The finite eiement method is an approximation technique which developed
rapidly once digital computing became available. it is an analytical procedure
whose basic concept is that a continuum can be modelled analylically by dividing it
into subdivisions. Each subdivision is modelled by a finite element, and the finite
elements are connected together to model the entire continuum. The behavior of

each finite element is described by a set of prescribed functions, which will be
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called basis (or shape) functions. The basis functions will only guarantee a certain
level of continuity across the continuuim, however thay will provide solutions that

are satisfactory approximations to the actual behavior of the continuum,

The ftinite element method results in a large system of algef:raic equations,
An advantage of choosing finite elements over other approximate solution techniques
is that the equation formulaton is extremely appropriate for implementation on a
computer. Another advantage is that the linite elemen! method can be used 1o
analyze complicated and irregular conlinuums subject to difficut loading conditions.
The most important advantage is hat the finite element method performs very well

waen properly used, yielding accurate results.

There is a wide variety of applications for the f{inile element methnd. Most
ol the finite element work originaled and is still applied in structurd mechanics.
Application of finite elements for determining electric and magnetic lields in
semiconductors and power distribution eystems has become very popular. The

fechnique is also used in fluid flow and heat flow analysis.

The specilic behavior of a continuum can be linear or nonlinear. The choice
of using linear or noniinear finite element analysis depends on which approximation
best matches the actual behavior, and what type of anaylsis is computationally
feasible. The Ioading on the continuum (its environment) can be static, fixed
loads, or dynamic, time-varying loads. The simplest finite element analysis case is
a linear approximation with static loading, or a linear static problem. These
problems require solution of only one set of linear algebraic equations. Both
nonlinear and dynamic problems greally complicate the analysis and solution. These
problems will be discussed in section 2.8. All other sections of this chapter and
the majority of this report will consider only linea: static finite element problems in

structural mechanics.

| -
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2.3 Finite Element Fundamentals

The subdivision of a conlinuous siructure for finile element analysis is called
discretization. Each discrete part of the structure is modelled by a finite element
Each finite element is permitled 8 prescribed behavior, which depends on the type
of structural unit being modelied by that element. The shape and interconnections
of elements are defined by the nodes of each element. There are many lypes
of finite elements. The cimple bar element shown in Figure 2-1 consists of two

nodes, one at each end of the bar.

‘
o

Figure 2-1: Simple Bar Finite Element
A quadrilateral siement, shown in Figure 2-2, consisis of a minimum of four nodes,

one at each corner.

Figure 2-2: Quadrilateral Finite Element
All connections between elemenis in a model are made at the elememt's boundary

nodes.
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An element is allowed to deform according to the degrees of freedom
(DOFs) cefined at its nodes. One or more DOFs may be defined at every node
of a finte element. I a finite element model consists of n nodes and ¢ DOFs
per node, then there are n times d DOFs in that finite element problem. The
DOFs are wusually disriacements, but may also be derivatives of displacements
(rotations), stresses, {orces, or some other defined guantily. For the bar of
Figure 2-1, a single DOF u is defined at both nodes; it is the displacement in
the x direci-on. The quadrilateral element ol Figure 2-2 has displacements u and

v in the x and y directions as its DOFs.

Some terminology clarification should be made here. In strict terms, a
variable is actually defined for each DOF allowed at each node. For example, il
the DOF is movement along a recfangular cocrdinate axig, the wvariable is a
displacement in that direction. The variable takes on the value of how much a
node displaced; it is not proper to say the DOF takes on thal displacement value,
the DOF is always the same defined movement. However, we will not adhere to
the proper terminofogy (nobody ever does). and will usually refer 10 the variables
and their numerical values as the DOFs defined for them. Thus, "solving for the
DOF" will mean the same as solving for the numerical value of the wvariable
defined for that DOF. This point will become clear and insignificant as the reader

continues.

Another sublle point should be made here. In most of the structural
mechanics finite element literature, the term displacements is used fo refer to all
the variable types, even if some are rotations, stresses, etc. This is done for
convenience, bu! it sometimes hides the fact that more than one type of DOF can
be defined in a problem. When it is appropriate and less confusing, the term
displacements will be used in this report in such a manner. Mostly, however, we

will refer to the DOFs, which is considerably more general.

A set of prescribed functions determine the behavior, or deformation, of an

P
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element These functions are calied shape, or basis functions. There is one
basis function, defined over the element, for each DOF defined at the nodes of
an element. The finite element method is unique -with respect to other matrix
ctrucwure analysis procedures in that the basis funclions are interpolatory. That s,
the basis function for a particular DOF takes on a value of one at the node at
which that DOF is defined, and a value of zero al al other nodes on the
element. The basis functions are wuysually polynomials, which will only be
considered here, but other {unclions could be used. Thus, the basis functlions
between nodes are defined by polynomials whose order is dictated by the number
of DOFs on the element. The DOF wvalues define the coeflicients of the
polynomials. The simple bar element has two DOFs, thus its basis functions are

linear in x, since two constants define a line.

Each DOF value, for a given dimension on the element (x, y. etc) is
m“tiplied by its corresponding basis function. The resulting functions are added 10
determine an equafion governing the deformation of the element in that dimension.
it the element is mulli-dimensional, the governing equations for each dimension are
multiplied together to vyield a general deformation edquation for any point on the

element.

For a one-dimensional example, consider the bar of Figure 2-3 [1]. It is
fixed at one end and loaded by force P and distributed load q. The bar is
discretized into three simple bar elements as shown in Figure 2-4. There is a
single displacement u in the x direction defined for each node. The bar elemem
is a linear eiement, thus the basis functions are linear functions of x. The basis
function for each DOF is one at its defined node, and zero at the other node on
the element. The three elements are connected, or assembled, together as in
Figure 2-4. Nodes 2 and 3 are common to two elements, and thus the DQOFs al
those nodes are defined for both elements. Likewise, the basis functions for the
DOFs at nodes 2 and 3 will be defined over both elements, and they will be
piecewise linear. The basis function for node i is defined as Nix), and N,(x}

through N,(x) are shown, superimposed across all three elements, in Figure 2-5.
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1= = = b o}
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Figure 2-3: Loaded Bar Fixed at One End

{_’“1 up Uy +—y ug
4

1 2 3
— x

Figure 2-4: Discretirted Bar - Three Elements

Once the four DOF values are solved for, they are multiplied by their
corresponding basis functions; i.e., each basis function is weighted by its DOF
value. The addition of the resulting functions across all three elements represents
edding the contribution of each element 10 obtain the total displacement of the
struciure model. in more general terms, this is calied elemsnt assembly. The
resull of adding the four weighted basis functions is an egquation for the
displacement of the bar across all three elements.  Graphically, it results in a

E

| . 4
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N, (x) N,(x) Na(x) ~Ny(x)
Jz ;"’Ja ( 4

Figura 2-5: Basis Functions for Discretized Bar

Figure 2-8: Finite Element Displacement Field

piecewise linear displacement fisld, which is shown in Figure 2-8. Note that u, at
x=0 is zero. This is because thal end of the bar is fixed, and that boundary
condition was imposed on the problem. Boundary conditions are easily handled

with the finite element method, and will be discussed in section 2.5

The behavior obtainable by a finite element depends on its shape, the DOFs
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defined at its nodes, and the order of the basis functions, ie., the order ol the
element. in general, higher order elemems will provide a better approximation 1t
the actyal behavior of the structure being modelled. ' A variety of elements may
be used to mode! structures. Tha choice of elements depends on the siructure,
loading. type of resulis being investigated, assumplions on the eupectled bshavior of
the structure, and other factors. These become complex decisions that are not

appropriate for discussion hure; such information is available in [1], [2]), and [3].

Some basic types of finite elements are shown in Figure 2-7 [2]). Tha
coordinate axes and DOFs are shown for each element. Elemenl a is a simple
framework or beam element, and the elements in b are plane stress (or strain)
triangles and quadrilaterals, They are the most common elements for two-
dimensional analysis. The elements in ¢ and d are three-dimensional solid
elements. The elements in ¢ are three-dimensional generalizations of the elemenis
in b The elememt in d is an axisymmetric element, which is very useful for
modelling structures with symmetry about & central axis, such as pressure vessels,
metal tanks, rotors, and shafts. The elements in e are more sophisticated plate
bending elements. They are used to model the flat plate bending behavior of
many structures, and will be used in the case study in Chapter 3. The elemenis
in f and g are thin shell elements. They are used {0 describe the behavior of
shell-like surfaces (airframes) by incorporating siretching and bending within the

elements.

2.4 Derivation of Finite Element Equations

Every finite element problem can be described by a set of algebraic
equations, expressed in matrix form. This is the most common description used,
however other notations are possible, such as tensor notation. These equations
may be derived through a variety of meihods. The formulation of the finite
element method spans such a wide range of iheoretical topics that only a basic
infroduction will be given here, with an example ol the derivation of a plane strain

friangular finite element.

P
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Figure 2-T: Common Finite Eiements [2]
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Finte element equation formulation techniques can be divided into two types
[2). direct methods and variational methods.  Direct methods are straighttorward
ang aliow ingight into any bLimitations of the element formutation. Two poputar direct
methods are the direct method, which combines equations of quilibrium. strain-
displacement equations, and conslitutive relationships, and the method of weighted

residuals, or Galerkin’'s method.

The variational methods are ofien called energy methods. Thess methods use
calculus o! variations ard form element relationships by using equations related 10
the 1ptal work, or energy, in an element Some veriational methods are the
principie of minimum potential energy, the principte of virtuai work, and the principle
of minimum complementary energy.  Variational methods are usually preferred over
direct methods because they can provide information on the convergence of an
element, and can be used (o formulate bounds on the numerical solution An
element is convergent il, a8 tha linite element mesh is infinitely refined into more
and smaller elements, the finite element solution approaches the actual solution t0
the oproblem. Regardless of which formulation method is wused, they all, when

properly applied, will yield the same finile element equations.

A popular formulation method is the principle of minimum potential energy. An
example of finite element formulation using this method will now be given for a
triangular element undergoing plane strain deformation [4]. The formulation is given
for an isotropic, linearly elastic material, as the minimum potentia! energy principle is
only valid for elastic materials. The conditions ¢! a8 body undergoing plane strain

deformation are illustrated in Figure 2-8.

The aquantities x, y, z are the coordinate axes, and u, v, w are the
displacements in the x, y, and gz directions, respectively. The plane sirain
detormation assumptions indicated in Figure 2-8 are: 1) fsf(xy), the body force.
{, and any boundary forces have a zero component in the z direction; 2) wmO,

there is no displtacement in the 2z direction; 3) wu=u(x,y), v=v{xy), the Ilateral
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Figure 2-8: Ptane Sirain Deformation Conditions - Two Views
displacemen! fielgs are functions of x and y only. An example o a ciruclure that
can be modelled by plane strain deformation is & long dam, with the z-axis

running along the length of the dam.

With the conditions given above, the nonvanishing strains are

¢, s bu/dx
¢, = dv/By (2.1)

Tay * du/By ¢ BV/0x = Tyx

which can be expressed in matrix form as the strain-displacement relationship

¢, 8/dx o v

¢ | 0 b/ay v

Tay 8/0y 8/dx (2.2)
or

{e} = (L)) where {v} s [u v]T

For plane sitrain, where the o's are stresses,

¢, s -~(v/E)o, - (le)a’ + (1/EJo, = O {2.3)
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From (23) and the generalized Hooke's Law, the stress-strain relationships can

be wrnitten nas

(P [(1'32)/510. - [U(1¢p)/E]0v

¢, « “[HI1+0)/Eo, + [(1-:?)/5]0, : (2 4)

Ty = AVEDr,

where 1 i8 Poisson's rato and E is Young's modulus. Wnting (24) in matrnx form

and inverting yields

-

o, 1-p v 0 .
o, * E/[(ve20)(140)] v 1-v 0 ¢
Ty o] 0 (1-2v)/2 Tay
or
{e}) = [EX{¢) (2.5)

where [E] 8 calied the elasticity matrix

The potential energy JT (per unii length in the z direction, omitting initial
stresses. strains, and suriace ftractions - Figure 2-8), where R is the cross-

sectional body in x and y, is givan by
T = 172 f (a;.wye’-or"-r“)dxdy - f (f.ud’v)dxdy
n n
vz [ (oFMtendy - [ ()Tt ancy (26)
n a
where {1} = [1, 1,1

Substtuting (2.5) ino (2.6) and reversing the vector inner product in the second

term, we obtain
e 12 [ () "(EDle)oxdy - / ()T (1}exdy (2.7)
I1] n

and substituting (2.2) into (2.7) yields

€

Tal
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m« 1/2[ {wYTLLITIEICL){u' Jaxdy
[

- f (v')7(1)axdy (28)
n

Now that an equation has been developed for the potential ensrgy, the
variational method can be used. The principle of minimum polential enargy states:
among all admissable displacements of a body, those which satisly the essential
(geometric) boundary conditions, the displacemant that minimizes the potential energy
IT is the stable soiution of the governing equations of equilibrium and associated
natural boundary conditions, and it is a globa! minimum for linearly eiastic cases.
Thus, il soilved analytically, the displacement field obtained from the principie of
minimum potential energy is guaranieed to be a solution to the partial ditierential

equation governing the behavior of the body.

Ideally, one would ltike (o analytically solve for an admissable function {u'(x.y)}
such that (28) is a minimum.  Since it is usually impossivie or exiremely diflicuit
to solve for the analytical solution, we discretize the variational principle with finite
elements to obtain an approximate solution. Note that this is different than the
approximation method of finite dilterences, where the ditlerential equation is
discretized. At this point the 'nite element discretization is introduced for
{u'(xy}}. Linear triangular elements will be used to discretize the body as chown
in Figure 2-8. The body is modelled by many f{riangular elements, 2, with one

node at each vertex. The DOFs at each node are displacements u and v in the

x and y directions, as indiculed in Figure 2-9.

The basis function for each DOF at each node is a friangle that has a value
of one at that node, and a value of zero al the other two nodes and along the
entire opposite edge. The basis function Ny(xy)} for node 1 is showr in Figure
2-10. The unshaded friangle is the finite element in the x-y plane, and the

shaded triangle is the basis funclion for a DOF at node 1, and it "as a value of
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Figure 2.9: Finite Elemant Discretization

Figure 2-10: Basis Function for One Node of a Triangular Element

one there. The displacement function {u'(x.y)} for one finite element is discretized

in terms of the basis functions and nodal DOFs ag follows

vixy) = fulxy)] » ['N, 0

N 0 N ) U,
vixy) 0 N‘ 02 N, 03 N3] 1v:
up
Va
Uy
.vao

or {ulxy)} = [N(xy)]{d,} (29)
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where {d ] 18 the vector ol nodal DOFg (see Figure 2-8). Substituting (2.2) into
{2.9), the strains can be described as

(¢} = ELIIN(xy)){d,)
or
{e} = [Bixy)]{d,} {2.10)

where [B(x.y)]=[LI[N(x.y}].

The fotal potential energy of the discretized body is the sum of the potential
energy of each finle element modelling the body.  Substituting (2.10) into (2.7),

the potential energy of a single element i given by

m, = 1/2{d,)7 f [B8]TTE][B){d,}dxdy

e
- 1" [ (NITinaney
e
m 1/2{d,}T[K,{a,) - {d,}7(r,) (2.11)

where

k2 « [ [eIEBIoxay |
0

and

{rg} = f [N]¥{f}dxdy (2.12)

1y

Minimizing [T, with respect to the displacements {d,}. ie. setting &IT,=0, results in

the fundamental equation

[K.]{d.} - {f.] = 0

or
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(K 1{dg) = {r,} (2.13)

Equation 2.i3 is Ihe basic finite element equation governing the behavior ol a
single element. The matrix [K,)]) is called the elemental stiliness matrix, and it
entirely defines the properties of a given element. The vector {d.] is the vector
o! nodal DOFs, and (r,} is the vector of equivalent elemental loads applied at the
DOFs. The type ol Iload depends on the DOF, For example, forces are the
loads for disptacements, moments are the loads for rotations, etc. In general, (K]

is a full matrix.

For the entire structure, or body, one wants 10 minimize the potential energy

n=5_:n , the sum, over all elements, of the elemental potentis energies.  This
| ]

process proceeds suimilarly 1o the derivation of (2.13), and results in the structural

equation

[K){d} = (r} - (2.14)

where [K]= Z[K] {r}= z{r.] and {d} is a wvector of &l the DOFs in the
structure. The matrix [K] is called the structure stiliness {or just stiffness) matrix
it is formed by the proper summation, or assembly, of ali the elemental stifiness
matrices, a pricess which will be discussed in section 2.5  The wvector {r)

vector of equivalent nodal loads on the structure at each DOF, corresponding
exactly to the DOFs in the ({d} wvector. Equivalent loads are defined as those
loads needed to balance any distributed loads, initial stresses, or initial strains.
Equivalent nodal loads are determined by (2.12), as are the sliliness matrix

elements.

in a finite element problem, [K] and {r} are known, being assembled from
(2.13), The unknowns are the elements of the {d]} wvector, and we must solve a
matrix equation to obtain those values. Assuming all the nodes in a problem have
the same number of DOFs, n, and there are n, nodes, then there are n=n,xn,

DOFs in the problem. Equation 214 represents an n™ order system of linear

o
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algebraic equations. The matrix {K] is n by n, and the vectors {d} and {r} are

n by 1

2.5 The Basic Finite Element Method Algorithm

implementation of the finite element method for solving structural mechanics
problems can be outlined in six general steps [5]

1. Discretization of the struciure; i, selection of elements interconnected
al certain nodal points.

2. Evaluation of the element stiffne -3 and equivalent elemental load matrices.

3. Assembly of the stilfness and equivalent nopdal load matrices for the
system of elements. .

4. Introduction of the boundary conditions and externa! loads.
5 Sol.uon of the resulting finite element system equations.

6. Calculations of strains and stresses based on the noda DOF values.

Step 1 involves deciding what elements to use 10 best model the struclure
being investigated. Some knowledge or assumptions of the behavior of the ,
struciure and the desired resulls is needed here. The proper choice of elements I
to best model the geometry of the structure is often the most important decision
made when analyzing a structure. The physical layout of the elements as they
model the structure is just as important for obtaining good results. Typically, the
bulk part of a structure is modelled with a uniform mesh of sfandard elements.
Edges, corners, holes, and discontinuities in a structure may need (o be modelled
with many small elements. This is because displacement fields in a structure
usually have a large variation in those areas, and & finer mesh of elements will
obviously approximate such behavior belter than one or two elements. An example
is shown in Figure 2-11. The abilty to make good decisions at this step of the

process usually requires experience with firite element analysis.

it is aop-opriate to point out that different types and shapes of elemenis may
be used together in a structure model, as long as they are compatible.

Obviously, the DOFs at connecling nodes mus! be the same for any elements that
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Figure 2-11: Triangular Finite Element Mesh Around a Corner
are connected. The conditions and assumptions on the behavior of elements must
be compatible if dilferent type elements are to be used in the same mesh.
Otherwise, resulls will be quite unacceptable, il obtainable at all Often, H one
part of a siructure exhibits a cernain behavior, say plane strain, and an adjacent
part undergoes some other behavior, a transition element is used to connect the

elements modelling the different behaviors.

Step 2 is the formulation of the elemental sfittness matrix [K)] and the
equivalent elemental load vactor {r.}, for each finile element in the model. The
malrix and vector are formulated by (2.12) or other direct or variational methods.
External locads are not applied to any element untii the entire structure has been
assembled.  Thus, ihe non-zero values in the vector {r,)} represent those loads
needed to balance any distributed Ipads, initial stresses, or initial strains acting on

the element.

For a given linite element type and shape, only a single elemental stiflness
matrix needs o be derived. Iif needed, it can contain variables for the actual
element size and material properties. Tnus, (2.12) must only be evaluated once
for each different finite element type in the model. Most models contain only a

few diflerent types of elements, if more than one.

Step 3 is the assembly of all the elemental eguations, (2.13), into the

o
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struciure equalion, (2.14). |f each element has m DOFs, each system of elemental
equations will be ot m™ order. I thers are n DOFs in the struciure model, the
system of structure equations will be of order n, and n is always greater than m
for models with more than one element Thus, the values in the elemental
stitness malrix and elemental equivalent load vector must be properly assembled
into the larger structure sliffness matrix and equivalent nodal load vector. This
operation is explained below, The procedure is simple, but difficul to explain

without an exampie.

Consider a strutture model with a 1o1al of n DOFs, with n nodes and one
DOF detned at each node. The model is made up of some number of elements,

with m nodes each and of course. one DOF per node.  Equation 2.13 may be

wrilten as
Ke11Ggy * Rgypler + KoynOem ® Ten
Ke210g1 *+ Kepplez *+ + KpomTem = fa2
Kemider * KemzBez *  * KemmBem = fem (2.15)

Each DOF in a single element can be numbered from 1 to m, but the DOFs for
the entire structure model must be numbered from 1 to n. A simple one-to-one
mapping is made from the local element DOF numbering, ie. 1 to m f{o the
slructure numbering, 1 to n  Equation 214 may be written in the same form as

{2.15), with ‘he subscripis running from 1 1o n In {2.15), k. is the elememal

ol
stifiness coellicient related to the load on DOF i, and the DOF | The struciure
numbering is, of course, difterent, running from 1 to n, and Ilzcal DQF i is
structure DOF k, and local DOF j is structure DOF I The elemenial stiliness
coefticient kg, is thus simply added 1o the structure sfitiness matrix at row k and
column | The mapping is thus determined by the local numbering and the

structure numbering,

This procedure is deone for all DOFs of all elements in the structure, until all
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the values of every elemental stillness matrix have been added into the Structure
stiiness malrix in their appropriale positions This i§ the final structure 6tiffness
matrix [K}, and a structure stitiness element k, is often the addition of severa
key'8.  This happens at all the interior nodes of a structure, where 'more than one
element connecis ard shares a node. For our example of one DOF per node,
each connection finite element has a kg, in its elemantal stifiness matrix that is
mapped 1o the same k6 in the siructure stifiness matrix. In the assembly process
outhned above, they are all added 1o each other as they are assembled into the
same location at row k and column | of the structure stitiness matrix. This
represents the contnbution of each element to the behavior of the mutual (shared)

node.

This assembly process easily extends to the more realistic case where more
than one DOF is defined at & node. The procedure is the same as above, with
the individual DOFs being numbered rather than the nodes. [In practice, problems
are defined with the nodes numbered. It there are 8 DOFs per node, the
elemental stiffness coelficienls corresponding to a node make up &n 8 by 8 malnix.
These matrices are simply assembled at the appropriate locations in the larger
structure stitiness matrix by the above rules, by taking into consideration the
proper mapping of element {local) DOFs to sitructure DOFs. Now the structure

stifiness matrix is sxn by sxn, for the case of n nodes and s DOFs per node.

As an example, consider the siructure with six nodes in Figure 2-12a. N is
made up of 8 bar element, two dissimilar triangular efements, and a square
element. each having one DOF per node. The elements of each elemental
stiffness matrix [K,] are represented by symbols corresponding to that element's
shape. Each elementa! stiffness matrix value may actually, and usually does, diller
from each other, but #H is unnecessary to show that to itlustrale the process of
assembling [K] from the [K ]'s. Since the bar element has two DOFs, ils
elemental stifiness matrix is two by two, and thus there are four bar symbols in
total. Similarly, there are nine symbols for each ftriangle and 16 for the sqQuare

element,

. e
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Figure 2-12: Stiffness Matrix Assembly Example

The structure stiffness matrix [K] is six by &ix (since there are six nodes
and one DOF per node) as shown in Figure 2-12b, where [K] has been
assembled by the rules outlined above. Where multiple symbols appear in a
stitfness matrix position, their values are added together to form that sgtruclure
stifiness element. It is easy fr. see thal the pattern of symbo! placement within
[K] is determined by the struciire node numbering. For example, the lower
triangle has nodus 3, 5 and 6, and thus its stilfness coefficients appear in rows
3, 5 and 6 at columns 3, 5 and 6. If 8 DOFs wers defined at each node,
each symbol would represent an 5 by & matrix, and the order of [K] would be

increased by a factor of s.

The structure equivalent load vector is assembled in the same manner, only
in one dimension. As before, in (2.15), the equivalent elemental load r, is the
load associated with DOF i, where i is from the element's local numbering. |In
the structure numbering, DOF i is k and thus the load r, is added to the

TR T R
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struciure equivalent load vector in position (row) k. Again. at interior nodes, more
than one r, will edd to produce the siructure r, value. The previous remarks
hotd when 8 DOFs are delined at a node; in this éasc. the contribution to the

ioad vecior due to one node is an 8 by 1 vecior,

One more topic needs to be covered to complete step 3. and that is
rotation ftransformations. Each finite element is cdefined and derived for a fixed set
of coordinates, and each structure is defined for a fixed set of coordinates. In
modelling a siructure, some elements may not be oriented properly for the defined
structure coordindte sysiem. The slemental stifiness and equivalent load matrices
for these elements must wundergo a rotation transformation before they are
assembled into the structure equations. Figure 2-13 and equations 2.16 and 217

show how this is done for a planar rotation in cartesian coordinales.

—)X,U

Figure 2-13: Planar Rotation of Cartesian Coordinales
When (x.y) is the structure, or global coordinate system, and (x'y') is the
element's, or local cocordinate sysiem, the elemeni's equations must undergo a
fransformation go that they are defined for the (xy) coordinates, since they are
being assembled into struclure equalions. The relation between ine x and y
displacements of the w0 coordinate eystems, u and v, define tha rotation

fransformalion.
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The following transformations are performed on the elemental equations,

[Keg] = [RITLKIIR]
angd

(reg} = [F07(r,) (2.17)

where [K”J and {'eo} are the globa! elemental stliffness matrix and the equivalent
lopad vector used for the struciure equation assembly. Hereafter, we omii the “g"

subscript on [K,] and {r,}.

Step 4 involves setting up the oroblem for solution. At this point, (2.14) has
been assembled. The {r)} vector represents the equivalent nodal loads on the
DOFs of the siructure model, but no external ioads have yet been applied at the
nodes. The values in {r} are only those loads needed to balance any distributed
loads, initial stresses, or initial strains on the sfructure. Finite elemenis are usually
used to analyze structures under various external loading conditions. External lcads
are defined as those loads applied externally directly to the nodes. They are
written as an n by 1 external load vector {p,,} (n is the number of DOFs in
the model), and ircorporated into the finite element problem by adding {p,,} to
the right-hand side of (2.14). The addition of {r] and {p,,} forms a new n by
1 vector on the right-hand side, {p), simply called the nodal load vector. The
resull is shown in (2.18), which is the equation for the structure including all
loadings. Equation 2.18 is the basic, fundamental finite element problem equation

for linear static problems.

[KMd} = {r} + (pgq) = (b} (2.18)
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Equation 218 cannot be solved. in its present form, for the unknown DOF
vector {d). since [K] is singular, This occurs because the structure stiliness
matrix is a8 complete description of the relation besiween all DOFs, and the forces
on the DOFs in the structure, That is. the present stiffness matrix ' represents the
sfructure as il i1 were floaling in space, capable of rigid body movement, A
physical interpreiation ©f the stiffness matrix is thus useful. Specifically, element ku
is the force required at DOF i to produce a unit displacement at DOF |, with all
other DOFs fixed at zero (assuming all DOFs are displacements), Thus, the rows
of the siifiness matrix represent equilibrium forces, and must sum 10 zero since
the sum across a row is & sum over all DOFs (a row of [K] muttiplies the DOF
vector {d]). Clearly, the stifiness matrix is singular and a unique DOF vector {d)
cannot be found for a given loading An applied load simply produces a rigid
body motion; i.e., the entire structure iransiates and no deformation occurs. Thus,
the stiflness matrix must be made non-singular by the application of boundary

conditions,

Boundary conditions are usually applied by restraining selected DOFs, forcing
their value to be zero or some lixed value. Generally, DOFs are set 10 be zero,
and this is the only type of boundary condition considered in this report. When
setting DOFs to be zero, the corresponding row and column of the sliliness
matrix, for those DOFs, are deleted. The cotunn is deleted because those values
would multiply the zero in the DOF wvector {d}. and the row is deleted because
the nodal load will include an internal reaction force, which cannot be found wuntil
the DOF values are determined. This process results in a non-singular stifiness
matrix which will yield a unique solution for {d}. The equations are of the same

form as (2.18).

Step 5 is the solution ol the system of equations resulling from step 4.
Solution of thcse linear algebraic equations is not ftrivial because a typical problem

may involve thousands of DOFs. This process will be discussed in sgection 2.7,

o> §
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The final step in the finite element method algorithm is the determination of
siresses and straing from the nodal DOF solutions obtained in step 5. These
quantiies are solved for directly from the sirain-disptacement relationship of (2 10),

and the siress-sirain relationship of (2.5).

2.6 Structural Stiffness Matrix Properties

The structure stiliness matrix resulting from any structural rmechanics elemant
formutation has some predictabie and uselul propertiss. The stiifness matrix will be
positive definite, symmetric, sparse, and banded. Thers are some problems,
however, that result in an indefinite matrix, such as buckling problems, which are
not of concern here. One or more of these properties is uwsually exploited by
equation solvers as discussed in section 27. It is insiructive to briefly examine

each of these properties.

The postive definite property {each n by n submatrix, starting in the upper
left corner Bnd proceeding down the diagonai ! the malrix, has a posilive
determinant, and hence all diagonal elements of the matrix are positive valued) is
evidem {rom any of the varialional formuiations, specilically the principte of minimum
potential energy. To guaraniee a minimum rather than A maximum when setling the
first variation of the polential energy to zero and solving, the second variation
must be positive. it we look at the left-hand side of (2.13), and form another
variation with respect to the DOFs {d}, this second variation of the potential
energy will be a function of the sti...s8 coefficiants. H one performs &l the
variational calculus, the stifiness matrix is found 1o be required to be positive-

definite. A more rigorous discussion of this subject may be found in [2).

The symmetry of the sliffness matrix 8 obvious from considering the
equilibrium forces for a DOF represented in each row. The force required at
DOF i to produce a unit displacement at DOF | must be the same as the force
needed at DOF j 1o produce a unit displacement at DOF i (all other DOFs fixed
o zero). Thus, k, is equal to k. Note that after boundary conditions are

o 5
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apphed. the stifiness matrix remaing symmairic. Also, the diagonal elements, L
must be positve and non-zero.  This is because the force at DOF i needed (o
produce a uni displacemen: at the same DOF i must be positive by conventon.
Thus, the stifnuss matrix is usually disgonally dominant (the larger yaluﬂd elements

s along the diagonal).

The most important properlty of the stiffness matrix is its sparsity. The
reason for this can be seen from (2.12). The elements of the stitiness matrix
are derived by integrating over afl possible products of the basis functions, which
are imbedded in [Bj as in (2.10) Since finite elemenl basis functions are
defined to go fo zero at all other nodes than the one for which they are
defined, the product of several basis functions will only be non-zero for nodes on
the same element. in other words, the behavior of a given element will only
influence adjacent elesments, For models with many elements, a single element has
no influence on most of the elements in the model, thus the stifiness matrix has

many zeros (sparse).

Typically, the percentage of rero elements in the stifiness matrix is 70% to
over 90%, Obviously, it is the topnlogy of the structure and the specilic finite
element model that determines the sparsity. Thus, the percentage of zero
elements will be lower in some problems than in others. Elongated struciures

usually have the most sparse stiffness matrices.

A natural result o! the slifiness malrix gparsity is banding of the non-zero
elements around the main diagonal. This occurs with proper node numbering of
the model. it the model is numbered such that the diflerence in the node
numbers for adjacent nodes is small, flighler banding will occur. The stifiness
matrix can have a full band for a poorly numbered model. A rule of thumb for
proper numbering i8 fo number across the shorter dimension of the model (in
terms of the number of nodes), as illustrated in Figures 2-14 and 2-15.  Figure

2-14a is numbered across the short dimension, while Figure 2-14b is numbered
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Figure 2-14: Model With Differant Node Numbering
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Figure 2-15: Non-zero Stifiness Matrix Eniries
across the fong dimension. The corresponding non-zero stiffness matrix entries,
assuming one DOF per node, are shown by X's in Figure 2-15. The tight band
can be observed in Figure 2-15a, while Figure 2-18b shows a full stiffness matrix.
Note that the number of non-zero elements is the same in Figures 2-15a and
2-15b.

For a given problem, there i8 a node numbering scheme that will minimize
the bandwidth. This is desireable for some equation solvers, since it can reduce
the required storage and number of computations. In general, it is easier to work
with a banded matrix, and thus node numbering algorithms are an importent part of
finite element software packages. There are soms cases when such numbering is

not desired, as with the fronial solution algorithm discussed in section 2.7
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Given a numbered model, the bandwidth of the structure sliffiness matrix [K]

can be determined from the egquation
Bandwidth a 2ND-1 (2.19)

where N is the number of DOFs per node, and D is the maximum dillerence
between the numbers for any two nodes on any element in the model, plus one,
The quantity ND is called the semibandwidth of [K]. Equation 2.19 assumes all

nodes have the same number of DOFs.

A comment aboul the dynamic range of thy stifiness maltrix should be made.
The values of the elements in [K] depend on the types of finite elements used,
their physical dimensions, and how they are used in modelling the structure. It is
common to have a siiffness entry proportional to some length, adjacent to an entry
proportional to that length cubed. In a well-lormed problem, all element sizes are
within one order of magnitude of each other, 8o that their stiffness matrix
coefficient differences are not (00 severe. However, the nature of the finite
element method dictates that [K] will have a large dynamic range (four or five
orders of magnitude) for mos! problems. Subdivision of a model into smaller and
smaller elements will reduce the dynamic range, but al a large increase in the
cost of problem formulation, solution effort, and complexity. Dynamic range is, of
course. extremely problem dependent, precluding any kind of thorough discussion

here.

2.7 Solution Methods

After boundary conditions are applied to (2.18), a large set of simultaneous
linear algebraic equations results. Solving such a set of equations is always
required in the finite element method, where they earise from linear static problems,
linearization steps in nonlinear problems, and time-gtepping algorithms in dynamic
problems. Equation solving is usually the most expensive part of the structural
analysis, and may involve from 25% wup to 80% of the computations for a problem
[1]. For these reasons, the proper choice of an equation solver is important

when performing finite element anaylsis.

Y
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it should be noted that (2.18) is never solved by inverting the sliffness
matrix  [K]. A large matrix inversion is coslly and lime consuming, especially
because the inverse of a banded matrix 8 & full matrix. Thers is an abundance
ol Iterature devoted 10 sparse matrix and finite clement solutions, unfortunately
there is yet {0 be developed a. oOptimal equation solver applicable o every
problem, The most efficient soiver will depend on the specific problem, and
computing hardware available, Thus, only general statements can be made aboul

the merits of avalable equation solvers.

There are Iwo types of equation 8olving procedures, direct solvers and
indirect (iterative) solvers. Direct solvers are the most popular solution algorithms,
since they requre a fixed number of numerical operations, given the size and
sparsity of the stitiness matrix. indirect solvers are less attractive, but have some
nice features. The number of numerical operations required by indirect solvers is
indeterminate, but depends on the . onditioning of the matrix equations. we will

consider only a direct sclution in Chapler 4 of this report.

Direct algorithms usually employ forms ol Gaussian efimination, Cholesky
decomposition, or the Crout method. Most algorithms factor the stiffness matrix
into upper [U] and lower [L]) ftriangular matrices. This step involves the majority
ot the computational load. The process i8 oullined in {2.20) below, where the
first two lines show the original problem and the factorization. The solution is
obtained as indicacted by the last two lines, where solving for {y} is called
forward substitution, and solving for {d} is called back substitution. These last two

steps are frivial,

[(K1{d} = {[p}
’ fL){u}{a} = {[p}
[L1{y} = {p}
(U)o} = {y] (2.20)

Many options exist for the factorization of [K]. Since [K] is symmetric, it

can be factored into the product ol a lower ftriangular matrix [L], and s
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transpose [L]T with Chofesky decomposition. Also, [K] can be factored into the
product [LI[DI[L])". where [D) iz a diagonal matrix. This faclorization avoi’'s a
square root computation. in Chapter 4 we wil use an [L]J[U] factorization for

reasons explaned there.

The various algorithms typicahy exploit the sparsity of the stiffness matrix. A
reduction in the required slorage and number of computations can be made by
operating on just the non-zero band of the stillness matrix,. This is a conventional
and popular method.  Storage and computational etfort can be further reduced by
using profile (skyline) storage. In this scheme, the columns of the upper triangular
portion of the stilness matrix are stored beginning with the first non-zero entry in
each column which defines the profite, of skyline of the matrix. An index is kept
of the location ol the dizgonal elements in the storage array. With this storage
scheme, the model is numbered in order to reduce the infill under the profile, i.e.
the number ol zeros under the profile. This is because the zeros may be
changed to non-zero numbers during factorization.  The triangular factorization may
be done eflicienlly with dot product routines. A more in depth discussion may be

found in [6].

A popular direct method which conserves siorage is the wavefront or frontal
soluiion method [7]. This method uses Gauss elimination, and stifiness coefficients
relaled to a node are reduced as soon as all equations contributing 1o that node
have been assembied. Thus, as each finite element is assembled into [K], Gauss
reduction begins on those equations which are compﬁele. This method relies on
numbering elements rather than nodes. The advantage 10 a frontal solver is that
storage requirements are reduced, but at the cost of complex programming and

equation manipulation overhead.

indirect methods use iterative procedures that require an indefinite number of
operations to converge to an accepfable solution. One iterative solver, indicative

of the others, is Gauss-Seidel eration. This algorithm refines an initial estimate in
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a procedure wusing an over-relaxation factor w. The algorithm is8 guaranteed 1o
converge for posilive-definite, symmetric systems, i w i8 betwsen zero and two.
The basic algorithm is outlined below [1]. for solution of the N order system of

equations [K]{d)«{p}:

i1 N
d™' = o + (w/kMp, - ‘.z‘k“d"‘" - Ek“a{‘) (2.21)

where n is the iteration number, and the process begins with an ininal estimate

{o} ftor ({d}.

Indirect ({iterative} methods have a few advaniages: they are easier to
prcgram than direct methods, they demand less storage, and fast computation limes
are obtainable for low-accuracy solutions, or for good initial estimates of {d}.
Direct algorithms have other advantages when a given problem has muitiple loading
conditions, i.e. multiple {p)] vectors. In this case, the factorization only needs fo
be computed once 1o solve for all of the loadings. Muitiple {p} vectors often
occur in finite element problems. With an indirect solver, the entire algorithm must
be used for every {p} wvector, and the number of computations for each solution
is indeterminate. In general, direct afgorithms require _leas numerical operations and
are the preferred algorithms. For these reasons, .a direct algorithm is initially

invesligated in this paper.

2.8 Nonlinear and Dynamic Problems

The finite element method has been described thus far only for linear static
problems, However, many important and practical problems require modelling of
nonlinear behavior and/or time-dependent (dynamic) loads. The equations for these
problems are derived with the same methods used for linear, static problems, but
their solutions can no longer be obtained by solving a single matrix equation such

as {2.18).

in nonlinear probtems, the stiffness matrix is a function of displacements, and

L
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will be changing throughout the siruclure deformation, in dynamic problems, the
loads will change with time, and the displacements wil! also be time-varying.
Solutions for these problems require much more computational eflort than the linear
static problems, and several orders of magnitude more work f?r a nonlinear
dynanuc problem. A brie! discussion of the problem formulations and solution
methods will be given here. A more thorough account of the subject may be

found in [3].

2.8.1 Nonlinear Problems
in the linear problems, the dilferential equations governing the behavior ol the
siruciure were linear This was due 10 1two inherent assumptions for elastic

siructures [3]:
1. Lingar stran-disptacement relationships.

2. Linear stress-strain refationships.
Two types of nonlinearities may be delined. Il the flirst assumption is not valid,
the problem posesses geometric nonlinearity. This means thai Jdeformations are not
small, and that the structure geometry changes significantly during loading. If the
second assumption is nol valid, material nonlinearities are present, which implies that
materiai properties change under loading. Geometric nonlinearities are wusually more
severe, but both types may be combined into problem formulations that may be

scived by the following methods.

The basic equation (such as (2.18)) for a nonlinear static problem may be

written as follows, where [K] is a function of the displacements,

[K(d)I{d} - {p} = O

or

[K(d)1{d} = (p]} (2.22)
Four popular numerical procedures will be described for solving (2.22) [3).

The lirst method is direct iteration. This is the most siraightforward and

3

w) .
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least sophisticated method.  An initial estimate, {d}e:{d,] is assumed for the
displacements of (2.22). An improvement of the estimate is found by
{d,} = [K(dy)] Hp) (2.23)

or, in general

{0} = [Kid.,)] '{p) (2.24)
where i is the iterahon number. Of course, the matrix inversion is just notational
and never performed, rather direct equation solving techniques are used. The
method terminaies when (w0 Successive approximations are within a defined
tolerance. One possible convergence criteria is defined by

e} = {g]) - {d.,} {2.25)
and convergence is achieved when

e} < aflid;}] (2.26)

where ||]| is some norm and a is some fraction.

The drect iteration method is very simple, but may be divergent if certain
nonlinearities are modelled. At each iteration, a difterent equation of the form of
(2.24) must be solved. Thus n times more work than a linear problem is needed

in the solution process, where n is the number of iterations.

The second method is WNewton-Raphson iteration. This method requires
linearization of (2.22) with a truncated Taylor series expansion, which results in the
equation

[K(d,.,)){d,..;} - {p} + [K_'{g;}{g,.,h) = O (2.27)

The matrix [K'] is the tangential stiffness matrix, which is the derivative of [K(d)]
with respect to the displacements. An initial estimate, {d}={ds} is used, and

refined by (2.27) in the form

[K.,'J{ad} = {p} - [K(d,,)]{d,,} (2.28)

where
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{ad)} « {9} - {a.,} (2.29)

The same convergence criteria for the direct iterahon method can be used for ths

method.

The Newton-Raphson method converges laster than the direct i'leration method
given the same {d,}. and, in fact. it converges quadralically near the solution.
The inhial estimate, however, must be in the problem's region of convergence, or
the process will diverge. This numerical technique is very standard, and
information and examples may be found in any good numerical methods text, and
in [8] and [10]). Note at each iteration the linearization, i.e. the evaluation of the

tangential stilfness matrix, must be performed along with solving (2.28).

The third method is a modified Newton-Raphson method. At some point in
the standard Newton-Raphson procedure, it may become economical 10 use the
most recent linearization for all, or some, subsequent iterations. This provides a
frade-off beiween computation time in the evaluation of [K'] at each step, and the
rale of convergence, which may prove advanageous. The equation to be solved

at each step is
[KS{ad) = {p) - [Kd,.)]{9,.,] (2.30)

where [Kc'] is a tangential stitfness matrix that is wuseéd for several iterations.
Again, information on this moddied algorithm can be found in most numerical

methods texts [10], and an example is given in [8].

The last method we will present is the incremental load method, which solves

the incremental eguation

[K"]{Ad‘} ® {Api} (2.31)
where

[Adi} = {dil - {d|.1]

ang
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{Ap;) z {pi} - {05.1} {2.32)

Here agamn, the tfangential stifiness maltrix is required, ang incremental displacements
are solved for as the load is incremenied, For almost ali structures, the initial
displacement and load vectors can be the zero vector. The tangential stifiness
matnx [K'] and the incremental nodal load vector {Ap‘} are evaluated, and (2.31)
i solved for the incremental displacement vector {4d,}. The current state of {d)

is then calculated as
{9} = {0} + {ad) (2.33)

At this point, the iterations could conunue by evaluating [K'] from the {a,} trom
(2.33), applying the next load increment ie. using (232) to form {4p,,). and
solving (2.31) for [AdM}. However, since [K'] is a linear approximation to the
nontinear curve, the {p)} vector does not exaclly salisty (222) with the {d}

vector.

An equilibrium load correction step can be wused to keep thz linear
approximations closer to the acfual nonlinear curve. After solving (2.31) then (2.32)
in an iteration, the nex! step is to find the actual {p} vector that satisfies (2.22)

by performing that matrix-vegtor operation
[K(g)1{g,} = {p’) (2.34)

and obtaining {p')}. In the next iteration, {p,_,}={p,} instead of {p} used in
(2.31), when applying the fload increment. Thus, the load is incremented from the
exact load wvalue on the nonlinear curve satisfying {2.22) with the last displacement
vector. This procedure iS a more accurate approximation than when the correction

step is omitted. An example of this algorithm may be found in [8].

The incremental load method will converge for any problem if the load
increments are taken small enough. However, if [K'] is exacilly the zero malrix at

any iteration, the algorithm may diverge, and thus adjustmenis must be made fo



44

avoid this At each iteration of the algorithm, the tangential stifiness maltrix must
be evaluated, (231} must be solved, and the malrix-vector product of (2.34) must

be performed.

+

The nonfinear solution methods presented here are by no means the only
ones available, and each method has variations and improvemenis, The best
method 1o uge s purely problem dependent, and often a saries of difterent
methods will be used when solving a nonlinear problem. |f one has a good initial
estimate ol the soluhon, the Neswton-Raphson method may be the best choice. As
a general soiution method, the incremental load algorithm s atiractive because i

always converges.

2.8.2 Dynpmic Problems

Dynamic problems need (0 be solved when the applied loads are tiue-varying.
Analytic solution techniques may be used for some problems, but they do not
easily accomodate nonlinear problems or solution of transients. Discretization of the
time dimension leads to step-by-step formulations which provide a better treatment
of transients, and allow for nonlinear analysis. Solution of dynamic groblems is a
large and complicawd subject. Thus, only & few solution methods wil be

discussed here. A more thorough presenfation may be found in [3].

Analytic solution procedures are applied on set of dynamic finite element
equations that have, of course, been discretized in space, but not in time. tn
general, an ordinary differential matrix equation describing a time-varying finite

element problem can be written as
[(M]{d} + [C){d} + [K){d} = {p(n)} (2.35)

Standard enalytical techniques for solving dillerential equations may be applied 1o

{2.35), with some added approximations.

in (2.35), the quantities d. d, and d are the nodal displacements. velocities,

and accelerations, respectively, The matrix [M] is the mass matrix, which
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describes the distributon of mass throughou! the siruciure. it may be formulated
as a lumped (diagonal) mass malrix, or a consistent (same band structure as [K])
mass matrix. The matnx [C] is a damping matrix which usually has the same
band structure as [K], although lumped formulations exist. The damping matnix is
difficult to determine, 80 it is usually delined as a linear combination of [M] and
(K]

[C) = a[M] + b[K] {2.38)

where a and b are usually determined experimentally. The matrix [K] is the usuai

stitiness matrix, and the vector {p(t)} contains the nodal time-varying loads.

We will describe two anayltic solution techniques for a specitic and a general
case of (2.35). First, consider the frea vibration problem where the damping and

load vector are rero, resulling in the equalion
[M1{d} + [K){a} = O (2.37)

Assuming a soiution of the form {[d}={d'}sinwt and substituting it intlo (2.37) gives

~w?MI{d'} + [K){d'} = O
or

(=w?M] + [KD{d'} = O (2 38)

and the characteristic equation yields the following eigenvalue problem,

[K1{d'} = w?[M]{d'} (2.39)

Equation 2.39 may be solved by a variety of standard methods. I [M] and

2 can be found,

[K] have dimension n by n, then n values (eigenvalues) of w
which represent the natural frequencies of the system. They will be real-valued if
[M] and [K] are positive definite, which is wusually the case. The n
corresponding eigenvectors {d'} represent the natural modes of the system. This
free vibration problem is just one simple example of how basic differential equation

solution techniques may be applied to (2.385).

e —————————
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The analytica!l procedure of modal decomposition andlysis may be used to
solve (2.35) and provide the transient response [3). . Thy general solution for the

free response ol (2.35) can be r%own 10 be

n .
(d) « (d')e** « 3 {a')e (2.40)
is1
where a, and {d'] are the eigenvalus and eigenvector for mode . We will

ussumé that the forced response ({p(t)}] nonzero) may be written as a linear

combination of the modes
(9} = (o), = [{ey) (e} . {0, ))y} (2.41)

where y, is the scalar mode participation factor, and is a function of time, y=y(t)
Substituting (2.41) into (2.35), and premultiplication of each mode equalion by {d‘}".
ir1 to n, we obtain the set of scafar, independent equations

my, + Sy + ky, = p (2.42)

where

m;, = {a,}7[M)(d,]
¢, = {¢;1[CIe,)
k = {017IK)[9,]
o, s {9,)7{p} (2.43)

These n scalar egjuations in (2.42) may be solved independently, and the total

response may be found by superposition according to (2.41).

Solving the general free response eigenvalue problem of (2.35) is difficult
because the eigenvalues and eigenvectors are, in general, complex-valued. in
practice., the real eigenvalues found by solving (2.39) are wused. Decoupled
equations, ie. (242), and real y, vualues will stil occur if thc [C) matrix is formed

according fo (2.36). The entire eigenvalue problem does not need to be solved,

(e
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as only a few of the low frequency modes need to be considgered. This is
because the high frequency response is usually criligally damped, and does not

contribute much to the total response.

A step-by-step or recurrence relation may bhe formulated by discretization of
the tme dimension. These methods incorporale initial conditions, and thus provide
transient analysis. The discretized finite element equation, in space and tme, meay

be written as [8),

(M){ag} + [C){ad]} + [K){ad} « {4p) (2.44)
where
{ag} = {9)) - {o.,}
{ad;} = {9} - {0.,}
{ag} = {a) - {94}
and
{ap,} = (B} - {p.y)

and i is the lime siep.

Many popular recurrence methods have been derived by Newmark [98], Wilson
{11], Houboits [12]). and Hilber [13). A good example of these types of
derivations that include the basis functions in the time dimension may be found in

[3). One such algorithm may be written as [8],
(a,(M]} + b[C] + c,(K])(ad) = {4p) (2.45)

where

{4p} = {4p)} + [Mlla,{d,.,)+ay(d, ,))
+ [CUby{g, (}ebylo. 1) + c[K]{ad,,) (2.46)

For the method proposed by Newmark, the constanls are given by

a, = 1/(841%) b, = e/(fa1) ¢, = 1

| ¥
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a, * a4l b, * b,at c; s 0 {2.47)
ay = t/(28) by = [(a/28; - 1]at

The quanply At 18 the length of esch time step, and the consiants o and #
aiftect the behavior and stability of the aigorithm, Discussions on good choices of
a and # may bo found in [3]), along with many other relerences. In this case, a
good choice s a:0.5 and 205 Initial conditions . governing the problem are

infroduced to begin the siep-by-step calculation,

Note that the solution of (245}, or one time step, involves as much
computational eflort (once the equations are formulated) as a linear static problem.
# m time steps are used, then the solution of a dynamic problem with a

recurrence algorithm is m fimes 88 cosily as a slatic problem.

The convenlionat analylic 8olution procedures are obviously not applicable 10
nonlinear dynamic problems, because the nonlinear aquations change throughout the
lpading process. However, the siep-by-siep algorithms 8are oguite useful. Nonlinear
dynamic finite element problems require the most computation. Other solution
methods besides those noted here are available and are sometimes more efficient

for certain problems.

The recurrence algorithms mentioned earlier may be used to egolve nonlinear
dynamic problems, but with the additional complexity that one or more of the
matrices [M], [C]. [K] are dependent on (d) and change every time step. The
step-by-step relation of (2.45) is quite applicable. An equilibrium load correction
for each time {load) step can be included in the algorithm by using the following
expression for the incremental load in (2.46), as defined for Newmark's method
[e].

{49.-] * [pll - ([M](di.,) + [c]{d|.1l + {pi-i}’ {2.48)

it is often necessary (o iterate within each time step 1o reduce the residual

RPN
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error and track the nonhnear curve more accurately. Any of the iterative nonlinear
solution schemes mentioned earlier may be used. instead of iterations within time
steps, an extrapolation of previous [M]. {C). and [K] values may be used.

These methods are briefly described and referenced in [3).

Finally, it should be stated that nonlinear and dynamic finite¢ elemant problems
always present a more diflicull equation solving task than linear static problems,
especially when a problem is both nonlinear and dynamic. in most cases,
however, the equations to be solved are a syslem of linear algebraic equations,
much like (2.18) for the linear sfatic problems. Thus. the computations are alike,
but many more of them must be periormed. The most obvious exception to this
is the use of analytic procedures for linear dynamic problems, whers eigenvalue

problems need {0 be solved.

2.9 Summary and Conclusicn

This chapter has presenied an oulline and expla.ation of the basic finite
element method for structural mechanics problems. The fundamentals of the method
were described, followed by an example of the finite element equation formulation
for a plane strain ftriangular eiement. Element and stiffness matrix assembly were
described, angd the properties of the sliffness matrix were detailed. Emphasis was
placed on linear static problems throughout the chapter, and their solution methods
were discussed in section 2.7. In &eclion 2.8, solution methods for nonlinear and

dynamic problems were covered.

This introduction 1o finile elements was by no means comprehensive, bul it
provides the necessary background to understand the nature of structural mechanics
problems, and what type of equation solution is required. Essentially, all linear
static, and most nonlinear and dynamic problems, can be broken down inlo one or
many equations of the form of !2.18), where ([K] always has the properties
described in sgection 26. An example of a linear static finite element problem,

using plate bending elemants, is described in Chapter 3.

R ol ¥ =
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3. Finite Element (Case Study

3.1 Introduction

This chapter describes a specitic finile element case study. It will be used
to quantity the requirements of a finile element processor. In forthcoming research,
the case siludy will be used to evaluate the performance of our finite element
optical processor. The problem formulaled concerns the bending of plates, which
is a common application area in struclural mechanics. The finite eloment
formulation, and assembly of the structure stitiness matrix [K] is described. The

stiliness matrix properties, discussed in section 2.6 are quantified for this model.

3.2 Case Study Structure

A simple structure is needed for our initiat application of finite element
structural analysis. The problem of plate bending was chosen because it is an
important, frequently used, and well-defined type of finite element analysis. The
structure chosen, very modesily and quite arbitrarily, was a 6 foot by 8 foot by
1 inch thick plate of atuminum. Since the larger two dimensions are close to a
square, and since the thickness i much less than either the length or the width,
good plate bending results should be obtainable with finite element analysis of this

siructure.

The material for the plate was chosen to be T4-2024 aluminum. its structural

properties are listed below:

E = 106 x 10°% Ibs/in? MODULUS OF
ELASTICITY

G = 400 x 10% Ibssin? SHEAR MODULUS

v &« 0325 POISSON'S
RATIO

The plate and its reference coordinate axes are shown in Figure 3-1. We will

consider the plate to be made of an isotropic material.

e i
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Figure 3-1: Case Study Aluminum Plate

There are some pertinent applications fdor w.0odelling such a  structure.
Structural analysis of the deck of a ship, or the floor of a building may require
plate bending anaylsis of similar structures. In problems such as these, a designer
is often interested only in what happens 1o the structure under large loads, &0
that they can be designed to the proper salety factor. In these cases, a very
precise finite element solution is 7t required, since the user is not concerned
with many decimal places of accuracy. However, in other applications such as
analysis of part of an airframe or a satelite, a8 designer may be concerned about
very smo!! displacements because of restrictive tolerances in the structure, or even
the dynamic response. In these cases & very accurate analysis is needed. Thus,
the requirements of a finite element analysis can diller greally from application to

application.

S me AR ma e

it e e =



852

3.3 Plate Bending Finite Element Case Study
Derivation '

The finite element which will be used to discretize and model the structure
ot Figure 3-1 is derived in Chapter 10 of [3].  Important aspects of the
denvetion will be outined here. We have made a change to the derivation and
the subsequent elemental stiftness matrix [K,] presented in [3]. We use a right-
handed coordinate system rather than a left-handed one as in [3]. This change
i5 made by a simple adjusiment of the elemential stifiness matrix equation, as will

be pointe¢d out later in this section.

The concepls for this derivation arice from thin plate theory, where the plate
thickness, or the 2 dimension, is small compared to the size of the plate. In
plate bending analysis, as defined {or Figure 3-1, only the displacement of the
plate in the z direction is defined and is of concern. The dispiacement for any
point on a plate may be written as a displacement flield. w{x,y), in terms of the x
and y coordinates. Expressions for plate bending stresses, strains, and the
resultant forces, ang other struciural mechanics plate bending equations may be
found in 1], [3]). [14], and other lexts. Full details cannot easily be included
here, and they are not vital for presentation o! the concepts and atiributes of a

plate bending finite element problem.

A rectangular plaie bending finite element can be defined as in [3), as
shown in Figure 3-2. The sides of each element are of lengths 2a and 2b, and
the element thickness is t. The element has four nodes, one at each corrir of
the rectangle. Afthough it is wusually of liltle consequence since the plales are
thin, it should be noted that all plates and plate bending elements are oriented
with the x-y plane passing through the ceniroid, or the middle of the plate (since

it is uniform) in z. as shown in Figure 3-t.

To provide a reasonable amount 0Of continuity across elements, three DOFs

are defined at each node n : the displacement w, in the z direction, a rotation
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Figure J3-2: Rectangular Piate Bending Element

0,,50W,/0x aboul the x-axis, and a ro’ation O nr-0W, /8y aboul the y-axis. The
loads corresponding to these nodal parameters are & force in the z direction, a
moment, ©r couple, about the x-axis, and o moment about the y-axis, The nodal
DOFs and loads are shown in Figures 3-3a and 3-3b, respectively. The directions

of the rotations are determined by the right-hand rule.

Z F\'m .
9yn l iy l i "Byn
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Figure 3-3: Nodal DOFs and Loads for Case Study

It immediately follows that the DOF and load vectors for one node n may be

wrilten as

6}« |0

l w
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Fan

{r,} = Fyen (3.1)
Foy|

The element DOF and load vectors for one element e consist ot the veclors in

{3.1) and are defined as

(d.} & 6‘

(rel = f (3.2)

where the subscripts il denote the four nodes on an element (see Figure 3-2).
The order of the nodal DOFs and loads within all element vectors is extremely
important and must be kept the same (i.e. the nofation in Figure 3-2 for all
nodes). The node Ilettering in Figure 3-2 is just one ordering defined for this
problem in [3]. Others could be used, but the entire problem formulation must

stay consistent with those. We note that the vectors in (3.2) are those in (2.13),

(K Hd,} = (r,) (3.3)

We next consider obtaining an expression for the elemental stiffness mairix
[KQJ. An equation formulation similar to the one described in section 2.4 must be
performed, and an equation of the form of (2.12) must be evaluated for [K.].
The {r,] equaton is not evaluated for this case study because no distributed
loads, or initial stresses of strains are involved. The basis functions for each
DOF involve quite complicated expressions and are given in [3]), along with the
other significant formulation steps that will not be repeated here. The proper
equations are evaluated and an explicit equation for the elemental stiffness matrix is

given as [3].
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[Ke] = (1/(60ab))[L1¢D,[K,14D [K;14D,[K 1D, [KIX[L] (3.4)

where

)

D, =D, = E/[12(1-4))
Dl ¥ "Dl
and

D,, * [(1-vy/21D, (3.5)

are elemenis of the elasticity matrix and

i 0 0 O
[L] = Ot 0 O (3.6)
0O 0 I 0
0 0 0 |
and
1 0 0
[ |]= 0 2a 0 (3.7)
0 0 2b

which depends on the size of the linite element. For four nodes per element
and three DOFs per node. the matrices [K,] - [K,] are 12 by 12 matrices given
in [3]. From equations 3.4 through 3.7, the contributions of material properties
(Ewv) and element sizes (abt) are apparenl. Thus, (3.3) is defined in terms of

the vectors in (3.2) and the matrix in (3.4).

As mentioned earlier, the finte element formulation was performed in [3] for
a lefi-handed coordinate system. it is a simple matter to convert (34) to a
right-handed expression. This is the representation we use in this study. To

achieve this, only (3.7) needs to be revised for the right-handed system in Figure

0] 1 0 o] -
I (= 0 -2 0 (3
l' 0 : ~2b

3-2 as
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The displacement field wix,y) for an element i8 determined by the iwelve
nodal parameters, the {d,} vector. It may be writlen as a polynomial expression
with 12 terms as

wiry) = a,taueazy+axieagny
0Vt 0 KO G XY+ ARy e a YOt KOyt a XY {3.9)
PR LA U AL W AR ITA RTINS AT L) -

Equation 3.9 includes all terms through third order and 1two fourth order lerms,
The a's represent 12 unknown constanis which are determined by the 12 nodal

DOFs and their basis functions.

We now discuss conlinuity of the plate bending element. The displacement
field (3.9) varies as a cubic in x for a constant y value, and as a cubic in y
for a constant x value. Thus, along the element boundaries, which are the
interfaces between adjacent elemenis, wixy) wil vary a5 a cubic polynomial. To
examine the continuity across elements, we consider the edge i-j in Figure 3-2
Since this edge lies on a line of constant x, the following equations may be

written for wixy) on this edge (in terms of new coeflicients ¢} as

wixy) = € + Cy + cy° + ¢° {3.10)
dwixy)dy £ Cy + 2c5y + 3c,y° {3.11)
BWIXyMdx = C4 + Cqy + Cp¥° + Cgy° (3.12)

where (3.11) is obtained by taking the derivative of (3.8) with respect to y, and

then substituting xzconstant. Equation (3.12) is obtained similarly.

The four nodal DOFs w; 'vi‘ w, 0“. completely specily the four ¢, and thus
the variations described by (3.10) and (3.11) Thus, the finite element
approximations for wix,y) and its tangential derivative will bLe continuous across
elements. However, the normal derivative (3.12) along the edge is a cubic and
only two DOFs, 4, 6, remain to describd (3.12). Since a cubic cannot be

uniquely specified by two valueg, normal derivatives at element interfaces will not
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be continuous. However, it has been well established and proven theoretically that

this plate bending element is convergent.

3.4 Cease Study Discretization and Stiffness Matrix
Assembly
The plate bending finite element case study problem and model defined in
section 3.3 is used to discretize the siructure described in section 3.2, and shown
in Figure 3-1. The aluminum piate is divided inlo eight elemants, each 1 inch
thick and of size 3 feet in the x dimension and 2 feel in the y dimension. The

dimensions of each element (Figure 3-2) are: a=18 inches, b:12 inches, t=1 inch.

The discretized structure to be used is shown in Figure 3-4. This model
has 8 elements, 5 nodes, and 15x3+45 DOFs (for our case of 3 DOFs per
node). Each eleme.t is oriented in the siruclure as defined in Figure 3-2. No
rotation transformations are needed. Eath element in. the muodel is identical, and
hence evaluation of (3.4) is required only once to assemble [K] for the entire

model.

4 7
3¢

L
FULL S ) S

3® J. g‘ ‘—20 1% Y
8'

Figure 3-4: Discretized Structure
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The nodes in the model of Figure 3-4 are numbered to achieve minimum
bandwidth for [K] as outlined in section 26, Speciically, we number nodes
across the dimension of the model with the least number of nodes, the x
dimension. The bandwidth is given by (2.19), with N3 DOFs per .node and D=5,
1o be BW:z2(3)(5)-1:20. The structure Baliffness malrix is 45 by 45 since there
are 45 DOFs in the model A matrix bandwidth of even 20 still indicates a

significant matrix sparsity.

For our case siudy, equation 3.4 was evaluated digitally. The computed 12
by 12 elemental stiliness malrix used in our simulations is given in Appendix
. The structure s&liffness matrix is assembled according to the rules given in
section 2.5. For our case study, the assembly process consists of adding the
elements of eight ideniical elemental stitfness matrices imo the proper locations in

the 45 by 45 siructure slilfness matrix.

h would be extremely cumbersome o detail the enlire assembly process
here, although stilfness matrix assembly, node numbering, and other problem
formulation tasks are signiticant parts of a finite element problem. This report will
concentrate on the solution of such problems, assuming they are formulated as
detailed in section 24. However, we will detal how one of the eight elements is

assembled, to illustrate the process described in section 2.5

Consider the element of Figure 3-¢ with nodes (58.6.8), corresponding 1o the
(ilk}} ordering defined in Figure 3-2 and equation 3.2. Realize that the nodes of
any single element will be numbered locally (1,23.4) corresponding to the (ij.kl) in
Figure 3-2, as shown in Figure 3-5 A local element is a structure element with
the nodes renumbered beginning with 1. Thus the mapping of local node
numbering to structure node numbering for the element (5F.69) is shown in Table

3.1.

Let the 12 DOFs (3 per node for the 4 nodes of this element) as
described by (3.2) be numbered 1-12. Let the 45 structure DOFs, as described
by (3.13).
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Figure 3-5: Local Etement Numbering

Local Element Structure Element
Numbering Mumbering
1 s
2 8
3 6
4 9

Table 3-1: Local to Structure Node Number Mapping

s 6' 1
b
{d} = . (3.13)
| 518 |
be numbered 1-45. Local node 1 has lpcal DOFs 1,23 . Local node 1 is

struciure node & which has structure DOFs 13,14,15 corresponding to 8g in (3.13).
This iocal to structure DOF mapping is continied for the other three nodes with

the results shown in Table 3.2

The mapping in Table 3.2 completely defines the assembly process. Every

element k.ij in the elementa! stiffness matrix of element (58608), whare i and |

B TS B~
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Local Element Structure Elomant
OOFs DOFs
1,23 13,14,15
456 22,23.24
788 16,1718
10,11,12 25,26,27

Table J-2: Local to Structure DOF Mapping

are the local element DOF numbers, simply is added lo position knwa in the
structure stiliness matrix, where m and n are the structure element DOF numbers
corresponding to i and j, according to the mapping in Table 3.2. In othar words,
the 144 elemental stifliness matrix elements are added to 144 [ocations of the
structure stiliness matrix (which has 45x45:2025 elements) by the mapping in Table

3.2, For turther insight, some specilic assembly examples are given in Table 3.3.

Eiemental Stifiness Structure Stitiness
Matrix Element is ac'ded tlo Matrix Position
{11) (13,13)

{4,9) (22,18)
{10,11) (25,286)

{2.8) {(1417)

Table 3-3: Elementa! Stitiness Matrix Assembly Examples for Element (5.8,6,8)
ot Figure3-3

The result of this targe and tedious assembly procedure is the 45 by 45
structure  stiliness matrix  [K], with a non-zero element bandwidth of 29. The
sliffness matrix possesses all the properties discussed in section 2.8, some of

which will be detailed in the next section
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3.5 Case Study Stiffness Matrix Details

The completely assembled structure stiltness matrix [K] is listed in Appendix
l. A factor of 10° has been factored out of the mairix. Pounds are the units
for the loads, inches lor the displacements, and radians for the rotations. It can
readily be seen that the stifiness matrix is symmetrnic and diagonally dominant.  All
the diagonal entries are positive (a necessary condilion for a positive definite

matrix).

The sparsity of the slitness matrix is rather pronounced, even for such a
small case study problem. There are 1140 entries in the band, out of a total of
2025 stffness matrix elements. The bandedness of the problem guarantees that at
least 43.7% of the elements in [K] are zero. However, about hall the band
elements are also zero, yielding 557 or 28.5% non-zero elements in [K]. This
matrix is a good example of how a profile slorage lechnique can take advantage
of the zeros within the band for a more ellicient storage scheme than band
siorage. However, because of the parallel nature of our processor, nuch

techniques are not useful in this study.

The dynzmic range o©of the stifiness matrix was found to be quite large. as
expected. The smaliest non-zero magnitude is 0.00021152, the largest non-zero
magnilude is 8.37760067. Thus, the dynamic range is almost five orders of
magnitude. An accurate solution of this finite element problem requires a
processor which can adequately represent the enfire dynamic range of the stiffness
matrix. Even the truncation ol the smallest matrix elements to zero can introduce
large errors in the results. This is because every non-zero value represents a
coupling action of one DOF with the load on another DOF, A break in the
continuity of such actions within a model often produces disasierous results. To
represent a dynamic range of 108 at least 17 bits are required; 2'7:1.31 x 105
Our processor described in Chapter 4 uses 32 bits, which allows a dynamic range

of 2%%:429 x 10° to be represented.

¥.aY
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3.6 Summary and Conclusion

A standard plate bending finile element has been used to discretize and
model an aluminum plate. The structure is simple but very appropriate for an
iniial  case study in the apphcation area of finite elements. The problem
formulation resulted in a struCture stiffness matrix tha! demonstrates all the expected
properties ©of a finite element problem. Specifically. the dynamic range of the
slifiness matrnix is five orders of magnitude, requiring a processcr with at leas! 50
d8 of dynamic range. Thus, the need lor a processor with many bits of

accuracy was demonsrated by our simple case study.

[a—
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4. Optical Linear Algebra Finite Element
Processor

4.1 Introduction

This chapier will describe an oplical processing system suitable for the
gsolution of fhnite element and banded matrix systems of equations, High-speed
optical processing is combined with digital data encoding to yield accurate and fast

solutions.

First, the limitations of proposed analog processors will be discussed (section
4.2). Next the operation of our processor is described in general terms, and ila
performance is evaluated (section 4.3). Fabrication of a specific system s
discussed in terms of presently available components {section 4.4), and the
algorithm for the solution of finite element problems is then presented (section 4.5)
it wil be shown how a direct solution can be implemented with only one channel
of the processor, and other performance characteristics will be mentioned (section
4.6). Finally, the problem of very large systems of equations i8 addressed

(section 4.7).

4.2 Analog Optical Processors

Many optical processors have been proposed [15-18] to compute matrix-
vector or maltrix-matrix products. Most of these represent each number as one
analog signal, ary perform multiplications accordingly. One such architeclure is the
basic frequency-multiplexed optical matrix-matrix systolic array processor [18]. A

schematic diagram of the processor is shown in Figure 4-1.

Many types of matrix-matrix and matrix-vecior manipulations may be
impleriented on this processor. The most basic application, a matrix-matrix product,

can be described by considering the following equation

AB s C (4.1)
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Figure 4-1: Frequency Multiplexed Optical M-M Processor
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As indicated in Figure 4-1, the M point modulators {laser diodes or a multichannel
AQ cell) are imaged through M regions of the acousto-optic (AO) cell (each
region separated in time by Tg). After leaving the cell, the entire light distribution
is collected (summed) by the Fourier Transform lens and focuse¢ onto an ouiput
linecr detector array. Light corresponding to each information frequency in the AQ

celi focuses onto & ditferent drtector in the output array.

For N by N matrices, (2N-1) point modulators are required. They are fed
with the elements of 8, encoded in space x and time i as bi{xt). The point
modulators are fed with one row or column of B every bil time T, The N point
modulators used for the b(xt)'s are shifted by one each Tg, beginning with the

lower N point modulators at the first Ta'

The corresponding columns or rows of A are fed into the AQ cel encoded
in frequency  and time t as a(ft). There are N frequencies used 82 that the
entire A matrix can be present in the cell. As the a(ft) data propagates through
the cell, the b(xt)s are applied to N differant point modulaior locaiions, thus
tracking the propagating a(fl) data in the AO cell. 'i'hua. a bint)} vector at the
input is multiplied by the a(ft) matrix in the cﬁll. and the mailrix~vector product,

S
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Abzc, vector appears on the detector array every Tp. With a new golumn of B
entered each Ty after a time NTg the matrix-matrix product in (4.t} is produced
as c(xt). By recycling the matrix data in the cell, only N point modulators are
required. By pulsing the point modulators faster than once each T, the matrix

product can be produced in less time.

The system just described, and similar analog optical systems are very
attractive for obvious reasons. Unfortunately, the accuracy of such analog systems
is limited by the linear dynamic range of the components used, optical and
electrical noise in the system:, and by practical alignment capabilities. The
dynamic range of the components is the major limitation, and their performance will
probably not improve significantly in the {orseeable fulure. AO cells have a linear
dynamic range of 30-40 dB, and multi-channel AQ cells are also limited by optical,
acoustic, and electrical crosstalk. Detector arrays typically have linear dynamic
ranges {a! useable speeds) ol a few thousand to one ({(although individua! detectors
can achieve S50 dB dynamic ranges). Point modulators (especially multi-channei AQ
cells) also typically have a 30-40 dB linear dynamic range, although some new

laser diodas can achieve a 50 dB dynamic range.

In the most optimistic scenario, an analog opticat processor could be
fabricated with a linear dynamic range of 30-40 dB.  This ftranslates inlo about
9-12 bits of accuracy. Twelve bit accuracy is not useful for maost significant
scientific calculations. If an optcal system could be' built with 80 dB dynamic
range, i1 would only provide about 16 bits of accuracy. This might be sullicient
for some calculations, but it does not compare with the 32-bil accuracy easily
achievable on most digital systems. Even more important, 50 dB dynamic range is
still insuticient for most significant scientific calculations (including large finite
element problems). As demonstrated by the case study results in section 3.5, an
optical processor is needed with much more accuracy than analog optical

processors for the solution of finite element problems.

Y b+ e e e .
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One obvious solution to this problem is to represent data digitally in an
optical system. The digital encoding may take place in one of three available
dimensions: space, time, or frequency. in each case, the linear dynamic range
requirements are greatly reduced. For binary encoding, only two analog levels
need to be represented in the processor (0 and 1). . thus a dynamic range of
only 3 dB is required. Such encoding is obtained al the expense of increased
size and decreased speed of the processor. However, such ftrade-offs are
reasonable considering available compenents. The use of multiple levels {not just
two) for encoding is another preferable allernalive to speed and complexity trade-
offs, and it will be discussed when appropriaite. In the optical processor we will
consider, fixed point representalion is used. Approaches 10 implementing floating
point operations optically is a subject for fulure research, Our proposed optical

processor architecture is described in the next section.

4.3 Digitally-Encoded Optical Processor Architecture

Two binary-encoded numbers are easily represented in an optical processor,
as mentioned in the previous section. Multiplication of these binary encoded
signals 10 produce a meaningful product can be achieved by forming the

convolution of each number's bils as we now discuss.

Consider the multiplication of two 3-bit binary eﬁcoded numbers, byb,b, and
a,a,3; where each bit b, and a, is a one or a zero. The most familiar method
of multiplying these two numbers is iflustrated in Figure 4-2. This is the popular
shift-and-add method. The product is obtained by multiplying each C, value by its
appropriate power of two, and adding the results together. Each ¢, value is the
sum of the corresponding shifted partiad products in the corresponding column in
Figure 4-2. The c.'s are mixed binary numbers (ie. their value may be any

decimal number). in the example shown, each c, can have a wvalue from 0 to 3.

Determining the c's in the standard shifi-and-add mulliplication method is the

n
primary operation involved in computing the product. From Figure 4-2 and 4-3 we
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Figurs 4-2: Muttiplication by Shift~and-Add Method

0
3 a i a, 8, —»ab =c
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PRODUCT = (c0x20)+(c1x21)+(c2x22)+(c3x23)+(c4x24)

Figure 4-3: plaltiplication by Bit Stream (Digital) Convolution
see that the c 's are simply the convolution of the bits of the ancoded numbers.
As shown in Figure 4-3, as the two bit streams are slid across each other,
multiplied and the partial producis summed, the outputs at the five intervals shown
are the ¢.'s. Since convolution is formed by reversing the order of cne of the
wavelorms, the least significant bits (LSB's) form the first partial product. The ¢,'s
of Figure 4-3 are identical to those of Figure 4-2.

This example can be extended 10 any nuivber of bits, and any radix. Thus,
multiphcation of two encodad numbers can always be performed by convolving the

two number's bit streams, and weighting the results by the appropriate powers ¢!

T e
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the radix used. This concept was proposed by Whitehouse and Speiser [19] for
implemenling fast multipliers using CCD convolvers. It was introduced 1o optics by

Psalis and Casasent [20].

Fortunately, convolution is an operation that is easily implemenied on optical
Processors. One approach is to multiply the Fourier Transforms of the encoded
data, and then form an inverse Fourier Transform of the product. This yields the
convolution of the encoded data. Since lenses produce Fourier Transforms and
Inverse Fourier Transforms, this method is very appropriate. It is detailed in [20].
However, this convolution implementation at high spee'd requires high frame rate
spatial light modulators on which to record the Founer Transform of one of the
numbers. Such devices do not yet exist and thus other ortical convolution

approaches are preferable.

The prelerable approach for implementing convolution on an optical processor
is to use an AQ celi to represent the bit stream of the multiplier and the
multipicand.  Multi-channel AO cells can be used to convolve many bit streams in
parallel. This method is described in [21], [22]. Reference [21] details a
systolic multi-channel processor. These systems perform the convolution in Figure
4-3 in space, and the AO celils are used to provide time sequenﬁal shifting of
the bit sireams. An example is shown schematically in Figure 4-4 for the

multiplication of the numbers 5 and 3 enccded in three binary digits.

The two AO cells are imaged onto each other. The product of different
shiftad bit streams is thus produced sequentially in time. The output lens forms
the sum of the partial products on the detector. The data is fed, as shown, with
the LSB entered first in each ceill. The five convolution values obtained on the
detector at successive fime intervals are shown. When these are mulliplied by

the appropriate powers of two and added, the desired product of 15 is obtained.

A method for optically multiplying digitally encoded data using veclor outer

products is presented in [23]. implementation requires the use of spatial light

A\
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PRODUCT = (1 x20) + (1x2') + (1x2%) + (1x2%) + (0x2%) = 15

Figure 4-4: Digital Convolution With AQ Cells
modutators, and thus is less aftractive because of the slow rate at which guch
devices can be updated. Reference [24] presents an algorithm using 2's
complement encoding to muitiply bipolar numbers by convolution. This method
requires the size (number of bits) of the jroduct 10 be known a priori, and the
architecture requires a 2-dimensional spatial light modulator and a 2-dimensional

detecter array. Thus it has practical speed and data readout problems.

The approach that we will use 1o implement the convolution on our processor
is the shift-add method of Figure 4-2 using the architecture ©f Figure 4-5. This

method will be shown to be very usefu! for banded matrix calculations.

in this example, the 5-bit binary representations of 27 and 13 are multiplied.
The bits of 27, the multiplicand, are present simultaneously in the five adjacent
point modulators al P, The bits of 13, the multiplier, are fed serially to a single
input point modulator al P,, which is imaged onto all five channels of the P, point
modulator. P, is imaged onto a delector array at P, The conlents o! P, are
thus incident on the P; detectors it the corresponding input P, bit is & 1. The
contents of the P, detectors are shiflted by one at the same rate as data is fed

o P,. Thus, the product of the data in Pz and the current input bit 1o P, is

B el
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Figure 4-5: Optical Convolution of Digital Data via the Shift-Add Method
added to a shifted wversion of the previous input and I"2 product, and (o

subsequent products, by detector integration.

The detector array has five elemenis (as does the P, point modulator). The
process of multiplication, shifting, and summing is repeated for all input bits fed to
the P, point modufator. This produces & mixed binary output from the detectors
that is the product as in Figure 4-2. The newest least significant bit is valid and
is shifted out on each shift cyue. The mixed binary values can then be
multiplied by the appropriate powers of two and added to produce the product
13%x27=351, as shown in Figure 4-5,

It is easy 10 extend this architecture to form a processor that can multiply
several such numbers in parallel. To achieve this we simply use several input P,
point modulators and divide each channel of the P, AOD cell into several regions.
Figure 4-G shows this architectura for the paraltel multiplication of three pairs of
encoded numbers. With 3 separate 1-dimensional shift-and-add oulput detector
arrays, the 3 products are produced in parallel.  With one output detector array
{as shown in Figure 4-6) the sum of these 3 ‘produms is produced. This latter
operation is preferable as it is the one required in matrix-vector multiplication

{specifically in producing a vector inner product).

FJ
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A mult-channe! AQ cell is used at P, in Figure 4-6 in place of the point
modulators in Figure 4-5 and a t-dimensional array of point modulators is used
for the bit sgerial inputs at P,. If N bits are used in the number representations,
an N-channel! AQ cell is needed a! P, {tive channeis are shown in Figure 4-6),
each channel carries one of the N bits. An array of M input point modulators is
used in P, (three are shown in Figure 4-6). A bit is presented to each P,
point modutator every T, seconds. Each channel of the mulli-channgl AOQ ceil is
divided into M regions. The light irom each P, point modulator is imaged across
a diflerent region of each channel of the cell in P, Data is input to the N-
chanrie! cell in word parallel form every T, seconds, where T2=NT,. Thus, a
number's bit siream, or binary word, is present in a regioh of the cell for T,
seconds, then it moves into the next region «f the cell. During each T, N Dbits
(one every T,) are presented to the P, point modulators. Thus, the light leaving

P

, in Figure 4-6 is M of the operations done n Figure 4-5.

The light leaving P, is collected by cylindrical lens L,, which sums the
output from each of the N AO cell channels in P, and focuses each onto a
separate one of N detector elements in the shifi-add output detector array in Py
The output array shifts and adds the incident light every T,. The values in the
detector array thus represem the sum of M multiplications of the form in Figure
4-5, Since the data incidem on the detectors is mixed-binary, any number of
multiplications M may be sumn-ed. Each mixed-binary wvalue shilted out of the
detector every T, {once a bit is shifted out of the N-element detector array, il is
valid) is analog-to-digital converted, multiplied by the appropriale power of two, and

then added to the output at the next Ty

The system thus produces the addition of M multiplications with N-bit
accuracy every T, In other words, the processor of Figure 4-6 performs an M-
element vactor inner product (VIP) every T, (M multiplications and M-1 additions).
We define the processor as having M processing, or processor, channeis (as
opposed to the number N of AQ cell channels). A single processor channel is

shown in Figure 4-5.

1



g/

JRIGH - \L PLO
OF POOR QUALIY

72

Binary Encoded Optical Linear Algebra Processor

Figure 4-6:
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We have thus shown how the processor of Figure 4-8 can perform vector
inner products with N-bit accuracy. An algarithm will be prasented in seclion 4.5
which detais how this processor is ideal for solving banded matrix problems
(speciically a finle element system of equations). Now we will address the issue

of handhing bipolar data on this processor,

The cylindrical lens L, of Figure 4-68 sums the outputs from all M regions of
each channel of the AO cell in P,  This presents a problem when the products
leaving P, are bipolar. Since we have only used the magniude of the numbers
for binary encoding, the processor and thus lens L, can only ftreal signals as
positive numbers (unipolar). Pruceessing bipolar data requires specialized freatment.

Some methods to achieve this are now discussed.

If it could be guaranteed that all the products leaving P, are of the same
gign for a given T, (each component of the VIP i3 either positive or negative), a
simple digital iugic test can be used 10 determine the sign for the vector inner
product. In this case, the numbers would be represented digitally with a sign Dbit
(i.e. in sign-magnitude form), but only the magnitude bits would be entered into the
processor as before. The processing simply requires calculation of the exclusive-
or of the sign hits of the two numbers being multiplied. This can be performed
within the microprocessor. The result must be available before the current T,
period is over (this requirement ig frivial), I the resultant exclusive-or is a 1, the
sign bits of the mulliplier and multiplicand differ, and the product is negative; if the
result is a O, the product is positive. If not all the products leaving P, have the
same sign, then this method cannot be wused for an M-element VIP. However, it

can always be used for mulliplying two numbers

It the integrating cylindrical leas L, is replaced by an imaging lens, and M
detector arrays are used {one for each region of the cell), the above exciusive-or
method may be used to deiermine the sign of the product produced on each

detector array. The VIP would then be assembled within the microprocessor by

L
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simply adding or subtracting the products accordingly. The drawback of this
method is that M detector arrays are required in P, and that Ihe additions or

subtraction to form the VIP must Le done digitally, rather than with a lens.

Another approach to wusing bipolar data on our processor is 10 double the
size of the problem by expanding the inatrix equations intfo & positive and a
negative part, as detailed in [18]. This method requires no modification to the

processor, however the processing time is doubled.

Reterence [24]1 suggest bhandling bipolar data with twos complement data
encoding. A similar twos complement representation can be implemented on our
processor to handle bipolar data, with some special care. This process is not
presented in this report due 1o the timeliness of its formulation. It is a subject
for future work und will be presented in a forthcoming document. However, we
will show how the exclusive-or test for one multiplicaltion is adequate to handle

bipolar data for the direct algorithm we will implemant on the processor.

The epproach to bipolar handling that we will use for finite element problem
processing is the exclusive-or test method. The algorithm presented in section 4.5
shows that only one processor channel is needed for finite element problems.
Thus bipolar data is easily handled by comparing the sign bits of the data in P,

and P, of the single processor channel thal is used.

4.4 Processor Performance and Fabrication

This section will discuss performance and fabrication issues for the processor
of Figure 4-6. Many high-spced optical architectures have been proposed, however
very little is ever documented aboul how data can be realistically input to and
output from these sysiems, since those operations must be controlled digitally. We
will discuss specific analog and digital bhardware systems tha! are capable of
gupporting the data th-cughput of our processor at good performance speeds.

This hardware is being fabricated at Carnegie-Mellon University (CMU) for the
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purpose of testing the laboraiory performance of our proposed processor. Some

general optical processor fabrication issues are discussed in [25).

To compete with the accuracy of digital computing sysiems, the processor
should be capable of 32-bit encoding, or N-32.  This requires a 32-channel AOQ
mndulator for P,  Such a device, built by Crystal Technology, Inc.. was recently
purchased by CMU  No perlormance tests have yet bsen periorined on the cell,
but some design speciications are given below:

e 32 channels, TeO, longitudinal mode.

s 5 microsecond aperture lime

¢ Channei-to-channel crosstalk better than 30 dB over 3 microseconds.
e 200 Mhz bandwidth centered at 400 Mhz or less

¢ Operation at x=633 nm or X820 nm.

The 32-channel cell specilications are used to sel some performance
measures flor the processor. We will consider a processor with 10 input point
modutators in P,, or M=10. This is a realistic fabrication level. A larger P, input
array would creal2 a large system anamorphism, since the 32-channel cell aperiure

is only a few centimeters long. Specilic input array devices are discussed later.

We will assume that all of the 5us aperture of the 32-channel cell is
useabla. Since there are Ms=10 point modulators. each channel of the cell is
divided into 10 regions, each region with an aperture of 05 gs. The period
T,:05 ps is the time it takes the word parallel data to p.onagate through a

region of the cell, ie.
10 % Ty = Sus » Toopne (4.2)

During each T, each input point modulator is pulsed on with the N bits of an

nput word sequentially every T, Since Ne32,
32T, = T, {4.3)

and from (4.2) and (4.3),

S—
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10 x 32 x T, « O5s (4.4)

Solving for T, yields T,=15625 nsecs. Thus, to run the processor with Ns=32 bil
accuracy. binary encoding, and Ms10 inpu! point modutators, data must be fed to
the point modulators, and shifled and added in the detector array, at 1/T, or 64
Mhz. We now discuss processor operation and input and outpul circuitry at this

speed.

The processor parforms a 10-element VIP every T, or 05 us A 10-
element VIP consists of 10 multiplications and @ additions. Thus, the processor
computes 2x107 multiplications and 1.8x107 additions per second. This optical
computation rate is not as fast as many proposed optical processors, but two
things must be considered: 1) this processor compules with 32-bit accuracy, 2) we
will document realizable circuitry to0 input and oulput processor data, unlike many

high speed optical processor proposals.

The P, input point modulator array can be fabricated with three types of
devices. Each will be mentioned here, a more detailed discussion about fabricalion
is in [25). An array of point modulators could be built using separate LED's or
laser diodes (LD's). Such an array could use graded index {(GRIN) optical
elements 10 couple the light from each source (0 a point, for input to fiber optic
interconnections. The fiber optics terminate in another se! of GRIN elements. The
second set provides lighlly packed separate collimated sources. These arrays
provide dense, low divergence sources, however, they are difficult to fabricate, and

single-mode fibers are diflicult to align.

Another point modulator array alternative is an array of collimating pens. A
collimating pen is a iaser diode with individual collimating optics. Several collimating
pens are commerc.ally available, making their use attractive. Reducing optics is
required 1o produce densely packed beams covering the 21 cm, 5 us aperture of

the 32-channel AD cell at P2.
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The besl point modulator array choice for our processor is a mulli-channe|
acousio-optic point  modulator cell These devices have 8 very low beam
divergence angle, They require magnification or demagnification optics, but only
one device nseds 10 be aligned. Multi-channel AQ cells, a8 discussed eartier,
pose some limitations for analog systems. Specilically, elactrical, acoustic, and
oplical isolation beiween the channels, However, for digitally encoded systems
such as ours, where dynamiC range requirements are greally reduced, these

devices are very appropriate,

Since M=10 in ouwr procassor, a 10-channel AC cell is needed for an input
array. A 10-channal cell appropriate for point modulator use (small aperture time),
was recently purchased by CMU from Crystal Technology, Inc. Some specifications
are given below:

e 10 channels, TeO, longitudinal mode.

¢ Point modulator operation {(less than 2 microsecond aperture time).
o Channel-to-channel crosstalk better than 30 dB.

¢ BO Mhz center frequency

e Operation at =633 nm.

We now describe the input circuitry that will be used to feed data 10 the
point modulators at 64 Mhz. At CMU, we are currently assembling a system that
employs parallel high-speed bullers, with access times of 100 nsecs. The system
has 6 boards, with 8 memory channeis per board, each 12 bits wide and 4K
(words) long. With a 100 nsec access time, each 12-bit word in a channel can
be updated at a rate of 10 Mhz., An ECL nmultiplexer can be used to scan 10
of the bits of a channel at 100 Mhz, providing a 100 Mbit output. Since 100
nsecs are required to scan 10 bits at that rate, the channgl data can be updated
when the next 10-bit multiplexer scan is ready. The scanning rate can be
reduced to achieve 64 Pinz or any other desired speed below 100 Mhz. Thus,
10 memory channels would be needed to drive the M=z10 point modulator array,

and there are 48 available,

ER" Wy
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The digital system is completely programmable, and in operation, the data will
ve downloaded firom main memory into the paraltel high-speed butlers. The
bulters, 4K words long, w»:l be refoaded as the current data is being fed 1o the
processor Thus, we will operate the system in a burst processing node, where
the processor runs at full speed, but data flow can be stopped (o unload and
reload the butfers. This provides an efficient method of testing the processor at

the full data flow rate.

The dynamic range requirements of the processor, through P, and P, (see
Figure 4-6), are quite low. If binary encoding is used, only two levels need 1o
be represented in the point modutators at P,, and the mulli-channel AO cell at P,
Binary encoding transtates into a dynamic range requirement of 3 dB This
isolation level is easily achievable in the multi-channel AC cells ot P, and P, (see

the 32-channel and 10-channel AQ cell specifications earlier in this section).

Fabrication of the siiit-add detector array of P, is not ftrivial for a f4 Mhz
shift rate. A linear CCD detector array ig an obvious first consideration. Each
detector element in the array produces an amount of charge proportional {o the
infensity of the light that is incident on it. This charge is transferred and added
to a CCD analog shift register, which shilts the packeis ol charge from one
element to the next The charge is usually serially output at one end of the
shift register. This output could be fed into a single anaicg-to-digital converter, as

shown schematically in Figure 4-7.

Since N:=32 in our processor, a 32 element detector array is needed. These
detector arrays are commercially available with 64, 128, 256, 512, efc., elements.
However, the maximum sample rate for these devices is 10 Mhz, with 20 Mhz
promised in the near future. At these rates, the dynamic range of the deteclors
is severely limited. At 10 Mhz, dynamic ranges of only 100:1 are possible, with
some improvement if the detector array is cooled and if a lot of ligrt is used.
Useful devices shifting at 64 Mhz do not seem feasible in the forseeable ftuture,

with the possible exception of some GaAs devices.

- gl
-
-



79
| — ™

| (oerecrorl [oerector] - [oerecton DETECTOR| | y

| L] 2 3 32 | ’

| : JL J" M

! CCD ANALOG SHIFT REGISTER |

I M1CROPROCESSOR

Figure 4-7: Linear CCD Deiuctor Array Configuration

For binary data encoding, general purpose dynamic range requirements can be
specified for the detector system. |If a linear CCD detector array is used, each
CCD analog shift register element needs a Jynamic range of 320, since a maximum
value of M=10 can occur on a detector, and there are 32 detector elements.
Aclually, the shift element register for detector | needs a dynamic range of 10,
the register for detector 2 requires 20, etc, and the register for detector 32
needs a dynamic range of 320. Since ihe linear CCD detector array is fabricated
uniformly, a dynamic range ol 320 (or 25 dB) is required. This is difficult at 64
Mhz. It may be possible with GaAs technology, but such devices are not yel

available.

The single A/D converter in Figure 4-7 must convert 320 levels. Thus, a 9-
bit analog-to-digitis' converter is required. However, the fastest 9-bit A/D converter
commercially available runs at only 20 Mhz. Thus, the detector array configuration

in Figure 4-/ is not very useful for our purposes.

in order to operate ai 64 Mhz, the detector array configuration we will use
consisis of N=32 individual detectors, 32 A/D converters, and 32 high-cpesd ECL

registers. The arrangement is shown schematically in Figwe 4-8.
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Figure 4-8: individuai Detector/ECL Detector Array Configuratisn

This conliguration uses parallel rather than serial output from the 32 deteciors.
The output from each individual detector is A/D'ed every T, at 64 Mhe The
output from each A/D is added to the contenis o' a digital ECL register. which
includes addition logic. The ECL circuitry shifts the contents of each register to
the next register every T, With ECL circuitry, 64 Mhz shift rates are easily
achievable. This configuration requires N:=32 A/D's and N232 ragisters, but it
avoids the dynamic range and speed probiems of using a linear CCC detector

array.

The detector arranygement of Figure 4-8 has rsalistic requirements, and it was
chose for our proposed processor. Each detector requires a dynamic range Gf
[M=10]+1 (1 for the zero levei). Thus, each A/D must convert 11 levels, which
requires tour bits. Individual detectors c¢an operate at 64 Mhz with 11 levels, or
about 10 dB of dynamic ranpge, quite easily, Four bit A/D converters &org
commercially available at speeds of 100 Mhz. Thus, this detector arrangement car

be buil! tor 64 Mhz operation with existing electronics.
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We now consider the case of encoding in a radix other than two. If radix
R is chosen, and the deteclor array of Figure 4-8 is used, each detector would
require a dynamic range of 10x(R-1)2+1, since (R-1) is the maximum level
possiv’e in P, and P, and they could multiply each other, plus one for the zero
level. Each A/D corverter would require LOG,{10x(R-1)2+1] bits, rounded to the
next largest integer. The larger the radix R, the larger the dynamic range
requirements become. However, wilti a larger R, fewer than 32 channels and
encoded bils are required to obtain 32-bit (radix two implied} digital accuracy.
Also, processing time is faster because lesg than 32 T,'s are required for each

T Likewise, use of 32 channels and encoded bits with an R greater than two

-
would result in & computational accuracy greater than 32-bils, with the same

processing speed. These issues will be considered in more detal in future work

There is another requirement of our processor that makes the individual
detector/ECL detector array configuration more atiractive than a linear CCD detector
array. At the end of every T, there are siill N mixed binary values present in
the detector array. it a standard CCD &rray was used, these N values would
have to be =norially shifted out and A/D'ed, causing a delay in the processing
because T, would need to be longer {han NT, I the CCD analog shift register
could be emptied in parallel to another CCD register, processing could proceed
without delay. however, such parallel output devices do not exisl When the
detector configuration ¢f Figure 4-8 is used, the N values are A/D'ed in parallel,
and the contents of the ECL registers can be ‘ransterred to the microprocessor in
parallel via the digital hardwire. Thus, no delay exisis when the arrangement of

Figure 4-8 is used.

A final comment should be made about the operatiun oY our proposed
processor in Figure 4-6, As explained carher, the word parallel data fed into the
N=32 cihannels of the AO cell in P, moves through one of the M=10 regions of
the cell every T, Within each T, the word parallel data in each region is

multiplied by N=32 bit serial values from the corresponding input point modulaior.

|
#
|
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i the word parallel data was input to the multi-channgl cell &8 continuous dala,
there would be an overlap of data in each of the Ms10 regicis, within the Ta
periods. This, of course, is unacceptable. Thus, the data cannot be inpul
continuously, but must be fed to the cell in pulses. Specifically, each pulse must
be T, long or less to avoid any overlap into ihe next region. |l each pulse is
exaclly T, long, it will enter a region at the start of a T, period, and leave and
move into the next region exactly al the start of the next T, period. Thus, light
will no* be modulated by a signal in the full 21/10=2.1 mm of a cell region, but
rather by a signal 2.1/N=32 = 0.086mm long. Thus, this represants a reduction of

light intensity leaving P, by a factor of 1/(N=32).

4.5 Finite Element Processirg Algorithm

it has been shown in section 44 that the optical processor of Figure 4-6
will compute an M-element VIP every T, with digital encoding and digital accuracy.
The architeciure is very general purpose, and can be wused to implement many

matrix-matrix and matrix-vector manipulation algorithms.

The focus of this research is to solve systems of linear algebraic equations
(that arise from linite element analysis) on an optical processor. As we have
seen in Chapter 2, the linite element equations in matria form yield a well-banded
matrix when formulated properly. It is appropriate to uxploit this bandedness when
implementing a solution algorithm on the processor, _and we will shnw how the
optical processor of Figure 4-6 is well suited for a band oriented algorithm.  First
we will show, in general, how the computation ot a banded matrix-vector product
may be implemented on the processor. Then we wili detail an algorithm for

solving finite element eguations which involves many banded matrix-vector products.
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4.5.1 Banded Mbatrix-Vector Multiplier

To illustrate how a banded matrix-vector product can be implemented on oOur
optical processor. we will schematically represent the processer without the digital
enccding. Thus, for clarity, the data flow wili be explaned as if an analog
processor was used. This in no way lmits the periormance ol ths digitally
encoded processor, since the sgsame architeciure is wused ir terms of the
multiplications. The time between VIP's, Tz' is often calied the bil time, cr Ta' in
analog processor descriptions. Thus, in the data flow explanations below, the

digital encoding is supressed, and Ty is effaclively the same as T,

Consider the banded maltrix-vector egquation
Ab = d (4.5)

where A is a banded matrix. This equalion is expanded in the top part of Figure
4-9 for the case of a 7 by 7 matrix A with a bandwidth of 5. The wvalues ot
A and b are known, and the desired matrix-vector product is the vector d. The
components of d can be obiained by the algorithm illustrated in the lower part of
Figure 4-9. This algorithm is similar to one described in [17). The processor
requires a number of point modulators equal to the bandwidith of the matrix. As
shown in Figure 4-9, each diagonal of the matrix is fed sequentially ..o one of
the point modulatars (i.e,, one row of the matrix is fed in paraliel to the point

modulators).

The squares in Figure 4-9 represent the 5 required point moduiaters, P, of
Figure 4-6, and the long rectangle represents the acousto-optic cel, P, of Figure
4-6. Note that only the inputs and outputs for the first 6 bit times, Ty of the
algorithm are illustrated in the figure. The components cf the vecter b are fed to
the AQ cell, and the band elements of A are fed tc the point modu'ators with
proper timing. Note that the upper diagonal is input to the lower \(lirst) point
modulator, the main diagonal to the middie point modulator, and the lower diagonal

to the upper (fifth) point modulator. A new row of A elemenis is input every T,
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Figure 4-9: Banded Matrix-Vector Product Algorithm
and the b eiements move to the next point modulator's region of the cell every
TB. As the b elements propagate through the AQO cell, the proper A eiements
dre fed to the point modulators to form the required partial products at the output.
The outputs leaving the 5 regions of the AO cell at P, at each Ty are shown at

the right i Figure 4-9.

In Figure 4-8, the bit time indices above the columns represent the bit time
when those inpuls are applied 1o the point modulators, and when those outputs
are present as light leaving the cell The indices next to the b conponents

represent the bit time when that component enters the cell (ie. is in the region

s <)
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of the lower ({lirst} point modulator). it can be seen from the figure that the
partial products formed by the system, when added together at each bit time, sum
to one of the d components. Specitically, d, is formed first, and d, is flormad

at the last bit time.

Thus, the algorithm illustrated in Figure 4-9 may be used 1o compute any
banded matrix-vector product. The algorithm is wvery attractive since only the
elements ol A within the band are processed, uliminating time consuming processing
of the non-band zero elements. The illustration in Figure 4-8 is simply an analog
schematic of the processor of Figure 4-6. Physically, the summatisn of the partial
products, output from the system of Figure 4-8 every T, is performed by the
cylindrical lens L, in Figure 4-6, to produce the components of d. Again, the bit
time Tg in this explanation corresponds to time T, in our digitally encoded
processor of Figure 4-6. The digital encoding is simply manifested in the N T,'a

which equal Tz. and the extra dimension of the N-channel AQ cell

4.5.2 Diract LU Decomposition

Finite element equations may be solved by direct or indirect (iterative)
solution methods, as mentioned in Chapter 2. Since direct solution methods are
more popular, implementation of a direct solution methud on our oplical processor
will be examined. However, indirect solution methods have some advantages and
are equally applicable for this optical processor. This subject will be discussed

further in Chapter 6.

The goal of all direct solulion methods is to reduce the {ull system of

equations to a ftriangular system. Cansider
Ax = b {4.6)
where x is the unknown vector. The matrix A can be decomposed into the

product of a lower L and an upper U friangular matrix. This is the well known

LU matrix decomposition. Equation 4.6 can then be expressed as
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LUx = b (4.7)
Equation 4.7 can easily be solved by first solving

Ly = b {4.8)
for y by forward substitution, and then solving

Ux = y (4.9)

for x by bach substitution.

Since L and U are ftriangular matrices, the forward and back substituiion
processes are Irivial, even for very large matrices. Both operations can be easily
and quickly performed in digital hardware. The computational burden is performing
the LU decomposition. We will use the optical processor of Figure 4-6 to

pertorm the friangular decomposition ol finite element systems of equations.

Many types of direct algorithms and decompositions exist. We will use LU
decomposition since it is easily implemented on our optical processor. A
symmetric Cholesky Ly decomposition could also be implemented, but we will
show that it requires extra work Ilater in this section. The LU matrix
decomposition algorithm we will use was first described for an optical processor in

[27]). The aigorithrm may also be ijound in [32] and other linear algebra texts.

Consider equation 4.6. For an N by N matrix A, N-1 steps are required to
produce a friangular matrix egquation. Each step involves a matrix-matrix
multiplication, The matrix AX, where k is the step index and A'=A, is premultiplied
by a decompositionn. matrix P*, 1o form A*' at each step k, ie. the process is:
form A**' = P*Ak for k=1, ., Nt , where P* i a lower ftrianguwar matrix. It is
a wunit diagonal matrix with non-rero ofi-diagonal elements only in column k.

Column k of P* can be written as the column vector c". where

¢k =0 for i<k, i.e. zero's above the diagonal
¢t = for i=k, ie one on the diagonal
¢k = -atk/a k for >k, i.e. below the diagonal



a7

Thus, the c* values are calculated from the A* matrix elements. It ghould be
nofed that a necessary condition for this algorithm is than no main diagonal
element of A is zero. This condilion is guaranteed if the matrix A is positive
definite or diagonally dominant. In conventional uses of the algorithm, a zero (or
small number for accuracy purposes) on the main diagonal would require pivoting,
which cannot be done with our implementation of the algorithm. Thus, the matrix

P* has the form

T ——
]
L th
) 1 LY
[P = O X1
(O
X i
T——kth COLUMN

After step 1, the first element is the only non-zero element in the first
column of AZ.  After step 2, the first elemeni in the first column, and the first
two elements in the second column are the only non-z¢ro elements in the first
two columns of AJ  This paltern continues, where the first k columns of A**'

are upper triangular. After N-1 steps, AN s the upper friangular matrix U. The

final matrix is thus

‘N = Ak-l-'l . pN-1 - p2P1A‘l

whore
Al = A {4.10)
Upon letting
P« PNV p2p (4.1)

and noting that

ey



AN A .y (4.12)
is an upper triangular matrix, we can wrile
AN .« PA

or

U= PA (4.13)

To show that this is LU decomposition, we can rewrite (4.13) as

P'U = A
or

LU = A {4.14)

where we explicilly note that P*' is a lower ftriangular matrix L.

To form the Cholesty decomposition tactor LY, where

A = LLT (4.15)

an extra step is required, as explained in [27). From U, the diagonal matrix D is

computed, where

dii s 1/" U“ ] i=1| ey NV (4‘16)

and the matrix LT is formed by tha following matrix-matrix multiplication

LY = pu (4.17)

Equation 46 can now be solved from (4.14) by periorming the forward and
back subftitution of (4.8) and (4.9). However, it is much easier to perform the
forward substitution while A is beiry decomposed. This simply involves
premultiplying b by each P* at each step, producing &8 new vector b’ in the same

N-1 steps as

b' = Pb (4.18)

The same result is achie.ed il the augmema_d matrix A|b is multiplied by the pk
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matrices to begin with, which yields the augmented malrix Ulb' after N-1 steps.

This requires an extra malrix-vactor product at each siap.

The algorithm decomposes the original equation, Ax:b, into a ftriangular system

as follows. First both sides are multiplied by P,

PAx = Pb (4.19)
This requires N-1 steps (malrix-matrix products). Eguation 4.19 is then

Ux = b (4.20)

This triangular matrix equation, (4.20), is then easily solved on a digital system.

Optical solutions are possible and are detaited elsewhere [26].

The basic finitle elemert equation, Kd=p, with boundary conditions imposed, is
of the eame form as (4.8). it meets the requirement of being pasitive-definite,

and thus can be solved by the above algorithm.

4.5.3 Processing Time for LU Decomposition

We have seen how a banded matrix-vector product can be implemented on
our optical processor. Equation 4.19 shows that the LU decomposition algorithm is
composed ol N-1  matrix-matrix  multiplications, PA, and N-1  maltrix-vector
multiplications, Pb, Each matrix-malrix multiplication consists of N matrix-vector
muliplications. Thus, the entire alyorithm consists of N{N-1) plus (N-1), or N?-1
matrix-vector multiplications. By examining the definition of c," for idk, it is obvious
that each matrix-vector product (P times a vector of A, or P times b) involves a
banded matrix with the same bandwidth as A. This occurs because wherever a“‘a

is zero, ¢ will be zero from the definition of "

in fact, P* has a bandwidth equal to the semibandwidth of A, since P* s
striclly lower triangular. A banded A matrix is shown with its corresponding P*
matrix in Figure 4-10, where an X represenis a putentially non-zero matrix element.
Thus, the banded finite element matrix equation, (2.18), c¢an be solved on the

proposed optical processor utilizing the above LU decomposition algorithm, and
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Figure 4-10; Decomposition Matrix Structure

requiring N2-1 banded matrix-vector multiplications, which is N(N2-1) vector inner

products (VIPS).

The actual number of required veclor inner products is f(ess than N{N°-1).
This occurs since at each step P*AKA™' in calculation (4.10), the size of the
matrices P* and A% can be reduced by one. This is obvious from the structure
of P* and realizing that the first k-1 rows and columns of A* are not allected
when A® is premultiplied by P*. Thus, a system of equations of size N-ke1 must
be solved at each step k. Step one requires an N by N matrix-matrix (N2 ViPs)
and matrix=vector multiplication (N VIiPs), siep N-1 requires a 2 by 2 matrix-matrix

(4 ViPs) and matrix-vector (2 VIPg) multiplication.

The number o! ViPs required to pertorm ithe LU decomposition of an N by N
system of equations will now be quantified. At step 1, N? ViPs from the matrix-
matrix multiplication (4.13) are compuled, and N ViPs from the matrix-vector
multiplication (4.18) are computed. At giep 2, the number of VIPs compuled is
reduced to (N-1)2 and (N-1). At slep k, 2%4 and 2 VIPs are computed. Thus,

the following formula gives the number of VIPs required for an N by N system,

[N?4(N-1)%¢..+22] + [N+(N=1)¢(N-2)+..42] = # of VIPs = N3/2 (4.21)
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Evaluating (4.21) for Ns24, 4809+299:5198 VIPs are required for the LU
decomposition algonthm.  The processing tme required for this is 5198xN%/2 T,
(the N3/2 approximation is valid for large N). A problem size of Ns24 represents
our case study with boundary conditons imposed, where the boundary conditions
specify ‘hat all the DOFs on two connected edges of the model (7 nodes, 21

DOFg) are fixed to zero. This is a common support condition.

4.54 One Chennel LU Procecsor

We implement the LU decomposition algonthm on the optical processor by
forming P*A* with N-ke+1 matrix-vector multiplications, separating A* into N-k+1
vectors. From Figure 4-8, the malrix dingonals are fed into each point modulator.
Thus, with our implementation of the algorithm, only two point modulators are being
input with non-zero data at any time. This drastically reduces the detector

dynamic range requirements, which will be quantified in section 4.6

Tc see this, we illusirate a speciftic step of the LU decomposition in Figure
4-11a, We consider the decomposition matrix P? for a 5" order system witn a
semibandwidth of 3. Since the first element of each diaginal is input o the
point modulators al successive bit times, it is evident from the data flow diagram
in Figure 4-11b, that at any bit time, at most only two point modulators have non-
zero input data: the main diagonal input, which is always a 1, and one other input.

We ulilize this in section 4.6.

The formation of .he elements of the P matrix can be easily dcone with

k vector needs to be computed at each step.

dedicated hardware. Only a new ¢
As defined above, the c elements, where i>k (the only elements that change from
slep to step) are formed by calculating the recipfocal of a, and subsequent
simple multiplications of two A* matrix elements. The analog optical processor
using the LU decomposition algorithm as detailed in [27] uses analog electronics

k

to genarate the new c" veclor elements. Our system will use dedicated digitat

hardware to periorm the division. Once each column of the A*' marix is

| S
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Figure 4-11: llustration of Only Two Non-Zero Inputs in LU Decomposition

Algarithm Implementation
computed (lrom P* tmes a column of A*), the c**' elements can easily be

computed in enough time for the next step of the algorithm.

4.6 Finite Element {Processing

This section will refine the processing details specifically for solving finite
element problems with the direct LU decomposition algorithm.  Specifically, we will
show how only one channel nf the processor of Figure 4-6 i3 required.
Comments on dynamic range requirements for the detector avay are given for this

imptementation,

In the previous section, Figure 4-11 illustrated that only two point modulators
are input with non-zero data during any T, (Tp bit time} for our implementation of
the LU decomposition algorithm, it was also shown that one of the point

modulators is always input with a 1, and it is always the same point modulator.

C-o

[ &
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The other non-zero inpul could bs at any one of the other inputs, but il it is at
point modulator m at the M bit time, it is at point modulator me1 8t the (ie1)"

bit time.

It would not be very practical to use an Ms10 input processor when solving
finite element problems exclusively with our LU decomposition algorithm, because
only 2 inputs are needed. However, since the input 10 one >f the required point
modulators is always 1, only Ms1 point modulator is required to implement the
algorithm. The one-channei processor is nhown in Figure 4-12. It is one chzanel
of the processor in Figure 4-6, with scie additiona’! electronics, and its operation

is explained below.

P2 L
.
Py -~ ECL
OFF-DIAGONAL -

NON-ZERO z S
ELEMENT OUTPUT

VECTOR - '

DATA A

DELAY

Figure 4-12: One-Channal Finite Element Processor

The P, point modulator is used for the inpul of the 7ion-zero data that is
not from the main diagonal of P* which is always a 1. The multi-chranel AO cell
at P, need be only a point modulator array. Ii5 input is fed to a delay, and the

output from the detector array in P, and the delayed P, dala is added in a
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serial ECL circuit at the appropriate T, &s it it had been multiplied by 1 in the
processor. In practice the ECL adder in ‘he original detecior circuit (Figure 4-8)
is used. i the 12™ bit was the one's place in the 32-bit representation being
used, the P, data would be delayed 11 T,'s, and added to the detector output
of the 12" T, within each T, perivd. This one-channel implementation performs
the same multiplications indicaled in Figures 4-9 and 4-11, for the LU

decomposition algorithm,

This processing format allows bipolar handling with an axclusive-or test, as
detailed in section 4.3, since only one input channel is used. I the exclusive-or
test result is a 1, indicaling that the signz of the duta in P, and P, are dillerent,
the product is given a negative sign. In this case, the delayed data is subtracted

roiher than added to the detector oulput at the proper time.

The dynamic range requirement of the detector is now drastically reduced,
from that discussed in section 4.4. using a t-channel processor as described
above, or the M=10 charnel processor, with the LU decomposition algorithm, only
one non-zero input will be present in either system every T,. For binary
encoding, each defector element (for the detector array of Figure 4-8) requires a
dynamic range of 1. Each A/D converier must convert two levels, a 0 or a 1.
Thus, one bit A/D converters are required, and such units (simple comparator

circuils) are available at speeds above 100 Mhz.

it the data encoding is performed in a radix R, each detector would require
a dynamic range of (R-1)2 Each A/D converter would require log,[(R-1)2+1] bits,
rounded to the next largest integer. It the data were encoded in a radix R
other than two (binary), the dynamic range requiremerts of the detector system
are larqer than the R=2 case. Howevtr, fewer bits are required for the encoding
to achicve the same accuracy. Thus, the number of channels in P, is reduced,
and the speed of the processing is increased, since there will be fewer T,'s per

Ta
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Two more points should be made aboul our proposed finite eiement
processing System. When implementing the LU decomposition algorithm on the
processor as described, no frequency multiplexing is used in the N-channel cell in
Pz. it frequency multiplexing is used in an optical system, the number of
frequencies that can be used is limited by the divergence of the input beam, as
explained in [25]. Thus, beam divergence is not an important consideraion in
fabrication of the input array for our processor. Also, the proposed processor is
basically an imaging systemn, No information s carried in the phase of the light
distributions. The multiplications are represented by the beam's intensities, thus

nen-coherent light can be used in the processor.

4.7 Solving Large Systems of Equations

This section will address iwo issues, large banded matrix problems in general,
and large finite element probiems. The first issue arises from the practical
limitation ot the size of the input point modulator array. An array of M=10 point
modulators was chosen because it is a reasonable number for fubrication. On a
larger scale, fabrication 2f a processor with more than 50 channels tooks
unredlistic, especially because the time aperture of the AD cell in P, would have
to be very long to facilitale reasonable shift rates in P, The second issue
involves the standard finite element problem formulation technique of substructuring,

which enables large problems to be processed in a more efficient manner,

4.7.1 Matrix Partitioning

The previopus section showed that any size banded matrix problem, solved
with the LU decomposition algorithm imlementation on our processor, only requires a
one channel sysiem, shown in Figure 4-12. This special requirement is due solely
to the nature of our implementation of the LU decompositon algorithm. N is
important 1o consider the more general purpose uses of our M=10 channel
processor. As mentioned previously, many other algorithms are suitable for

impiementation on the processor, especially those that involve banded matrix-vector
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products, which is a basic operation defined in Figure 4-9, They include; other

direct equation solvers, ilerative equation solvers, and other algorithms.

By examining Figure 4-9, it is obvious that our M=10 channel processor is
limted to processing matrix equations with a bandwidth of 10 or less, when
performing a banded matrix-vector product. However, most significant problems  will
have bandwidihs that are much larger than 10, Finite element problems often have
tens or hundreds of thousands DOFs, and bandwidihs in the thousands or tens of
thousands. These large problems cannot be solved on tha M:=10 channel
processor without some florm of partitioning of the equations, to reduce the amount
of dala that must be fed to the processor at one time. In considering partitioning
schemes, two issues must be kept in mind: 1) a system for solving banded matrix
equations is being used, and any partitioning must be compatible with that format,
2) the partitioning must not be s0 complex that is slows the processing time

considerably.

An appropr.ate partitioning scheme is now discussed. Figure 4-9 lllustrates
how a banded matrix-vector product is implemented on our optical processor. The
number of point modulators required is equal to the bandwidth of the matrix.
Figure 4-13 llustrates how a banded matrix-vector product can be implemented
when the matrix bandwidth B exceeds the number of point modulators M in the
processor. The matrix is partitioned such that M (the number of point modulators)
or less diagonals are processed at any one time. Recalil that in our
implementation, an entire diagonal is fed into a single pcint modutator, thus making
this partitioning scheme attractive. The detector results are stored and added
accordingly to vyield the desired vector elements. The matriv of Figure 4-9, with
a bandwidth of 5 is partitioned for the processor of Figure 4-13, with only M=3

point modauiators.

The top two diagonals of the matrix equation in Figure 4-9 are fed into the

processor lirst, as illustrated in the top portion of Figure 4-13. Note that one of
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the inputs is not used. This causes no data flow problems when the unused
inputs are positioned at the end of the AD cell. The partial products produced
from the top iwo diagonals are optically summed fo produce 7 e, values (only the
first 4 are shown in the figure). The remaining three diagonals of the matrix
equaticn are then fed to the processor as illustrated in the Ilower portion of
Cigure 4-13. The partial products from that operation are optically summed to
produce 7 f values. The sum of e, and | yields the desired element d, (from
Figure 4-9) of the vector «  This can be verilied by comparing the resulls of

Figure 4-13 with those in Figure 4-9.

It is imporiant 1o note that with this partitioning scheme, tiie data flow is
nearly always constant through the processor. In the example of Figure 4-13, 7
bit times, Tp are needed to produce the e's.  Actually, e, is zero and not
produced since no element of the top two diagonals contributes to the formation
of the vectlor element d,. The ez value is produced at bit time 7, whan b, is
in the middle region of the cell Bit time 8 is used to shilt b, to the top
region of the celll and at bil time 9, processing of the remaining three diagonals

begins.

The LU decomposition algorithm can be implemented on the Ms=10 channei
processor for large problems with this purtitioning scheme. The diagonals of pk
are partitioned and processed in groups ol 10 or less, as illustrated in Figure
4-13, The results from each partition are stored in iha microprocessor, and they
are added appropriately to form the desired matrix-vector products. it a partition
includes the main diagonal of P%  the processor has at most iwo non-zero point
modulator inputs. I the partition does not include the main diagonal, the processor
has only one non-zero point modulator input. Thus, it the wmain diagonal is
partitioned alone, the processing will take place with only one of the M=10 point
modulators input with non-zero data at any time. in" this case, bipolar data can
be handled with the exclusive-or test, since it is known which point modulator will

be fed the non-zero data during each T,



4.7.2 Substructuring

The large size of many finite element problems, having tens of thousands of
DOFs, presents a data managemen! and formulation problem for any computing
system, not 10 mention the large amount of CPU time needed for the probiem
solution, A technique called substructuring has been used to overcome these
problems, Structures often have well-delin?4 or definable internal boundaries that
can be used (o separate the structure into a sysiem of substructures. The
boundaries between substructures exist because of symmetry, consiruction, or other
constraints, Each. substruciure may possess 8gimilar internal boundaries, and can be
further subdivided into other substructures. Thus, a complex structure can often
be reduced 1o a connection of smaller and simpler substructures. This breakdown
simplifies the structure modelling. The following discussion will deal with the
technique of substruciuring with condensation. Substructuring without condensation is

also a useful technique in problem formulation. but it will not be discussed here.

The equations for a finite element model made up of substructures (formulated
by condensing internat nodes, to be discussed below) can contain many fewer
DOFs than the equations for the model without 8substruciuras. This significantly
reduces the solution time and the amount of data to bi handled in the problem.
Defining the problem in terms of substructures reduces the problem formulation fo
one with many small manageable matrix equations. The benelits of breaking up
large problems inlo smaller substructures are obvious, and the process ia detailed
below. Substructuring is not benificial for all problems, especially smaller ones, but
when used properly, it can save significant amounts of problem formulation and

solution time.

Most substructuring exploits repealed geometlries and symmetry within a
structure. A trivial illustrative example of! one level of substructuring is given for
the simple structure of Figire 4-14, The structure is modelled by 24 triangular
elements, and many lines of symmetry exist. Each half of the structure about the

vertical line of symmefiry - .n be considered to be a substructure. Both of these

W)



Figure 4-14;: Example Model Suitable for Substructuring
substructures are identical Once the proper substructure equations have been
derived (through condensation), the struclure may be modelled as shown in Figure
4-15.
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Figure 4-15: Substructured Model
Here, fwo identical substructures, rather than 24 elements, model the structure.
Interior nodes have also been condensed in Figure 4-15 as detailed later. Since
the substructures have identical geometries, the same set of equations will describe
both of them. Thus, repetition of input data, siorage, and calculations is eliminated.
Thie problem size is also reduced, from 18 nodes in Figure 4-14 10 12 nodes in
Figure 4-15, The substructures (combinations of many elements described by a
set of equations. derived from those elements) may be trought of as

superelements.

The substructure equations are derived through a procedure called static

—
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condensation. In general, for a given subsiruciure or element, exterior nodes are
those nodes needed to connect the substructure oOr element 10 Other sudstruciires
or elements, ie. those nodes on the boundaries. All other nodes are interior
nodes. Static condensation is used to condense the interior nodes by expressing
their equations in terms of {he exiericr nodes, thereby expressing the entire
substructure in terms of the exterior nodes oI in Figure 4-15, the interior
nodes have been concdensed, and thus only the exterior nodes of each

substructure are shown,

As & simple example of stalic condensalion, consider the siruclure composed

ol two bar elements in Figure 4-16.

—~3! —> Uz —s Y3
¢ [) 4

] 2 3
f—>x

Figure 4-16: Static Condensation Example - Bar Elament Model
The structure has one DOF per nods i, specifically a displacement u, in the x

direction. The basic finite element matrix equation for this problem is

kyy kg O uy Py
Kgy Kop Ko u| = | b, (4.22)
o Koy MKa Uy P3

To condense interior node 2, the equation from the second row of the malix i

(4.22) is used to write u, in terms of u, and u; &s
Up & (D/kon) = (Kpy/kooluy = (Kgg/Kpolug (4.23)

Equation 4.23 is substituted into the equations from the first and thirii rows of the
matrix in (4.22) to vyield the equations

[Kyqm(kyghoy/Roo)uy = (Kyokua/kpodug = Py = (Kya/kaolpy
“(kgokyyfhppluy + [hag~lhgghza/ipplluy = Py = (kyp/kaple, (4.24)
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The equations in (4.24) can be written in matrix form as

1"

Kyy=(Kyghay/Kzg) “(kyghaa/Hag) | [ Uy Py-ikyo/ "22’92]
~(kagkay/kaa) Kag=(kgpkaa/kao) | | 3 Py~(kaxfhoplp, I (4.25)

Equation 4.25 is a reduced dimensionality form of (4.22), and can be used to
represent the structure of Figure 4-18 (as long as no connsctions are made at
node 2} in terms of nodes 1 and % Equation 4.25 thus represents the

substructure in Figure 4-17,

—>u, —_ y

wig

'S
1
F—>*
Figure 4-1T7: Bar Example Substructure - Node 2 Condensed
i may be considured as a superelement, since (4.25) hac the same form as a
set of elemenial equations (the matrix is full, in genoral). Since it i6 used in a
siructure equation assembly process just like a sgingle element, the assembly of
substruciure equations will yield a banded matrix as beiore, if the substructure

nodes are numbered properly.

When condensed equations for subsiructures are wused in the assembly
process, smaller structure sliliness matrices result. They are smaller by the total
number of condensed DOFs in the structure (il a condensed node has n DOFs, n
equations are eliminated). it a substructure is repeated throughout the main
structure, savings in input, storage and calculations result since the substructure
esquations need only be derived once. Tre same set of equations is used over
and over in assembling the repeated substruclures into the structure stiliness
equations. This situation i8 synonomous to remarks made in Chapter 2 that
elemental stifiness matrices need only be evaluated once for like eflements, and

they are used more than once in the stifiness matrix assembly.
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The condensation process can be described in gensral by the following
equations. Tha matrix stiliness equation for the substructure to be condensed 15

written as

Ki Kie Y ) P,

Kei K.. Ug Py (4.28)
where v, is a vector of the (interior) DOFs to be condensed, and u, is a veclor
ot the (exterior) DOFs to be retained. The load vector and slitiness matrices are

also partitoned in terms of the ODOFs to be condensed and refained. A

condensed matrix equation is desired of the form
KegUe * P, (4.27)

After simple matrix manipulations of the partitoned equations in (4.28), the following

relations are obtained

Koo = Koo (KoK 'Klo’

Py = po'(KoiKil-'pi) (4.28)
The equations in (4.28) can be verified by comparing them to (4.25)

The condensed substructure maltrix equation can be obtained from (4.28),
nowever, in practice this is not done because of the matrix inversion that is
required. instead, moditied forms of standard equation solvers are applied to
{4.26), such as Cholesky or Crout decomposition, or Gaussian elimination. For
example, Gaussian elimination can be applied to (4.26) until all the elements of K

{the lower partition of (4.26)) are zero, yielding (4.27).

As mentioned earlier, subsiructures <an be defined within substructures, and
thus many levels of substrucluring are possible. A three-level example {ollows,
taken from [33]. The main structure i8 shown in Figure 4-18. It is a three-bay,
three-story steel frame; the second bay girders are identical, each having three

openings (penetrations) for the passage of ductwork (Figure 4-18a). Most of the

-
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structure can be modelled with simple plane frama elemenis. However, the throe
penstrated girders require many nodes and elements for propsr modeling of the
openings Substructuring and condensation c¢an be used 10 exploit the repeated
geometries and symmelry in each penetrated girder. This will greatly simplity the

entira struciure model,

Panstrated besms
r for ductwork

N — i

J

| |
:l- w2 7x8% _
Ll

f—30° AR N T U

Figure 4-18: Building Frame - Bays Horizonial, Stories Vertical [33]

The first level substructure i8 a single penetrated girder (Figure 4-18a). The
central (seconc) bay of the entire stucture is modelled with three copies of Figure
4-19a, with plane frame elements used for the beams and columns in the first and
third bays. The second level substructure (Figure 4-18b) is defined by dividing
Figure 4-18a into three identical parts. The third level substruclure (Figure 4-19c)
is defined by subdividing Figure 4-19b into four identical paris, each with a

dilferent orientation (rotation ftransformations will be required). The modelling of the
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Figure 4-19: Penetrated Girder Substructures [33]
third level substructura is shown in Figure 4-20a it congists of standard finite

elements (rods, ftriangles, and rectangles) as shown.

All the interior nodes of Figure 4-20a can be condensed, to yield the
substructure, or superslement in Figure 4-20b. Four of those are used to form
the second level substructure, and three such second level substructures are used
to form the first level substructure of Figure 4-20c. The interior nodes of Figure
4-20c are then condensed to yield the first level super element (substructure)

shown in Figure 4-20d, which has only two nodes.
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Three copies of Figure 4-20d, along with simple plane frar.e elements, are
used to modei the original siructure of Figure 4-18. The number of DOFs in this
model is much less than if substructuring was nti used (ie., if all the nodes of
Figure 4-20a were modelled explicitty).  Each first level substructure containg 1152
condensed nodes. Since the first level subsiructure is defined by 12 identicat
third flevel substuctures. duplicale input data, compulation, storage of elemental
stiffness matrices, etc., is eliminated from the problem formulation. The fina! matrix
equation fo be solved is much smaller, thus the solution process will be much

faster.

When a finite element problem is solved using substructuring and condensation,
the condensed DOF values are not determined. However, if they are needed for
the analysis, they are retrievable by back-condensation. This process is the

reversal ol the steps used toc obtain (4.27), which are krnown.

The main advantage of substructuring with condensation is that the size of
the structure finite element equations is greatly reduced due to the condensed
DOFs.  This significantly reduces the required computer time for solving problems
on a digital system. For processing on our oplical system, it reduces the matrix
and bandwidth size, sp that the equations may be more easily managed, and that
less partitioning s required for algorithms other than our LU decomposition

implementation.

Y substructuring is used when inappropriate, the overhead required for the
substructuring operations will exceed any gaing in handling and solving the
equations after substructuring. Five general guidelines for subsiructuring are given
in [33]), and are summarized below:;

1. A condensed substructure should be used more than onge as a
superelement in a higher level Struciure.

2 The number of nodes remaining after condensation should be small
compared to the total number of substructure nodes. .

3. Nodes remaining after condensation should form a narrow boundary within
the struciure, which minimizes the structure bandwidth.
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4. Nodes should be numbered to exploit any node 'reordering schema used
in the condensation algorithm.

5. The number of nodes requiring back-condensation should be significantly
less than the fotai number of condensed nodes in the finad model.

4.8 Summary and Conclusion

This chapter has presented an optical processing system suitable for
accurately solving finite element problems, and other banded systems of equations,
The limitations of analog optical processors were discussed, and some proposed
dignal encoding schemes were reviewed. Multiplication by digital convolution was
exptained and detailed for an optical system. A sgpecific digitally encoded optical
processor was described, which performs digital convolution by the standard shilt-
and-add wmethod. ts performance was evaluated, and fabrication of a realizable

system was discussed.

it was shown how banded matrix-vector problems could be performed on the
proposed optical processor. An LU decomposition algorithm was detailed to solve
finite element matrix equations. The algorithm wuses banded matrices, and thus is
appropriate for our processor. It was shown how our implementation of the LU
decomposition algosithm actually requires only one processor channel Matrix
partitioning for other algorithms was detailed. The topic of substructuring in finite
element problem formulation was described, which can often be used to make the

formutation, handling, and solution of finite element equations much easier.

This chapter has presenied a feasible optical processing system andg
associated algorithms. The digital encoding used by the processor will yield
accurate solutions to finite element problems, This was obtained by trading off
speed and size of the processor for the encoding capability. This chapter is
unique in recent optical processing literature in that it described existing hardware
that can be employed to input and output data to and from the processor. [t
remains to be seen how the errors inherem in optical systems will aftect the
performance of this digitally encoded processor. This is the subject ol the

Chapter & and future research.
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5. OLAP Simulation

5.1 introduction

Chapter 4 has described an optical processor capable of performing basic
linear algebra operations. Thus, we wil now refer o our proposed processor as
an optical lingar algebra processor, or QLAP. The OLAP employs digital encoding
of data to reduce the dynamic range of the signals in the processor and lessen
the eftect of optical processor errors on the data I is expected that significant
optical errors can be present in the OLAP without significantly affecting the
processing accuracy. This chapter describes a digital computer simulation of the
OLAP used to solve three selected multiptications of two binary encoded numbers.
The purpose of the simulations is to determine how optical errors affect the

products calculated in a digitally encoded optical processor.

The OLAP error simulaion program was writlen to simulate the solution of a
case study finite element problem with individual and combined optical error sources
present, and it is fully detailed in this chapter. However, this report only includes
the simulation results for three sets ol multiplications, with only individual error
sources included in each simulation. This is because a single simulation run for
our case study with N=24 (after imposing boundary conditions) requires 4 hours of
CPU time, as will be explaned in section 53 A comprehensive processor
evaluation will require nearly 100 simulation runs (due to triad and error, and
individual and combined error source modelling), which is over two weeks of CPU

time. Thus, that task will be completed in future research.

Al ot ihe pertinent error sources present in the OLAP are modelled in the
simulation program. These error sources are described in section 62, The direct
LU decomposition algorithm detailed in Chapter 4 is used. The simulation program
models the full implementation of this algoriihm on the Msz10 channel OLAP of
Figure 4-8, with N=32 bits. We chose to simulate the 10-channel system rather

than the 1-channel system ({section 4.8) because it represents a more flexible
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general-purpose processor. This is an appropriate choice for two reasons.  First,
the specific algorithm (LU decomposition) and implementation we chose to &olve
finite element problems lent itselt to a 1-channel OLAP, but other algorithms may
not dc this. Second, the error simulation resulls are more signiticant if they are

for a more general processor, with mulliple processar channels.

The error modelling assumptions and soflware implememation are discussed
{section 53). The resullts of the individual 32-bit multiplication simulations are then
advanced (section 54), with analysis of the results also advanced. The simulations
were performed on a VAX 11/750, with single precision (32-bit floating point)
arithmetic. This chapter thus presents the first mode! and quantitative simulation
results on the performance of optica processors operating on digital data in the

presence of various component errors.

5.2 Error Sources and Error Modelling

This section describes the error sources considered, and the modelling used
for the OLAP of Figure 4-8., This represents the first error source model and
analysis for a digital OLAP. For the error model, M=10 channels and N=32 bits
are used, and the detector array used al P, is the detector/ECL array shown in

Figure 4-8, and discussed in section 4.4.

The processor is repeated for convenience in Figure 5-1. Only the top and
bottom portions of the P, and P, devices are shown. There are 10 P, input
point modulators, 32 AO cell channels with 10 T, regions present in P, and 32
detector elements are used in P,  This figure will be used to describe our error
source modelling. The input point modulators are numbered 1 to 10 and are
indexed by i. The signal inpu! to point modulator i is descrioed by &  The AO
cell channels in P, are numbered 1 to 32 and are indexed by j  Each channel
is divided into 10 regions corresponding to the 10 input point modulators. The
ideal P, plane transmittance of AO cell channel j at iegion i is described by bij'

The detector elements are numbered t to 32 and are also indexed by j. The
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value incident on a detecior element is described by < As defined in Chapter
4, pronessor channel i consists of input point modulator i in Py, and the region |

of P, conlaining all j=1 to 32 AO cell channels.

The error sources modelled are those that are most dominant.  Many error
sources coulg be included in a digital model of an optical processor. However,
these error sources would depend on the specific processor hardware, and their
number would become prohibitive for a simulation. The more reasonable and useful
approach is taken in which the major dominant error sources are Ilumped into
combined errors in each data plane, thus greatly simplifying the simutator and its
runtime. The effect of the varipus error sources is thus more easily quantifiable
gince there are fewer error BOUrces. Such a simulation enables &an objective
determination of the eflect of combinations of errors in various planes (and of

various lypes) on the OLAP's performance.

The error source model is separated into ~.ror8 in the three planes of
Figure 5-1: the input plane, P, the multi-channel AQ cell plane, P, and the

detector planhe, Ps' Seven error sources are modelled as indicated in Table 5.1.

5.2.1 Input Plene P, Errors

The single input plane P, error is spatial gain. This term refers to the gain
differences between the input point modulators, ie., the differences across the
spatial dimension of the input plane P,. The ideal transfer function for each point
madulator, converting input volts to output light intensily, is shown in Figure 5-2.
The ideal transfer function has a slope g the gain of the point modulator, which
can be scaled to one. For a real point modulator, the gain will not be exactly
ong, but can be adjusted to a value close to one. However, some residual error
will exist. This error changes the slope of the ftransfer function plot, and is thus
multiplicative in nature ({introducing a small error in small inputs, and a large error

in targe inputs).

We write the input to point modulator i, as a, and describe the light

intensity leaving point modulator i by
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Error Source Notation

input Plane Errors:

Spatial  Gain 144} .
Multi-Ch. AQ Cell Piane _Errors: ’
Acoustic Altenuation exp(-ax,) ’
Adjacent Ch. Crosstalk -
Even-Odd Ch. Crosstalk .-

Detector Plane Errors:

Spatial Response 1+6,°
Time-varying Noise ni(t)

Dark Current g

Toble 5-1: Error Sources for OLAP Error Source Model

OUTPUT
LIGHT
INTENSITY g
> INPUT
VOLTS

Figure 5-2: Wea! Point Modulator Transter Function

= 814" (5.1)

The quantity &' models the residual gain error (which modifies the ideal gain of
unity), and thus (1+5') multiplies the input value and models the multipticative P,

spatial gain error,

Two other input plane P, errors can be included in the error source
modelling of optical processors [35]). The first is a nonuniform response for the

P, modulators. This represents a bias level in the transter function, ie., the plot

fiey
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in Figure 5-2 does not pass through the origin, and the bias is dilterent for each
point modulator.  This error source can be modelled as a simple additiva spatial
error added 10 each input. The ofther input P, error ia spatial coupling, which
represents the coupling, or crosstalk between inputs on different input point
modulators. These latter {fwo error sources are not included in our initial

simulathons.,

5.2.2 Muiti-Chennel AO Cell Plane P, Errors

The first multi-channel AO cell plane P, error considered is acoustic
attenuation. The signal presented to tha transducer of each AQ cell channel
attenuates exponentially as it moves across the cell in the x direction in Figure
5-1.  The N=32 signals in region 1 of P, are at full strength. As the signals
move 1o each successive T, reginns, their strength is decreased by an exponential
factor, and are weakest when at the last or end region 10. Acoustic atlenuation
depends on the frequency and AO cell maternal. For our system, it is the same
for all channels in the multi-channel P, AO cell (since only one frequency is

used).

We modei the effect of acoustic attenuation by multiplying the signal at the
transducer by the exponential factor exp(-ax). The constant a is the attenuation
constant determined by the AQ cell material and operating conditions. it is
expressed in dB/mm and is converted to Nepers/mm for use in our exponential
modet, where 1 dB equals 023 Nupers. The x, value is the location in mm
corresponding to P, point modulator i and region i of the P, AO cell. in our
simulation, region 1 is considered 1o have no attenuation, thus x, is zero. If the
point modulators are centered 2 mm apart, then x, i8 2 mm x, is 4 mm, elc
Including only acoustic attenuation errors in P, the transmittance of region i of AQ

cell channel j is writlen as
/b, * byexpi-ax) (5.2)

where bil is the unattenuated signal input to channel j at time -iT,
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The second P, error source is crossialk between adjacent AO cell channets.
Specifically, the signal input to AQ cell channel | aflects the signals in AU cell
channels j-1 and j+1. We express this error in dB. If a signal of level | in
channel | induces a signal of level I in channels j-1 and j+1, then 'there is X dB

o! isolation between these adjacent channels, where
10LOG,°(I,/|2) v X (53)

The third P, error source is even-odd channel crosstalk. This error source was
included because this type of crosstalk was found to be significant in preliminary
tests of the 10-channel AQ cell. I is modelled in the same way as adjacent
channel crosstalk, except that a signal in channel | induces crosstalk in channels

-2 and j+2.

Modelling crosstalk effecis is slighlly subjective since it is hard to distinguish
between RF crosstalk at the ftransducers and acoustic wave crosstalk when making
measurements, It is obvious, however, thal the even-odd channel crosstalk is
entirely due to RF sources. Crossialk effects are additive, and the following terms
are added to (5.2) to model both types of crosstalk:

10
ADJ = 171003 (b, #b;5,41]01p71,]
ie1 "

10
EO » 1/10[;(bu_2+bi o2} 117, (5.4)
n

The term ADJ is the contribution due to adjacent channel crosstalk, and EO
is the contribution of even-odd channel crosstalk. The 1/10 factor is included to
distribute the crosstalk equally over all 10 regions of an AO cell channel. The l
and |, values (the relative signal levels in two channels, |, due to crosstalk from

l,) are those delined in {5.3), and may differ in the two expressions in (54)

Spatial gain errors and similar effects could have been modelled for the

multi-channel AQ cell as a P2 error. However, these errors can be Ilumped into
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the spatial gain error in P, or the spatial response error in P, menthoned Oelow.
Frequency response errors in P, were not included in our initial error modet (i.e.
we assume a llat frequency response), but can be included Iater if frequency
mutiplexing 18 used. This error can be modelled as & P, or P, (the Fourier

.

Transiorm plane) error.

5.2.3 Detector Plane P, Errors

The first detector plane error considered is spatial response, This term
relers to the response, or gain, diflerences between detectors in the P, array in
space. This earror source i8 modefled the same as the spatial gain error for the
input P, array. The ideal transfer function for each detector element, converting
input light intensily 10 output current or voltage, has the form in Figure 5-2, and
this error is also multiplicative. The second P, error source included is tlime-
varying noise. This error source i8 a result of shot noise and thermal noise (due
to the finite temperature of the detector system). We assume that this noise is
not signal dependent [36]. This error is addilive because the noise is random
and aiways is present on the detector, regardiess of the intensity of light incident
on it. The final P, error source included in our model is detector dark current.
This current is a result of thermal alectron-hole pair generation in solid-stale
devices. It is basically a conslant background current, but differs for each

detector element and it thus another additive error source.
We write the oObserved detector outpul, < in terms of the three Pa errors
defined above, as
n 3
’c‘ s cl(h&‘) + ni(t) + d, {5.5)

where ¢ is the exact signal incident on detecior element |, 6,3 is the residual
error from the ideal response, nl(t) is the time-varying noigse, and g, is the dark

current.
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5.2.4 Combined Error Source Model

A rlosed form expression can be written to describe the 32 observed
detector outputs at one T, in terms of the inputs to Ithe processor, and the error
sources in Table 8.1 {(except for the two crosstalk errors, which da not it easily

into the closed form @xpression) as

3 1
148 b B, rr b 146 el |
) 1,1 %2 10,1 1 e () . nit) d
1053 O ' ' * o + ! ‘ !

. 2, Bz : : L, 1%
o : A Vo O - ' : :
O We3lP1a2 -0 big,3 O 148 Y ng et oy
321 32 %32 32 %10 10 x10 10 %10 Wxl  32x1 320
OBSERVED  DET. SPAT. RESPONSE P DATA INPUT SPAT. GAIN  ACOUSTIC ATTN. P\ TINE- eAmK
Py DATA AlA  VARYING CURRENT
NOISE
(5.6)

where all of the notation has been defined previously. Superscripts 1 and 3 refer
1o the planes P, and P, respectively. The P, data matrix is actually an encoded
vector, thus requiring two dimensions rather than one. Note that the subscripts in
the P, data matrix are fransposed with respect to conventional row-column matrix
subscripts.  This is simply due to the data indexing used in Figure 6-1. Since
each row in (5.6) represents one detector output, each row of the P, data matrix
contains the data in all 10 T, regions (the first subscript) of each AO cell

channel, indicated by the second subscript.

It is necessary to model the various error sources such that we can quantify

the degree to which they must be reduced (that is, the allowed levels of residual
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spatial errors) for successiul processor operation, Specifically, we wish 1o quaniify
the allowed levels of residual spatial errors, acoustic attenuation, time-varying noise,
and detector dark current that can be allowed in the processor withoul creating
signiicant error in the processing resulls Our error source simulator is also
intended to determine the dominant error sources and how combinations of several
error sources (present simultaneously) interact and combine to aflect parformance.
In our processor, we distinguish between correclable errors (residual worrors) and
the uncorrectable errors (n(t) and crosstalk).  Spatial P, and P, errors can be
correclted 10 levels set by the system's measuremeni accuracy {typically 0.1%).
Spatal P, errors, (e.g., acouslic aftenuation) can likewise be corracted, for one

frequency operation.

5.2.5 Simulation of Error Sources

We now discuss how the various errors are modelled in our simulator. The
distribution of spatiat errors across the input and detector arrays can best be
described by a zero-mean Gaussian distribution. Since the inpul gain and detector
response corrections are made with finite accuracy, the residual errors are random,
Such random events typically follow a Gaussian distribution. Reterence ([37]
verified thalt residual spatial nonuniformities are indeed Gaussian for an optical

processing system. The modelling uced for these errors is described below.

A multiplicative error applied to a quantity y vyields /; whare

A v 1400 (5.7)

and ¢,D is a random mulliplicative error, where D is a random zoro-mean Gaussian
deviate of wunit variance (N(0,1)), and o, is the standard deviation. It o, s
chosen as

3%, X 100% = P% (5.8)

then (5.7) represenis a Gaussian distributed multliplicative erro with a maximum
percent error of P%, Since more than 99% of the Gaussian deviates are within

three standard deviations, this maximum percent error definition accuratety describes

LA aa ——

X "V S
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alt but less than 1% of the errors. The model in (5.7) is used to describe all
multiphcative spatial error sources in the OLAP, specifically for (5.1) (input spatial
gain errors) and for the first term in (55) (detector spatial response errors). The
8's and the 6*3‘3 are both determined by oD, where o, is separately calculated
from (5.8) for each error source. A 10-component random vector from an N(O,1)
distribution is used 1o determine each D value for the 10 point modulators;, a 32-
component N(0,1) vector is used to determine the D values flor the 32 deteclor
elements. The fixed spatia random vectsr values (deviates) define variations
across space. The deviates represemt the residual errors after adjustments. They

are fixed throughout all OLAP simulation steps T, once they are determined.

The P, error sources (acoustic attenuation and ‘both types of crosstalk) are
modelled as explained previously in {5.2) and (54). The a and x, values in (5.2)
are determined by the mulli-channel AQ cell specifications, and the proposed OLAP
censtruction. Since we propose to use the full 5 us of time aperture of the AQ

cell at P, the length of each channel is
42 mm/usec X 5 usec = 21.0 mm {5.9)

where 4.2 mm/usec is the velocity of sound in the TeO, longitudinal mode AQO
cel. ~Each channel is thus divided into 10 regions, each of length 2.1 mm. The

x's are listed in Table 5.2 below, where x, is zero as explained earlier.

Diterent a valugs in dB/mm will be used in the simulations. They represent
various degrees of residual a corrections since acouslic atlenuation is deterministic

and can be corrected for one frequency operation.

The ratio /1, chosen in (54) determines the crosstalk level modelled. The
value in dB of isolation is calculated from (5.3). The acoustic attenuation and
crosstalk error factors are fixed {(crosstalk eflfects are signal dependent, but the

level is fixed), and thus lhéir modelling does not require any random inputs,

The remaining errors are the time-varying noise and dark current Py errors,
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AQ Cell Position
Region in
Center AQ Cell

X, 00 mm
Xy 21 mm
X3 42 mm
X, 63 mm
X 84 mm
Xg 105 mm
X, 126 mm
Xg 147 mm
Xg 168 mm
Xi0 18.8  mm

Table 5-2: AO Cell Region Center Locations
which are additive errors. These errors are always present in the deteclor
elements, anz are not signal dependent (they do not depend on the magnitude of
the detecior input). They are relative to the detector's dynamic range, or full-
scale. These characteristics are eviden! from our simulation model below, which is
similar 10 that of the multiplicative errors. These errors are considered to have a
Gaoussian  distribution because of their natural random nature. Time-varying detector
noise is white and Gaussian, as explained in [38]. A new N(0,1) vector is used

to model this at each T,.

An additive error applied to a quantity z yields/z\ where
/} s z + oD (6.10)

and a random additive error of ¢,0 is used, where D is & N(0,1) deviate and o,

is the standard deviation. if the relation

3x02x1oo% = P%XFS (5.11)
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is usad to determine o, then (510) represents a Gaussian disiributed additive
error, with a maximum percent error of P% of full-scate, where FS is the fuli-scale
range of the device being modelled. From (510), it is apparent that this error
does not depend on the input value z, but rather it depends on Ihe full-scale

dynamic range of the device.

The form in (5.10) is used in our simulator 10 model the last two terms in
(6.5), time-varying noise and dark current.  The n(t)'s and d's are all determined
by ¢,D, where o, is separately calculated from (511) for both errors. Since the
n'{l}'s vary with time, they will be difterent for all 32 detecior elements in each
processor cycle.  Thus, every T, a new 32-component N(C,1) random vector is
generated to determine the D values for the 32 n‘(t)'a. A 32-component N(0,1)
random vector is generaled to determine the D values for the 32 d"s. Since
dark current is fixed, these deviales remain unchanged throughout the OLAP
simlation, This simulation modelling scheme thus appropriately distinguishes the

time-varving errors from the lixed spatial errors.

We recognize that detector dark current is not properly modelled with a
zero-mean distribution. Since dark current effects are additive, and will always
confribute positively 1o the detector element's output, the deviates must be unipolar.
The dark current modelling will be changed appropriately in future work.  However,
the modelling used here is still sufficient and appropriate given the binary nature of
the processor. Because of full-scale A/D clipping (to be explained next in this
section), a sufficiently large positive dark current deviate could only change a O to
a 1, and a sufficiently large negative deviale could ondy change a 1 to a O (with
the zero-mean modelling used in this report). With the proper modelling {positive
deviates only), a sulficienlly large positive deviate could change a 0 to a 1, but
these deviates should occur twice as often then in the previous case. Thus the

net amount of bit errors would be the same.
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5.2.6 A/D Error Modelling

One other OLAP error source must sl be considered and modelled in our
simutator.  Thig is the A/D error for the 32 A/D's thal follow each detector, as
shown in Figure 4-8. Analog-to-digital conversion of electrical signals is not an
exact operation. Specifically, some uncertainly exists in the digital output obtained
when the analog signal falls within a certain range between the levels
corresponaing 0 two adjucent digital values. For example, il 1 volt represents a
digital O, and 2 volts refresenms a digital 1, a signal of 1.89 volts will practically
always be properly con rted 1o a digital 1. However, a signal ol 1.60 volts will
not always be converted to a digital 1 (as it should be because it is closer 1o
2 volis than 1 wolt). However, we will assume thal an analog level of 1.60 voils

15 converted 10 a digital 1 more often than it is converted to a digital 0.

The following A/D error model used was derived to fit the observed behavior
of many A/D converters. It is more than adequate for our OLAP simulation. We
begin our A/D model by assuming a range of values around each digital level,
where conversion 1o the proper digital number is guaranteed. In the intermediale
range, between the guaranteed ranges, a probability distribution function is used to
randomly decide to which digital level the conversion is made. The distribution is
properly centered such that values are more often converted to the closest digital

level,

The guaranteed range was chosen to be 025 of the range between digitat
levels (on both sides of all digital levels). The output for data in the intermediate
0.5 of the range betweaen levels is governed by a probability distribution function.
The probability distribution function must be finite for obvious reasons. ang was
chosen to be triangular for simplicity. It is8 centered hallway between digital levels,
and gees to zere at the 0.25 points. Oneg side has a slope of +4, the other

side of -4. A diagram of this modelling appears in Figure 5-3.

The diagram shows digital levels at 1 and 2 volis for discussion purposes.

E Tt B
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/N TRIANGULAR
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Figure 5-3: A/D Error Modelling
Any signal in {he region 1.0 £ 025 volts is always converted to a digital 1.
The A/D output for inputs between 125 and 1.75 wolts is controlled by the
friangular distribution shown dashed, centered at 15 wolis, For each A/D
conversion (32 every T,) a random deviate is generaled from the (friangular
distribution. This yields a value between .25 and 1.75 volts, and deiines the
A/D threshold. An input value greater than this threshoid is converted to a digital
1, and an input value less than this threshold is converted to a digital 0. The
threshold is usually near 1.5 wvolts, because ¢! the centering of the triangular
distribution, This is appropriate for modelling the noise mechanisms in an A/D
converter, where an input value will be converted to the nearest digital leve! most

of the time, thus the threshold should be near 1.5 voits most of the time.

In the simulator, the binary bits are represented by real numbers, so that
errors may be added to them. The levels for A/D conversion are simply O and
1. Atso included in the A/D model is the effect of full-scale clipping & the
ends of the A/D range, as would be the case with real A/D's. For example, if
Figure 5-3 represented the full range of the A/D (a 1-bit A/D), any signals above
2 volits would be converted to a digital 1, and any signals below 1 volt would be

converted to a digital O.
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Depending on the type of analog-to-digital converters used, sample-and-hold
circuits may be present before the A/D's. This circuitry will introduce only small
errors and thus is no! considered.  Aperiure time error will not be of concern
since the detector output will not be changing during the sample-hold period T,.
The only other error to be considered is acquisition tire error. However, this
error is small and can he combined with the time-varying detector noise, since it

is additive and changes with time,

We recognize that our A/D model is not as exact as it could be, however
it is more than adequate for our simulations. There is never an actual guaranieed
range around digital levels, as a finite uncertainty always exists. The A/D error is
befter modelled by a Gaussian, with some type of faill truncation to make the
distribution finite. It would cover the entire range between digital levels. Our
triangular disiribution modelling is simpler, and a Gaussian model would not create a
significant difference in simulation results. However, the A/D error model will be

changed appropriatety in future work,

5.3 Olap Simulation Software Details

The software for simulating the OLAP and its optical errors was written in
DEC Fortran for the VAX 11/780, It consists of four programs, a main program
and three subroutines, plus various IMSL [39] noise generation routines. The
programs simulate the OLAP operation and model its errors. The LU decompositon
algorithm for the OLAP, as described in Chapter 4, is implemented. The binary
erncoded data in al M=10 processor channels and Nz=32 AQ cell channels is
explicitly represented within the programs. The four programs are named FINSIM,
DCTOBN, OPTPRC, and ECLSFT.

The main program is FINSIM, which reads the finite eleri:nt case study data
it then reads in the OLAP processing and error modelling inpuls. The OLAP
processing inputs consist of two parameters: the number of bits t0 be used (this

is variable for future use), and the power-of-iwo weighting of the most significant

%



125

bit. The number of bits is 32 for all simulations, The weighting of the MSB will
be 2'° for all case sludy simulations, and thus the weighting of the LSB was
22! This choice accounts for numbers between 2°2' and ~2''=x2047.9909 and is

chosen because it matches the range of data in our finite element problem.

Ther.. are eight variable error model inputs, one for each error source, and
a starting seed value for the IMSL random number generation routines. Only one
seed is needed because a new seed s returned from each IMSL subroutine call,
which is used for the next IMSL subroutine call For fixed errors, the same
N(O,1) deviates are used at each T, For time-varying detector noise, a new
N(O,1) deviate is used each T,. The first error modelling input epecifies the P,
input spatial gain maximum percert error (MPE). The second input specifies the Py
detector spatial response maximum percent error (MPE). The third and fourth
inputs  specily the levels of detector time-varying noise and dark current
respectively, as maximum percent of full-scale errors {(MPFSE). The fifth input
specilies the acoustic attenuation of the multi-channe! AQ cell in dB/mm. The
sixth and seventh inputs specity the crosstalk isolation {(positive dB wvalues) in dB

lor adjacent and even-odd channel crosstalk, respectively.

The final error modelling input ie the starting seed for the IMSL noise
generation routines. Only one seed is required, as each IMSL subroutine
generates a new seed for use on the next subroutine call. This seed is kept
the same for all simulations. The seed determines the deviates for fixed and
time-varying noise, which are generated differently as noted above. It is necessary
that the same deviates are generated each simulation, because the deviate values
creale the errors within the processor. Thus, for meaningful and significant
comparisons ©of errors and error levels in different simulations, the starting seed is

kept the same.

The subroutine DCTOBN is used to convert all of the real-valued elements in

the finite element case study matrix equation to 32-bit flixed-point  binary
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representations (with the MSB representing 2').  The OLAP processes 22-bit
magnitude data and handles bipolar data using sign-magnitude representation as
explained in Chapter 4. Therefore, DCTOBN actually creates 33-bit sign-magnitude
representations, with the extra bit being a sign bit.  An exclusive-or of the sign
bits of the non-zero P, input, and the number in the corresponding region of the

AO cell at P, is formed to delermine the sign of the producl (in OPTPRC).

The OLAP operates with the bits of naw numbers fed to the inpuls every

T The bits of each number in the multi-channel AO cell are fed in parallel and

>
move into a8 new region ol the cell every T, Each T, consists of 32 bit times,

T Every T,, a new bit in each number is presented to the P, inputs, while

v
the data in the AO cefl moves a small amount bul remains in the same T, region.

Every T,, the detector values are A/D'ed and shifted, to perform the convolution.

The program FINSIM implements the LU decomposition algorithm. It forms the
decomposition matrices, and performs the necessary matrix-matrix multiplications.
Each n by n matrix-matrix multiplication is performed as n? vector inner products,
with one VIP performed on the OLAP every 'I‘2. 8s detailed in Chapter 4. Each
T, FINSIM calls the subroutine OPTPRC, which receives the 10 binary numbers fed
to the P, inputs, and the 10 binary numbers present in the P, AO cell. OPTPRC
implements the 32 7, cycles (the 32 convolutions and partiad product sums) and
applies afl seven opticel error sources to the binary &ata. The diagonal partitioning
is explicitly performed. The main diagonal is partitioned separately and processed,
then the remaining 14 lower diagonals (since P* is lower friangular) are partitioned

in 10-diagonal increments, requiring 3 partitions per matrix,

The IMSL routine GGNML is used to produce 74 Gaussian deviates: 10 for
the P, inputl spatial gains, 32 for the P, detector spatial responses, and 32 for
the P, detector dark currents. Since these are flixed for the OLAP operation,
they are generated once in FINSIM and passed to OPTPRC each T, GGNML is

also used o generate the 32 iime-varying detector noise Gaussian deviates each

TR e, o i i e
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T, within OPTPRC. OPTPRC thus calls the subroutine ECLSFT 32 tmes each T,
once at the end of every T, ECLSFT simulates the A/D process and the shifl-
add process in the P, detector array. The A/D process is simulated as
described in section 52, A ftriangular distribution deviate is generated for each of
the 32 A/D conversions each T, by the IMSL routine GGTRA.

OPTPRC converts the mixed binary vector inner product to 8 real number and
returns it 1o FINSIM. This represents oneg element of a malrix-matrix multiplication,
A real number is returned for storage and handling convenience, rather than a 33-
bit binary representation. This is a result of multiplying each mixed binary bit (of
the 63 from the 32-bit convolution) by its appropriate power of two and adding
them. DCTOBN is used to convert the real value to the 33-bil sign-magnitude
binary representation when it is subsequenily needed. in the actual OLAP, the

digital system would always use the binary values.

The final result from the LU decomposition algorithm is ths upper-triangularized
system of equations, (4.20). The OLAP is intended to produce (4.20), since the
friangularization process represents most of the computations required to solve
(4.19). Equation 4.20 would then be solved in digital hardware, since it i8 such a
frivial operation. it should be pointed oul that triangular systems of equations can
also be solved with the standard oplical processor of Figure 4-1, as described in
[26]. An adaptation of that algorithm should be possible for our binary encoded
QLAP. Once FINSIM completes the LU decomposition algorithm and produces the

triangular matrix equation (4.20), it is then solved digitally for the unknown DOQFs,

Some remarks about the programming and running of the simulator are now
advanced. First, the coding of the LU decomposition algorithm with partitioning is
quite complicated. The indexing for the data flow, as diagrammed in Figure 4-9
requires very careful bookkeeping. The simulation program &dso requires a large
amount of computer time. Solving @ 24 by 24 case study m?' .x equation using
our OLAP simulator averages 4 hours of CPU time on a VAX 11/750, with only

single precision.
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To detail the steps required, we consider a 24 by 24 case study (problem
ol chapter 3 with the boundary conditions noted in subsection 4.53), and we note

that the LU decomposition algorithm requires

[24%423%+...43%422] & [24+23+..4342) = 4B899+209 » 5198 (5.12)

vector inner products: 4899 VIPs {or the matrix-matrix multiplication in (4,13), and
209 VIPs for the matrix-vector multiplication in (4.13), where the nwiltiplications in
both equations are reduced in dimensionality by one every step (there are N-1
steps). With P* being partilioned 3 times as explained eartier in this section, this
number must be multiplied by 3 to give 3x5198:155804 iotal ViPs for the LU
decomposition of the case study. This is the number of T,'s simulated, and the
number of times OPTPRC is called from FINSIM, OPTPRC must perform each of
the scalar-veclor {(1-bit scalar ir P,, 32-bit vector in P,) multiplications serially to
properly simulate the optical errors. Each VIP (every T,) thus requires 10 real
multiplications (since M:=10) of the 32-bit wvectors, or 320 multiplications every Ty
Since there are 32 T,5 in every Tz' each VIP requires 320x32 multiplications.
Thus, a total of 15594x320x32 = 160x10% multiplications must be performed
gerially in the simulator for the LU decomposition of the case study. In addition,
every T, the shifl, adds, ncise generations, noise additions, and A/D conversions
(requiring a call 1o GGTRA) must be performed, not to mention ail the program
overhead and control Thus, to complete approximately 100 simulation runs
necessary to fully evaluate the OLAP performance with optical errors, over 2

weeks of CPU time will be raguired.

5.4 Initial Simulation Results

This section describes and discusses the resulls of simulating the multiplication
of three pairs of 32-bit numbers. We expect the OLAP to be able to tolerate
significant optical errors because of the birary encoding used. This occurs
because the processor need only represent iwo levels. The errors that limit
analog processors 1o 30-40 dB of dynamic range can thus be substantially larger
betore they will adversely allect the binary data in our OLAP, which only requires

3 dB8 of dynamic range.
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The effect of the optical errors is signilicantly dependent on the position of
the 1's and 0's within each number in the processor, and how many 1's and O's
there are. This occurs because the multiplicative errors and acoustic attenuation
have no effect on O's, It the power-of-two weighting of the mosi signiticant bit
{10 for our simulations) is varied, the simulation results with optical errors will vary
because the locations of the 1's and Os will change in the fixed point
representation.  The effects of both types of crosstalk will also be influenced by

the positions of the 1's and 0's.

The dependency of processor errors on the position and number of 1's and
O's is now demonstrated, and il is quantiied by the data in Tables 53, 54, and
5.5, Each table contains entries which show the results of a single 32-bit
multiplication on the OLAP. Each multiplication requires one T, ie, 32 T/'s. The
simulations were performed with the previously described software, siightly modified
s0 that one 32-bit number is ‘nput to point modulator 1, and the other input data
is in region 1 of the P, AO cell channels. The same starting seed was used

for all runs,

For each test, an individual error source is added, and the two numbers are
multiplied with the OLAP simulator. The result of a 32-bit multiplication by digital
convolution of two numbers is a 63 bit mixed binary number. In each test the
number of mixed binary bit errors resulting from the OLAP mulliplication is tabulated.
The 63 mixed binary bits (as explained in saction 4.3) are the sum of 32 shilted
sets ot ¢; outputs (1 set every T,) af*.- A/D conversion to binary values. The
number of bits that differ from the €63 mixed binary bits produced by an error-free
OLAP multiplication are tabulated The size of the diflerences is not considered
{most differed by one or two bits) The individua! tests are relerred to by their

test number on the lefi~hand side of each table.

The number and position of the t's and O's in the 32-bit binary numbers

depencs on 1) the number itself, and 2) the power-of-two weighting given to the

W—i!’ .
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most significant bit.  The latter is included under the heading "MSBASE" in the
{ables. Another factor affecting the positions of the t's and O's in the OLAP is
3) which number is the multiplicand fed to the multi-channel AQ ceil at P, and
which number is the mulliplier fed into the point modulator in P, Thus, to
ilustrate the aftect of changing positions and ditferent numbers of 1's and O's In
the OLAP, the three factors just mentionad were varied to produce the resulls in

Tables 5.3, 54, and 5.5

The data in each table corresponds to the multiptication of one of three
different pairs ot 32-bit numbers, each shown in Figure 5-4. The three pairs of
numbers exhibit diflerent features. The first pair ol numbers (Table 53 data) have
about an equal and randomly distributed number ol 1's and O's, The numbers
used in the Table 54 tesis represent an extreme caseé where many 1's are
present and close together in bolh numbers. The numbers for Table 55 represent
another exireme case where there are very few 1's in each number separated by
many O's. The wvariations between the three pairs of numbers account for

variations in factor 1 above.

The second and third factors above are varied within each table. For each
individual error source, tesis include the error source levels that yielded no bit
errors, and other error source levels up to those that yielded many bit errors.
This is done for each error source separately for MSBASE=z10.  Variations in the
multiplicand and multiplier were also consgidered in each table. In each table, the
first number {led to the P, AO cell) is the multiplicand and the second number
{fed to the P, point modulators) is the multiplier. Other variations in the last two
factors (MSBASE and the order of the multiplicand/multiplier) are included in each

table.

Examination of the entries in Tables 53 - 55 readily shows how the position
ot 1's5 and O's in the OLAP affects the bit errors. Nots that some of the MPE's

and MPFSE's agsumed are extraordinarily large in order to introduce errors. This



Table 5.3:

Table 5,5:

1N

3
23704 - 00011101101000110101010000000
78,655 - 00001700311 0701001171Y0:1010107000
(a)
Table 5,4: 1023.9921875 ~ 000O0O0O0OO0OTTYVV1VI1YVVIVIVVYIIVI1100000
1787,953125 - 0000007170V 111011111101000000
(b)
528.0078125 01000010000000000700000000000
255.015625 001000000000000071000000000000
(c)
Figure 5-4: Multiplicati.n Pairs for Tables 53 - 55

is because we are dealing with one mulliplication as delined, thus, only a single
fixed inpul spatial gain deviate, and 32 fixed delector spatial response deviates are
used. Simulation results for multiplication of many numbers, as in the case study
solution simulations that will be performed in the near future, are expected 1o yield
reasonable and predictable levels of tolerable optical errors, which will be
significanily larger than the error levels present in analog optical processors. The
intent here is only to show the effect of the positions of 1's and O's in the
OLAP.

Each table contains a test number in the (eft-hand column to refer to the
test described in that row of the table. The first column contains the multiplicand,
the second contains the muitiplier, and the third contains the value of MSBASE
in Tables 54 and 55 only the digits to the lelt of the

decimal point are tabulated in the mulliplicand and multiplier columns. In each test

used for that test
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only one individual error source is used. Thus, only one eniry will appear in one
of the next five columns, which shows ihe MPE, MPFSE, or isolation level of its
corresponding erfror  source. Agoustic  attenuation was not included because
demonstration of iis eflects requires more than ons multiplication (i.e.. more than
one P, AQ cell region must be used) Only adjecent channel crosstalk was
included. The final column containg the number of mixed binary bit errors resulting

from the multiplication.

The eflect of factor 1) on the number of bit errors is easily seen by
comparing simitar tests of difierent tables, such as tests 1.3, 23, and 3.t. In tes!
1.3 a 60% input spatial gain error resulted in 15 mixed binary bit errors. In test
2.3, a 680% inpul spatial gain error with a ditlerent pair of numbers being multiplied
yielded 12 mixed binary bit errors in the product However, in test 3.1 the
multiplication with the sgame input spatial gain error yielded O bit errors. This
comparison clearly shows how multiplicative error effects differ when the number of
1's and 0O's diller. Since input spatial gain is a multiplicative error, i does nol
affect O's, but only affects 1's. The numbers in fests 1.3 and 2.3 both have a
substantial amount of 1's, and thus both tesis yielded many bit errors. in test
3.1, the numbers being multiplied have very few 1's, thus the multiplication was not

alfected by the mulliplicative error.

The eflect of factor 2) on the number of bit errors can be obcerved by
comparing corresponding tests within the lableg, such as 1.16 and 1.17, or 2.26
and 2.30. Test 1.168 involves MSBASEs10 and a 50% detector time-varying
detectlor noise error. it resulted in 7 mixed binar'y bit errors. in test 1.17,
MSBASE was change to 14, which moved the positions of the 1's and 0's in the
32-bit fixed-point representations.  This resulted in the 50% time-varying detector
noise having a smaller impact on the rultiplication, producing only 5 mixed binary
bit errors. This is because the 32 c values at each T1 appear on ditlerent
detectors (a difference of 4 physical detectors since 14-10=4), and thus the

detector error has a ditferent effect on the resultant convolution. Similarly, tests

-
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Individua! Multiplication Error Simulation Resulls - Average Case
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individual Muitiplication Error Simulation Rerulta - Adjacent 1's
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individua! Multiplication Error Simutation Results - Few t's
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226 and 230 show the same type of change, except that 680% detector dark
current is the error source that is used. Tests 2.8 and 2.10 exhibit the same bit

error dilference with 950% spatial detector response error.

The eflect ot factor 3) can be observed by comparing tests such as 1.22
and 1.24, or 23 and 25 or 34 and 313 in tests 122 and 124 a 60%
detector dark current error is used, and MSBASE=10 for both. The tests difler in
that the multiplicand and multiplier are switched between the two. This means that
the 1's and O's involved in the multiplication are represented in different planes of
the OLAP between the two tests. Thus, a difterent number of ti: errors is
expected bncause the positions of the 1's and O's is varied greatly. Test 1.22
vielded 10 mixed binary bit errors, while test 1.24 yielded 22 bit errors.  Similar
results are observable between the other tesis mentioned above, and elsewhere in

the tables.

Some other interesting, yet predictable, results can be observed from these
tables. In Table 5.5 the two numbers have few 1's. Thus, a certain amount of
a given additive P; error should cause about the same number of bit errors, for
given variations of factors 2) and 3). This occurs because there are so few 1's
that the additive noise almost always has the same effect on the O's, since the
32 outpul ¢, values every T, will be mostly zeros. This behavior can be seen in
tests 3.22-3.33 for detector time-varying noise, and in tests 3.34-3.45 for detecior
dark current, For example, tests 3.24, 3.28, and 3.;32 are all for 50% MPFSE
detector time-varying noise. Each test is different from the others in either the
multiplicand/multiplier or MSBASE (10 or 20), however, they all yield 7 mixed binary
bit errors. It is not explicitly indicated in Table 55, but the bit errors occurred

in the same 7 bits in each test.

Tests 3.15-3.21 show another interesting phenomenon. The detector spatial
response error is multiplicative and thus only atfects the very few t's that arg in

the numbers being multiplied, and hence produced on the detector elements. Ever

.

[ F



138

then, the only errors produced ére those due io negative deviales. This is due
fo the full-scale A/D clipping, where any posilive deviate which increases a 1 will
have no net effect because the resultant value will be clipped to 8 full-scale value
of 1 during the A/D conversion every T,. In each test, the deviates were small
and very large spatial detector MPE levals were needed to produce bit errors.
The errors were in the same bils (as expected because there are so few non-

zero bits that can be aflected). caused by changing a 1 to a 0

Another interesting set of results can be seen by comparing the adjacent
channel crossfalk tests in each table: 1.25, 235 346. When 5§ dB crosstalk was
imposed on the Table 55 numbers (test 3.48), no mixed binary errors resulted.
This is because there are so few 1's in the multiplicand which is in the P, AQ
cell. The first infultlive notion is that the same amount of crosstalk applied to the
Table 53 and 54 numbers would surely result in more bit errors for the Table
5.4 numbcrs because there are a lol of 1's adjacent 1o each other, which should
be detrimental in terms of adjacent channel crosstalk. However, many more bit
errors are actually produced for the numbers of Table 53 (test 1.25). A valid
explanation emerges after thinking about the crosstalk error producing mechanism.
Since crosstalk is additive and positive, because only 0's and 1's are represented,
it only aftects O's because anything added (positively) to a 1 geis clipped to a 1
by the A/D conversion f{ull-scale clipping, as explained in sesticn 5.2 The 0O's
that are affected by adjacent channel crosstalk are those adjacent 1o 1's. It is
clear that there are many more such O's in the numbers of Table 53, than there
are in the numbers of Table 54. These remarks, however, are only valid when
one number is in the AO cell at P, When 10 numbers are present in the AO
cell (as there would be for normal operation), the crosstalk eflect on one bit is
dependent on the 10 data bits in each of the contributing AO cell channels,

Only zeros are still affected, but other numbers contribute to the crosstalk as well,

!J
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55 Summary and Conclusion

This chapter has presented the resulls of Initiad error source simulations on
our oplical linear algebra processor. A 10-chu, nel OLAP was simulator was
developed because it represents a geneoral purpose banded malrix-vector processor.
The error modeling used in the simulation progrum was presented and each error
source was described. The A/D conversion modelling was detaled, and the

simulation sofiware was described.

Optical error simufations were performed for the multiplication of three pairs of
32-bit numbers. The results of the simulations of each multiplication were given in
three separate tables. Comparisons of the results were discussed, and they
revealed the error producing mechanisms that operate in a digitally encoded optical
processor. it was shown how any errors produced arc dependent on the
numbers being multiplied, which determines the number of s and O's in the
processor, and the selection of MSBASE and the choice of the
multiptier/multiplicand, which determines where the 1's and 0's are positioned in the

processor.
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6. Summary and Future Work

6.1 Summary

This report has presented a new digitally encoded optical processor. The
research focused on demonstrating the architecture's usefullness for finile element
problems, or banded matrix-vector problems that require high accuracy processing.
The proposed oplical linear algebra processor computes with 32-bit accuracy and
performs multiplications by digital convolution. The processor performs a 10-element
vector inner product every T, which is 0.5 usecs. From section 63, the LU
decomposition algorithm implemented required 15584 T,'s to compute a friangularized
sysiem of equations of size N=24. Thus, the OLAP would require 15594x0.5 us
z 7.80 ms to compute the ftriangularized eguations. The processing is8 performed
(with 32-bit accuracy and existing components) at a rate of 2.0x 107 muiltiplications

and 1.8x107 additions per second.

The finite elemem mgthod was described in Chapter 2 for structural
mechanics problems. A finite element equation derivation example was given for a
friangular plane strain element, The matrix equation (stilfness matrix) properties
were detailed and solution methods were discussed. Remarks on solving nonlinear
and dynamic problems were included at the end of the chapter, The case study
was detailled in Chapter 3. It described the discretization of an aluminum plate
with eight plate bending finite elements. The stiltness matrix assembly process
was defailed and its properties were quantified. Chapter 4 examined the
weaknesses of analog optical processors and presented our digtally encoded
processor  architecture. The processor operation was deflailed for existing
companents, including a 10-channel AO cell (input P, array) and a 32-channel AQ
cell (P,). Implementation of banded matrix-vector products was described, and a
direct LU decomposition algorithm using only banded matrix-vector products was
developed for implementation of our processor. The use of a 1-channel system

for the LU decomposition algorithm was defailed, and the subjects of large finite
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element and large matrix problems in general (using matrix pariitioning) were
addressed, Finally, Chapter & presented the first error simulation program for a
digitally encoded optical processor. The efror Bources and error modelling were
presented, and the software was described. Initia)  simutation . results were

presented and discussed.

6.2 Future Work

This report described an optical error simulation program for solving a seti of
finite element equations on the OLAP,  Simulation results were only described for
individual multiplications. This was due 10 the large amount of CPU time required
for the simulation runs when golving a case sludy. The next phase of this
research is to fully evaluate the OLAF's performance with optical errors, and as
noted earlier. this will require approximately 100 simulation runs. The goat of the
evaluation will be to determine what levels of the various opticul errors can be
present in the processor, and still yield accurate solution resulls. It is expected
that the processor can ftolerate a large amount of optical errors, given its reduced
dynamiz range requirements. Some indication of the tolerable error levels is
available from the initial simulation results in this report, however many of those
error levels are >=xpected 1o be higher than tolerable levels for a complete

problem solfution, since only single multiplications were performed.

There are many related topics 1o be investigated, One of these topics,
mentioned in  Chapter 4, is handling bipolar dala with a twos complement
representation. There are many possibilities for such an representation on our
OLAP and similar architectures. The next step in number representation is to
implement fioating pcint processing. Up 1o now, all optical processing has been
described for fixed point operations. Floating point representations will require

some sophisticated architectures and/or algorithms and implemantations.

Anothar general topic for future work is implementation of other algorithms on

the OLAP, and considering similar or different processor architectures. Of special
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interest are iterative (indirect) algorithms, which will be discussed in more detail
below. Many othar direct and indirect atgosithms can be developed for OLAP
implementation. Presontly, ow OLAP was used 1o solve finita element problems
formulated with a banded matrix.  Algorithms using other kinds of . malrix formats
may prove useful, such as profile storage described in section 2.7. Specialized
algorithms tor use on dedicaled special-purpose finite element machines may be
very efllicient for optical processors. Some of these algorithms are described in
[34]. This report focused on the solution of a linear static finite element problem
only. The solution of nonlinear and dynamic problems (section 2.8) is also a
large future work topic. Other solution techniques could be implemented for

solving these types of problems.

The OLAP described in this report does not use frequency multiplexing in the
multi-channe! AO cell at P,  Frequency multiplexing is another dimenuion that can
be made available on the processor by using F frequencies in P, and placing F
linear detector arrays in P, of Figure 5-1. This is certainly a topic for future
work. The F linear detector arrays would be stacked in the x direction of Figure
5-1. I F frequencies are used, then F veclor inner products are obtained in P,
which represents a matrix-vector product. All linear algebra operations can be
performed in terms of the basic vector inner product and matrix-vector product
operations. Thus, although we do not propose using frequency multiplexing for
solving finite element problems, any of the algorithms employing frequency
multiplexing for the processor ol Figure 4-1 are applicable to our digilally encoded
OLAP of Figure 4-6.

Two future work topics are very pertinent to the issues this report has
discussed. They are iterative (rather than direct) algorithm implementations and
encoding in radices greater than two (binary). They have both been mentioned

throughout the report, but will briefly be discussed in more depth below.

[ .
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6.2.1 fterative Algorithms

Two solution methods are possible for solving systems of linear algebraic
equations: direct and iterative (indirect). Section 2.7 discussed how iterative
pigorithms are also useful for & lving flinite element systems of equalions. A direci
solution techniqus, the LU decomposition method, was chosen as the eguation
solver in this report because of the widespread use of similar algorithms in many
finite element programs for digital computers, it is important 10 consider the

implementation of iterative algorithms on our OLAP.

There are twa major drawbacks 10 solving finite element problems with
iterative methods. The first is that they require an intdeterminate amount of
computations literations) 10 converge to &n acceptable solution, whereas with a
direct method, a fixed number of computations is required. Second, the entire
iterative solution process must be repealed for a dillerent right-hand side (i.e. the
p load vector) when the matrix K remains the same. With a direct method, the
trianguiarization of K need only be performed once for multiple p vectors.
However, iterative methods have three significant advantages over direct methods:
they are easier 1o program, they require less storage, and they are more tolerant

of errors.

The previous remarks are fairly standard for comparing direct and iterative
solvers, Some other remarks should be made in light of our concerns. Equation
2.21 defines a standard Gauss-Seidel iterative algorithm. A more basic general

iterative procedure can be defined for the solution of

Ab = ¢ {6.1)

as follows
b,, = wic-Ab) + b, (6.2)
where b, is the solution vector at iteration i, An initial estimate b, is used 1o

start the algorithm. The acceteration parameter w may vary with i and/or depend
on the previous b, values. Other Ab, products at other steps i may also be

included in the parentheses.
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The important point % that (6.2) shows how feedback is used in an iterative
solver. Past b, vectors are used lo form the new b . vectors. This b, . vector
is then fed back through a system to form a b, vector. Since feedback is
used, iterative solvers are correclive. Il errors are introduced in one b, vector,
calcufation of b, ,

solution.  More iterations are required, butl the system will eventually recover from

produces a vector that corrects the error towards the true

the errors (assuming that a reiatively stabie indirect algorithm is used).

The corrective nalure of iterative algorithms is attractive for optical processiny
as well as digital processing. Since optical errors exist, a more reliable optical
processor may be one ulilizing an iterative golver, since thers is n0 error recovery

buill into direct solvers.

There is no way 1o avoid the second drawback of iterative solvers mentioned
above, ie, the need 10 repeat the solution process flor new multiple right-hand
side veclors. However, the first drawback, the indeterminate amount of operations,
can be made less severe. Some iterative algorithms have finite bounds on the
number of iterations required to achieve a certain solulion accuracy, and they are
usually defined for ideal processing, i.e, no processing errors, The bounds are
dapendent on the problem parameters, and most often dependent on a multiplicative
fraction of the condition number of the matrix in the matrix equation to be solved.
One such bound for an iterative atgoerithm is descrived in [37] and [40], where it
is proven that solution accuracy within 1% can be achieved with no more than 3C
iterations, where C is the condition number of the matrix. ~The condition number
is defined as the quotient of the largest and smallest eigenvalues of the matrix.
This is only one example, and many other iterative algorithms and iteration *ounds
exist. Higher accuracy requires more iterations, within the accuracy limit of the

processot.

As an example, the condition number for our case study, with N=24 afler

boundary conditions as noted in subsection 4.6.3, is quite large. The largest
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eigenvalue is 12212631, and the smallest is 0.0002901. Thus, Cs=41967.8 . Wi
the algorithm mentioned above, approaimately 126 thousand iterations would be
required for solution accuracy within 1%. This would require ovar 300 thousand
T,5 on our 10-channe! OLAP, as compared with the 15595 To8 required for our
direct LU decomposition solution. in general, the number of iterations does not
increase appreciably when optical errors ar¢ present [35], [40]). Indirect algorithms

shoutd be simulated to determine those ellects.

Another fortunate Bspect of iterative aigorithms can be wused {0 appreciably
reduce the large number of required iterations. I a good initia! estimate of the
solution vector can be made, the number of iterations required for acceptable
accuracy can be greatly reduced. Of course, a significant reduction in iterations
requires a good initial estimate. Certainty, for linear static finite element problems,
very good iniliai estimates can be made. The ability to obtain good initial
estimates for nonlinear angd dynamic problems depends on the problem and the
user's familiarity with similar  results, Since most iterative algorithms are
quadratically convergent, good initial estimates moy creale a large decrease in the

number of required iterations.

Most of the computational burden of iterative algorithms such as (6.2} are in
the matrix-vector multiplication Ab, . For finite element problems, A is banded, and
thus only banded matrix-vec¢tlor products need to be performed, Chapter 4
explained how our OLAP is well suited for those operations. Other types of
iterative solvers exist, however many are less attractive because they cannol be
written and implemented as simply as {(6.2) Some examples are the many
conjugate gradient solution techniques. Implementations of these and other indirect
solvers have not yet been developed for opticat processors. They also surely

deserve attention in fulure work.
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6.2.2 Higher Radices

Anothar topic deserving future altention is encoding data in radices greater
than two (binary encoding). The system dynamic range requirements of such
schemes were described in section 4.4, We have seen how -our OLAP s
relatively impervious to optical errors with binary encoding. N seems reasonable
that higher radix encoding can be used tn &llow fewer P, channels to be used
and with modest oulput dynamic range requirements, without signilicantly atfecting
processing accuracy. Obvicusly, it a high enough radix were used, the optical

errors will aflect the solution accuracy as i an anglog processor were used.

The big advantage of using a radix larger than two, say radix R, is that less
R-bits (as opposed to binary bits) are needed to obtain 32-bit accuracy. Thus,
less AQ cell channels are required at P, and each time period T, required for a
10-element VIP would be signilicantly less than 32T, since 32 bits would not be
used in the number representations. This would increase processing speed and
reduce ihe processor size. Those advantages cin then be traded off against less

optical error tolerance of poorer processing acouracy.

If radix R is used, the f{ollowing equation can be writen
292 ; RX (6.3)

where X is the number of R-bils required to obtain 32-bit accuracy. Thus it a
radix of R=4 was used for data encoding, only X=16 R-bits would be required.
This would decrease the P, AQ cell requirements by a factor of 2, and cut the
processing time by hal (since T, would equal 167,) Other processing
requirements need 10 be detailed, such as the detector array processing.  Briefly,
it M is the number of input point modulators definac in Chapter 4, and if R is

the radix used then
M(R-132+1 = L (6.4)

where L is the number of digital levels that need to be A/D converted at each

detector array element in P;  Thus, to find the number of bits required for the

%)



147

A/D's, simply take LOG, Jf the expression in (6.4) and round the result to the
next largest infeger. Tnese are just initial remarks on the subject of encoding in

higher radices, and more work in the subject area will be forthcoming.
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. Elemental Stiffness Matrix

The following page contains the 12 by 12 etemenial stiflness matrix [K,] for
the case siudy detailed in Chapter 3. The corresponding DOF wvector and
equivalent elemental load vector are given in (3.2). A factor of 10%° has been

factored out of the matrix.

[



152-153

Elamantal Stiffness Matrix

sol )
oy

I1ZE ‘0~

9%0 0

000 0
100 0~
£.€ 0
000 o
2v0 o
982 ©
000 0

Elo 0O~

ICE O~

60 2

000 0
854 "0
210
000 0
048 0
&¥0 0~
000 'O

" O

90 0

£i0 0

100 0

210 O

2vd 0

&¥0 "0~

ood 0

€100

£00 0

ELT O

Qo0 0

100 0-

1 131

12£ 0

98E 0

000 0

£10 0

ELE O

o000 0

&%0 0~

LZ1 0~

iIZE 0

60 2

SET 0

000 0

»S 0

60 0

048 O

&¥0 0

100 O-

210 00—

9500

s10 0

€10 C

850 o

€00 "0~

a0 0

&¥0 0

G000

EsE O

000 ‘0

14 4 3

IcE @

960 0~

€L1 0

000 0

100 9

000 0

oL8 O

&¥0 0~

*Zc 0

8o ©

"o T

9€1 0~

£L271°0

o0 O

&%0 0~

000 0

€10°0-

850 0-

€00 ‘0~

960 0~

9cf 0-

eI(:'0

Z10°0-

£10 0

ELE O

000 0

%0 0

Ly 0

000 0

i1 20

1282 0~

*Z6 0

80 0~

000 0

& 0

000 'O

886 0

2 o

»e0

SE€1 0

€70 ‘0

€00 0-

Zr0 0-



154

Il. Structure Stiffness Matrix

The following pages contain the valuss in the 45 by 45 siructure stifiness
matrix for the case study detailed in Chapter 3. The DOF vector for the matrix
is given in (3.13), and the load vector corresponds fo it exactly (ie. it is &
vector of the ioads for each DOF in equation 3.13, in the same order). A factor

of 10° has been faclored out of the matrix.

The matrix is8 given in © by O blocks, each containing the 9 rnatrix values
corresponding 1o the coupling between 1iwo connected nodes in the structure.
Only the lower diagonal non-zero blocks &are given (since the matrix is symmetric
and large). The rows and columns corresponding to whe location of each © by 9

block in the sliliness matrix are listed above each block.

Rows % - 3, Columns 1 - 3 Rows 4 - 8, Columns 1 - 3

Q015 0. 134 -0. 054 0 000 0. 049 0. 042
0 134 2. 094 -0. 321 0. 049 0. 870 O 000
-0. 0594 ~0. 321 t.145 -0, 042 0. 000 0. 373

Rows 4 - 6, Columns 4 - 6

Rows 7 - 8, Columng 4 - 6

0. O30 0.272 0. 000 0. 000 0. 049 0. 042
0 272 4. 109 0. 000 0. 049 0. 870 0. 000
0. 000 0. 000 2. 289 -0 042 0. 000 0 373
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