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Abstract

i

Optical linear algebra processors are computationally efficient computers for

solving matrix-matrix and matrix-vector oriented problems. Applications include missle

guidance, Kalman filtering, linear-quadratic-regulators, and the solution of partial

differential	 equations.	 Presently,	 the	 most	 substantially	 documented	 optical

processors are analog.	 Optical system errors limit their dynamic range to 30-40

dB, which limits their accuracy to 0-12 bits. Large problems, such as the finite

element problem in structural mechanics (with fens or hundreds of thousands of

variables) which can exploit the speed of optical processors, require the 32-bit

accuracy obtainable from digital machines. To obtain this required 32-bit rccuracy

with an optical processor, the data can be digitally encoded, thereby reducing the

dynamic range requirements of the optical system (i.e., decreasing the effect of

optical errors on the data), while providing increased accuracy,

This	 report describes	 a new	 digitally	 encoded	 optical	 linear	 algebra	 processor

k•	architecture	 for solving	 finite element	 and	 banded	 matrix-vector problems,	 A	 linear
I

static	 plate	 bending	 case study	 is	 described	 which	 quantifies	 thl^	 processor

requirements. Multiplication by	 digital	 convolution	 is	 explained,	 and	 the	 digitally
r
F;	 encoded	 optical processor architecture	 is	 advanced.	 A	 banded	 matrix-vector

multiplication implementation is described for the architecture, and a direct solution

technique for solving finite element problems is detailed.	 Fabrication of the

processor with existing components is described. The results of optical error

simulations for the processor implementation of selected multiplications are described.

The dominant optical error sources are modelled in the simulation program, and the

i
roct!ltc demonstrate the effect of optical errors in a digitally encoded processor.

Finally, future research topics are discussed, including optical error simulation of the

case study solution, iterative algorithms, and data encoding in radices greater than

two (binary).

t
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1. Introduction

1.1 Introduction

Many scientific and engineering problems require various types of linear

algebra calculations. The most basic and widely used linear algebra operations nre

vector inner products, vector outer products, matrix-vector products, and matrix-

matrix products.	 These operations can be performed in many ways on standard

digital computers. 	 However, the sequential nature of digital processors does not

exploit the inherent par rdlelism in linear algebra problems. For example. it the N

multiplications required for an W-element vector inner product are performed in

parallel rati er than sequentially, the time needed is Te vs. NT., or a savings of

N-1 multiplcation times, where TS is the time required for one multiplication. 	 There

is a natural tendency and a practical need to make processing systems solve

problems as fast as possible.	 This is driven by the large amount of computing

time needed to solve many of today's significant engineering problems. Thus, the

development of new parallel processing architectures fo+ linear algebra problems has

become an important task.

The most promising parallel processing architectures are optical processors.

These systems represent numbers and values by light intensities and the modulation

of light.	 A multiplication is performed when one beam of light at a certain

intensity passes through a plane with a given transmittance. 	 Optical systems can

perform many multiplications in parallel and at high speed.	 With lenses, une can

form sums of the products of many pairs of numbers. 	 Many optical processors

have been developed for the implementation of the linear algebra operations

described above [31].	 These processors are capable of data throughput rates

much higher than those obtainable with digital processors.

Most of	 the	 optical	 processors developed	 so	 far represent each number with

an analog signal	 in	 the	 processor, A	 major	 limitation of these processors	 is that

they	 can only	 accurately	 represent numbers	 within	 a range	 of a	 few	 orders of

4
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magnitude. In	 other	 words,	 their dynamic	 range	 is limited	 to	 30-40	 d8.	 A

solution	 to this	 problem	 is	 to	 use encoded data in an optical	 processor.	 In	 this

case,	 the numbers	 are	 encoded	 in binary	 or	 some other	 radix,	 and	 processed

accordingly. This	 can	 be	 done	 at the	 expense	 of	 some	 speed	 and	 the	 size	 or

complexity of	 the	 processor.

One	 application area	 that	 would	 benefit	 from such	 high-speed	 parallel	 linear

( algebra	 processors	 is	 finite	 element	 anal- •sis. These	 problems	 require	 large

dynamic	 range	 data and	 involve	 the	 solution	 of a	 large	 system	 of	 algebraic

E

equations.	 In	 many cases,	 the	 matrices	 involved contain	 a	 few	 billion	 elements.

E Often,	 solutions	 to	 these	 problems	 require	 days	 of P+edicated	 operation	 by	 a	 digital
a
f. computer.	 Thus,	 the task	 is	 to	 solve	 a	 large	 set	 of	 linear	 algebraic	 equations

quickly	 and	 accurately. For	 structural	 mechanics	 finite	 element	 problems,	 the	 matrix

depends	 on	 the	 structure,	 and	 the	 right-hand	 side vector depends	 on	 the	 stucture

loading.	 Generally,	 a solution	 with	 multiple	 right-hand	 sides	 is	 desired.	 Thus	 we

initially	 consider	 direct algorithms	 for	 the	 solution	 of these	 problems.

Finite element problems have specific properties that can be exploited using a

specialized processor. The goal of this research is to develop a digitally encoded

optical linear algebra processor for solving finite element and other banded matrix-

vector problems.	 Specifically, we will be concerned with finite element problems in

structural mechanics.	 However, the processor wi ll be developed to be general

enough to perform many linear algebra operations for other matrix problems. Once

developed, our optical linear algebra processor (OLAP) will be referred to simply

as a high-accuracy OLAP.

1.2 Prior Work

A number of digitally encoded processing techniques have been developed.

All of them involve using binary encoding only. 	 Our work will address the issue

of using other radices. 	 In most proposed systems, the multiplication of two

digitally encoded numbers is performed by a convolution of the bits of each

^I
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number.	 Scme of the proposed systems achieve the multiplication with a vector

outer product operation. Our OLAP uses the basic ideas from these architectures,

but is unique in many ways, specifically in the data flow, hardware, convolution

technique, encoding radix, and direct algorithm realization.

There has been some work by private groups in developing dedicated digital

finite element machines, These i,: , 'ocessing systems are often composed of many

Processors working in parallel with the hardware designed for maximum data

throughput, and usually oriented to implement a particular algorithm. 	 There are

some specialized algorithms that are very efficient when they are used with certain

hardware configurations. 	 Such a machine is being developed at NASA Langley

Research Center in Hampton, Virginia [34].

Many algorithms have been developed for optical matrix-vector processors

which are applicable for solving finite element problems [31]. 	 These include both

direct and iterative algorithms.	 One of these (LU decomposition) will be

implemented on our CLAP for the research described in this report.	 It forms an

upper triangular matrix from an N th order matrix with N-1 matrix-matrix multiplications.

Our CLAP will be suitable for other algorithms as well. 	 Some iterative schemes

possibly useful for solving finite element problems are also discussed.

1.3 Report Outline

This report begins in Chapter 2 with a description of the finite element

method.	 The purpose of this chapter is to explain how finite element problems

are developed, and their specific characteristics.	 A brief history of finite elements

is included, and the fundamentals of the method are explained.	 An example of a

finite element derivation is provided for a plane strain triangular finite element. 	 The

emphasis of this chapter, and this report, is linear static problems in structural

mechanics.	 The problem formulation process, stillness matrix assembly, and stiffness

matrix properties are discussed in Chapter 2.	 Explanations of the various finite

element equation solvers are given, and remarks on their advantages and

,I
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disadvantages	 are	 advanced.	 The	 last	 section	 o r	Chapter	 2	 discusses	 nonlinear

and	 dynamic	 finite	 element	 problems	 and	 their	 solutions.

Our	 finite	 element	 case	 study	 problem	 to	 c. jantify	 our	 proposed	 OLAP's

1	 ; requirements	 is	 described	 in	 Chapter	 3.	 It	 involves	 determining	 the	 plate	 bending

behavior	 of	 an	 aluminum	 plate.	 The	 plate	 bending	 finite	 element	 is	 detailed	 and

the	 structure	 discretisation	 is	 described.	 An	 exz, ,ple	 of	 the	 assembly	 01	 one

element	 in	 the	 model	 into	 the	 structure	 stiffness	 matrix	 is	 detailed.	 The

characteristics	 of	 the	 matrix	 for	 this	 particular	 problem	 are	 then	 discussed.

Our	 proposed	 optical	 linear	 algebra	 processor	 is	 detailed	 in	 Chapter	 ,,	 The

limitations	 of	 analog	 optical	 processors	 are	 discussed	 and	 then	 the	 multiplication	 of

digitally	 encoded	 numbers	 by	 optical	 convolution	 is	 explained.	 The	 processor
k architecture	 and	 its	 operation	 aro	 then	 detailed.	 Fabrication	 of	 the	 processing

system	 using	 existing	 components	 Is	 discussed.	 The	 data	 flow	 through	 the

processor	 is	 detailed	 for	 solving	 banded	 matrix	 equations.	 A	 direct	 LU

decomposition	 algorithm	 is	 described	 for	 solving	 finite	 element	 problems.

t Substructuring	 in	 finite	 element	 problem	 formulation	 and	 matrix	 partitioning	 are
r

discussed.	 It	 is	 shown	 how	 only	 one	 channel	 of	 our	 processor	 is	 needed	 to

! implement	 the	 LU	 decomposition	 algorithm.	 Hence,	 it	 is	 quite	 new	 and	 most

' attractive.

The	 digital	 computer simulation	 of the optical	 processor	 is	 described	 in

Chapter	 S. The	 significant error sources in the processor are	 discussed,	 acid	 their

modelling	 is detailed.	 The simulation	 software components are	 then described,	 and

some	 general remarks	 are advanced about the error	 mechanisms	 in	 the	 processor.

The	 results of	 our	 error simulations	 on the multiplication of	 three	 sets	 of	 two

numbers	 are given,	 and the	 performance of the	 OLAP with	 optical	 errors	 is

evaluated.

Finally, the conclusion and a summary of this research are given in Chapter
11 

j	 6.	 Tho significant portions of the report are reviewed. 	 Future work is discussed.
S

f
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This includes optical error simulation of the case study solution to quantity the

processor performance, Iterative algorithms, encoding In other radixes, nonlinear and

dynamic problems, and twos complement representation.

1.4 Contributions

This report contains some new, significant concepts In the area of optical

linear algebra processing.	 Perhaps the most important is the digitally encoded

processor architecture introduced in Chapter 4. 	 It is unique In its data flow for

banded matrix problems, and the method used to perform the convolution of the

digital bits.	 The shift-and-add method of multiplying binary numbers is used, with

the shift-and-add's being performed in the detector plane. 	 This architecture easily

partitions to allow processing of larger bandwidth matrices.

The	 concept	 of	 encoding	 in radices	 other	 than two	 (binary) is	 also

discussed.	 Although	 most	 of	 the report	 is	 concerned with	 binary encoding,

encoding	 in	 other	 radices	 is	 discussed	 in	 significant	 places. This has the potential

of	 increasing	 processor	 speed	 and decreasing	 processor size,	 while	 still yielding

accurate	 results.

Another	 new	 concept	 introduced	 is	 that	 of	 a	 1-channel	 processor architecture

capable	 of	 implementing the	 LU decompositon	 algorithm	 with	 our banded	 matrix-

vector	 product	 realization. The implementation	 guarantees	 that	 only two inputs	 are

used	 at	 any	 time,	 and one	 of them	 Is	 known.	 The	 contribution of the	 known

input	 (which	 is	 always	 a	 1)	 can	 be	 hardwired	 in	 the	 architecture, and thus	 only

one	 processor channel is needed for	 the	 variable	 input.

An optical	 error	 simulation	 program	 was	 developed,	 and error	 simulations were

performed for	 th ee	 sets	 of	 32-bil	 multiplications	 on	 our optical	 linear	 algebra

processor. This	 is	 the	 first	 optical	 system	 error	 simulation performed	 for	 a multi-

purpose digitally	 encoded	 optical	 processor,	 and	 it	 provided	 some	 very useful

results. The	 simulations	 showed	 how	 optical	 errors	 affect the	 performance of	 a

digitally	 encoded processor,

1 ^^
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1.5 Notation

This section is intended to clarity the notation used in this report. The first

issue to be considered is the definition of dB that is used throughout the report.

Optical processors compute with light, and the intensity, rather than the iLrt,+>litude,

of the light is detected by all detector systems.	 The operations performed in our

optical processor will be entirely proportional to intensity. 	 The conventional dB

definition for comparison of amplitudes Ar and Az is

	

20LOG Io(A r /A2) . dB	 (1.1)

However, since intensity is amplitude squared, the dB definition we will use is

	

10LOGrc(I t /IZ) . dB	 0.21

where I, and Iz are the two intensities being compared. 	 The definition in (1.2) is

used for all dB values given in this report.

Clarification needs to be made concerning the	 matrix and	 vector	 notation	 used

in	 this	 re port. Chapters	 2 and 3	 deal	 with structural	 mechanics,	 and	 Chapters	 4

and	 5	 deal	 with linear	 algebra. The	 standard matrix-vector	 notation	 use r'	 in	 these

two	 disciplines is	 very	 different. We	 feel that	 for	 continuity	 reasons,	 it	 is

important	 to	 use the	 conventional notation	 for each	 topic	 area	 in	 the	 appropriate

parts	 of	 the	 text.	 Thus,	 Iwo	 types	 of	 matrix-vector	 notations	 are	 used,	 one	 type

in	 Chapters	 2 and	 3	 (for	 the exclusive	 structural	 mechan+cs	 information), 	 and

standard	 linear algebra notation	 in the	 remaining chapters.

Both notations are extremely simple, and the presence of both should not

confuse the reader. In the structural mechanics literature, letters representing a

matrix or vector are explicitly shown within some type of bracket, the type of

bracket indicating a matrix or a vector, In standard linear algebra literature

(including optical processing), a matrix is denoted by a boldface or underlined

upper-case letter, and a vector is denoted by a boldface or underlined lower-case

letter.	 In this report, boldface will be used rather than underlining.

.1 i
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Thus, in Chapters 2 and 3, a matrix Indexed by the letter Z is denoted by

IZI

aid a vector indexed by the letter z Is denoted by

(z)

In this notation the matrix or vector Is defined by the type of bracket only, and

not the type of letter. To make the notation conversion clearer, all matrices are

also upper-case letters, and all vectors are also lower-case letters in Chapters 2

and 3.

In Chapters a and 5, a matrix indexed by the letter Z is denoted by

z

and a vector indexed by the letter z is de^,oted by

z

By convention, square brackets enclosing a numv9r denote a reference paper.

These references can be found in the reference list in Chapter 7.

r	 ^
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2. The Finite Element Method

2.1 Introduction

This	 chapter	 contains	 a	 concise	 review	 of	 the	 finite	 element	 method,	 and	 it

emphasizes	 aspects	 of	 the	 method	 that	 are	 of	 particular	 interet t.	 A	 brief	 history

(section	 2.2),	 a	 discussion	 of	 fundamentals	 (section	 23),	 and	 the	 derivation	 of	 the

finite	 element	 equations	 (section	 2.4)	 are	 given.	 The	 basic	 algorithm	 for	 solving

finite	 element	 problems	 and	 its	 details	 are	 then	 presented	 (sections	 2.5	 -	 2.7).

Finally,	 nonlinear	 and	 dynamic	 problems	 are	 discussed	 (section	 2.8).	 A	 specific

finite	 element	 problem	 example	 is	 introduced	 in	 Chapter	 3.	 Other	 problem

examples	 may	 he	 found	 in	 [1],	 [2],	 and	 [3].

2.2	 Finite Element Method Background
Many	 problems	 that	 engineers	 must	 solve	 concern	 the	 state	 or	 states	 of	 a

i
continuum,	 whose	 behavior	 is	 governed	 by	 one	 or	 more	 partial	 differential	 equations.

Examples	 of	 such	 problems	 are	 the	 electric	 field	 between	 two	 conductors,	 the

stresses	 within	 a	 building	 during	 an	 earthquake,	 and	 the	 modes	 of	 vibration	 of	 an

aircraft	 during	 floot.	 Exact	 solutions	 to	 the	 equations	 governin6	 such	 problems	 are

rare,	 requiring	 an	 approximate	 solution,	 if	 any,	 to	 the	 problem.	 Most	 approximate

solution	 techniques,	 such	 as	 finite	 differences,	 series	 representation,	 and	 finite

elements,	 require	 many	 algebraic	 operations,	 which	 poses	 a	 large	 computational

problem.	 Before	 the	 advent	 of	 accessible	 digital	 computing	 in	 the	 1980 's,	 obtaining

accurate	 approximate	 solutions	 was	 not	 feasible.

Y

The finite element method is an approximation technique which developed

I.

	

	 rapidly once digital computing became available. 	 It is an analytical procedure

whose basic concept is that a continuum can be modelled analytically by dividing it

into subdivisions. 	 Each subdivision is modelled by a finite element, and the finite

1-	 elements are connected together to modal the entire continuum.	 The behavior of

I	 each finite element is described by a set of prescribed functions, which will be

^I
t
i
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called basis (or shape) functions. The basis functions will only guarantee a certain

level of continuity across the continuum, however th•@y will provide solutions that

are satisfactory approximations to the actual behavior of the continuum.

The finite element method results in a large system of algebraic equations.

An advantage of choosing finite elements over other approximate solution techniques

is that the equation formulation is extremely appropriate for implementation on a

computer. Another advantage is that the finite element method can be used to

analyze complicated and irregular continuums subject to difficult loading conditions.

The most important advantage is 'hat the finite e lement method performs very well

w.ien properly used, yielding accurate results.

There	 is a wide variety	 of	 applications	 for	 the	 finite	 element	 method.	 Most

of	 the	 finite element work	 originated	 and	 is	 still	 applied	 in structural	 mechanics.

Application	 of finite elements	 for	 determining	 electric	 and magnetic	 fields	 in

semiconductors and	 power	 distribution	 systems	 has	 become very	 popular.	 The

technique	 is	 also	 used in	 fluid	 flow	 and	 heat	 flow	 analysis.

The specific behavior of a continuum can be linear or nonlinear. The choice

of using linear or noniinear finite element analysis depends on which approximation

best matches the actual behavior, and what type of anaytsis is computationally

feasible.	 The loading on the continuum (its environment) can be static, fixed

loads, or dynamic, time-varying loads.	 The simplest finite element analysis case is

a linear approximation with static loading, or a linear static problem. 	 These

problems require solution of only one set of linear algebraic equations. 	 Both

nonlinear and dynamic problems greatly complicate the analysis and solution, These

problems will be discussed in section 2.8. All other sections of this chapter and

the majority of this report will consider only linear static finite elemem problems in

structural mechanics.

IN
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2.3 Finite Element Fundamentals

The subdivision of a continuous structure for finite element analysis i9 called

discretization. Each discrete part of the structure is modelled by a finite element,

Each finite element is permitted a prescribed behavior, which depends on the type

of structural unit being modelled by that element. 	 The shape and interconnections

of elements are defined by the nodes of each element. 	 There are many types

of finite elements.	 The simple bar element shown in Figure 2-1 consists of two

nodes, one at each end of the bar.

	

—^ pl	 —^ u2

1

F----> x

	

Figure 2-t:	 Simple Bar Finite Element

A quadrilateral element, shown in Figure 2-2, consists of a minimum of four nodes,

one at each corner.

i

U4

Y

L-Ii.x 2

Figures 2-2:	 puadrilateral Finite Element

All connections between elements in a model are made at the element's bou

nodes.

1

U3
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An element is allowed to deform according to the degrees of freedom

(DOFs) ti40ined at its nodes. One or more DOFs may be defined at every node

s	 of a finite element. 	 If a finite element model consists of n nodes and d DOFs

per node. then there are n times d DOFs in that finite element ,problem. 	 The

DOFs arp usually dis,r lacements, but may also be derivatives of displacements

i	 (rotations), stresses, forces, or some other defined quantity. 	 For the bar of

`I	 Figure 2-1, a single DOF u is defined at both nodes; it is the displacement in

the x direction.	 The quadrilateral element of Figure 2-2 has displacements u and

v in the x and y directions as its DOFs.

E	 Some terminology clarification should be made here. 	 In strict terms, a

variable is actually defined for each DOF allowed at each node. 	 For example, it

the DOF is movement along a rectangular coordinate axis, the variable is a
1,	 .

displacement	 in	 that	 direction.	 The	 variable	 takes	 on	 the value	 of	 how	 much a

IV node	 displaced;	 it is	 not proper	 to	 say	 the	 DO";.	 P	 Y takes on that displacement value.P

the	 DOF is always	 the	 same defined	 movement. However, we	 will	 not	 adhere	 to
i

the	 proper	 terminology	 (nobody	 ever	 does),	 and will	 usually refer	 to	 the	 variables

and	 their	 numerical	 values	 as	 the	 DOFs	 defined for	 them. Thus,	 "solving	 for	 the

i	 DOF" will mean the same as solving for the numerical value of the variable0

defined for that DOF.	 This point will become clear and insignificant as the reader

continues.

Another subtle point should be made here. In most of the structural

mechanics finite element literature, the term displacements is used to refer to all

the variable types, even if some are rotations, stresses, etc. This is done for

convenience, but it sometimes hides the fact that more than one type of DOF can

be defined in a problem. When it is appropriate and less confusing, the term

displacements will be used in this report in such a manner. Mostly, however, we

will refer to the DOFs, which is considerably more general.

A set of prescribed functions determine the behavior, or deformation, of an

• ^ I

^I
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element	 These	 functions	 are	 called	 shape,	 or	 basis	 functions.	 There	 is	 one

bass	 function,	 defined	 over	 the	 element,	 for	 each	 DOF	 defined	 at	 the	 nodes	 of
it

an	 element.	 The	 finite	 element	 method	 is	 unique • with	 respect	 to	 other	 matrix

c! rvc4ure	 analysis	 procedures	 in	 that	 the	 basis	 functions	 are	 interpolatory. 	 That	 is,

II
the	 bass	 functinn	 for	 a	 particular	 DOF	 takes	 on	 a	 value	 of	 one	 at	 the	 node	 at

` which	 that	 DOF	 is	 defined,	 and	 a	 value	 of	 zero	 at	 all	 other	 nodes	 on	 the

,'	 I element.	 The	 basis	 functions	 are	 usually	 polynomials,	 which	 will	 only	 be
{

'r considered	 here,	 but	 other	 functions	 could	 be	 used.	 Thus,	 the	 basis	 functions

'r between	 nodes	 are	 defined	 by polynomials	 whose	 order is dictated	 by	 the	 number

of	 DOFs	 on	 the	 element.	 The	 DOF	 values	 define	 the	 coefficients	 of	 the {
r

polynomials. 	 The	 simple	 bar	 element	 has	 two	 DOFs,	 thus	 its	 basis	 functions	 are ,I

k; linear	 in	 x,	 since	 two	 constants	 define	 a	 line.

Each DOF	 value,	 for	 a	 given	 dimension	 on the	 element	 (x, y,	 etc.), is

mut iplied by	 its	 corresponding	 basis	 function.	 The resulting	 functions are added to

determine an	 equation	 governing	 the	 deformation	 of the	 element	 in	 that	 dimension. j

If	 the	 element	 is	 multi-dimensional,	 the	 governing	 equations	 for	 each dimension are

multiplied together	 to	 yield	 a	 general	 deformation equation	 for	 any point	 on
i

the

element.

•	 For a one-dimensional example, consider the bar of Figure 2-3 [1]. 	 It is

fixed at one end and loaded by force P and distributed load Q. 	 The bar is

discrotized into three simple bar elements as shown in Figure 2-4. 	 There is a

`	 single displacement u in the x direction defined for each node. 	 The bar element

is a linear element, thus the basis functions are linear functions of x. 	 The basis
r	 function for each DOF is one at Its defined node, and zero at the other node on

the element. 	 The three elements are connected, or assembled, together as in

Figure 2-4. Nodes 2 and 3 are common to two elements, and thus the DOFs at

I_!

	

	 those nodes are defined for both elements. 	 Likewise, the basis functions for the

DOFs at nodes 2 and 3 will be defined over both elements, and they will be
d piecewise linear. 	 The basis function for node i is defined as Ni(x), and N,(x)

ti. r	 through N4(x) are shown, superimposed across all three elements, in Figure 2-5.	 ?+
lf^t

1•	 f
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Figure 2-3:	 Loaded Bar Fixed at One End
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Figure 2-4:	 Discreti:ed Bar - Three Elements

Once	 the	 four DOF	 values	 are	 solved	 for,	 they are	 multiplied	 by their

corresponding	 basis functions;	 i.e.,	 each	 basis	 function is	 weighted	 by	 its DOF

value.	 The	 addition of	 the	 resulting	 functions	 across	 all three elements represents

adding	 the	 contribution	 of	 each	 element	 to	 obtain	 the total	 displacement	 of the

structure	 model.	 M more	 general	 terms,	 this	 is	 called element	 assembly. The

result	 of	 adding	 the	 four	 weighted	 basis	 functions is	 an	 equation	 for the

displacement	 of	 the bar	 across	 all	 three	 elements.	 Graphically,	 it	 results in	 a

r^
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The behavior obtainable by a finite element depends on its shape, the DOFs

f
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Figure 2-5:	 Basis Functions for Discretized Bar

U(X)
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	 x

Figure 2-8:	 Finite Element Displacement Field

piecewise linear displacement field, which is shown in Figure 2-6. Note that ul at

x=O is zero.	 This is because that end of the bar is fixed, and that boundary

condition was imposed on the problem. 	 Boundary conditions are easily handled

with the finite element method, and will be discussed in section 2.5.
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defined at its nodes, and the order of the basis functions, i.e., the order of Me

element.	 In general, higher order elements will provide a better approximation ro

the actual behavior of the structure being modelled. 	 A variety of elements may

be used to model structures. 	 The choice of elements depends on the structure,

loading, type of results being investigated, assumptions on the expected behavior of

the structure, and other factors. 	 These become complex decisions that are not

appropriate for discussion Mrs; such information is available in [1], [2], and [3].

Some basic types of finite elements are shown In Figure 2-7 [2].	 The

coordinate axes and DOFs are shown for each element.	 Element a is a simple

framework or beam element, and the elements in b are plane stress (or strain)

triangles and quadrilaterals,	 They are the most common elements for two-

dimensional analysis.	 The elements in c and d are three-dimensional solid

elements.	 The elements in c are three-dimensional generalizations of the elements

in b.	 The element in d is an axisymmetric element, which is very useful for

modelling structures with symmetry about a central axis, such as pressure vessels,

metal tanks, rotors, and shafts.	 The elements in a are more sophisticated plate

bending elements. 	 They are used to model the flat plate bending behavior of

many structures, and will be used in the case study in Chapter 3. 	 The elements

in f and g are thin shell elements. They are used to describe the behavior of

shell-like surfaces (airframes) by incorporating stretching and bending within the

elements.

2.4 Derivation of Finite Element Equations
Every finite element problem can be described by a set of algebraic

equations, expressed in matrix form. 	 This is the most common description used,

however other notations are possible. such as tensor notation. 	 These equations

may be derived through a variety of methods. The formulation of the finite

element method spans such a wide range of theoretical topics that only a basic

introduction will be given here, with an example of the derivation of a plane strain

triangular finite element.

t
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Figure 2-7:	 Common Finite Elements [2]
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Finite element equation formulation techniques can be divided into two types

[2), direct methods and variational methods. 	 Direct methods are straightforward

and allow insight into any limitations of the element formulation. Two popular direct

methods are the direct method, which combines equations of equilibrium, strain-

displacement equations, and constitutive relationships, and the method of weighted

residuals, or Galerkin's method.

The variational methods are often called energy methods. These methods use

calculus of variations and form element relationships by using equations related to

the total work, or energy, in an element. Some variational methods are the

principle of minimum potential energy, the principle of virtual, work, and the principle

of minimum complementary energy. 	 Variational methods are usually preferred over

direct methods because they can provide information on the convergence of an

element, and can be used to formulate bounds on the numerical solution, An

element is convergent if, as the finite element mesh is infinitely refined into more

and smaller elements, the finite element solution approaches the actual solution to

the problem.	 Regardless of which formulation method is used, they all, when

properly applied, will yield the same finite element equations.

A popular formulation method is the principle of minimum potential energy.	 An

example of a finite element formulation using this method will now be given for a

triangular element undergoing plane strain deformation [4]. 	 The formulation is given

for an isotropic, linearly elastic material, as the minimum potential energy principle is

only valid for elastic materials.	 The conditions of a body undergoing plane strain

deformation are illustrated in Figure 2-8.

The	 quantities	 x,	 y,	 z	 are the	 coordinate	 axes,	 and u,	 v, w	 are	 the

displacements	 in	 the	 x,	 y,	 and z	 directions,	 respectively. The plane strain

deformation	 assumptions	 indicated	 in Figure	 2-8	 are:	 1)	 f.f(x,y), the body force.

1,	 and	 any	 boundary	 forces	 have a zero component in the	 z direction;	 2) wM0,

there	 is	 no	 displacement	 in	 the z	 direction;	 3)	 u n u(x,y), vn v(x,y), the lateral

t'.

r
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Figure 2-8:	 Plane Strain Deformation Conditions - Two Views

displacement fields are functions of x and y only. An example of a structure that

can be modelled by plane strain deformation is a long dam, with the maxis

running along the length of the dam.

With the conditions given above, the nonvanishing strains are

rs • su/ex
iy • ev/Oy	 (2.1)

7sy • Ou/ey ♦ Ow/ex • 7ys

which can be expressed in matrix form as the strain-dlsplacement relationship

rs	 0/Ox	 y	 r uJ
r	 y. o My`̀  v
7•y	 My 0/Ox	 (2.2)

or

(r) c [L]iu')	 where	 (J) • [u v]T

For plane strain, where the u's are stresses,

is • -(v/E)e• - (v/E)ey • (1/E)os • 0	 (2.3)
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From 112 3) and the generalized Hooke's Law, the stress-atrain relationships can

be written as

rx n [(1-r,2)/E]ox - [v(1.v)/E]oy
r y n '[v41.v)/E1ox • [ ( 1- )/E]oy	(24)

,lay n 2[(1,v)/E]r
nr

where v is Poisson's ratio and E Is Young's modulus. 	 Writing (2.4) in matrix form

and inverting yields

Ox	 ,-V	 V	 o	 rx
oy	 n 	 E/[11.2v)lt+v)]	 v	 ,-v	 0	 I	 ry
rxy	 o	 o 0-20/2	 L '►.y

or

{o) n [E](t)	 (2.5)

where [E] is called the elasticity matrix

The potential energy	 !J (per	 unit length	 in	 the	 z	 direction,	 omitting	 initial

stresses. strains, and	 surface tractions -	 Figure	 2-8),	 where	 A	 is	 the	 cross-

sectional body in x	 and	 y,	 is given by

17 n 1/2 f (oxrx.oyr y.rxy yxy)dxdy - f (fxu.fIFv)dxdy
n	 n	 'I

n 1/2 f (o)T(r)dxdy - f (1) T(u')dxdy	 (2.6)
n	 n

where	 (1) n [Ix fy]T

Substituting (2.5) into (2.6) and reversing the vector inner product in the second

term, we obtain

/1 n 1/2 f (r)T[E](i)dxdy - f (u')T(1)dxdy	 (2.7)
n	 n	 '

and substituting (2,2) into (2.7) yields

t

.Is
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n . 1/2 f (u')T[LlT[El[Ll(u')dxdy
11

f(u')T (f)dxdy	 (2.8)
n

Now that an equation has been developed for the potential energy, the

variational method can be used. The principle of minimum potential energy states:

among all admissible displacements of a body, those which satisfy the essential

(geometric) boundary conditions, the displacement that minimizes the potential energy

n is the stable solution of the governing equations of equilibrium and associated

natural boundary conditions, and it is a global minimum for linearly elastic cases.

Thus, if solved analytically, the displacement field obtained from the principle of

minimum potential energy is guaranteed to be a solution to the partial differential

equation governing the behavior of the body.

Ideally, one would like to analytically solve for an admissible function (u'(x,y))

such that (2.8) is a minimum. Since it is usually impossiole or extremely difficult

to solve for the analytical solution, we discretize the variational principle with finite

elements to obtain an approximate solution.	 Note that this is different than the

approximation method of finite differences, where the differential equation is

discretized.	 At this point the	 nite element discretization is introduced for

(u'(x,y)).	 Linear triangular elements will be used to discretize the body as shown

in Figure 2-9. The body Is modelled by many triangular elements, A., with one

node at each vertex. The DOFs at each node are displacements a and v in the

x and y directions, as indicated in Figure 2-9.

The	 basis function	 for each DOF at each node is a	 triangle that has a value

of	 one	 at	 that node, and a valve of	 zero	 at	 the	 other two nodes and along	 the

entire	 opposite edge. The basis function	 N 1 (x,y)	 for	 node	 1	 is shown, in	 Figure

2-10.	 The	 unshaded triangle	 Is the	 finite	 element	 in the	 x-y plane, and	 the

shaded	 triangle is	 the basis function for a DOF at node 1,	 and	 it '.1as	 a value	 of
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Figure 2-9:	 Finite Element Discretization
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Figure 2-10:	 Basis Function for One Node of a Triangular Element

one there. The displacement function (u'(x,y)) for one finite element is discretized

in terms of the basis functions and nodal DOFS as follows

u'(x,y) n u(x,y) . N t 	0	 Nz	 0	 N3	 0	 u^

	

^v(.,y) ]	 ^0	 NI	 0	 N2	 0	 N3 ] yr
uz

vZ

U3

V3

	

or	 (u'(x,y)) • [N(x,y)](do)	 (2.9)
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where (de ) is the vector of nodal DOFs (see Figure 2-9). 	 Substituting (2.2) into

(2.9), the strains can be described as

( e ) • [L](N(x,y))(de)

or

	

(i)	 [B(x,y)](de)	 (2.10)

where [B(x,y)]=[L][N(x,y)].

The total potential energy of the discretized body is the sum of the potential

pp(
	 energy of each finite element modelling the body.	 Substituting (2.10) into (2.7),

the potential energy of a single element is given by

pe • 1/2(de ) T f [B]TrE][B](d,)dxdy
ne

-	 (de)T f [N]T(f)dxay

as
1 /2(de ) T[Ke](de) - (de)T (re)	 (2.11)

where

	

[Ke] =	 f [B]T[E][B]dxdy
no

and

(re) •	 f [N]T (f)dxdy	 (2.12)

Of

Minimizing He with respect to the displacements (d e), i,e. setting 617e=0, results in

the fundamental equation
-1

r	
[K01(de) - (re) = 0

I_ f	 or

r
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[K91(dg) ° (re)	 (2.13)

Equation 2.13	 is	 the	 basic finite	 element	 equation governing	 the behavior	 of	 a

single	 element.	 The	 matrix [Ke]	 is	 called	 the	 elemental	 stiffness matrix,	 and	 it

entirely	 defines	 the	 properties of	 a	 given	 element. The	 vector	 (de) is	 the	 vector

of	 nodal DOFs,	 and	 (re )	 is the	 vector	 of	 equivalent elemental	 loads applied	 at	 the

DOFs. The	 type	 of	 load depends	 on	 the	 DOF, For	 example,	 forces	 are	 the

toads	 for displacements,	 moments are	 the	 loads	 for rotations,	 etc.	 In	 general,	 [Ke]

is	 a	 full matrix.

For the entire structure. or body, one wants to minimize the potential energy

MER,. the sum, over all elements, of the elemental potentizi! energies.	 This
e

process proceeds itimilarly to the derivation of (2.13), and results in the structural

equation

[K](d) z jr)	 (2.14)

where [K]=E[K•], (rj.E[re), and (d) is a vector of all the DOFs in the
•	 e

structure.	 The matrix [K] is called the structure stiffness (or just stiffness) matrix.

It is formed by the proper summation, or assembly, of ali the elemental stiffness

matrices, a pncess which will be discussed in section 2.5, The vector jr) is a

vector of equivalent nodal loads on the structure at each DOF, corresponding

exactly to the DOFs in the (d) wactor. Equivalent loads are defined as those

loads needed to balance any distributed loads, initial stresses, or initial strains.

Equivalent nodal loads are determined by (2.12), as are the stiffness matrix

elements.

In a finite element problem, [K] and (r) are known, being assembled from

(2.13).	 The unknowns are the elements of the (d) vector, and we must solve a

matrix equation to obtain those values. 	 Assuming all the nodes in a problem have

the same number of DOFs, n t, and there are n2 nodes, then there are n-ntxn2

DOFs in the problem.	 Equation 2.14 represents an nth order system of linear

I

I
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algebraic equations.	 The matrix [K] is n by n, and the vectors (d) and (r) are

n by 1.

2.5 The Basic Finite Element Method Algorithm
Implementation of the finite element method for solving structural mechanics

problems can be outlined in six general steps [5]:

u	
1. Discretization of the structure; i.n., selection of elements interconnected

at certain nodal points.

2. Evaluation of the element stiffne 1, and equivalent elemental load matrices.

E	 3. Assembly of the stiffness and equivalent nodal load matrices for the
system of elements.

4. Introduction of the boundary conditions and external loads.

5. Soi„ jon of the resulting finite element system equations.

6. Calculations of strains and stresses based on the nodal DOF values.

Step 1 involves deciding what elements to use to best model the structure

being investigated.	 Some knowledge or assumptions of the behavior of the

structure and the desired results is needed here. 	 The proper choice of elements

to best model the geometry of the structure is often the most important decision

made when analyzing a structure. 	 The physical layout of the elements as they

model the structure is just as important for obtaining good results. Typically, the

bulk part of a structure is modelled with a uniform mesh of standard elements.

Edges, corners, holes, and discontinuities in a structure may need to be modelled

wi!h many small elements. 	 This is because displacement fields in a structure

usually have a large variation in those areas, and a finer mesh of elements will

obviously approximate such behavior better than one or two elements.	 An example

is shown in Figure 2-11.	 The ability to make good decisions at this step of the

process usually requires experience with finite element analysis.

It	 is ap G'opriate to point	 out	 that	 different	 types and shapes of elements may

be	 used together in a	 structure	 model,	 as	 long as	 they are	 compatible.

_.	 Obviously, the DOFs at connecting nodes	 must be the same for any elements	 that

1
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figure 2-11:	 Triangular Finite Element Mesh Around a Corner

are connected. The conditions and assumptions on the behavior of elements must

be compatible if different type elements are to be used in the same mesh.

Otherwise, results will be quite unacceptable, if obtainable at all. Often, if one

part of a structure exhibits a certain behavior, say plane strain, and an adjacent

part undergoes some other behavior, a transition element is used to connect the

elements modelling the different behaviors.

Step	 2	 is	 the formulation of	 the	 elemental	 stiffness matrix	 rK„]	 and	 the

equivalent	 elemental load	 vector	 fry), for	 each finite	 element in	 the	 model.	 The

matrix	 and	 vector are formulated by	 (2.12)	 or other	 direct or	 variational	 methods.

External	 loads	 are not applied	 to any	 element until	 the	 entire structure	 has	 been

assembled.	 Thus, the non-zero values	 in	 the vector	 (r.) represent	 those	 loads

needed	 to	 balance any distributed loads,	 initial stresses,	 or initial	 strains	 acting	 on

the	 element.

For	 a given finite	 element type	 and	 shape,	 only	 a single	 elemental	 stiffness

matrix	 needs to	 be	 derived. If	 needed,	 it can	 contain variables	 for	 the	 actual

element	 size and material	 properties. Tnus, (2.12)	 must only	 be	 evaluated	 once

for	 each	 different finite	 element type	 in	 the model.	 Most models	 contain	 only	 a

few	 different types of	 elements, if more	 than one.

Step 3 is the assembly of all the elemental equations, (2.13), into the
!	 r

f

v
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structure	 equation,	 (2.14)•	 If	 each element has m DOFs, each system of elemental

equations	 will	 be	 of	 mth	 order. If	 there	 are n DOFs in the structure	 model,	 the

system	 of	 structure	 equations	 will be of order n, and n is always greater than m

fo r	 models	 with	 more	 than	 one element. Thus,	 the	 values in	 the	 elemental

stiffness	 matrix	 and	 elemental	 equivalent	 load vector	 must	 be properly	 assembled

into	 the	 larger	 structure	 stiffness matrix	 and equivalent	 nodal load	 vector.	 This

operation	 is	 explained	 below.	 The	 procedure	 is	 simple,	 but difficult	 to	 explain

without an example.

Consider a	 structure	 model	 with	 a total	 of	 n DOFs, with	 in	 nodes and one

DOF defined at each node.	 The model is made up of some number of elements,

with	 m	 nodes each	 and	 of	 course,	 one DOF per node. Equation	 2.13 may be

written as

ketidel	 ke/2de2 + •'• + ketmdem ° ref
ke2ldel + ke22de2 + "'	 ke2mdem ' ro2

kemtdet + kem2de2 + ... + kwnmdon = 'ern 	 (2.15)

Each DOF	 in a single	 element can be numbered from	 1	 to m, but	 the	 DOFs	 for	 i
T

the	 entire	 structure	 model	 must	 be numbered	 from	 1	 to	 n.	 A simple	 one-to-one

mapping	 is	 made	 from	 the	 local element	 DOF	 numbering,	 i.e. 1	 to	 m,	 to	 the

structure	 numbering,	 t	 to	 n.	 Equation	 2.14	 may	 be	 written	 in the	 same form as

(2.15),	 with	 the	 subscripts	 running from	 1	 to	 n•	 In	 (2.15),	 kell is	 the	 elemental

stiffness	 coefficient	 related	 to	 the	 load	 on	 DOF	 i,	 and	 the	 DOF J.	 The	 structure
r

numbering	 is,	 of	 course,	 different, running	 from	 t	 to	 n,	 and kcal	 DOF	 i	 is

f	 structure	 DOF	 k,	 and	 local	 DOF	 J is	 structure	 DOF	 1.	 The elemental	 stillness

coefficient	 ke1j	 is	 thus	 simply	 added to	 the	 structure	 stiffness	 matrix	 at	 row	 k	 and

column	 1.	 The	 mapping	 is	 thus determined	 by	 the	 local	 numbering	 and	 the

structure	 numbering.

This procedure is done for all DOFs of all elements in the structure, until all
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the	 values	 of	 every	 elemental	 stiffness	 matrix have	 been added	 into	 the structure

stiffness	 matrix	 in	 their	 appropriate	 positions This	 iA	 the	 final	 structure stiffness

matrix	 [K],	 and	 a	 structure	 stiffness	 element kki is	 often	 the	 addition	 of several

kell 's.	 This	 happens	 at	 all	 the	 interior	 nodes of	 a structure,	 where more	 than one

element	 connects	 ari	 shares	 a	 node.	 For our example of one DOF per node,

each	 connection	 finite	 element	 has	 a	 k«I	in Its elemental	 stiffness	 matrix that	 is

mapped	 to	 the	 same	 kw	 in	 the	 structure	 stiffness matrix,	 In	 the	 assembly process

outlined	 above,	 they	 are	 all	 added	 to	 each	 other as	 they are	 assembled into	 the

same	 location	 at	 row	 k	 and	 column	 I	 of the structure	 stiffness	 matrix. This
i

?represents	 the	 contribution	 of	 each	 element	 to the behavior	 of	 the	 mutual (shared)

node.

This assembly process easily extends to the more realistic case where more

than one DOF is defined at a node. The procedure is the same as above, with

the individual DOFs being numbered rather than the nodes. 	 In practice, problems

are defined with the nodes numbered. If there are s DOFs per node, the

elemental stiffness coefficients corresponding to a node make up an s by a matrix.

These matrices are simply assembled at the appropriate locations in the larger

structure stiffness matrix by the above rules, by taking into consideration the

proper mapping of element (local) DOFs to structure DOFs. 	 Now the structure

stiffness matrix is sxn by sxn, for the case of n nodes and s DOFs per node.

As	 an example, consider	 the	 structure	 with	 six	 nodes	 in	 Figure	 2-12&	 It	 is

made	 up	 of	 a	 bar element,	 two	 dissimilar	 triangular	 elements, and	 a	 square

element,	 each	 having one	 DOF	 per	 node.	 The	 elements	 of each	 elemental

stiffness	 matrix	 [Ke] are	 represented	 by	 symbols	 corresponding	 to that	 element's

shape.	 Each	 elemental	 stiffness	 matrix	 value	 may	 actually,	 and	 usually	 does,	 differ

from	 each	 other,	 but it	 is	 unnecessary	 to	 show	 that	 to	 illustrate the	 process	 of

assembling	 [K]	 from the	 [Ka]'s.	 Since	 the	 bar	 element	 has two	 DOFs,	 its

elemental	 stiffness	 matrix	 is	 two	 by	 two,	 and	 thus	 there	 are	 four bar	 symbols	 in

total.	 Similarly,	 there are	 nine	 symbols	 for	 each	 triangle	 and	 16 for	 the	 square
r

element.

a•_,__	 _	 _
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Figure 2-12:	 Stiffness Matrix Assembly Example

The structure stiffness matrix [K] is six by six (since there are six nodes

and one DOF per node) as shown in Figure 2-12b, where [K] has been

assembled by the rules outlined above,	 Where multiple symbols appear in a

stiffness matrix position, their values are added together to form that structure

stiffness element. 	 It is easy M see that the pattern of symbol placement within

[K] is determined by the struch,re node numbering. 	 For example, the lower

triangle has nodes 3, 5, and 6, and thus its stiffness coefficients appear in rows

3, 5, and 6, at columns 3 5, and 6. 11 s DOFs were defined at each node,

each symbol would represent an a by s matrix, and the order of [K] would be

increased by a factor of 4.

The	 structure	 equivalent	 load vector	 is	 assembled	 in the	 same	 manner, only

in	 one	 dimension.	 As	 before,	 in (2.15),	 the	 equivalent	 elemental load	 r«	 is the

load	 associated	 with	 DOF	 i,	 where t	 is	 from	 the	 element's	 local numbering. In

the	 structure	 numbering,	 DOF	 i	 is k,	 and	 thus	 the	 load	 r«	 is added	 to the



I
L

'i.

Y

u'

ou

30

structure	 equivalent	 load vector	 in	 position	 (row) k. Again, at	 interior	 nodes,	 more

than	 one	 r«	 will	 add	 to	 produce	 the	 structure rk value. The	 previous	 remarks

hold	 when s	 DOFS	 are defined	 at	 a	 node;	 in this case, the	 contribution	 to	 the

load	 vector due	 to one node	 is an s by	 1	 vector,

One more topic needs to be covered to complete step 3, and that is

rotation	 transformations.	 Each	 finite	 element	 is	 defined	 and derived	 for a	 fixed	 set
1

of	 coordinates,	 and	 each	 structure	 is	 defined	 for	 a	 fixed set	 of	 coordinates.	 In

modelling	 a	 structure,	 some elements may not be oriented properly	 for	 the	 defined

structure	 coordinate	 system. The	 elemental	 stiffness	 and equivalent	 load	 matrices

for	 these	 elements	 must undergo	 a	 rotation	 transformation	 before	 they	 are

e	 assembled	 into	 the	 structure equations.	 Figure	 2-13	 and equations	 2.16	 and	 2.17

w')	 show how this is done for a planar rotation in Cartesian coordinates.

Figure 2-13:	 Planar Rotation of Cartesian Coordinsteb

When	 (x,y) is	 the	 structure, or	 global	 coordinate system,	 and	 (x',y')	 is the

element's,	 or local	 coordinate system,	 the	 element's equations	 must	 undergo a

transformation so	 that	 they	 are defined	 for	 the	 (x,y) coordinates,	 since	 they are

being	 assembled	 into	 structure equations.	 The	 relation	 between	 the	 x	 and y

displacements of	 the	 two	 coordinate	 systems,	 u and	 v,	 define	 the	 rotation

transformation.
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The following transformations are performed on the elemental equations,

[ KsQ] a [R]T[Ke][R]

and

(reg) a p4]T ( re) 	 (2.17)

where [K..] and ( rep) are the global elemental stiffness matrix and the equivalent

load vector used for the structure equation assembly. Hereafter, we omit the "g"

subscript on [Ke] and (re).

Step 4 involves setting up the problem for solution. 	 At this point, (2.14) has

been assembled.	 The (r) vector represents the equivalent nodal loads on the

DOFs of the structure model, but no external loads have yet been applied at the

nodes.	 The values in (r) are only those loads needed to balance any distributed

loads, initial stresses, or initial strains on the structure. 	 Finite elements are usually

used to analyze structures under various external loading conditions,	 External loads

are defined as those loads applied externally directly to the nodes. They are

written as an n by 1 external load vector (peM) (n is the number of DOFs in

the model), and incorporated into the finite element problem by adding (p old ) to

the right-hand side of (2.14). 	 The addition of (r) and (pe,,) forms a new n by

1 vector on the right-hand side, (p), simply called the nodal load vector,	 The

result is shown in (2.18), which Is the equation for the structure including all

loadings.	 Equation 2.18 is the basic, fundamental finite element problem equation

for linear static problems.

I	 [K](d) a (r) ♦ (Pext) a (p )	 (2.18)	
IN

N
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Equation 2.18 cannot be solved, in its present form, for the unknown DOF

vector (d), since [K] is singular. This occurs because the structure stillness

matrix is a complete description of the relation between all DOFs, and the forces

on the DOFs in the structure.	 That is. the present stiffness matrix • represents the
I	

structure as if it were floating in apace. capable of rigid body movement. 	 A

E ,	 physical interpretation of the stillness matrix is thus useful,	 Specifically, element kii

`	 is the force required at DOF i to produce a unit displacement at DOF 1, with all

other DOFs fixed at zero (assuming all DOFs are displacements). Thus, the rows

of the stiffness matrix represent equilibrium forces, and must sum to zero since

the sum across a row is a sum over all DOFs (a row of [K] multiplies the DOF

vector (d)).	 Clearly, the stiffness matrix is singular and a unique DOF vector (d)

cannot be found for a given load ing,	 An applied load simply produces a rigid

body motion; i.e„ the entire structure translates and no deformation occurs.	 Thus,

the stiffness matrix must be made non-singular by the application of boundary

•	 conditions.

Boundary conditions are usually applied by restraining selected DOFs, forcing

their value to be zero or some fixed value. Generally, DOFs are set to be zero,

and this is the only type of boundary condition considered in this report. When

setting DOFs to be zero, the corresponding row and column of the stiffness

matrix, for those DOFs, are deleted. Tht co'-.Ann is deleted because those values

would multiply the zero in the DOF vector (d), and the row is deleted because

the nodal load will include an internal reaction force, which cannot be found until

the DOF values are determined. 	 This process results in a non-singular stiffness

matrix which will yield a unique solution for (d). 	 The equations are of the same

form as (2.18).

Step 5	 is	 the	 solution	 of the	 system of	 equations	 resulting from step	 4.

Solution	 of !'less	 linear	 algebraic equations	 is not	 trivial	 because	 a typical problem

may involve thousands of DOFs. This process will	 be discussed	 in section 2.7.

i
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The final step in the finite element method algorithm is the determination of

stresses and strains from the nodal DOF solutions obtained In step 5. These

quantities are solved for directly from the strain-displacement relationship of (2.10),
i	 and the stress-strain relationship of (2.5).
r
?'	 I

2.6 Structural Stiffness Matrix Properties

'	 The structure stiffness matrix resulting from any structural mechanics element

formulation has some predictable and useful pro perties.	 The stiffness matrix will be

positive definite, symmetric, sparse, and banded.	 There are some problems,

however, that result in an indefinite matrix, such as buckling problems, which are

not of concern here. 	 One or more of these properties is usually exploited by

equation solvers as discussed in section 2.7. 	 It is instructive to briefly examine

each of these properties.

i	 The	 positive definite	 property	 (each	 n	 by n	 submatrix,	 starting	 in	 the	 upper

left	 corner	 and
I

proceeding	 down	 the	 diagonai o,	 the	 matrix,	 has	 a positive

determinant,	 and	 hence	 all	 diagonal	 elements	 of the	 matrix	 are	 positive	 valued)	 is

p	 evident	 from	 any of	 the	 variational	 formulations, 	 specifically the	 principle	 of minimum

potential	 energy. To	 guarantee a minimum rather than a maximum when setting the

first	 variation	 of the	 potential	 energy	 to	 zero and	 solving,	 the	 second variation

must	 be	 positive. If	 we	 look	 at	 the	 left-hand side	 of	 (2.13),	 and	 form another

variation	 with	 respect	 to	 the	 DOFs	 (d),	 this second	 variation	 of	 the potential

energy	 will	 be	 a function	 of	 the	 stit..,.ss	 coefficients. 	 If	 one	 performs all	 the

variational	 calculus, the	 stiffness	 matrix	 is	 found to	 be	 required	 to	 be positive-
4
r	

definite.	 A	 more rigorous	 discussion of	 this	 subject may	 be	 found	 in [2].

The symmetry of	 the	 stiffness	 matrix	 is	 obvious from	 considering	 the

equilibrium forces	 for a	 DOF	 represented	 in	 each	 row. The	 force	 required	 at

DOF	 i	 to produce a unit	 displacement at DOF J must be the same	 as	 the	 force

needed	 at DOF J to produce a unit displacement at DOF i	 (all	 other	 DOFs	 fixed

to	 zero). Thus,	 kit is	 equal	 to	 kip	 Note	 that	 after boundary	 conditions	 are
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applied. the	 stillness	 matrix remains	 symmelric.	 Also, the diagonal	 elements,	 k,,,

must	 be p.^s:Uve	 and	 non-zero.	 This	 is	 because	 the force at DOF i needed	 to

produce a	 unit	 displacement at	 the	 same	 DOF	 i	 must be positive	 by	 Convention.

Thus,	 the	 stiffness	 matrix	 is usually	 diagonally	 dominant (the larger	 valued	 elements

lie	 along the	 diagonal).

The most important property of the stiffness matrix is its sparsity. 	 The

reason for this can be seen from (2.12). 	 The elements of the stiffness matrix

are derived by integrating over all possible products of the basis functions, which

are imbedded in [Bj as in (2.10). Since finite element basis functions are

defined to go to zero at all other nodes than the one for which they are

defined, the product of several basis functions will only be non-zero for nodes on

the same element. 	 In other words, the behavior of a given element will only

influence adjacent elements, For models with many elements, a single element has

no influence on most of the elements in the model, thus the stiffness matrix has

many zeros (sparse).

Typically, the percentage of zero elements in the stiffness matrix is 70% to

over 90%.	 Obviously, it is the topology of the structure and the specific finite

element model that determines the sparsity. 	 Thus, the percentage of zero

elements will be lower in some problems than in others. 	 Elongated structures

usually have the most sparse stiffness matrices.

A	 natural	 result of	 the	 stillness	 matrix	 sparsity	 is	 banding	 of the	 non-zero

elements	 around	 the main	 diagonal.	 This	 occurs	 with	 proper	 node numbering	 of

the	 model.	 If	 the model	 Is numbered	 such	 that	 the	 difference in	 the	 node

numbers	 for	 adjacent nodes	 Is small,	 lighter	 banding	 will	 occur. The	 stiffness

matrix	 can	 have	 a	 full	 band	 for a poorly	 numbered	 model.	 A rule of	 thumb	 for

proper	 numbering	 is to	 number across	 the	 shorter	 dimension	 of	 the	 model	 (in

terms	 of	 the	 number of	 nodes), as	 illustrated	 in	 Figures	 2-14	 and 2-15,	 Figure

2-14a	 is	 numbered	 across	 the short	 dimension,	 while	 Figure	 2-14b is	 numbered

t
E
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Figure 2-14:	 Model With Different Node Numbering

(a)	 (b)

Figure 2-15:	 Nonzero Stiffness Matrix Entries

across the long dimension. The corresponding nonzero stiffness matrix entries,

assuming one DOF per node, are shown by X's in Figure 2-15. The tight band

can be observed in Figure 2-15a, while Figure 2-15b shows a full stiffness matrix.

Note that the number of non-zero elements is the same in Figures 2-15a and

2-15b.

For a given problem, there is a node numbering scheme that will minimize

the bandwidth. This is desireable for some equation solvers, since It can reduce

the required storage and number of computations. In general, It is easier to work

with a banded matrix, and thus node numbering algorithms are an importent part of

finite element software packages. There are some cases when such numbering is

r
not desired, as with the frontal solution algorithm discussed in section 2,7.

I.'
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Given a numbered model, the bandwidth of the structure stiffness matrix [K]

can be determined from the equation

Bandwidth . 2ND-1	 (2.19)

where N is the number of DOFs per node, and D is the maximum difference

between the numbers for any two nodes on any element in the model, plus one.

The quantity ND is called the semibandwidth of [K]. Equation 2.19 assumes all

nodes have the same number of DOFs.

A comment about the dynamic range of IN stiffness matrix should be made.

The values of the elements In [K] depend on the types of finite elements used,

their physical dimensions, and how they are used in modelling the structure. It is

common to have a stiffness entry proportional to some length, adjacent to an entry

proportional to that length cubed. 	 In a well-formed problem, all element sizes are

within one order of magnitude of each other, so that their stiffness matrix

coefficient differences are not too severe.	 However, the nature of the finite

element method dictates that [K] will have a large dynamic range (four or live

orders of magnitude) for most problems. 	 Subdivision of a model into smaller and

smaller elements will reduce the dynamic range, but at a large increase in the

cost of problem formulation, solution effort, and complexity. Dynamic range is, of

course, extremely problem dependent, precluding any kind of thorough discussion

here.

2.7 Solution Methods
After boundary conditions are applied to (2.18), a large set of simultaneous

linear algebraic equations results. Solving such a set of equations is always

required in the finite element method, where they arise from linear static problems,

linearization steps in nonlinear problems, and time-stepping algorithms in dynamic

problems.	 Equation solving is usually the most expensive part of the structural

analysis, and may involve from 25% uo to 80% of the computations for a problem

[t].	 For these reasons, the proper choice of an equation solver is important

when performing finite element anaylsis.
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It should be noted that (2.18) is never solved by inverting the stiffness

matrix [K].	 A large matrix inversion is costly and time Consuming, especially

because the inverse of a banded matrix Is a full matrix. There is an abundance

of literature devoted to sparse matrix and finite element solutions, unfortunately

there is yet to be developed a ,; optimal equation solver applicable to every

problem.	 The most efficient solver will depend on the specific problem, and

computing hardware available.	 Thus, only general statements can be made about

the merits of available equation solvers.

There	 are	 two	 types	 of	 equation solving procedures,	 direct	 solvers	 and

indirect	 (iterative)	 solvers.	 Direct	 solvers are	 the most	 popular	 solution algorithms,

since	 they	 require	 a	 fixed	 number	 of numerical operations,	 given	 the size	 and

sparsity	 of	 the	 stiffness	 matrix.	 Indirect solvers	 are	 less	 attractive,	 but have some

nice	 features.	 The	 number	 of	 numerical operations required	 by	 indirect solvers	 is

indeterminate,	 but	 depends	 on	 the	 onditioning	 of the	 matrix	 equations. We	 will

consider	 only	 a	 direct	 solution	 in	 Chapter 4	 of	 this report.

Direct algorithms usually employ forms of Gaussian elimination, Cholesky

decomposition, or the Crout method.	 Most algorithms factor the stiffness matrix

into upper [U] and lower [L] triangular matrices. 	 This step involves the majority

of the computational load. 	 The process is outlined in (2.20) below, where the

first two lines show the original problem and the factorization. The solution is

obtained as indicacted by the last two lines, where solving for (y) is called

forward substitution, and solving for (d) is Called back substitution. These last two

steps are trivial.

[Kl(d) - (p)
[L][Ul(d) c (p)

[Ll(Y) ° (p)
[U1(d) _ [y)
	

(2.20)

Many options exist for the factorization of [K]. 	 Since [K] is symmetric, it

	

can be factored into the product of a lower triangular matrix [L], and its 	 It
11
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transpose [L] T with Cholesky decomposition. Also, [K] can be factored into the

product [L][D][L]T, where [D] iB a diagonal matrix. 	 This factorization avoids a

square root computation. 	 In Chapter 4 we will use an [L][U] factorization for

reasons explained there.

The various algorithms typicaliy exploit the sparsity of the stiffness matrix. 	 A

reduction in the required storage and number of computations can be made by

operating on just the nonzero band of the stiffness matrix. 	 This is a conventional

and popular method.	 Storage and computational effort can be further reduced by

using profile (skyline) storage. 	 In this scheme. the columns of the upper triangular

portion of the stiffness matrix are stored beginning with the first non-zero entry in

each column which defines the profile, of skyline of the matrix. 	 An index is kept

of the location of the diagonal elements in the storage array.	 With this storage

scheme, the model is numbered in order to reduce the infill under the profile, i.e.

the number of zeros under the profile.	 This is because the zeros may be

changed to non-zero numbers during factorization. 	 The triangular factorization may

be done efficiently with dot product routines.	 A more in depth discussion may be

found in [6].

A popular direct method which conserves storage is the wavefront or frontal

solution method [7]. This method uses Gauss elimination, and stiffness coefficients

related to a node are reduced as soon as all equations contributing to that node

have been assembled.	 Thus, as each finite element is assembled into [K], Gauss

reduction begins on those equations which are complete. 	 This method relies on

numbering elements rather than nodes. The advantage to a frontal solver is that

storage requirements are reduced, but at the cost of complex programming and

equation manipulation overhead.

Indirect methods use iterative procedures that require an indefinite number of

operations to converge to an acceptable solution. 	 One iterative solver, indicative

of the others, is Gauss-Seidel aeration.	 This algorithm refines an initial estimate in

i

i^	 t



II

! 	 \\ r	 0.

t

^

A

39

	 ^I

a procedure using an over-relaxation factor w, The algorithm is guaranteed to

converge for positive-definite, symmetric systems, if W is between zero and two.

The basic algorithm is outlined below [1], for solution of the Nth order system of

equations [K](d)•(p):

i-1	 N
dn.t i din ♦ ( cr/ki i )( pi - Ekildir'" - Ekildln )	 (2.21)

1.1	 jai

where n is the iteration number, and the process begins with an initial estimate

(qo) for [d).

Indirect (iterative) methods have a few advantages: they are easier to

program than direct methods, they demand less storage, and fast computation times

are obtainable for low-accuracy solutions, or for good initial estimates of (d).

Direct algorithms have other advantages when a given problem has multiple loading

conditions, i.e. multiple (p) vectors. 	 In this case, the factorization only needs to

be computed once to solve for all of the loadings. 	 Multiple (p) vectors often

occur in finite element problems.	 With an indirect solver, the entire algorithm must

be used for every [p) vector, and the number of computations for each solution

is indeterminate. 	 In general, direct algorithms require less numerical operations and

are the preferred algorithms. 	 For these reasons, a direct algorithm is initially

investigated in this paper.

2.8 Nonlinear and Dynamic Problems

The finite	 element	 method	 has	 been	 described thus	 far only	 for	 linear	 static

problems. However,	 many	 important	 and	 practical problems require	 modelling	 of

nonlinear behavior and/or	 time-dependent (dynamic) 	 loads,	 The equations	 for	 these

problems are	 derived	 with	 the	 same	 methods	 used for	 linear, static	 problems,	 but

their	 solutions can no	 longer	 be	 obtained	 by	 solving a	 single matrix	 equation	 such

as (2.18).

In nonlinear problems, the stiffness matrix is a function of displacements, and

i
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will be changing throughout the structure deformation. In dynamic problems, the

loads will change with time, and the displacements will also be time-varying,

Solutions for these problems require much more computational effort than the linear

static problems, and several orders of magnitude more work for a nonlinear

dynamic problem, 	 A brief discussion of the problem formulations and solution

methods will be given here. 	 A more thorough account of the subject may be

found in [3].

2.8.1 Nonlinear Problems

In the linear problems, the differential equations governing the behavior of the

structure were linear This was due to two inherent assumptions for elastic

structures [3]:

1. Linear strain-displacement relationships.

2. Linear stress-strain relationships.

Two types of nonlinearities may be defined.	 If the first assumption is not valid,

the problem posesses geometric nonlinearity. 	 This means thai deformations are not

small, and that the structure geometry changes significantly during loading.	 It the

second assumption is not valid, material nonlinearit ies are present, which implies that

material properties change under loading. Geometric nonlinearities are usually more

severe, but both types may be combined into problem formulations that may be

solved by the following methods.

The basic equation (such as (2.18)) for a nonlinear static problem may be

written as follows, where [K] is a function of the displacements,

[K(d)1(d) - (p) * 0

or

[K(d)](d ) c (p)	 (2.22)

Four popular numerical procedures will be described for solving (2.22) [3].

The first method is direct iteration.

G
----- - - -

This is the most straightforward and
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least sophisticated method.	 An initial estimate, (d)-(do) is assumed for the

displacements of (2.22).	 An improvement of the estimate is found by

(d l ) - [K(do)]"'(P)
	

(2.23)

or, in general,

(di) - [K(di.,)]-'(P)	 (2.24)

where i is the iteration number. 	 Of course, the matrix inversion is just notational

and never performed, rather direct equation solving techniques are used. 	 The

i	 method terminates when two successive approximations are within a defined
r

tolerance.	 One possible convergence criteria is defined by

(ei) - (di ) - (di . 1 )
	

(2.25)

^i	 and convergence is achieved when

rg	 II(ei)II ( all(di)II
E.

Ywhere II•II is some norm and a is some fraction.

The direct iteration method is very simple, but may be divergent if certain

nonlinearities are modelled.	 At each iteration, a different equation of the form of

(2.24) must be solved. 	 Thus n times more work than a linear problem is needed

in the solution process, where n is the number of iterations.

The second method is Newton-Raphson iteration, This method requires

linearization of (2.22) with a truncated Taylor series expansion, which results in the

equation

[K(di.j)](di.r) - ( p) + [Ki.jt]((di)-(di.j)) - 0	 (2.27)

The	 matrix	 [Kr] is	 the	 tangential	 stiffness	 matrix,	 which	 is the	 derivative of	 [K(d)]

with	 respect	 to the	 displacements.	 An	 initial	 estimate, (d)-(do)	 is used,	 and

refined	 by	 (2.27) in the	 form

(2.26)

ii

f;

[Ki_lt](ddi) - (P) - [K(di-I)](di.,)

Ur	 where

P

(2.28)

, 

IN
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(ddi) • (di ) - (di. t) (2,29)

The same convergence criteria for the direct iteration method can be used for this

method.

The Newton-Raphson method converges faster than the direct iteration method

given the same (do), and, in fact, it converges quadraticafly near the solution.

The initial estimate, however, must be in the problem's region of convergence, or

the process will diverge. This numerical technique is very standard, and

information and examples may be found in any good numerical methods text, and

in [8] and (10].	 Note at each iteration the linearization, i.e. the evaluation of the

tangential stiffness matrix, must be performed along with solving (2.28).

The third method is a modified Newton-Raphson method. 	 At some point in

the standard Newton-Raphson procedure, it may become economical to use the

most recent linearization for all, or some, subsequent iterations. 	 This provides a

trade-off between computation time in the evaluation of [K t] at each step, and the
i

rate of convergence, which may prove advantageous.	 The equation to be solved

at each step is	 j

[ Kct](ddi ) ° (0) - [K(di-t)][dl-t) 	 (2.30)

where [KCI 	is	 a tangential	 stiffness	 matrix that	 is	 used	 for	 several	 iterations.

Again, information	 on	 this	 modified	 algorithm can	 be	 found	 in	 most	 numerical

methods texts	 [10], and an example is given in	 [8].

The last method we will present is the incremental load method, which solves

the incremental equation

[Kit](ddi) a [dpi )	 (2.31)

where

(adi) . (di ) - [di.t)

and

k 
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(API) ° (pi ) - (Pi . 1 )	 ( 2.32)

Here again, the tangential stiffness matrix is required, and incremental displacements

are solved for as the load is incremented. 	 For almost all structures, the initial

displacement and load vectors can be the zero vector. 	 The tangential stiffness

matrix [Kt ] and the incremental nodal load vector (dpi ) are evaluated, and (2.31)

is solved for the incremental displacement vector (dd i ).	 The current state of (d)

is then calculated as

(di) . (di _ 1 ) ♦ (Ad,)	 (2.33)

At	 this point,	 the	 iterations	 could	 continue by	 evaluating	 [Kt]	 from the	 (di ) from

(2.33), applying	 the	 next	 load	 increment,	 i.e.	 using (2.32)	 to	 form (dpi,,), and

solving (2.31)	 for	 (Acl,,O.	 However,	 since [Kt]	 is a	 linear	 approximation	 to the

nonlinear	 curve,	 the	 (pi )	 vector	 does	 not exactly satisfy	 (2.22) with	 the (di)
vector.

An equilibrium load correction step can be used to keep tha linear

approximations closer to the actual nonlinear curve. After solving (2.31) then (2.32)

in an iteration, the next step is to find the actual (p) vector that satisfies (2.22)

by performing that matrix-vector operation

[K(di)](dl) _ (p+)	 (2.34)

and obtaining (p O ).	 In the next iteration, (pi_1)=(pi) instead of (pi ) used in

(2.31), when applying the load increment. 	 Thus, the load is incremented from the

exact load value on the nonlinear curve satisfying (2.22) with the last displacement

vector.	 This procedure is a more accurate approximation than when the correction

step is omitted. 	 An example of this algorithm may be found in [B].

$ ;	 The incremental load method will converge for any problem if the load
i	 increments are taken small enough. 	 However, if [Kt] is exactly the zero matrix at

r̀.,	 any iteration, the algorithm may diverge, and thus adjustments must be made to
r,l

1

----
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avoid this At each iteration of the algorithm, the tangential stiffness matrix must

be evaluated, (231) must be solved, and the matrix-vector product of (2.34) must

be performed.

The	 nonlinear solution methods	 presented	 here	 are	 by	 no	 means	 the	 only

ones	 available,	 and each method	 has	 variations	 and	 improvements. The	 best

method	 to	 use	 is purely problem	 dependent,	 and	 often	 a	 series of	 different

methods	 will be	 used	 when solving	 a	 nonlinear	 problem.	 If one	 has	 a good	 initial

estimate	 of	 the	 solution,	 the Newton-Raphson method may be the best choice.	 As

e	 general	 solution method, the	 incremental	 load	 algorithm	 is	 attractive because	 it

always	 converges.

2.8.2 Dynamic Problems

Dynamic problems need to be solved when the applied loads are tii.,e-varying.

Analytic solution techniques may be used for some problems, but they do not

easily accomodate nonlinear problems or solution of transients. Discretization of the

time dimension leads to step-by-step formulations which provide a better treatment

of transients, end allow for nonlinear analysis.	 Solution of dynamic problems is a

large and complicated subject. 	 Thus, only a few solution methods will be

discussed hsre. A more thorough presentation may be found in [3].

Analytic solution procedures are applied on a set of dynamic finite element

equations that have, of course, been discretized in space, but not in time. In

general, an ordinary differential matrix equation describing a time-varying finite

element problem can be written as

[MI(d) • [CI(d) + [K](d) - (p(t))	 (2,35)

Standard analytical techniques for solving differential equations may be applied to

(2.35), with some added approximations.

In (2.35), the quantities d, d, and d are the nodal displacements, velocities,

and accelerations, respectively. 	 The matrix [M] is the mass matrix, which

I,

y
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describes	 the distribution	 of	 mass	 throughout	 the	 structure. It may	 be formulated

as a lumped (diagonal)	 mass	 matrix,	 or	 a	 consistent (same band	 structure as	 [K])

mass	 matrix. The	 matrix	 [C]	 is	 a	 damping	 matrix which ueualiy	 has the	 same

band	 structure as	 [K],	 although	 lumped	 formulations exist. The damping matrix	 is

difficult	 to	 determine, so	 it	 is	 usually	 defined	 as	 a linear combination	 of [M] and

[K]

[C] a a[M] + b[K]	 (2.36)

where, a and b are usually determined experimentally. 	 The matrix [K] is the usual

stiffness matrix, and the vector (p(t)) contains the nodal time-varying loads.

We will describe two anayltic solution techniques for a specific and a general

case of (2.35). First, consider the free vibration problem where the damping and

load vector are zero, resulting in the equation

[MI(d) + [K](d) a 0
	

(2.37)

Assuming a solution of the form (d)a[d')sirkol and substituting it into (2.37) gives

-w2[M](d') + [K](d') a 0

or

(-w2[M1 + [K])(d') a 0	 (238)

and the characteristic equation yields the following eigenvalue problem,

[K](d') a w2[101](d')	 (2.39)

Equation 2.39 may be solved by a variety of standard methods. If [M] and

[K] have dimension in by n, then in values (eigenvalues) of w 2 can be found,

€6	 which represent the natural frequencies of the system. 	 They will be real-valued if

[M] and [K] are positive definite, which is usually the case, 	 The n

corresponding eigenvectors (d') represent the natural modes of the system. This

free vibration problem is just one simple example of how basic differential equation

solution techniques may be applied to (2.35).

i

ir
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The analytical procedure of model decomposition analysis may be used to

solve (2.35) and provide the transient response [3]. , Tt ,., general solution for the

free response of (2.35) can be r9own to be

n
(d) • (d')e°t • ^(d i ')e°it 	(2.40)i 

where a, and (d' i) are the eigenvalue and eigenvector for mode I. We will

assume that the forced response ((p(t)) nonzero) may be written as a linear

combination of the modes

(d) - E(dj) y, - [(d l '). (dz), .... (dwAl y )	 (2.41)

where y, is the scalar mode participation factor, and is a function of time, y,.yi(t).

Substituting (2.41) into (2.35), and premultiplication of each mode equation by (di)T,

ist to n, we obtain the set of scalar, independent equations

miyi ♦ clyi ♦ kiyi n pi	 (2.42)

Wiere

mi • (d j )T[M][dj ]
C, n (dj ) T[C][dj ]
ki a (dj )T[K][dj ]

P, • (dj )T(p)	 (2.43)

These n scalar equations in (2.42) may be solved independently, and the total

response may be found by superposition according to (2.41).

Solving the	 general free response	 eigenvalue	 problem of	 (2.35) is	 difficult

because the eigenvalues and eigenvectors are,	 in	 general, complex-valued.	 In

practice, the real	 eigenvalues found	 by solving	 (2.39)	 are used. Decoupled

equations, i.e. (2,42),	 and real y,	 values	 will still	 occur	 it	 the [C.1	 matrix is formed

according to (2.36).	 The entire	 eigenvalue problem does	 not need	 to be	 solved,

,^ w
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as only a few of the low frequency modes need to be considered. This is

because the high frequency response Is usually critipally damped, and does not

contribute much to the total response.

A step-by-step or recurrence relation may he formulated by discretization of

the time dimension.	 These methods Incorporate initial conditions, and thus provide

transient analysis. 	 The discretized finite element equation, In space and time, may

be written as [6],

[M](ddi) + [C](adi ) + [K](ddi) a (dpi )	 (2.44)

where

(ddi)	 _ (di ) -	 (di.t)

(ddi)	 _ (di ) -	 (di.1)

(ddi)	 _ (di ) -	 (di.t)

and

(dpi)	 _ (pl ) -	 (pi.t)

and i is the time step.

Many popular recurrence methods have been derived by Newmark [9], Wilson

[111,  Houboits (12], and Hilber [ 13]. A good example of these types of

derivations that include the basis functions in the time dimension may be found in

[3]. One such algorithm may be written as [6],

	

(a t[M] + bt[C] + c t[ K])(ddi) _ (dpi)	 (2.45)

where

(dpi) _ (dpi) + [M](a2(di.t)+a3(di.t))

	

+ [C](b2(di_1)+b3(di_1)) + C2[K](Adi.t)	 (2.46)

For the method proposed by Newmark, the constants are given by

at = 1 1(Ba12)	 bt = a/(9d1)	 ct = 1

11

rj
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az n a tdt	 bs n b tdt	 cz n 0	 (2.47)

g . 1/(2$)	 b3 is [(o/20) - 1]dl

The quantity At is the length of each time step. and the constants a and p

affect the behavior and stability of the algorithm, Discussions on good choices of

a and 0 may be found in [3], along with many other references. In this case, a

good choice is o n0.5 and 00.5.	 Initial conditions governing the problem are

introduced to begin the step-by-step calculation.

Note that the solution of (2.45), or one time step, involves as much

computational effort (once the equations are formulated) as a linear static problem.

II m time steps are used, then the solution of a dynamic problem with a

recurrence algorithm is m times as costly as a static problem.

The conventional analytic solution procedures are obviously not applicable to
„

	

nonlinear dynamic problems, because the nonlinear equations change throughout the 	
i tloading process. 	 However, the step-by-step algorithms are quite useful, 	 Nonlinear

! dynamic finite element problems require the most computation. Other solution

methods besides those noted here are available and are sometimes more efficient

for certain problems.

The recurrence algorithms mentioned earlier may be used to solve nonlinear

dynamic problems, but with the additional complexity that one or more of the

matrices [M], [C], [K] are dependent on (d) and change every time step. The
i

step-by-step relation of (2.45) is quite applicable. An equilibrium load correction

for each time (load) step can be included in the algorithm by using the following

expression for the incremental load in (2.48), as defined for Newmark's method

i	 (dp;)	 (pi) - ([M](d i. t ) + [C](d i _ t) + (pi . t ))	 (2,48)

It is often necessary to iterate within each time step to reduce the residual
'T;	 s
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error and track the nonlinear curve more accurately.	 Any of the iterative nonlinear

solution schemes mentioned earlier me be used.	 Instead of iterations within limey	 I e

steps, an extrapolation of previous [M], [C], and [K] values may be used.

These methods are briefly described and referenced in [3],

Finally, it should be stated that nonlinear and dynamic finite element problems

always present a more difficult equation solving task than linear static problems,

especially when a problem is both nonlinear and dynamic. In most cases,

however, the equations to be solved are a system of linear algebraic equations,

much like (2.18) for the linear static problems.	 Thus, the computations are alike,

but many more of them must be performed. The most obvious exception to this

is the use of analytic procedures for linear dynamic problems, where eigenvalue

problems need to be solved.

2.9 Summary and Conclusion

This chapter has presented an outline and expla>.ntion of the basic finite

element method for structural mechanics problems. The fundamentals of the method

were described, followed by an example of the finite element equation formulation

for a plane strain triangular element. 	 Element and stiffness matrix assembly were
S

described, and the properties of the stiffness matrix were detailed. 	 Emphasis was

placed on linear static problems throughout the chapter, and their solution methods

were discussed in section 2.7.	 In section 2.8, solution methods for nonlinear and

dynamic problems were covered.

This introduction to finite elements was by no means comprehensive, but it

provides the necessary background to understand the nature of structural mechanics

problems, and what type of equation solution is required. Essentially, all linear

static, and most nonlinear and dynamic problems, can be broken down into one or

many equations of the form of 1 2.18), where [K] always has the properties

described in section 2.6.	 An example of a linear static finite element problem,

using plate bending elements, is described in Chapter 3.
^^^111 	 1
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3. Finite Element Case Study

3.1 Introduction

This chapter describes a specific finite element case study. 	 It will be used

to quantify the requirements of a finite element processor. 	 In forthcoming research,

the case study will be used to evaluate the performance of our finite element

optical processor. 	 The problem formulated concerns the bending of plates, which

is a common application area in structural mechanics.	 The finite element

formulation, and assembly of the structure stiffness matrix [K] is described. 	 The

stiffness matrix properties, discussed in section 2.8 are quantified for this model.

3.2 Case Study Structure

A simple structure is needed for our initial application of finite element

structural analysis. 	 The problem of plate bending was chosen because it is an

important, frequently used, and well-defined type of finite element analysis. 	 The

structure chosen, very modestly and quite arbitrarily, was a 8 foot by 8 foot by

1 inch thick plate of aluminum. Since the larger two dimensions are close to a

square, and since the thickness is much less than either the length or the width,

good plate bending results should be obtainable with finite element analysis of this

structure.

The material for the plate was chosen to be T4-2024 aluminum. Its structural

properties are listed below:

E = 10.0 X 100 Ibs/in.2	MODULUS OF
ELASTICITY

0 -- 4.00 X 100 Ibs/in.2
	

SHEAR MODULUS

v s 0.325
	

POISSON'S
RATIO

The plate and its reference coordinate axes are shown in Figure 3-1

consider the plate to be made of an isotropic ma!erial.

We will

r

,J
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Case Study IUuminum Plate

There are some pertinent applications for i.,adelling such a structure.

Structural analysis of the deck of a ship, or the floor of a building may require

plate bending aneylsis of similar structures. In problems such as these, a designer

is often interested only in what happens to the structure under large loads, so

that they can be designed to the proper safety factor. 	 In these cases, a very

precise finite element solution is r-)t required, since the user is not concerned

with many decimal places of accuracy. However, in other applications such as

analysis of part of an airframe or a satellite, a designer may be concerned about

very small displacements because of restrictive tolerances in the structure, or even

the dynamic response. In these cases a very accurate analysis is needed, Thus,

the requirements of a finite element analysis can differ greatly from application to

application.

y

a
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3.3 Plate Bending Finite Element Case Study
Derivation

The	 finite element	 which	 will	 be	 used	 to	 discretize	 and	 model	 the structure

of	 Figure	 3-1 is	 derived	 in	 Chapter 10	 of	 [3].	 Important	 aspects of	 the

derivation	 will be	 outlined	 here.	 We	 have	 made	 a	 change	 to	 the	 derivation	 and

the	 subsequent elemental	 stiffness	 matrix [K.]	 presented	 in [3].	 We	 use a	 right-

handed	 coordinate	 system	 rather	 than a left-handed	 one	 as	 in	 [3].	 This change

is	 made	 by	 a simple	 adjustment	 of	 the elemental	 stiffness	 matrix	 equation, as	 will

be	 pointed	 out later	 in	 this	 section.

The concepts for this derivation arics fro g , thin plate theory, where the plate

thickness, Or the z dimension, is small compared to the size of the plate. In

plate bending analysis, as defined for Figure 3-1, only the displacement of the

plate in the z direction is defined and is of concern. 	 The displacement for any

point on a plate may be written as a displacement field, w(x,y), in terms of the x

and y coordinates.	 Expressions for plate bending stresses, strains, and the

resultant forces, and other structural mechanics plate bending equations may be

found in (1).  [3], [141, and other texts. Full details cannot easily be included

here, and they are not vital for presentation of the concepts and attributes of a

plate bending finite element problem.

A	 rectangular	 plate	 bending	 finite	 element	 can	 be	 defined as	 in	 [3],	 as

shown	 in	 Figure	 3-2.	 The	 sides of each element are	 of	 lengths 2a and 2b, and

the element	 thickness	 is	 I.	 The	 element	 has	 four nodes,	 one	 at each	 corr,;,r	 of

the rectangle.	 Although	 it	 is	 usually	 of	 little	 consequence	 since the	 plates	 are

thin, it	 should	 be	 noted	 that	 all	 plates	 and	 plate bending	 elements	 are	 oriented

with the	 x-y	 plane	 passing	 through	 the	 centroid,	 or the	 middle	 of the	 plate	 (since

it	 is uniform)	 in z,	 as	 shown	 in	 Figure	 3-1.

To provide a reasonable amount of continuity across elements, three DOFs

are defined at each node n : the displacement wn in the z direction, a rotation

II
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Figure 3-2:	 Rectangular Plate Bending Element

Oxn Own/Ox about the x-axis, and a ro!ation /m.-Own/Oy about the y-axis. The

loads corresponding to these nodal parameters are a force in the s direction, a

moment, or couple, about the x-axis, and a moment about the y-axis. The nodal

DOFs and loads are shown In Figures 3-3a and 3-3b, respectively. The directions

of the rotatione are determined by the right-hand rule.

W	 (b)

Figure 3-3:	 Nodal DOFs and Loads for Case Study

It immediately follows that the DOF and load vectors for one node n may be

written as

wn
(60) a	 i^

6m

and
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Fwn
(r.) =

	

	 Film	 (3.t)
Fom

The element DOF and load vectors for one element a consist of the vectors in

(31) and are defined as

61

(do) C

	

	 61
6k
61

and

rl
(ra}	 s	ri	 (3.2)

rk
rl

where the subscripts i-I denote the four nodes on an element (see Figure 3-2).

The order of the nodal DOFs and loads within all element vectors is extremely

important and must be kept the some (i.e. the notation in Figure 3-2 for all

nodes).	 The node lettering in Figure 3-2 is Just one ordering defined for this

problem in [3].	 Others could be used, but the entire problem formulation must

stay consistent with those. 	 We note that the vectors in (3,2) are those in (2.13),

[K91(de) z [►.}	 (3.3)

We	 next	 consider	 obtaining	 an	 expression	 for the	 elemental	 stiffness	 matrix

[Ke]. An	 equation	 formulation	 similar	 to	 the	 one	 described	 in section	 2.4 must be

performed,	 and	 an	 equation	 of	 the	 form	 of	 (2.12) must	 be	 evaluated for	 [K.].

The (re}	 equat ion	 is	 not	 evaluated	 for	 this	 case study	 because	 no distributed

loads, or	 initial	 stresses	 or	 strains	 are	 involved. The	 basis	 functions for	 each

DOF involve	 quite	 complicated	 expressions	 and	 are given	 in	 [3],	 along with	 the

other significant	 formulation	 steps	 that	 will	 not	 be repeated	 here.	 The	 proper

equations	 are	 evaluated	 and	 an explicit	 equation	 for	 the elemental 	 stiffness matrix	 is

given as	 [3],

.e

`SI
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[Kx] • (1/(80ab))[L]<Dx[K1]+Dy[K2]+Dr[K3]+Dxy[K,]>[L]

where

DX m Dy . Eta/[ 12(1-0]

D 1 x vDx

and

DO 
n [ ( 1-v)/2]Dx

are elements of the elasticity matrix and

I 0 0 0
[L] •	 0

0
0 0 0 I

I 0 0
0 I 0

and

1	 0	 0
`1]-	 0	 2a	 0 

J	
(3.7)	 I

0	 0 2b

which depends on the size of the finite element. 	 For four nodes per element

and three DOFs per node, the matrices [K t ] - [K4] are 12 by 12 matrices given

in [3].	 From equations 3.4 through 3.7, the contributions of material properties

(E,v) and element sizes (a,b,t) are apparent. 	 Thus, (3.3) is defined in terms of

the vectors in (3.2) and the matrix in (3.4).

E	 As mentioned earlier, the finite element formulation was performed in [3] for
(

a left-handed coordinate system. 	 It is a simple matter to convert (3.4) to a

right-handed expression. This is the representation we use in this study. To

achieve this, only (3.7) needs to be revised for the right-handed system in Figure

3-2 as

1	 0	 0
[11, 0

	

	 -2a	 0	 (3.8)
C 0	 0	 -2b

4

A .

(3.4)

(3.5)

(3.6)
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The displacement field w(x,y) for an element is determined by the twelve

nodal parameters, the (d.) vector. It may be written as a polynomial expression

with 12 terms as

w(x,Y) s 01+o2x+03y+a02+0exy
+ aey2+ a 7 x3+ aBx2y+asxy 2+a 10y3+a 11 x3y+a 12xy3 	(3.9)

Equation	 3.9	 includes all	 terms through	 third	 order and	 two	 fourth	 order	 terms.

The	 a's	 represent	 12 unknown constants	 which	 are determined	 by	 the	 12	 nodal

DOFs and	 their basis functions.

We	 now	 discuss	 continuity	 of	 the plate	 bending element. The	 displacement

field	 (3.9)	 varies	 as	 a	 cubic	 in	 x	 for	 a	 constant	 y value,	 and as	 a	 cubic	 in	 y

for	 a	 constant	 x	 value.	 Thus,	 along the	 element boundaries, which	 are	 the

interfaces	 between	 adjacent	 elements,	 w(x,y)	 will	 vary as	 a	 cubic	 polynomial.	 To

examine	 the	 continuity	 across	 elements, we	 consider the	 edge f-)	 in	 Figure	 3 -2.

Since	 this	 edge	 lies	 on	 a	 line	 of	 constant	 x,	 the following equations	 may	 be

written	 for	 w(x,y)	 on	 this	 edge	 (in	 terms of	 new	 coefficients c i ) as

w( x,Y)	 "	 c 1 	+ c2y + C3y2 + CO3 (3.1u)

Dw(x,y 'licy	 a C2 + 2C3y + 3c+y2 (3.11)

ew(x,y)/Dx	 -	 cs + coy + c ?y2 + Cay3 (3.12)

where (3.11) is obtained by taking the derivative of (3.9) with res pect to y, and

then substituting x-constant. 	 Equation (3.12) is obtained similarly.

The four nodal DOFs w i ,	 0Yi ,	 wf ,	 Bd ,	 completely	 specify	 the	 four	 c i 	and thus

the	 variations	 described by	 (3.10)	 and	 (3.11). Thus,	 the	 finite	 efem3nt

approximations	 for	 w(x,y) and	 its	 tangential	 derivative will	 be	 continuous	 across

elements. However,	 the normal	 derivative	 (3.12)	 along the	 edge	 is	 a	 cubic and

only	 two DOFs,	 Oxi ,	 Ba, remain	 to	 describe	 (3.12), Since	 a	 cubic	 cannot be

uniquely specified	 by	 two values,	 normal	 derivatives	 at element	 interfaces	 will not

1
i
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87be continuous.	 However, It halt been well established and proven theoretically that

this plate bending element is convergent.

	

i	 3.4 Case Study Discretization and Stiffness Matrix
Assembly

The plate bending finite element case study problem and model defined in

section 3.3 is used to discretize the structure described in section 3.2, and shown

	

L"	 in Figure 3-1. 	 The aluminum plate Is divided into eight elements, each 1 inch

thick and of size 3 loot In the x dimension and 2 feet in the y dimension. 	 The

dimensions of each element (Figure 3-2) are: a.18 inches, b n 12 inches, t n 1 inch.

C	 The	 discrelized structure	 to	 be used is shown in	 Figure	 3-4. This	 model

has	 8 elements,	 13 nodes,	 and	 l5x3.45 DOFs	 (for our	 case	 of	 3 DOFs per

node). Each eleme, t is	 oriented	 in the	 structure	 as defined	 in	 Figure 3-2.	 No

rotation transformations are	 needed. Earn element	 In • the	 model	 is	 identical, 	 and

hence evaluation	 of	 (3.4) is	 required only once	 to assemble	 [K]	 for the	 entire

model.

Figure 3-4:	 Discretized Structure
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The	 nodes	 in	 the	 model of	 Figure	 3-4	 are	 numbered to achieve	 minimum

bandwidth	 for	 [K]	 as outlined in	 section	 2.6,	 Specifically, we number	 nodes

across	 the	 dimension of	 the model	 with	 the	 least	 number of nodes,	 the	 x

dimension.	 The	 bandwidth	 is	 given	 by	 (2.19),	 with	 NO	 DOFs per node and	 D.5,

to	 be	 BW n 2(3)(5)-149. The structure	 stiffness	 matrix	 is	 45 by 45	 since	 there

are	 45	 DOFs	 in	 the model, A	 matrix	 bandwidth	 of	 even 29 still	 indicates	 a

significant matrix sparsity.

For	 our	 case	 study, equation	 3.4	 was	 evaluated	 digitally. The	 computed 12

by	 12 elemental	 stiffness matrix	 used	 in	 our	 simulations	 is given	 in	 Appendix

I.	 The structure	 stiffness matrix	 is	 assembled	 according	 to the	 rules	 given in

section 2.5.	 For	 our	 case	 study,	 the	 assembly	 process	 consists	 of	 adding the

elements of	 eight	 identical elemental	 stiffness	 matrices	 into	 the proper	 locations in

the	 45 by	 45	 structure	 stiffness	 matrix.

II would be extremely cumbersome to detail the entire assembly process

here, although stiffness matrix assembly, node numbering, and other problem

formulation tasks are significant parts of a finite element problem. This report will

concentrate on the solution of such problems, assuming they are formulated as

detailed in section 2.4. 	 However, we will detail how one of the eight elements is
I

assembled, to illustrate the process described in section 2.5.

Consider the element of Figure 3-= with nodes (5,8,6,9), corresponding to the

(i,j,k,l) ordering defined in Figure 3-2 and equation 3.2. Realise that the nodes of

any single element will be numbered locally (1,2,3,4) corresponding to the (i,j,k,l) in

Figure 3-2, as shown in Figure 3-5. 	 A local element is a structure element with

the nodes renumbered beginning with 1.	 Thus the mapping of local node

numbering to structure node numbering for the element (5,P,6,9) is shown in Table

3.1.

Let the 12 DOFs (3 per node for the 4 nodes of this element) as
I

described by (3.2) be numbered 1-12. 	 Let the 45 structure DOFs, as described 	 I I

by (3.13),
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Figure 3-5:	 Local Element Numbering

Local Element	 Structure Element

a Numbering	 Numbering

1	 5

2	 8

3	 8

4	 9

Table 3-1:	 Local to Structure Node Number Mapping

6
(d) n 	 ?	 (3.13)

6^a

be numbered 1-45. Local node 1 has local DOFs 1,2,3 Local node 1 is

structure node 5, which has structure DOFs 13,14,15 corresponding to 6. in (3.13).

This local to structure DOF mapping is continued for the other three nodes with

the results shown in Table 3.2,

The	 mapping in	 Table 3.2	 completely	 defines	 the assembly process. Every

element	 k,,i	 in	 the elemental stiffness	 matrix	 of	 element (5,6,8,9), where	 i and	 1
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Local Element	 Structure Element

DOFs	 DOFs

1,2,3 13,14,15

4,5,6 22,23,24

718,9 16,17,16

10,11,12 25,26,27

Table 3-2:	 Local to Structure DOF Mapping

are	 the local	 element DOF	 numbers,	 simply	 is	 added	 to position	 k.,	 in	 the

structure stillness matrix, where	 m and	 n	 are	 the	 structure elernent	 DOF	 numbers

corresponding	 to i	 and ),	 according	 to	 the	 mapping	 in Table 3.2.	 In	 other	 words,

the	 144 elemental	 stiffness	 matrix	 elements	 are	 added	 to 144	 locations	 of	 the

structure stiffness matrix (which has 45X45s2025 elements) by the	 mapping in Table

3.2.	 For further insight, sisme specific assembly examples are given	 in	 Table	 3.3.

Elemental Stillness	 Structure Stiffness

Matrix Element	 is added to	 Matrix Position

(1,1)
	

(13,13)

(4,9)
	

(22,18)

(10,11)
	

(25,26)

(2,8)
	

(14,17)

Table 3-3:	 Elemental Stiffness Matrix Assembly Examples for Element (5,8,6,9)
of Figure3-3

The result	 of	 this	 large and	 tedious	 assembly	 procedure	 is the	 45 by	 45

structure stillness	 matrix	 (K], with	 a	 non-sero	 element	 bandwidth of	 29.	 The

stiffness matrix	 possesses	 all the	 properties	 discussed	 in	 section 2.6,	 some	 of

which will be detailed	 in the next	 section,
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3.5 Case Study Stiffness Matrix Details

The completely assembled structure Stiffness matrix [K] is listed in Appendix

11.	 A factor of 105 has been factored out of the matrix. 	 Pounds are the units

for the loads, inches for the displacements, and radians for the rotations. 	 It can

readily be seen that the stillness matrix is symmetric and diagonally dominant. All

the diagonal entries are positive (a necessary condition for a positive definite

matrix).

	

The sparsity of the stiffness matrix is rather pronounced, even for such a 	 i
small case study problem.	 There are 1140 entries in the band, out of a total of

2025 stiffness matrix elements.	 The bandedness of the problem guarantees that at

k	 least 43.7% of the elements in [K] are zero. 	 However, about half the band

elements are also zero, yielding 557 or 28.5% non-zero elements in [K]. This

matrix is a good example of how a profile storage technique can take advantage

of the zeros within the band for a more efficient storage scheme than band

storage.	 However, because of the parallel nature of our processor, Such 	 k

techniques are not useful in this study.

The	 dynamic	 range	 of	 the	 stiffness	 matrix	 was	 found	 to	 be	 quite	 large,	 as

expected.	 The	 smallest	 non-zero magnitude	 is	 0.00021152;	 the	 largest	 nonzero

magnitude	 is	 8.37760067.	 Thus, the	 dynamic	 range	 is	 almost	 five	 orders	 of

magnitude.	 An	 accurate	 solution of	 this	 finite	 element	 problem	 requires	 a

lI
	 processor	 which can adequately	 represent	 the	 entire	 dynamic	 range	 of	 the	 stiffness

EI	 matrix.	 Even	 the	 truncation	 of	 the Smallest	 matrix	 elements	 to	 zero	 can	 introduce

'r	 large	 errors	 in	 the	 results.	 This is	 because	 every	 non-zero	 value	 represents	 a

coupling	 action	 of	 one	 DOF	 with the	 load	 on	 another	 DOF.	 A	 break	 in	 the

continuity	 of	 such	 actions	 within	 a model	 often	 produces	 disasterous	 results.	 To

represent	 a	 dynamic	 range	 of	 105 , at	 least	 17	 bits	 are	 required;	 217=1.31	 x	 105.

Our processor described 	 in Chapter 4 uses 32 bits, which allows a dynamic range

of	 232=4.29	 x	 109 to	 be	 represented.

__ . _ _ __ _ -	 der- ::• =,	
._	 _^^.
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3.6 Summary and Conclusion

A	 standard	 plate	 bending	 finite	 element	 has	 been	 used	 to discretiie and

model	 an	 aluminum	 plate.	 The	 structure	 is	 simple	 but	 very	 appropriate for an

initial	 case	 study	 in	 the	 applications	 area	 of	 finite	 elements. The problem

formulation	 resulted	 in	 a	 structure	 Stiffness	 matrix	 that	 demonstrates	 all the expected

properties	 of	 a	 finite	 element	 problem.	 Specifically, 	 the	 dynamic range of the

stiffness	 matrix	 is	 five	 orders	 of	 magnitude,	 requiring	 a	 processor	 with	 at least 50

dS	 of	 dynamic	 range.	 Thus,	 the	 need	 for	 a	 processor	 with many bits of

accuracy	 was demonsrated	 by our simple case	 study.

1 I	 1
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4. Optical Linear Algebra Finite Element
Processor

4.1 Introduction

This	 chapter will	 describe	 an	 op tical processing system	 suitable	 for	 the

solution	 of	 finite element	 and	 banded	 matrix systems of	 equations.	 High-speed

optical	 processing is	 combined	 with	 digital	 data encoding to	 yield	 accurate	 and	 fast

solutions.

First,	 the	 limitations of	 proposed	 analog processors	 will be	 discussed	 (section

4.2).	 Next,	 the	 operation of	 our processor is	 described	 in general	 terms,	 and	 its

l^
performance	 is	 evaluated (section	 4.3). Fabrication	 of a	 specific	 system	 is

s
, discussed	 in	 terms	 of presently	 available components	 (section	 4.4),	 and	 the

algorithm	 for	 the	 solution of	 finite	 element	 problems	 is	 then presented	 (section	 4.5),

It will	 be	 shown how	 a direct	 solution	 can be implemented with only	 one	 channel

` of	 the	 processor,	 and	 other	 performance	 characteristics	 will be	 mentioned	 (section
1.

4.6).	 Finally,	 the	 problem	 of	 very	 large systems	 of	 equations	 is	 addressed

(section	 4.7).

4.2 Analog Optical Processors

Many optical processors have been proposed [15-18] to compute matrix-

vector or matrix-matrix products.	 Most of these represent each number as one

analog signal, anj perform multiplications accordingly. 	 One such architecture is the

basic frequency-multiplexed optical matrix-matrix systolic array processor [18].	 A

schematic diagram of the processor is shown in Figure 4-1.

Many	 types of matrix-matrix and matrix-vector manipulations may be

implemented on this processor.	 The most basic application, a matrix-matrix product,

car, be described by considering the following equation

AB s C	 (4.1)

.Ii

Y
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Figure 4-1r	 Frequency Multiplexed Optical M-M Processor

As indicated in Figure 4-1, the M point modulators (laser diodes ar a multichannel

AO cell) are imaged through M regions of the acousto-optic (AO) cell (each

region separated In time by Te). Alter leaving the cell, the entire light distribution

is collected (summed) by the Fourier Transform lens and focusec onto an output

linear detector array.	 Light corresponding to each information frequency in the AO

cell focuses onto a different drtector in the output array.

For N	 by	 N	 matrices,	 (2N-1) point	 modulators	 are	 required.	 They	 are fed

with	 the elements	 of	 B,	 encoded	 in	 space x	 and	 time	 1	 as	 b(x,t).	 The point

modulators are !ad with one row or column of B every bit time Ts. 	 The N point

modulators used	 for	 the	 b(x,t)'s	 are shifted by	 one	 each	 Te,	 beginning	 with the

lower N	 point modulators	 at	 the	 first Ts.

The corresponding columns or rows of A are fed	 into	 the	 AO	 cell encoded

in	 frequency	 f	 and	 time	 1	 as	 a(f,t). There are N frequencies used so that	 the

entire	 A	 matrix can be present In the cell.	 As	 the a(f,t)	 data propagates through

the	 cell,	 the	 b(x,t)'s are	 applied	 to N	 different	 point	 modulator	 locations,	 thus

tracking	 the	 propagating a(f,t)	 data	 in the	 AO	 cell. Thus,	 a	 b(x,t)	 vector at	 the

input	 is	 multiplied	 by the	 a(f,t)	 matrix in	 the	 cell, and ft matrix-vector product,
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Ab=c,	 vector appears	 on the	 detector	 array every Te.	 With a new column of B

entered each	 Ta,	 after	 a time	 NTa,	 the	 matrix-matrix	 product in	 (4,1)	 is	 produced

as	 c(x,t). By	 recycling the	 matrix	 data	 in the	 cell,	 only	 N point	 modulators	 are

required. By	 pulsing	 the	 point	 modulators faster	 than	 once each	 Ts,	 the	 matrix

product can be produced in	 less	 time.

fl	 The system Just described, and similar analog optical systems are very

attractive for obvious reasons. 	 Unfortunately, the accuracy of such analog systems

is limited by the linear dynamic range of the components used, optical and

electrical noise in the system;, and by practical alignment capabilities.	 The

dynamic range of the components is the major limitation, and their performance will

probably not improve significantly in the forseeable future. 	 AO cells have a linear

dynamic range of 30-40 dB, and multi-channel AO cells are also limited by optical,

acoustic, and electrical crosstalk. 	 Detector arrays typically have linear dynamic

ranges (at useable speeds) of a few thousand to one (although individual detectors
u

can achieve 50 dB dynamic ranges). 	 Point modulators (especially multi-channel AO

cells) also typically have a 30-40 dB linear dynamic range, although some new

laser diodes can achieve a 50 dB dynamic range.

In the most optimistic scenario, an analog optical processor could be

fabricated with a linear dynamic range of 30-40 dB. 	 This translates into about

9-12 bits of accuracy.	 Twelve bit accuracy is not useful for most significant

scientific calculations. 	 If an optical system could be built with 50 dB dynamic

range, it would only provide about 16 bits of accuracy, This might be sufficient

for some calculations, but it does not compare with the 32-bit accuracy easily

achievable on most digital systems. Even more important, 50 d8 dynamic range is

still insuf4icient for most significant scientific calculations (including large finite

element problems). As demonstrated by the case study results in section 3.5, an

optical processor is needed with much more accuracy than analog optical

processors for the solution of finite element problems.

G
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One obvious solution to this problem is to represent data digitally in an

optical system.	 The digital encoding may take place in one of three available

dimensions: space, time, or frequency.	 In each case, the linear dynamic range

requirements are greatly reduced. 	 For binary encoding, only two analog levels

need to be represented in the processor (0 and 1). .,„ 4 thus a dynamic range of

only 3 cis is required.	 Such encoding is obtained at the expense of increased

size and decreased speed of the processor. 	 However, such trade-offs are

reasonable considering available comlionents. 	 The use of multiple levels (not just

two) for encoding is another preferable alternative to speed and complexity trade-

offs, and it will be discussed when appropriate. 	 In the optical processor we will

consider, fixed point representation is used.	 Approaches to implementing floating

point operations optically is a subject for future research.	 Our proposed optical

processor architecture is described in the next section.

4.3 Digitally-Encoded Optical Processor Architecture
Two binary-encoded numbers are easily represented in an optical processor,

as mentioned in the previous section. Multiplication of these binary encoded

signals to produce a meaningful product can be achieved by forming the

convolution of each number's bits as we now discuss.

Consider the multiplication of two 3-bit binary encoded numbers, bzb l bo and

aza l ao, where each bit bn and an is a one or a zero. The most familiar method

of multiplying these two numbers is illustrated in Figure 4-2. 	 This is the popular

shift-and-add method.	 The product is obtained by multiplying each c. value by its

appropriate power of two, and adding the results together. 	 Each c. value is the

sum of the corresponding shifted partial products in the corresponding column in

Figure 4 - 2.	 The cn' s are mixed binary numbers (i.e. their value may be any

decimal number). In the example shown, each c n can have a value from 0 to 3.

Determining the c.' s in the standard shift-and-add multiplication method is the

primary operation involved in computing the product. 	 From Figure 4-2 and 4-3 we
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	Figure 4-2:	 Multiplication by Shift-and-Add Method
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	Figure 4-3:	 kultiplication by Bit Stream (Digital) Convolution

see	 that	 the cn' s	 are	 simply	 the	 convolution	 of	 the	 bits of the oncoded numbers.

As	 shown	 in Figure	 4-3,	 as	 the two	 bit	 streams	 are slid	 across	 ebch	 other,

multiplied	 and the	 partial	 products	 summed, the	 outputs	 at	 the	 five	 intervals	 shown

are	 the	 c,; s. Since	 convolution	 is formed	 by reversing the	 order	 of	 one	 of	 the

waveforma,	 the least	 significant	 bits (LSB's)	 form the	 first partial	 product.	 The	 cn' s

of Figure	 4-3 are	 identical	 to	 those of	 Figure	 4-2.

This example can be extended to any nwiber of bits, and any radix. Thus,

multiplication of two encoded numbers can always be performed by convolving the

Iwo number's bit streams, and weighting the results by the appropriate powers c:

U 

r)
1

wI
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the radix used.	 This concept was proposed by Whitehouse and Speiser [ 1 g] for	 a

implementing fast multipliers using CCD convolvers. 	 It was introduced to optics by

Psaltis and Casasent [20].

Fortunately, convolution is an operation that is easily implemented on optical

processors. 	 One approach is to multiply the Fourier Transforms of the encoded

data, and then form an inverse Fourier Transform of the product. 	 This yields the

convolution of the encoded data. 	 Since lenses produce Fourier Transforms and

Inverse Fourier Transforms, this method is very appropriate.	 It is detailed in [20]. ^i
However, this convolution implementation at high speed requires high frame rate

spatial light modulators on which to record the Fourier Transform of one of the

numbers.	 Such devices do not yet exist and thus other or:ical convolution

approaches are preferable.

The preferable approach for implementing convolution on an optical processor

is to use an AO cell to represent the bit stream of the multiplier and the

multiplicand. 	 Multi-channel AO cells can be used to convolve many bit streams in

parallel. 	 This method is described in [21), [22]. 	 Reference [21) details a

systolic multi-channel processor. 	 These systems perform the convolution in Figure

4-3 in space, and the AO cells are used to provide time sequential shifting of

the bit streams.	 An example is shown schematically in Figure 4-4 for the

multiplication of the numbers 5 and 3 encoded in three binary digits.

The two AO cells are imaged onto each other. 	 The product of different

shifted bit streams is thus produced sequentially in time. 	 The output lens forms

the sum of the partial products on the detector. 	 The data is fed, as shown, with

the LSB entered first in each cell. 	 The five convolution values obtained on the

detector at successive time intervals are shown. 	 When these are multiplied by

the appropriate powers of two and added, the desired product of 15 is obtained.

A method for optically multiplying digitally encoded data using vector outer

products is presented in [23]. 	 Implementation requires the use of spatial light

s
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)

PRODUCT- (1 x20 ) + (1 x2 1 ) + (1 x22 ) + (1 x2 3 ) + (0 x24 ) - 15

Figure 4-4:	 Digital Convolution With AO Cells

modulators, and thus is less attractive because of the slow rate at which such

devices can be updated.	 Reference [24] presents an algorithm using 2's

complement encoding to multiply bipolar numbers by convolution. This method

requires the size (number of bits) of the p7 ,oduct to be known a priori, and the

architecture requires a 2-dimensional spatial light modulator and a 2-dimensional

detector array. Thus it has practical speed and data readout problems.

The approach that we will use to implement the convolution on our processor

is the shift-add method of Figure 4-2 using the architecture of Figure 4-5. This

method will be shown to be very useful for banded matrix calculations.

In this example, the ti-bit binary representations of 27 and 13 are multiplied.

The bits of 27, the multiplicand, are present simultaneously in the five adjacent

point modulators at P2. The bits of 13, the multiplier, are fed serially to a single

input point modulator at P t , which is imaged onto all five channels of the P 2 point

modulator.	 P2 is imaged onto a detector array at P3.	 The contents of P2 are

thus incident on the P3 detectors if the corresponding input P t bit is a 1.	 The

contents of the P3 detectors are shifted by one at the same rate as data is fed

to Pt .	 Thus, the product of the data in P2 and the current input bit to Pt is

k	 -

4i
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Figure 4-5:	 Optical Convolution of Digital Data via the Shift-Add Method

added to a shifted version of the previous input and P2 product, and to

subsequent products, by detector integration.

The detector array has five elements (as does the Pa point modulator). The

process of multiplication, shifting, and summing is repeated for all input bits fed to

the Pt point modulator.	 This produces a mixed binary output from the detectors

that is the product as in Figure 4-2.	 The newest least significant bit is valid and

is shifted out on each shift cyL;ie. The mixed binary values can then be

multiplied by the appropriate powers of two and added to produce the product

13X27=351, as shown in Figure 4-5.

It is easy to extend this architecture to form a processor that can multiply

several such numbers in parallel, To achieve this we simply use several input Pt

point modulators and divide each channel of the P2 AO cell into several regions.

Figure 4-6 shows this architectura for the parallel multiplication of three pairs of

encoded numbers.	 With 3 separate 1-dimensional shift-end-add output detector

arrays, the 3 products are produced in parallel. With one output detector array

(as shown in Figure 4-6) the sum of these 3 products is produced. This latter

operation is preferable as it is the one required in matrix-vector multiplication

(specifically in producing a vector inner product).

, n

`'
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A multi-channel AO cell is used at P2 in Figure 4-6 in place of the point

modulators in Figure 4-5, and a 1-dimensional array of point modulators is used

for the bit serial inputs at P t . If N bits are used in the number representations,

an N-channel AO cell is needed at P2 (five channels are shown in Figure 4-6),

each channel carries one of the N bits. 	 An array of M input point modulators is

used in P t (three are shown in Figure 4-6). 	 A bit is presented to each Pt

point modulator every T t seconds.	 Each channel of the multi-channel AO ceil is

divided into, M regions.	 The light from each P t point modulator is imaged across

a different region of each channel of the cell in P 2,	 Data is input to the N-

channel cell in word parallel form every T 2 seconds, where T2-NT t .	 Thus, a

number's bit stream, or binary word, is prevent in a region of the cell for T2

seconds, then it moves into the next region of the cell. 	 During each T2, N bits

(one every T) are presented to the P t point modulators. 	 Thus, the light leaving

P2 in Figure 4-5 is M of the operations done in Figure 4-5.

The light leaving P. is collected by cylindrical lens L t , which sums the

output from each of the N AO cell channels in P 2, and focuses each onto a

separate one of N detector elements in the shift-add output detector array in PT

The output array shifts and adds the incident light every T V The values in the

detector array thus represent the sum of M multiplications of the form in Figure

4-5.	 Since the data incident on the detectors is mixed-binary, any number of

multiplications M may be sumn •ed. Each mixed-binary value shifted out of the

detector every Tt (once a bit is shifted out of the N-element detector array, it is

valid) is analog-to-digital converted, multiplied by the appropriate power of two, and

then added to the output at the next TV

The system	 thus	 produces	 the addition	 of M	 multiplications	 with	 N-bit

accuracy every T2.	 In	 other words,	 the processor of Figure	 4-6 performs an M-

element vector inner	 product (VIP)	 every T2	(M	 m0tiplications	 and	 M-1	 additions).

We	 define	 the processor	 as having	 M processing, or	 processor,	 channels	 (as

opposed to	 the number N of AO	 cell	 channels).	 A single	 processor	 channel	 is

shown in Figure 4-5.
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We	 have	 thus	 shown	 how	 the	 processor	 of	 Figure	 4-6	 can	 perform	 vector

inner	 products	 with	 N-bit	 accuracy.	 An	 algorithm	 will	 be	 presented	 in	 section	 4.5

which	 details	 how	 this	 processor	 Is	 ideal	 for	 Solving	 banded	 matrix	 problems

(specifically	 a	 finite	 element	 system	 of	 equations).	 Now	 we	 will	 address	 the	 issue

of	 handling	 bipolar	 data	 on	 this	 processor,
a,

r ' The	 cylindrical	 lens	 L,	 of	 Figure	 4-6	 sums	 the	 outputs	 from	 all	 M	 regions	 of

each	 channel	 of	 the	 AO	 cell	 in	 P2.	 This	 presents	 a problem	 when	 the	 products

leaving	 P2	are	 bipolar.	 Since	 we	 have	 only	 used	 the	 magnitude	 of	 the	 numbers
1

for	 binary	 encoding,	 the	 processor	 and	 thus	 lens	 L t	can	 only	 treat	 signals	 as

positive	 numbers	 (unipolar).	 Prueessing	 bipolar	 data	 requires	 specialized	 treatment.

i Some	 methods	 to ar.•hieve	 this are	 now discussed.
+

If	 it	 could	 be	 guaranteed	 that	 all	 the	 products	 leaving	 P2	are	 of	 the	 same

sign	 for	 a	 given	 T2	(each	 component	 of	 the	 VIP	 is	 either	 positive	 or	 negative),	 a

i simple	 digital	 logic	 test	 can	 be	 used	 to	 determine	 the	 sign	 for	 the	 vector	 inner
i

i product.	 In	 this	 case,	 the	 numbers	 would	 be	 represented	 digitally	 with	 a	 sign	 bit ^h

i
(i.e. in	 sign-magnitude	 form),	 but only	 the	 magnitude	 bits	 would	 be	 entered	 into	 the

processor	 as	 before.	 The	 processing	 simply	 requires	 calculation	 of	 the	 exclusive- i

or	 of	 the	 sign	 bits	 of	 the	 two	 numbers	 being	 multiplied.	 This	 can	 be	 performed

within	 the	 microprocessor.	 The	 result	 must	 tie	 available	 before	 the	 evrrent	 T2

period	 is	 over	 (this	 requirement	 is	 trivial),	 If	 the	 resultant	 exclusive-or	 is	 a	 1,	 the

sign	 bits	 of	 the	 multiplier	 and	 multiplicand	 differ,	 aid	 the	 product	 is	 negative;	 if	 the

result	 is	 a	 0,	 the	 product	 is	 positive.	 It	 not	 all	 the	 products	 leaving	 P2	have	 the

ri same	 sign,	 then	 this	 method	 cannot be	 used	 for	 an M-element	 VIP.	 However,	 it

can always	 be	 used	 for multiplying two numbers

If	 the	 integrating	 cylindrical	 lens	 L t	is	 replaced	 by	 an	 imaging	 lens,	 and	 M

detector arrays are 	 used	 (one	 for each	 region of	 the	 cell),	 the	 above	 exclusive-or

method	 may	 be	 used	 to	 determine	 the	 sign	 of	 the	 product	 produced	 on	 each

detector	 array.	 The	 VIP	 would	 then	 be	 assembled	 within	 the	 microprocessor	 by
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simply	 adding	 or subtracting	 the products	 accordingly. The	 drawback	 of	 this

method	 is	 that	 M detector	 arrays are	 required	 in	 P3, and	 that	 the	 additions	 or

subtraction	 to	 form the	 VIP must be done	 digitally,	 rather than	 with	 a	 lens.

Another approach to using bipolar data on our processor is to double the

size of the problem by expanding the matrix equations into a positive and a

negative part, as detailed in [18]. This method requires no modification to the

processor, however the processing time is doubled.

Reference	 [24] suggest	 handling bipolar	 data with	 twos	 complement	 data

encoding. A	 similar twos	 complement representation can	 be	 implemented	 on	 our

processor to	 handle bipolar	 data,	 with some	 special care.	 This	 process	 is	 not

presented in	 this	 report	 due	 to	 the	 timeliness	 of	 its formulation.	 It	 is	 a	 subject

for	 future work	 rind will	 be	 presented in	 a	 forthcoming	 document.	 However,	 we

will	 show how	 the exclusive-or	 test	 for	 one	 multiplicaltion	 is	 adequate	 to	 handle

bipolar	 data for	 the	 direct	 algorithm	 we will	 Implement on the processor.

The approach to bipolar handling that we will use for finite element problem

processing is the exclusive-or test method. The algorithm presented in section 4.5

shows that only one processor channel is needed for finite element problems.

Thus bipolar data is easily handled by comparing the sign bits of the data in P1

and PZ of the single processor channel that is used.

4.4 Processor Performance and Fabrication
This section will d:3cuss performance and fabrication issues for the processor

of Figure 4-6. Many high-spbed optical architectures have been proposed, however

very little is ever documented about how data can be realistically input to and

output from these systems, since those operations must be controlled digitally. We

will discuss specific analog and digital hardware systems that are capable of

supporting the data th cughput of our processor at good performance speeds.

This hardware is being fabricated at Carnegie-Mellon University (CMU) for the
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the laborsiory performance of our proposed processor

general optical processor fabrication issues are discussed In [25].

To compete with the accuracy of digital computing systems, the processor

should be capable of 32-bit encoding, or Nr32.	 This requires a 32-channel AO

modulator for P2.	 Such a device, built by Crystal Technology, Inc., was recently

purchased by CMU.	 No performance tests have yet been perforined on the cell,

but some design specifications are given below:

• 32 channels, TeC. longitudinal mode.

a 5 microsecond aperture lime

• Channel-to-channel crosstalk better than 30 dS over 3 microseconds.

I
• 200 Mhz bandwidth centered at 400 Mhz or less

• Operation at X =633 nm or X.620 rim.

The 32-channel	 cell specifications	 are used	 to	 set	 some	 performance

measures for	 the	 processor. We	 will	 consider	 a	 processor	 with	 10	 input	 point

modulators in PV	or	 Ma10. This	 is	 a	 realistic fabrication	 level.	 A	 larger	 P t	input

array	 would creata	 a	 large system anamorphism, since	 the	 32-channel	 cell	 aperture

is	 only	 a few	 centimeters	 long.	 Specific	 input array	 devices are discussed	 later.

We will	 assume	 that all	 of	 the	 5ps	 aperture	 of the	 32-channel	 cell	 is

useable. Since	 there	 are Ma10	 point	 modulators.	 each channel	 of	 the	 cell.	 is

divided	 into 10	 regions,	 each	 region	 with	 an	 aperture	 of	 0.5	 ps.	 The	 period

T2=0.5	 ps is	 the	 time	 it takes	 the	 word	 parallel	 data to	 p. nnagate	 through	 a

region	 of the	 cell,	 i.e.

10 X T2 a spa n Tape	 (4.2)

D,jring each T2, each input point modulator is pulsed on with the N bits of an

,nput word sequentially every T V Since Na32,

32T 1 a T2	 (4.3)

and from (4.2) and (4.3),

Some

i
	 1
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10 X 32 X T 1 n 5ps	 (4.4)

Solving for Tt yields T r :15.825 nsecs. Thus, to run the processor with N n32 bit

accuracy, binary encoding, and M n 10 input point modulators, data must be led to

the point modulators, and shifted and added in the detector array, at 1/T, or 64

Mhz.	 We now discuss processor operation and input and output circuitry at this

speed.

The processor performs a 10-element VIP every T 2, or 0.5 ps.	 A 10-

element VIP consists of 10 multiplications and 9 additions. 	 Thus, the processor

computes 2X 10Y multiplications and 1.8x10 ? additions per second. This optical

computation rate is not as fast as many proposed optical processors, but two

things must be considered: 1) this processor computes with 32-bit accuracy; 2) we

will document realizable circuitry to input and output processor data, unlike many

high speed optical processor proposals,

The Pt input point modulator array can be fabricated with three types of

devices.	 Each will be mentioned here, a more detailed discussion about fabrication

is in [25].	 An array of point modulators could be built using separate LED's or

laser diodes (LD's).	 Such an array could use graded index (GRIN) optical

elements to couple the light from each source to a point, for input to fiber optic

interconnections.	 The fiber optics terminate in another set of GRIN elements.	 The

second set provides tightly packed separate collimated sources. These arrays

provide dense, low divergence sources, however, they are difficult to fabricate, and

single-mode fibers are difficult to align.

Another point modulator array alternative is an array of collimating pens.	 A

collimating pen is a laser diode with individual collimating optics.	 Several collimating

pens are commerr• ;ally available, making their use attractive. Reducing optics is

required to produce densely packed beams covering the 2.1 cm, 5 ps aperture of

the 32-channel AO cell at P2.

^r

^	 1.
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The best point modulator array choice for our processor is a multichannel

acousto-optic point modulator cell. 	 These devices have a very low beam

divergence angle. 	 They require magnification or demagnification optics, but only

one device needs to be aligned. 	 Multichannel AO cells, as discussed earlier,

pose some limitations for analog systems. 	 Specifically, electrical, acoustic, and

optical isolation between the channels. However, for digitally encoded systems

such as ours, where dynamic range requirements are greatly reduced, these

devices are very appropriate.

Since M-10 in our processor, a 10-channel AO cell Is needed for an input

array. A 10-channel cell appropriate for point modulator use (small aperture time),

was recently purchased by CMU from Crystal Technology, Inc. Some specifications
i

are given below:

• 10 channels, Te02 longitudinal mode.

• Point modulator operation (less than 2 microsecond aperture time).

• Channel-to-channel croestalk better than 30 d8.

• 80 Mhz center frequency

• Operation at Xc633 rim.

We	 now	 describe	 the	 input	 circuitry	 that	 will	 be	 used	 to	 feed data	 to	 the

point	 modulators	 at	 64	 Mhz.	 At CMU,	 we	 are	 currently	 assembling	 a system	 that

employs	 parallel	 high-speed	 buffers,	 with	 access	 times	 of	 100 nsecs. The system

has	 6	 boards,	 with	 8	 memory	 channels	 per	 board,	 each	 12	 bits	 wide	 and	 4K

(words)	 long.	 With a	 100 nsec	 access	 time,	 each	 12-bit	 word	 in a channel	 can

i' be	 updated	 at a rate	 of	 10 Mhz.	 An	 ECL	 multiplexer can	 be	 used to	 scan	 10

of	 the	 bits	 of	 a	 channel	 at	 100	 Mhz,	 providing	 a	 100	 Mbit	 output. Since	 100

nsecs	 are	 required	 to	 scan	 10 bits	 at	 that rate,	 the	 channel	 data can be updated

when	 the	 next	 10-bit	 multiplexer	 scan	 is	 ready.	 The	 scanning	 rate	 can	 be

reduced	 to	 achieve	 64	 ►.!nz	 or any	 other desired	 speed	 below	 100 Mhz.	 Thus,

:I 10	 memory	 channels	 would	 be	 needed	 10	 drive	 the	 Ms10	 point	 modulator	 array,

! and	 there	 are	 48 available.
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The digital system is completely programmable, and in operation, the data will

ub downloaded from main memory into the parallel high-speed buffers. The

buffers, 4K words long, r ill be reloaded as the current data Is being fed to the

processor	 Thus, we will operate the system in a burst processing mode, where

the processor runs at full speed, but data flow can be stopped to unload and

reload the buffers. 	 This provides an efficient method of testing the processor at

the full data flow rate.

The dynamic range requirements of the processor, through P t and Pz (see

Figure 4-6), are quite low. It binary encoding is used, only two levels need to

be represented in the point modulators at Pp and the multichannel AO cell at Pz.

Binary encoding translates into a dynamic range requirement of 3 dB. This

isolation level is easily achievable in the multi-channel AO cells of P 1 and Pz (see

the 32-channel and 10-channel AO cell specifications earlier in this section).

Fabrication of the siiift-add detector array of P3 is not trivial for a 64 Mhz

shift rate. A linear CCD detector array is an obvious first consideration. Each

detector element in the array produces an amount of charge proportional to the

intensity of the light that is incident on it. 	 This charge is transferred and added

to a CCD analog shift register, which shifts the packets of charge from one

element to the next. 	 The charge is usually serially output at one end of the

shift register.	 This output could be fed into a single anaiGg-to-digital converter, as

shown schematically in Figure 4-7.

Since N=32 in our processor, a 32 element detector array is needed. These

detector arrays are commercially available with 64, 128, 256, 512, etc., elements.

However, the maxim6m sample rate for these devices is 10 Mhz, with 20 Mhz

promised in the near future, 	 At these rates, the dynamic range of the detectors

is severely limited. At 10 Mhz, dynamic ranges of only 100:1 are possible, with

some improvement if the detector array is cooled and if a lot of ligi t is used.

Useful devices shifting at 64 Mhz do not seem feasible in the forseeable future,

wish the possible exception of some GaAs devices.
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Figure 4-7:	 Linear CCD Di6focto r Array Configuration

For binary data encoding, general purpose dynamic range requirements can be

specified for the detector system. If a linear CCD detector array is used, each

CCD analog shift register element needs a dynamic range of 320, since a maximum

value of M=10 can occur on a detector, and there are 32 detector elements.

Actually, the shift element register for detector 1 needs a dynamic range of 10,

the register for detector 2 requires 20, etc., and the register for detector 32

needs a dynamic range of 320. Since the linear CCD detector array is fabricated

uniformly, a dynamic range of 320 (ot 25 dB) is required.	 This is difficult at 84

Mhz.	 It may be possible with GaAs technology, but such devices are not yet

available.

The single A/D converter in Figure 4-7 must convert 320 levels. Thus, a 9-

bit analog-to-digilL, converter is required.	 However, the fastest 9-bit A/D converter

commercially available runs at only 20 Mhz. 	 Thus, the detector array configuration

in Figure 4- 1 is not very useful for our purposes.

In order to operate at 84 Mhz, the detector array configuration we will use

consists of N=32 individual detectors, 32 A/D converters, and 32 high-coesd ECL

registers. The arrangement is shown schematically in Figure 4-8.
r
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Figure 4-8:	 Individual Detector/ECL Detector Array Configuration

This configuration uses parallel rather than serial output from the 32 detectors.

The output from each individual detector is A/D'ed every T. t , at 64 Mhz. The

output from each A/D is added to the contents of a digital ECL reg ister, which

includes addition logic.	 The ECL circuitry shifts the contents of each register to

the next register every TV	With ECL circuitry, 64 Mhz shift rates are easily

achievable. This configuration requires Na32 A/0's and N n32 registers, but it

avoids the dynamic range and speed problems of using a linear CCC detector

array.

ti

The detector arrangement of Figure 4-8 has realistic requirements, and it was

chose) for our proposed processor.	 Each detector requires a dynamic range of

[M=10]+1 (1 for the zero level).	 Thus, each A/D must convert 11 levels, which

requires tour bits. 	 Individual detectors can operate at 64 Mhz %xith 11 levels, or

about 10 dB of dynamic range, quite easily. Four bit A/D converters are

commercially available at speeds of 100 Mhz. Thus, this detector arrangement car,

be built for 64 Mhz operation with existing electronics. j

l4
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We now consider the case of encoding in a radix other than two. If radix

R is chosen, and the detector array of Figure 4-8 is used, each detector would

require a dynamic range of 10x(R-1) 2+1, since (R-1) is the maximum level

possib'e in P t and P2 and they could multiply each other, plus one for the zero

level.	 Each A/D converter would require LOG 2[10x(R-1)2+1] bits, rounded to the

next largest integer.	 The larger the radix R, the larger the dynamic range

requirements become. However; with a larger R, fewer than 32 channels and

encoded bits are required to obtain 32-bit (radix two implied) digital accuracy.

Also, processing time is faster because less than 32 T t 's are required for each

T2. Likewise, use of 32 channels and encoded bits with an R greater than two

would result in a computational accuracy greater than 32-bits, with the same

processing speed. These issues will be considered in more detail in future work

There is another requirement of our processor that makes the individual

detector/ECL detector array configuration more attractive than a linear CCD detector

array.	 At the end of every T2, there are still N mixed binary values present in

the detector array.	 If a standard CCD array was used, these N values would

have to be sarially shifted out and A/D'ed, causing a delay in the processing

because T2 would need to be longar than NT S .	 If thvi CCD analog shift register

could be emptied in parallel to another CCD register, processing could proceed

without delay. however, such parallel output devices do not exist. When the

detector configuration of Figure 4-8 is used, the N values are A/D'ed in parallel,

and the contents of the ECL registers can be transferred to the microprocessor in

parallel via the digital hardwire. 	 Thus, no delay exists when the arrangement of

Figure 4-8 is used,

L

A	 linal	 comment should be	 made	 about	 the	 operatiun	 of	 our proposed

processor	 in	 Figure	 4-6• As explained	 Garber,	 the	 word	 parallel	 data	 fed	 into	 the

N=32	 channels	 of	 the AO	 cell	 in	 P2 	moves	 through one	 of	 the	 M=10 regions	 of

the	 cell	 every	 T2. Within each	 T2,	 the	 word	 parallel	 data	 in	 each region	 is

multiplied	 by	 N=32	 bit serial values	 from	 the	 corresponding	 input	 point modulator.
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If the word parallel data was input to the multichannel cell as continuous data,

there would be an overlap of data in each of the M.10 regioiio, within the Ta

periods.	 This, of course, is unacceptable.	 Thus, the data cannot be input

continuously, but must be fed to the cell in pulses. 	 Specifically, each pulse must

be Tt long or less to avoid any overlap into the next region. 	 If each pulse is

exactly T t long, it will enter a region at the start of a T 2 period, and leave and

move into the next region exactly at the start of the next T 2 period.	 Thus, light

will no' be modulated by a signal in the full 21/10=2.1 mm of a cell region, but

rather by a signal 2.1/N=32 . 0.066mm long. 	 Thus, this represents a reduction of

light intensity leaving P2 by a factor of 1/(N=32).

4.5 Finite Element Processing Algorithm)
It has been shown in section 4.4 that the optical processor of Figure 4-6

will compute an M-element VIP every T2 with digital encoding and digital accuracy.

The architecture is very general purpose, and can be used to implement many

matrix-matrix and matrix-vector manipulation algorithms.

	

The focus of this research is to solve systems of linear algebraic equations 	 1,

(that arise from finite element analysis) on an optical processor.	 As we have

seen in Chapter 2, the finite element equations in matrix form yield a well-banded

matrix when formulated properly.	 It is appropriate to uxploit this bandedness when

implementing a solution algorithm on the processor, and we will show how the

optical processor of Figure 4-6 is wel! suited for a band oriented algorithm. 	 First

we will show, in general, how the computation of a banded matrix-vector product

may be implemented on the processor.	 Then we will detail an algorithm for

solving finite element equations which involves many banded matrix-vector products.

1I
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4.5.1 Banded Matrix-Vector Multiplier

To	 illustrate	 how	 a	 banded matrix-vector	 product can be implemented on	 our

optical	 processor,	 we	 will	 schematically represent	 the processor	 without	 the digital

encoding.	 Tnus,	 for	 clarity,	 the	 data flow	 will	 be explained	 as	 if	 an analog

processor	 was	 used.	 This	 in no	 way	 limits	 the performance	 of	 the digitally

encoded	 processor,	 since	 the same architecture is	 used	 in	 terms of	 the

multiplications.	 The	 time	 between VIP's, T2,	 is	 often	 called	 the	 bit	 time,	 cr Te,	 in

analog	 processor	 descriptions. Thus, in	 the	 data flow	 explanations	 below,	 the

digital	 encoding	 is	 supressed,	 and TB	is effectively	 the same as T21

Consider the banded matrix-vector equation

Ab = d
	

(4.5)P,
where A is a banded matrix. 	 This equation is expanded in the top part of Figure

4-9 for the case of a 7 by 7 matrix A with a bandwidth of S.	 The values of

A and b are known, and the desired matrix-vector product is the vector d. 	 The

components of d can be obtained by the algorithm illustrated in the lower part of

Figure 4-9.	 This algorithm is similar to one described in [171,	 The processor

requires a number of point modulators equal to the bandwidth of the matrix. As

shown in Figure 4-9, each diagonal of the matrix is fed sequentially i„to one of

the point modulators (i.e„ one row of the matrix is fed in parallel to the point

modulators).

The squares in Figure 4-9 represent the 5 required point modulators, Pt of

Figure 4-6, and the long rectangle represents the acousto-optic cell. P 2 of Figure

4-6.	 Note that only the inputs and outputs for the first 6 bit times, T B, of the

algorithm are illustrated in the figure. 	 The components of the vector b are fed to

the AO cell, and the band elements of A are fed to thi: point modu s -ttors with

proper timing.	 Note that the upper diagonal is input to the lower (first) point

modulator, the main diagonal to the middle point modulator, and the lower diagonal

to the upper (fifth) point modulator.	 A now row of A elements is input every To,

J 1
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Figure 4-9: Banded Matrix-Vector Product Algorithm

and the	 b elements	 move to	 the	 next	 point modulator's	 region	 of	 the cell	 every

Te. As	 the	 b	 Elements propagate	 through the	 AO	 cell, the	 proper A	 elements

are fed	 to the	 point modulators to form the required	 partial products at the	 output.

The outputs leaving	 the	 5 regions of the AO cell	 at	 PZ at each TB are shown at

the right	 in Figure	 4-9.

In Figure. 4-9, the bit time indices above the columns represent the bit time

when those inputs are applied to the point modulators, and when those outputs

are present as light leaving the cell, The Indices next to the b conponents

represent the bit time when that com ponent enters the cell (i.e. is in the region



65

r.^

of	 the lower (first)	 point modulator).	 It	 can	 be seen	 from the	 figure that	 the

partial products formed	 by the	 system,	 when added together	 at each	 bit time,	 sum

to	 one of	 the d	 components.	 Specifically, d t	is formed	 first, and	 d, is	 formed

at the last bit time.

W I

I 
If	 I

Thus, the algorithm illustrated in Figure 4-9 may be used to compute any

banded matrix-vector product. The algorithm is very attractive since only the

elements of A within the band are processed, eliminating time consuming processing

of the non-band zero elements. 	 The illustration in Figure 4-9 is simply an analog

schematic of the processor of Figure 4-6. Physically, the summat ion of the partial

products, output from the system of Figure 4-9 every Ta, is performed by the

cylindrical lens L t in Figure 4-6, to produce the components of d. Again, the bit

time TB in this explanation corresponds to time T z in our digitally encoded

processor of Figure 4-6. 	 The digital encoding is simply manifested in the N Tt's

which equal Tz, and the extra dimension of the N-channel AO cell.

4.5.2 Direct LU Decomposition

Finite element equations may be solved by direct or indirect (iterative)

solution methods, as mentioned in Chapter 2. Since direct solution methods are

more popular, implementation of a direct solution methud on our optical processor

will be examined.	 However, indirect solution methods have some advantages and

are equally applicable for this optical processor. 	 This subject will be discussed

further in Chapter 6,

The goal of all direct solution methods is to reduce the full system of

equations to a triangular system.	 Consider

Ax = b	 (4.6)

where x is the unknown vector.	 The matrix A can be decomposed into the

product of a lower L and an upper U triangular matrix. 	 This is the well known
w!

LU matrix decomposition. Equation 4.6 can then be expressed as

)jI

fi

i^
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LUx • b	 (4.7)

Equation 4.7 can easily be solved by first solving

Ly . b	 (4.8)

for y by forward substitution, and then solving

Ux • y	 (4.9)

for x by back substitution.

Since L and U are triangular matrices, the forward and back substitution

processes are trivial, even for very large matrices. 	 Both operations can be easily

and quickly performed in digital hardware.	 The computational burden is performing

the LU decomposition.	 We will use the optical processor of Figure 4-6 to

perform the triangular decomposition of finite element systems of equations.

Many types of direct algorithms and decompositions exist.	 We will use LU

decomposition since it is easily implemented on our optical processor. 	 A

symmetric Cholesky L17 decomposition could also be implemented, but we will

show that it requires extra work later in this section. 	 The LU matrix

decomposition algorithm we will use was first described for an optical processor in

[27].	 The algorithm may also be found in [32] and other linear algebra texts.

Consider	 equation	 4.6.	 For	 an	 N by	 N	 matrix A,	 N-1	 steps	 are required	 to

produce	 a	 triangular	 matrix	 equation. Each step	 involves	 a matrix-matrix

multiplication.	 The	 matrix	 Ak,	 where	 k	 is	 the	 step index	 and	 A t =A,	 is premultiplied

by	 a	 decompositioi: 	 matrix	 pk,	 to	 form Ak' r	at	 each	 step	 k,	 i.e.	 the process	 iw

form	 Ak' 1	=	 pkAk	 for	 k=1,	 ....	 N 1	 ,	 where	 pk	 is a	 lower	 triangular	 matrix.	 It	 is

a	 unit	 diagonal	 matrix	 with	 nonzero off-diagonal elements	 only	 in column	 k.

Column k of pk can be	 written as the column vector c k, where

ck = 0
	

for	 i(k, i.e. zero's above the diagonal

cik = 1
	

for	 f=k, i.e. one on the diagonal

c ik = -alkk/akkk
	

for	 iA, i.e. below the diagonal
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Thus, the ck	values	 are calculated	 from	 the	 Ak	matrix	 elements.	 It should	 be

noted that a	 necessary condition	 for	 this	 algorithm	 is	 then	 no	 main	 diagonal

element of A	 Is	 zero. This	 condition	 is	 guaranteed	 if	 the	 matrix	 A is	 positive

definite or diagonally	 dominant.	 In	 conventional	 uses	 of	 the	 algorithm, a	 zero	 (or

small	 number	 for	 accuracy purposes)	 on	 the	 main	 diagonal	 would	 require	 pivoting,

which cannot	 be	 done	 with	 our implementation	 of	 the	 algorithm.	 Thus, the	 matrix

Pk has the form

1

1

O E---kth ROW[P]k
R 

f

Q

X O	 1
X	 lj

kth COLUMN

After	 step	 1,	 the	 first	 element	 is	 the only non-zero	 element	 in the first

column	 of	 A2.	 After step	 2,	 the	 first	 element in the	 first	 column,	 and the first

two elements	 in	 the second	 column are the only non-zero	 elements	 in the first

two columns	 of	 A3. This	 pattern	 continues, where	 the	 first	 k	 columns of Ak'1

are upper	 triangular, After	 N-1	 steps,	 AN	is the upper	 triangular	 matrix U. The

final matrix	 is	 thus

AN - Ak•t - Pal- ' ... P2P'A'

where

A' n A

Upon letting

p - pN- ' ... p2P'

and noting that

(4.10)

(4."1)
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a

AN . Al" . U

is an upper triangular matrix, we can write

AN n PA

or

U • PA

(4.12)

(4.13)

To show that this is LU decomposition, we can rewrite (4.13) as

P- 'U • A

or

	

LU c A	 (4.14)

where we explicitly note that P"t is a lower triangular matrix L.

To form the Choleshy decomposition factor L T, where

	

A n LLT	(4.15)

	

an extra step is required, as explained in [27]. 	 From U, the diagonal matrix D is

computed, where

dii -- 1/ 
V, ull	 i=1, ..., n	 (4.16)

and the matrix LT is formed by the following matrix-matrix multiplication

	

LT - DU	 (4.17)

Equation 4.6 can now be solved from (4.14) by performing the forward and

back subtitution of (4.8) and (4.9). 	 However, it is much easier to perform the

forward substitution while A is beird decomposed. This simply involves

premultiplying b by each Pk at each step, producing a new vector W in the same

N-1 steps as

	

W s Pb	 (4.18)

The same result is achie ,ed if the augmented matrix Alb is multiplied by the Pk

1
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matrices to begin with, which yields the augmented matrix Ulb' alter N -1 steps.

This requires an extra matrix-vector product at each step.

The algorithm decomposes the original equation, Ax nb, Into a triangular system

as follows.	 First both sides are multiplied by P.

	

PAx n Pb	 (4.19)

This requires N-1 steps (matrix-matrix products), 	 Equation 4.19 is then

Ux s b'	 (4.20)

This triangular matrix equation, (4.20), is then easily solved on a digital system.

Optical solutions are possible and are detailed elsewhere [28].

The basic finite element equation, Kd=p, with boundary conditions imposed, is

of the g ame form as (4.8). It meets the requirement of being positive-definite,

and thus can be solved by the above algorithm.

4.5.3 Processing Time for LU Decomposition

We have seen how a banded matrix-vector product can be implemented on

our optical processor. 	 Equation 4,19 shows that the LU decomposition algorithm is

composed	 of	 N-1	 matrix-matrix	 multiplications, 	 PA,	 and	 N-1	 matrix-vector

multiplications, Pb.	 Each matrix-matrix multiplication consists of N matrix-vector

multiplications. 	 Thus, the entire algorithm consists of N(N-1) plus (N-1), or N2-1

matrix-vector multiplications. By examining the definition of c ik for 1A, it is obvious

that each matrix-vector product (P times a vector of A, or P times b) involves a

banded matrix with the same bandwidth as A. This occurs because wherever aikk

is zero, c ik will be zero from the definition of ck.

In fact, Pk has a bandwidth e qual to the semibandwidth of A, since Pk is

strictly lower triangular. A banded A matrix is shown with its corresponding Pk

matrix in Figure 4-10, where an X represents a potentially non-zero matrix element.
F

Thus, the banded finite element matrix equation, (2,18), can be solved on the

proposed optical processor utilizing the above LU decomposition algorithm, and

FI
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	Figure 4-10:	 Decomposition Matrix Structure

requiring N2-1 banded matrix-vector multiplications, which is N(N 2-1) vector inner

products (VIPs).

The actual number of required vector Inner products is less than N(N2-1).

g This occurs since at each step 004ki1 in calculation (4.10), the size of the

matrices Pk and Ak can be reduced by one. This is obvious from the structure

01 Pk and realizing that the first k-1 rows and columns of Ak are not affected

when Ak is premultiplied by Pk. Thus, a system of equations of size N-k+1 must

be solved at each step k. Step one requires an N by N matrix-matrix (N2 VIPs)

and matrix-vector multiplication (N VIPs); step N-1 requires a 2 by 2 matrix-matrix

(4 VIPs) and matrix-vector (2 VIPs) multiplication.

The number of VIPs required to perform the LU decomposition of an N by N

system	 of	 equations will	 now	 be	 quantified.	 At	 step 1,	 N2	 VIPs from	 the	 matrix-

matrix	 multiplication (4.13)	 are	 computed,	 and	 N VIPs	 from the	 matrix-vector

multiplication	 (4.18) are	 computed.	 At	 step	 2,	 the number of VIPs	 computed	 is

reduced	 to	 (N-1)2 and	 (N-1).	 At	 step	 k,	 2214	 and 2 VIPs are computed.	 Thus,

the	 following	 formula gives the number of VIPs required for an N by N system,

[N2+(N-1)2....+22] + [N+(N-1)+(N-2)+...+2] n # of VIPs mg N3/2 (4.21)



91

Evaluating (4.21)	 for	 N.24, 4899+299.5198 VIPs	 are required	 for the	 LU

decomposition algorithm.	 The	 processing	 time required	 for this	 is	 5198=N3/9	 T2.111

(the	 N3/2 approximation	 is	 valid for	 large	 N). A problem size of Nn 24 represents

our	 case study	 with	 boundary conditions	 imposed,	 where the	 boundary conditions

specify	 that	 all	 the	 DOFs	 on two	 connected edges	 of	 the	 model	 (7 nodes,	 21

DOFs) are fixed	 to	 zero.	 This is a common support	 condition.

4.5.4 One Channel LU Procecsor

We implement the LU decomposition algorithm on the optical processor by

forming PkAk with N-k+1 matrix-vector multiplications, separating A k into N-k+1

vectors. From Figure 4-9, the matrix diagonals are fed into each point modulator.

Thus, with our implementation of the algorithm, only two point modulators are being

input with non-zero data at any time. 	 This drastically reduces the detector

dynamic range requirements, which will be quantified in section 4.6.

To see this, we illustrate a specific step of the LU decomposition in Figure

4-11a.	 We consider the decomposition matrix Pz for a 5ei order system with a

semibandwidth of 3. Since the first element of each diagonal is input to the

point modulators at successive bit times, it is evident from the data flow diagram

in Figure 4-11b, that at any bit time, at most only two point modulators have non-

zero input data, the main diagonal input, which is always a 1, and one other input.

We utilize this in section 4.6.

The formation of ',he elements of the P matrix can be easily done with

dedicated hardware. Only a new c k vector needs to be computed at each step.

As defined above, the c k elements, where Dk (the only elements that change from

step to step), are formed by calculating the reciprocal of akk and subsequent

simple multiplications of two A k matrix elements.	 The analog optical processor

using the LU decomposition algorithm as detailed in [27] uses analog electronics

to generate the new ck vector elements.	 Our system will use dedicated digital

hardware to perform the division. 	 Once each column of the Ak+t matrix is

6
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Figure 4-11:	 Illustration of Only Two Non-Zero Inputs in LU Decomposition
Algorithm Implementation

computed (from Pk times a column of A ll ), the ck`t elements can easily be

computed in enough time for the next step of the algorithm.

4.6 Finite Element Processing

This section will refine the processing details specifically for solving finite

element problems with the direct LU decomposition algorithm. Specifically, we will

show how only one channel of the processor of Figure 4-6 is required.

Comments on dynamic range requirements for the detector a rray are given for this

implementation,

In	 the	 previous	 section,	 Figure 4-11	 illustrated	 that only two	 point	 modulators

are	 input	 with non-zero	 data during any Tz (TB, bit	 time) for our implementation of

the	 LU	 decomposition	 algorithm. It	 was	 also shown that one	 of	 the	 point

modulators	 is	 always	 input	 with	 a 1,	 and	 it	 is always the	 same	 point	 modulator.

C —
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e 

The other non-zero input could be at any one of the other inputs, but it it is at

point modulator m at the iM bit time, it Is at point modulator m+1 at the (1+1)M

bit time.

It would not be very practical to use an Mn 10 input processor when solving

finite element problems exclusively with our LU decomposition algorithm, because

only 2 inputs are needed. However, since the input to one of the required point

modulators is always 1, only Mn 1 point modulator is required to implement the

algorithm. The one-channei processor is nhown in Figure 4-12. It is one che.inel

of the processor in Figure 4-6, with some additiont electronics, and its operation

is explained below.

P2
	

L 

DELAY

Figure 4-12:	 One-Channel Finite Element Processor

^I

rl^

The	 Pt point	 modulator	 is	 used	 for	 the	 input	 of	 the	 :ion-zero	 data	 that	 is

not	 from the main diagonal	 of Pk which is always a 1. The multi-channel AO	 cell

at P2 need be only	 a point modulator	 array.	 Its	 input	 is fed to a delay, and	 the

output	 from the	 detector	 array	 in	 P3	and	 the	 delayed P2 data	 is	 added	 in	 a
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serial	 ECL	 circuit	 at	 the appropriate	 T t ,	 as	 if	 it	 had	 been multiplied	 by	 1	 in	 the

processor.	 In	 practice	 the	 ECL	 adder	 in ;he	 original	 detector	 circuit	 (Figure	 4-8)

is	 used.	 If	 the	 12th	bit was	 the	 one's place	 in	 the	 32-bit representation	 being

used,	 the	 P2	data	 would be	 delayed	 11 T 1 's,	 and	 added to	 the	 detector	 output

of	 the	 12th	Tt ,	 within	 each	 T2	period, This	 one-channel implementation	 performs

the	 same	 multiplications indicated	 in Figures	 4-9	 and 4-11,	 for	 the	 LU

decomposition	 algorithm.

This processing	 format	 allows	 bipolar	 handling	 with	 an exclusive-or	 test,	 as

detailed	 in section	 4.3,	 since	 only	 one	 input	 channel	 is used. If	 the	 exclusive-or

test	 result is	 a	 1,	 indicating	 that	 the	 signs	 of	 the	 data in	 P 1 and	 P2	are	 different,

the	 product is	 given	 a	 negative	 sign.	 In	 this	 Cass,	 the delayed	 data is	 subtracted

r;;iher	 than added	 to	 the	 detector output at	 the	 proper time.

The dynamic range requirement of the detector is now drastically reduced,

from that discussed in section 4.4. using a 1-channel processor as described

above, or the M=10 charnel processor, with the LU decomposition algorithm, only

one non-zero input will be present in either system every T1 .	 For binary

encodinr„ each detector element (for the detector array of Figure 4-8) requires a

dynamic range of 1. Each A/D converter must convert two levels, a 0 or a 1.

Thus, one bit A/D converters are required, and such units (simple comparator

circuits) are available at speeds above 100 Mhz.

It	 the data encoding	 is performed	 in a radix	 R,	 each detector	 would	 require

a dynamic range of	 (R-1)2. Fach	 A/D	 converter	 would	 require	 log2[(R-1)2.1]	 b1s,

rounded	 to the next	 largest integer.	 If	 the	 data	 were	 encoded	 in	 a	 radix	 R

other	 than two (binary),	 the dynamic	 range	 requirements	 of	 the	 detector	 system

are	 farrier than the	 R=2	 case. However,	 fewer bits	 are	 required	 for the encoding

to	 achieve the same	 accuracy.	 Thus,	 the	 number	 of	 channels	 in	 P2	is	 reduced,

and	 the	 speed of	 the	 processing	 is	 increased,	 since	 there	 will	 be	 fewer	 T 1 's	 per

T2.

•; L S^
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'	 Two	 more	 points	 should	 be	 made	 about	 our	 proposed	 finite	 element

s	 processing	 system.	 When	 implementing	 the	 LU	 decomposition	 algorithm	 on	 the

 processor	 as	 described,	 no	 frequency	 multiplexing is	 used	 in	 the	 N-channel	 cell	 in

Pz .	 If	 frequency	 multiplexing	 is	 used	 in	 an optical	 system,	 the	 number	 of

frequencies	 that	 can	 be	 used	 is	 limited	 by	 the divergence	 of	 the	 input	 beam,	 as

explained	 in	 [25],	 Thus,	 beam	 divergence	 is not	 an	 important	 consideration	 in

4ibrication	 of	 the	 input	 array	 for	 our	 processor. Also,	 the	 proposed	 processor	 is

basically	 an	 imaging	 system.	 No	 information	 is carried	 in	 the	 phase	 of	 the	 light

E	 distributions.	 The	 multiplications	 are	 represented by	 the	 beam's	 intensities,	 thus

non-coherent	 light can be	 used	 in	 the	 processor.

4.7 Solving Large Systems of Equations

This section will address two issues, large banded matrix problems in general,

and large finite element problems.	 The first issue arises from the practical

limitation of the size of the input point modulator array. 	 An array of M=10 point i
modulators was chosen because it is a reasonable number for fabrication. On a

larger scale, fabrication of a processor with more than 50 channels looks

unrealistic, especially because the time aperture of the AO cell in Pz would have

to be very long to facilitate reasonable shift rates in PT The second issue

involves the standard finite element problem formulation technique of substructuring,

which enables large problems to be processed in a more efficient manner.

4.7.1 Matrix Partitioning

The previous section showed that any size banded matrix problem, solved

with the L.0 decomposition algorithm imlementation on our processor, only requires a
i

one channel system, shown in Figure 4-12. This special requirement is due solely

t	 to the nature of our implementation of the LU decompositon algorithm.	 11 is
^i

important to consider the more general purpose uses of our M=10 channel

p	 processor.	 As mentioned previously, many other algorithms are suitable for

implementation on the processor, especially those that involve banded matrix-vector



products, which is a basic operation defined in Figure 4-9. 	 They includrr, other

direct equation solvers, iterative equation solvers, and other algorithms.

By examining Figure 4-9, it is obvious that our M=10 channel processor is

limited	 to processing matrix	 equations	 with	 a	 bandwidth	 of	 10	 or	 less,	 when

performing a banded matrix-vector	 product. However,	 most	 significant	 problems	 will

have	 bandwidths	 that are	 much larger than 10.	 Finite	 element	 problems	 often	 have

tens	 or	 hundreds	 of thousands	 DOFs,	 and bandwidths	 in	 the	 thousands	 or	 tens	 of

thousands. These large	 problems	 cannot	 be	 solved	 on	 tho	 M=10	 channel

processor without	 some	 form	 of	 partitioning of	 the	 equations,	 to	 reduce	 the	 amount

of	 data that	 must	 be	 fed to the processor at one time.	 In	 considering	 partitioning

schemes, two	 issues	 must be kept	 in	 mind:	 1)	 a system for solving banded	 matrix

equations is	 being	 used, and any	 partitioning	 must be	 compatible	 with	 that	 format;

2)	 the partitioning	 must not be	 so	 complex	 that is	 slows	 the	 processing	 time

considerably.

An appropr,ate partitioning scheme is now discussed.	 Figure 4-9 illustrates

how a banded ma!rix-vector product is implemented on our optical processor. The

number of point modulators required is equal to the bandwidth of the matrix.

Figure 4-13 illustrates how a banded matrix-vector product can be implemented

when the matrix bandwidth B exceeds the number Of point modulators M in the

processor.	 The matrix is partitioned such that M (the number of point modulators)

or less diagonals are processed at any one time.	 Recall that in our

implementation, an entire diagonal is fed into a single point modulator, thus making

this partitioning scheme attractive. 	 The detector results are stored and added

accordingly to yield the desired vector elements. The matrix of Figure 4-9, with

a bandwidth of 5, is partitioned for the processor of Figure 4-13, with only M=3

point modulators.

The top two diagonals of the matrix equation in Figure 4-9 are fed into the

processor first, as illustrated in the top portion of Figure 4-13. 	 Note that one of

F
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Figure 4-13:
	 Banded Matrix-VeC)nr Product With Matrix Partitioning
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the	 inputs	 is	 not	 used. This	 causes no	 data	 flow	 problems	 when	 the	 unused

inputs	 are	 positioned	 at	 the end	 of	 the AO	 cell.	 The	 partial	 products produced

from	 the	 top	 two	 diagonals are	 optically summed	 to produce	 7 el values (only	 the

first	 4	 are	 shown	 in	 the figure).	 The remaining	 three	 diagonals	 of the	 matrix

equation	 are	 then	 fed	 to the	 processor as	 illustrated	 in	 the	 lower portion	 of

°figure	 4-13. The	 partial	 products	 from	 that operation are	 optically	 summed	 to

produce	 7 it	 values.	 The	 sum	 of	 et	and	 fi yields	 the desired	 element	 dt	(from

Figure	 4-9) of	 the	 vector	 d.	 This	 can	 be verified	 by comparing	 the	 results	 of

Figure	 4-13 with	 those	 in	 Figure	 4-9.

It is	 important	 to	 note that	 with	 this partitioning	 scheme,	 the	 data flow	 is

nearly always constant	 through the	 processor. In	 the	 example	 of Figure 4-13,	 7

bit	 times,	 Ta, are	 needed	 to produce	 the ai 's.	 Actually,	 e7	 is zero and	 not

produced	 since	 no	 element	 of the	 top	 two diagonals	 contributes	 to	 the formation

of	 the vector element	 d,.	 The ee	value	 is produced	 at	 bit	 time 7,	 when	 br	is

in	 the middle region	 of	 the cell.	 Bit	 time 8	 is	 used	 to	 shift b,	 to the	 top

region of	 the cell,	 and	 at	 bit time	 9,	 processing	 of	 the	 remaining three diagonals

begins.

The LU decomposition algorithm can be implemented on the M=10 channel

processor for large problems with this ptrtitioning scheme. The diagonals of Pk

are partitioned and processed in groups of 10 or less, as illustrated in Figure

4-13.	 The results from each partition are stored in tho microprocessor, and they

are added appropriately to form the desired matrix-vector products. 	 If a partition

includes the main diagonal of a k, the processor has at most two nonzero point

modulator inputs. 	 If the partition does not include the main diagonal, the processor

has only one non-zero point modulator input. 	 Thus, if the main diagonal is

partitioned alone, the processing will take place with only one of the MOO point

modulators input with non-zero data at any time. In this case, bipolar data can

be handled with the exclusive-or test, since it is known which point modulator will

be fed the non-zero data during each TZ.

!1 I
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4.7.2 Substructuring

The large size of many finite element problems, having tens of thousands of

DOFs, presents a data management and formulation problem for any computing

system, not to mention the large amount of CPU time needed for the problem

solution.	 A technique called substructuring has been used to overcome these

problems.	 Structures often have well-defin^d or definable internal boundaries that

can be used to separate the structure into a system of substructures. 	 The

boundaries between substructures exist because of symmetry, construction, or other

constraints.	 Each substructure may possess similar internal boundaries, and can be

further subdivided into other substructures. 	 Thus, a complex structure can often

be reduced to a connection of smaller and simpler substructures. 	 This breakdown

simplifies the structure modelling. 	 The following discussion will deal with the

technique of substructuring with condensation. 	 Substructuring without condensation is

also a useful technique in problem formulation, but it will not be discussed here.

k.	 The equations for a finite element model made up of substructures (formulated

l	 by condensing internal nodes, to be discussed below) can contain many fewer
i

C	 DOFs than the equations for the model without substructures. 	 This significantly

reduces the solution time and the amount of data to btr handled in the problem.

!!C.	 Defining the problem in terms of substructures reduces the problem formulation to( I

	

	 one with many small manageable matrix equations.	 The benefits of breaking up

large problems into smaller substructures are obvious, and the process is detailed

below.	 Substructuring is not benificial for all problems, especially smaller ones, but

when used properly, it can save significant amounts of problem formulation and

€r	 solution time.

Most substructuring exploits	 repeated geometries and	 symmetry within	 a

structure. A	 trivial	 illustrative	 example	 of	 one	 level	 of substructuring	 is given	 for

the	 simple
Ifff

structure	 of Fiyue	 4-14.	 The structure	 is modelled	 by	 24 triangular,

elements,	 and	 many	 lines of	 symmetry	 exist. Each half of	 the	 structure about	 the

I	 vertical	 line of symmetry -n be considered to	 be	 a	 substructure.	 Both of	 these
rl1
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Figure 4-14:	 Example Model Suitable for Substructuring

substructures are identical, 	 Once the proper substructure equations have been

derived (through condensation), the structure may be modelled as shown in Figure

4-15.

I I+I I^
u u

Figure 4-15:	 Substructured Model

Here,	 two	 identical substructures,	 rather	 than	 24	 elements, model the	 structure.

Interior	 nodes	 have also been condensed	 in Figure	 4-15 as detailed later.	 Since

the	 substructures have	 identical geometries, 	 the same	 set of equations will	 describe

both	 of	 them.	 Thus,	 repetition of	 input	 data,	 storage,	 and	 calculations is	 eliminated.

The	 problem size	 is also	 reduced,	 from	 18 nodes	 in Figure 4-14	 to 12 nodes in

Figure	 4-15.	 The substructures	 (combinations	 of	 many	 elements	 described	 by	 a

set	 of	 equations. derived	 from	 those	 elements)	 may be	 thought	 of	 as

superelements.

-I

The substructure equations are derived through a procedure called static

I

J
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condensation. In	 general,	 for s given	 substructure or	 element, exterior nodes are

those nodes needed	 to connect the substructure or dement to other	 substruciures

or	 elements. I.e.	 those	 nodes on	 the	 boundaries, All	 other nodes are	 interior

nodes.	 Static	 condensation	 Is used	 to	 condense	 the	 Interior nodes	 by expressing

their	 equations	 in	 terms	 of the	 exterior	 nodes, thereby	 expressing the	 entire

substructure in	 terms	 of	 the exterior	 nodes	 oW% # . In	 Figure 4-15, the	 interior

nodes	 have been	 condensed,	 and	 thus	 only the	 exterior nodes of	 each

substructure are shown.

As a simple example of static condensation, consider the structure composed

of two bar elements in Figure 4-16.

--^ U l	 ---1 U2 	 --► U3

1	 2	 3
1--^ x

Figure 4-16:	 Static Condensation Example - Bar Element Model

The structure has one DOF per node i, specifically a displacement ui in the x

direction.	 The basic finite element matrix equation for this problem is

-k11 k22 k23 uz n p2 (4.22)

0 k32 k33 U3 P3

To condense interior node 2, the equation from the second row of the matix 1--,

E I	 (4.22) is used to write u2 in terms of ur and u3, as

U2 • (p2/k22) - (k211k22)U1 - (k23/k22)U3 	
(4.23)

Equation 4.23 is substituted into the equations from the first and thirii rows of the

matrix in (4.22) to yield the equations

Yi	 Ckt1-(k12k21/k22)]ut - (kt2k23/k22)u3 ` pt - (kt2/k22)P2

'_III

	 -(k32k21/k22)ut + [k38 (k32k23/k22)]U3 
n P3 - (k32/k22)P2	 (4.24)

'1



tot

The equations In (4.24) Can be written In matrix form as

ktt-(k/2k211k22) -(kt?k231k22) ut

IU3	 -

p{(k12/k22 )P2

[ P3(k32^k22)P2]	 (4125)-(k32k21 /k22 ) k33-(k32k23/k22)

Equation 4,25 is a reduced dimensionality form of (4.22), and can be used to

represent the structure of Figure 4-16 (as long as no connections are made at

node 2) in terms of nodes 1 and ') 	 Equation 4.25 thus represents the

substructure in Figure 4-17,

—+u^	 ---► u3

3
x

Figure 4-17:	 Bar Example Substructure - Node 2 Condensed

It may be considered as a superelement, since (4.25) has the same form as a

set of elemental equations (the matrix is full, in general). Since it is used in a

structure equation assembly process just like a single element, the assembly of

substructure equations will yield a banded matrix as before. if the substructure

nodes are numbered properly.

When condensed equations for substructures are used in the assembly

process, smaller structure stiffness matrices result. They are smaller by the total

number of condensed DOFs in the structure (if a condensed node has n DOFs, n

equations are eliminated). 	 Ii a substructure is repeated throughout the main

structure, savings in input, storage and calculations result since the substructure

equations need only be derived once. 	 Tte same not of equations is used over

and over in assembling the repeated substructures into the structure stillness

equations. This situation is synonomous to remarks made in Chapter 2 that

elemental stillness matrices need only be evaluated once for like elements, and

they are used more than once in the stiffness matrix assembly.

n^ M „
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I	 The condensation process can be described In general by the following

equations.	 The matrix stiffness equation for the substructure 10 be condensed is

written a;s

	

C

K;;	 K;s 
l	

u;	 p;

	Kai	 Kee C usj r C ps	 (4.26)

	

'	 where u; is a vector of the (interior) DOFa to be condensed, and u. is a vector

of the (exterior) DOFS to be retained, 	 The load vector and stiffness matrices are

also partitioned in terms of the DOFs to be condensed and retained,	 A

condensed matrix equation is desired of the form

	

i	 Kee % n pe	 (4.27)

After simple matrix manipulations of the partitioned equations in (4.26), the following

i
relations are obtained

t

	

D^	 KN = K•i (KNK ii KI•)

	

, I
	

Pe	 Pi IKaK;I tp;I 	 (4.28)

The equations in (4.28) can be verified by comparing them to (4.25).

The condensed	 substructure	 matrix	 equation	 can	 bo obtained	 from	 (4.28),

however, in	 practice	 this	 is not	 done	 because	 of	 the matrix inversion	 that is

required. Instead,	 modi fied forms	 of	 standard	 equation solvers are	 applied to

(4.26),	 such as	 Cholesky	 or Crout	 decomposition, 	 or	 Gaussian elimination. For

example, Gaussian	 elimination	 can	 be	 applied	 to	 (4.28)	 until all	 the elements	 of K«

f	 (the	 lower	 partition	 of	 (4.26)) are	 zero,	 yielding	 (4.27).

As	 mentioned	 earlier,	 substructures cen	 be defined	 within	 substructures,	 and

thus	 many	 levels	 of	 substructuring	 are possible. A	 three-level	 example	 follows,

P	 taken	 from	 [33].	 The	 main	 structure	 is shown in Figure	 4-18.	 It	 is	 a	 three-bay,

t,	 three-story	 steel	 frame;	 the	 second	 bay	 girders are	 identical,	 each	 having	 three

openings	 (penetrations) 	 for	 the	 passage of	 ductwork	 (Figure	 4-19a),	 Most	 of	 the
,

r
`I

r
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structure can be modelled with simple plane frame elements. 	 However, the three

penetrated girders require many nodes and elements for proper modelling of the

openings	 Substructuring and condensation can be used to exploit the repeated

geometries and symmetry in each penetrated girder.	 This will greatly simplify the

entire structure model.

Penetrated beams
r for ductwork

usTraL

Figure 4-18:	 Building Frame - Bays Horizontal, Stories Vertical [33]

The first level substructure Is a single penetrated girder (Figure 4-19a). The

central (second) bay of the entire stucture is modelled with three copies of Figure

4-19a, with plane frame elements used for the beams and columns in the first and

third bays.	 The second level substructure (Figure 4-19b) is defined by dividing

Figure 4-19a into three identical parts.	 The third level substructure (Figure 4-19c)

is defined by subdividing Figure 4-19b into four identical parts, each with a

different orientation (rotation transformations will be required). 	 The modelling of the
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All	 the	 Interior	 nodes of	 Figure	 4-20a	 can	 be	 condensed,	 to yield	 the

substructure,	 or superelement in	 Figure	 4-20b.	 Four of those	 are	 used to	 form

the	 second	 level
i

substructure, and three such second level	 substructures are used

to	 form	 the	 first level	 substructure	 of	 Figure	 4-20c. The interior nodes of Figure

4-20c	 are	 then

t

condensed to	 yield	 the	 first	 level super	 element	 (substructure)

shown in Figure 4-20d, which has only two nodes.

Frain
Connection Substructure loundery

2T'

L2110 &
)a..x @ s.. opening

(a)

Substructuie
•••	 Boundary

L a--^-•^

(b)

J!6,

Figure 4-19:	 Penetrated Girder Substructures (33]

third level substructure is shown in Figure 4-20a.	 It consists of standard finite

elements (rods, triangles, and rectangles) as shown.
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• 4-20 •	Building Frame Model Substructures [33]
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Three copies of Figure 4-20d, along with simple plane frame elements, are

used to model the original structure of Figure 4-19. The number of DOFs in this

model is much less than if substructuring was n(1 used (i.e., it all the nodes of

Figure 4-20a were modelled explicitly). 	 Each first level substructure contains 1152

condensed nodes.	 Since the first level substructure is defined by 12 identical

third level substuctures, duplicate input data, computation, storage of elemental

stiffness matrices, etc., is eliminated from the problem formulation. The final matrix

equai.ion to be solved is much smaller, thus the solution process will be much

faster.

When a finite element problem is solved using substructuring and condensation,

the condensed DOF values are not determined. However, if they are needed for

the analysis, they are retrievable by back-condensation. This process is the

reversal of the steps used to obtain (4.27), which are known.

The main advantage of substructuring with condensation is that the size of

the structure finite element equations is greatly reduced due to the condensed

DOFs.	 This significantly reduces the required computer time for solvfig	 y	 q	 g problems

on a digital system. For processing on our optical system, it reduces the matrix

and bandwidth size, so that the equations may be more easily managed, and that

less partitioning is required for algorithms other than our LU decomposition

implementation.

If substructuring is used when inappropriate, the overhead required for the

substructuring operations will exceed any gains in handling and solving the

equations after substructuring. 	 Five general guidelines for substructuring are given

in [33], and are summarized below:
1. A condensed substructure should be used more than once as a

superelement in a higher level structure.

2. The number of nodes remaining after condensation should be email
compared to the total number of substructure nodes.

3. Nodes remaining after condensation should form a narrow boundary within
the structure, which minimizes the structure bandwidth.

7
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4. Nodes should be numbered to exploit any node reordering scheme used
in the condensation algorithm.

5. The number of nodes requiring back-condensation should be significantly
less than the total number of condensed nodes in the final model.

4.8 Summary and Conclusion

This chapter has presented an optical processing system suitable for

accurately solving finite element problems, and other banded systems of equations.

The limitations of analog optical processors were discussed, and some proposed

digital encoding schemes were reviewed. 	 Multiplication by digital convolution was

explained and detailed for an optical system. 	 A specific digitally encoded optical

processor was described, which performs digital convolution by the standard shift-

and-add method.	 Its performance was evaluated, and fabrication of a realizable

system was discussed.

It was shown how banded matrix-vector problems could be performed on the

proposed optical processor. 	 An LU decomposition algorithm was detailed to solve

finite element matrix equations.	 The algorithm uses banded matrices, and thus is

appropriate for our processor. 	 It was shown how our implementation of the LU

decomposition algorithm actually requires only one processor channel. 	 Matrix

partitioning for other algorithms was detailed. The topic of subsiructuring in finite

element problem formulation was described, which can often be used to make the

formulation, handling, and solution of finite element equations much easier.

This chapter has presented a feasible optical processing system and

associated algorithms. 	 The digital encoding used by the processor will yield

accurate solutions to finite element problems, 	 This was obtained by trading off

speed and size of the processor for the encoding capability. 	 This chapter is

unique in recent optical processing literature in that it described existing hardware

that can be employed to input and output data to and from the processor. 	 11

remains to be seen how the errors inherent in optical systems will affect the

performance of this digitally encoded processor.	 This is the subject of the

Chapter 5 and future research.
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5. OLAP Simulation

5.1 introduction

Chapter 4 has described an optical processor capable of performing bask

linear algebra operations.	 Thus, we will now refer to our proposed processor as

an optical linear algebra processor, or OLAP.	 The OLAP employs digital encoding

of data to reduce the dynamic range of the signals in the processor and lessen

the effect of optical processor errors on the data	 It is expected that significant

optical errors can be present in the OLAP without significantly affecting the

processing accuracy. This chapter describes a digital computer simulation of the

OLAP used to solve three selected multiplications of two binary encoded numbers.

The purpose of the simulations is to determine how optical errors affect the

products calculated in a digitally encoded optical processor.

The CLAP error simulation program was written to simulate the solution of a

case study finite element problem with individual and combined optical error sources

present, and it is fully detailed in this chapter. However, this report only includes

the simulation results for three sets of multiplications, with only individual error

sources included in each simulation.	 This is because a single simulation run for

our case study with N=24 (after imposing boundary conditions) requires 4 hours of

CPU time, as will be explained in section 5.3. A comprehensive processor

evaluation will require nearly 100 simulation runs (due to trial and error, and

individual and combined error source modelling), which is over two weeks of CPU

time.	 Thus, that task will be completed in future research.

All of the pertinent error sources present in the OLAP are modelled in the

simulation program. These error sources are described in section 52 The direct

LU decomposition algorithm detailed in Chapter 4 is used. The simulation program

models the full implementation of this algorithm On the W10 channel CLAP of

Figure 4-6, with N=32 bits. 	 We chose to simulate the 10-channel system rather

than the 1-channel system (section 4.8) because it represents a more flexible

'j
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general-purpose processor.	 This is an appropriate choice for two reasons.	 First,

the specific algorithm (LU decomposition) and implementation we chose to solve

r.	 finite element problems lent itself to a 1-channel OLAP, but other algorithms may
z
i	 not do this.	 Second, the error simulation results are more significant if they are

k	 for a more general processor, with multiple processor channels.
t'

The error modelling assumptions and software implementation are discussed
k

`	 (section 5.3). 	 The results of the individual 32-bit multiplication simulations are then

advanced (section 5.4), with analysis of the results also advanced, 	 The simulations

were performed on a VAX 11/750, with single precision (32-bit floating point)

arithmetic. This chapter thus presents the first model and quantitative simulation

results on the performance of optica processors operating on digital data in the

presence of various component errors.

5.2 Error Sources and Error Modelling

This	 section	 describes the	 error	 sources	 considered,	 and	 the modelling	 used

for	 the	 OLAP of	 Figure	 4-6,	 This	 represents	 the first	 error	 source	 model	 and

analysis	 for	 a digital	 OLAP. For	 the	 error	 model, M=10	 channels and	 N=32	 bits

are	 used,	 and the	 detector array	 used	 at	 P3 is	 the detector/ECL array	 shown	 in

Figure	 4-8,	 and discussed	 in section	 4.4. 1

The processor is	 repeated	 for convenience in	 Figure	 5-1. Only	 the top and

bottom	 portions	 of the	 P,	 and	 P2	 devices	 are shown.	 There are	 10 Pt	input

point	 modulators,	 32 AO	 cell	 channels	 with	 10 T2	 regions	 present	 in	 P2, and	 32

detector	 elements	 are	 used	 in	 P3.	 This	 figure will be	 used	 to	 describe	 our error

source	 modelling. The	 input	 point	 modulators are	 numbered	 1 to	 10 and	 are

indexed	 by	 I.	 The signal	 input	 to	 point	 modulator	 t	 is	 described by	 ai , The AO

cell	 channels	 in	 P2 are numbered	 1	 to	 32 and are	 indexed	 by 1,	 Each channel

is	 divided	 into	 10 regions	 corresponding	 to	 the	 10	 input	 point modulators.	 The

ideal	 P2	plane	 transmittance	 of	 AO	 cell	 channel )	 at	 region	 t	 is described by	 bit.

The	 detector	 elements	 are	 numbered	 1	 to	 32 and	 are also indexed	 by ).	 The

' (;;

9



111

value incident on a detector element is described by c f. As defined in Chapter

4, processor channel i consists of input point modulator i in P 1 , and the region i

of Pz containing all J u l to 32 AO cell channels.

The error sources modelled are those that are most dominant.	 Many error

sources could be included in a digital model of an optical processor. However,

these error sources would depend on the specific processor hardware, and their

number would become prohibitive for a simulation, The more reasonable and useful

approach is taken in which the major dominant error sources are lumped into

combined errors in each data plane, thus greatly simplifying the simulator and its

runtime.	 The effect of the various error sources is thus more easily quantifiable

since there are fewer error sources,	 Such a simulation enables an objective

determination of the effect of combinations of errors in various planes (and of

various types) on the OLAP's performance.

1sl

	

	 The error source model is separated into c,rors in the three planes of

Figure 5-1: the input plane, P 1 ; the multichannel AO cell plane, PZ; and the

detector pinne, P3.	 Seven error sources are modelled as indicated in Table 5,1.

5.2.1	 Input	 Plane	 P 1 Errors

The	 single	 input plane	 P1 error	 is	 spatial	 gain.	 This term refers to	 the gain

differences	 between the	 input point	 modulators,	 i.e.,	 the differences across the

`	 spatial	 dimension	 of	 the	 input	 plane	 P 1 .	 The	 ideal	 transfer function	 for each point

C	 modulator,	 converting input	 volts to	 output	 light	 intensity,	 is shown	 in Figure 5-2.

The	 ideal	 transfer	 function	 has a	 slope	 g	 the	 gain	 of	 the point	 modulator,	 which

I r	 can	 be	 scaled	 to	 one.	 For	 a	 real point	 modulator,	 the gain	 will	 not be	 exactly

1	 one,	 but can be	 adjusted	 to a value close	 to one.	 However,	 some residual error

will	 exist.	 This	 error	 changes	 the	 slope	 of	 the	 transfer function	 plot, and	 is	 thus

multiplicative	 in	 nature	 (introducing small	 error	 in	 small inputs,	 and	 a largea	 error9

4't	
in large inputs).

rz

	

	 We write the input to point modulator i, as a, and describe the light

intensity leaving point modulator f by
y
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Error Source

iut Plane Errors:

abet Gain

tlti-Ch. AO Cell Plane Errors;

oustic Attenuation

lacent Ch, Crosstalk

en-Odd Ch. Crosstalk

factor Plane Errors:

atial Response

no-varying Noise

rk Current

Error Sources for CLAP Error Source Model

OUTPUT
LIGHT

INTENSITY T

Notation

1+611

3
exp(-axi)

1+his

ni(t)

di

5-1:

INPUT
VOLTS

i

Figure 5-2:	 Ideal Point Modulator Transfer Function

mat x a1(1+61 1 )	 (5.1)

The quantity 61 1 models the residual gain error (which modifies the ideal gain of

unity), and thus (1+61 1 ) multiplies the input value and models the multiplicative PI

spatial gain error.

Two	 other	 input	 plane	 PI	errors	 can be included	 in	 the	 error source

modelling	 of	 optical	 processors	 [35].	 The	 first is a nonuniform response for	 the

PI	modulators.	 This	 represents	 a	 bias	 level	 in the transfer	 function,	 i.e., the	 plot
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in Figure	 5-2 does	 not	 pass through	 the origin,	 and	 the bias	 is	 different	 for each

point	 modulator, 	 This	 error source	 can be	 modelled	 as a	 simple	 additive spatial

error	 added	 to	 each	 input. The	 other input	 P,	 error iR	 spatial	 coupling, which

represents	 the	 coupling,	 or crosstalk between	 inputs on	 different	 input point

modulators.	 These	 latter two	 error sources	 are	 not included	 in	 our initial

simulations.

^1I

5.2.2 Multi-Channel AO Cell Plane P 2 Errors

The first multi-channel AO cell plane P a error considered is acoustic

attenuation. The signal presented to the transducer of each AO cell channel

attenuates exponentially as it moves across the cell In the x direction in Figure

5-1.	 The N.32 signals in region 1 of P2 are at full strength. 	 As the signals

move to each successive T2 regions, their strength is decreased by an exponential

factor, and are weakest when at the last or end region 10. 	 Acoustic attenuation

depends on the frequency and AO cell material. 	 For our system, it is the same

for all channels in the multichannel P2 AO cell (since only one frequency is

used).

r	 We	 model	 the	 effect	 of	 acoustic	 attenuation	 by	 multiplying	 the	 signal	 at the
r	 .

transducer	 by	 the	 exponential	 lector	 exp(-axl ).	 The	 constant	 a	 is	 the	 attenuation
I

constant	 determined	 by	 the	 AO	 cell	 material	 and	 operating	 conditions.	 It is
i

expressed	 in	 dB/mm	 and	 is	 converted	 to	 Nepers/mm	 for	 use	 in	 our	 exponential

model,	 where	 1	 dB	 equals	 0.23	 Nepers.	 The	 xl	value	 is	 the	 location	 in mm

corresponding	 to	 P 1	point	 modulator	 t	 and	 region	 i	 of	 the	 P2	AO	 cell.	 In our

simulation, 	 region	 1	 is	 considered	 to	 have	 no	 attenuation,	 thus	 x,	 is	 zero.	 It the

point	 modulators	 are	 centered	 2	 mm	 apart,	 then	 x2	is	 2	 mm,	 x3	is	 4	 mm, etc.

Including	 only	 acoustic	 attenuation	 errors	 in	 P2,	 the	 transmittance	 of	 region	 i	 of AO

cell	 channel	 j	 is	 written	 as
I

` ^ I
	

bl	 n 	 bilexp(-axi ) (5.2)

where	 bit	 is	 the	 unattenuated	 signal	 input	 to	 channel	 j	 at	 time	 -iT2.

. L.l^. m

^r

1

1
jl

,
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The second P2 error source is crosstalk betwe 43n adjacent AO cell channels.

Specifically, the signal input to AO cell channel J affects the signals in Au cell

channels 1 - 1 and 1 + 1. We express this error in dB. If a signal of level I t in

channel j induces a signal of level 12 in channels J-1 and J+1, then 'there is X dB

of isolation between these adjacent channels, where

101-013 10(1 1 /12 )	 n X (5.3)

The	 third	 P2	 error	 source	 is even-odd	 channel	 crosstalk.	 This	 error source	 was

included because	 this	 type	 of crosstalk	 was	 found to	 be	 significant in	 preliminary

tests	 of the	 10-channel	 AO	 cell.	 It	 is	 modelled in	 the	 same	 way as	 adjacent

channel crosstalk,	 except	 that a	 signal	 in	 channel J	 induces	 crosstalk in	 channels

1 -2	 and 1 +2.

Modelling crosstalk	 effects	 is	 slightly	 subjective	 since	 it is	 hard	 to	 distinguish

between	 RF	 crosstalk	 at	 the	 transducers	 and acoustic	 wave crosstalk	 when	 making

measurements. It	 is	 obvious.	 however,	 that the	 even-odd channel	 crosstalk	 is

entirely	 due	 to RF	 sources.	 Crosstalk effects are	 additive,	 and	 the	 following	 terms

are added	 to (5.2)	 to	 model	 both	 types	 of	 crosstalk:

10

AN •	 1/10[E(biJ- 1+bi1+111112/l11
in 1

10

EO n 1/10[DbU -2+biJ
+2)7112/117 (5.4)

i.1

The term ADJ is the contribution due to adjacent channel crosstalk, and EO

is the contribution of even-odd channel Crosstalk. 	 The 1/10 factor is included to

distribute the crosstalk equally over all 10 regions of an AO cell channel. The 12

and 1 1 values (the relative signal levels in two channels, 12 due to crosstalk from

1 1 ) are those defined in (5.3), and may differ in the two expressions in (5.4).
k

i.	 Spatial gain errors and similar effects could have been modelled for the

' 6	 multi-channel AO cell as a P2 error.	 However, these errors can be lumped into
r r

ir̂
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the	 spatial gain	 error	 in	 Pr, or	 the	 spatial	 response	 error	 in	 P3,	 mentioned	 ►below.

Frequency response	 errors	 in P2	were	 not	 Included	 In our	 initial	 error model	 (i,e•

we	 assume	 a	 flat	 frequency response),	 but	 can	 be Included	 later	 it frequency

mwliplexing is	 used.	 This	 error	 can	 be	 modelled	 as a Pz or	 Ps (the	 Fourier

Transform plane)	 error.

i

4 ,

5.2.3 Detector Plans P3 Errors

The first detector plane error considered is spatial response, 	 This term

refers to the response, or gain, differences between detectors in the P 3 array in

space.	 This error source is modelled the same as the spatial gain error for the

input P, array.	 The ideal transfer function for each detector element, converting

input light intensity to output current or voltage, has the form in Figure 5-2, and

this error is also multiplicative.	 The second P3 error source included is time-

varying noise.	 This error source is a result of shot noise and thermal noise (due

to the finite temperature of the detector system). 	 We assume that this noise is

not signal dependent [36].	 This error is additive because the noise is random

and always is present on the detector, regardless of the intensity of light incident

on it 	 The final P3 error source included in our model is detector dark current.

This current is a result of thermal electron-hole pair generation in solid-state

devices.	 It is basically a constant background current, but differs for each

detector element and it thus another additive error source.

We write the observed detector output, cl, in terms of the three P3 errors

defined above, as

c- cl(1+613) + ni(t) + di
	 (5.5)

where cl is	 the	 exact	 signal incident on detector	 element	 ), 613 is the residual

error from the	 ideal	 response. nl(t)	 is the time-varying	 noise, and di is the	 dark

current.

,

g
4

5^
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5.2.4 Combined Error Source Model

A closed form expression can be written to describe the 32 observed

detector outputs at one T t In terms of the inputs to the processor, and the error

sources in Table 5.1 (except for the two crosstalk errors, which dq not fit easily

into the closed form expression) as

C

1♦6^	

O

b l	 I
	 b2,1
	
... D10,1

1♦d^	

O

e'°x1	

O

,1 nl(t) dl

C

1.62 D2 n2It1 d2

0n	 1♦632
61..32	

..•.	 6
10,32 O	

1♦61 O	 i ax 10
Ll n72tt1 d3

32x1
OBSERVED

32 x 32
BET. SPAT. RESPONSE

32 X10
P2 DATA

10 KID
INPUT SPAT. GAIN

10 x I O	 10 XI
ACOUSTIC ATTN.	 P

32x 1
TIME-

32 x 1
DARK

P3 DATA DAiA VARYING CURRENT
NOISE

(5.6)

where	 all	 of the notation has	 been defined	 previously. Superscripts	 1	 and	 3 refer

to	 the	 planes	 P t and	 P3,	 respectively.	 The	 P2 data matrix	 is	 actually	 an	 encoded

vector,	 thus requiring	 two	 dimensions	 rather	 than	 one. Note	 that	 the	 subscripts	 in

the	 P2	data matrix are	 transposed	 with	 respect	 to	 conventional	 row-column	 matrix

subscripts. This is	 simply	 due	 to	 the	 data	 indexing used	 in	 Figure	 5-1.	 Since

each row	 in (5.6) represents one detector output, 	 each row of the	 P2 data	 matrix

contains	 the data in	 all	 10	 T2	regions	 (the	 first subscript)	 of	 each	 AO	 cell

channel,	 indicated by	 the	 second	 subscript.

11 is necessary to model the various error sources such that we can quantify

the degree to which they must be reduced (that is, the allowed levels of residual

l

II
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spatial errors) for successful processor operation. Specifically, we wish to quantify

the allowed levels of residual spatial errors, acoustic attenuation, time-varying noise,

and detector dark current that can be allowed in the processor without creating

significant error in the processing results. Our error source simulator is also

intended to determine the dominant error sources and how combinations of several

error sources (present simultaneously) interact and combine to affect parformance.

In our processor, we distinguish between correctable errors (residual errors) and

the uncorrectable errors (ni(t) and croastalk). Spatial P t and Pa errors can be

corrected to levels set by the system's measurement accuracy (typically 0.1%).

Spatial Pz errors, (e.g., acoustic attenuation) can likewise be corrected, for one

frequency operation.

5.2.5 Simulation of Error Sources

We now discuss how the various errors are modelled in our simulator,	 The

distribution of spatial errors across the input and detector arrays can best be

described by a zero-mean Gaussian distribution.	 Since the input gain and detector

response corrections are made with finite accuracy, the residual errors are random,

Such random events typically follow a Gaussian distribution. Reference [37]

verified that residual spatial nonuniformities are indeed Gaussian for an optical

processing system. The modelling used for these errors is described below.

A multiplicative error applied to a quantity y yields y, where

y	 Y(1+o tD)	 (5.7)

and at D is a	 random	 multiplicative error, where D	 is a random z(jro-mean Gaussian

deviate of unit	 variance	 (N(0,1)), and at	is the standard	 deviation. If	 o1	 is

chosen as

I
i
e
b

3Xot X100% . P% (5.8)

then	 (5.7)	 represents	 a	 Gaussian	 distributed	 multiplicative	 erro	 with	 a maximum

percent	 error	 of	 P%,	 Since	 more	 than	 99%	 of	 the	 Gaussian	 deviates are	 within

three	 standard	 deviations,	 this	 maximum	 percent	 error	 definition	 accurately describes
r
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t

all but less than 1% of the errors.	 The model in (5.7) is used to describe all

multiplicative spatial error sources in the OLAP, specifically for (5.1) (input spatial

gain errors) and for the first term in (5.5) (detector spatial response errors). 	 The

6, t '6 and the 6115 are both determined by o tD, where at is separately calculated

from (5.R) for each error source. A 10-component random vector from an N(0,1)

distribution is used to determine each D value 'or the 10 point modulators; a 32-

component N(0,1) vector is used to determine the D values for the 32 detector

elements.	 The fixed spatial random vector values (deviates) define variations

across space.	 The deviates represent the residual errors after adjustments. 	 They

are fixed throughout all OLAP simulation steps T t once they are determined.

The P2 error sources (acoustic attenuation and both types of crosstalk) are

modelled as explained previously in (5.2) and (5.4). The a and x i values in (5.2)

are determined by the multi-channel AO cell specifications, and the proposed OLAP

construction.	 Since we propose to use the full 5 ps of time aperture of the AO

cell at P2, the length of each channel is

4.2 mm/psec X 5 µsec a 21.0 mm
	

(5.9)

where 4.2	 mm/psec	 is the velocity	 of sound	 in	 the	 TeO2 longitudinal	 mode	 AO

cell. Each	 channel	 is thus divided	 into 10 regions,	 each	 of length	 2.1	 mm,	 The

xi . a	 are	 listed	 in	 Table 5.2 below, where x t	 is zero as	 explained earlier.

Different	 a	 values	 in d8/mm will be used	 in	 the	 simulations. They	 represent

various	 degrees	 of	 residual a	 corrections since	 acoustic	 attenuation is	 deterministic

and can be corrected	 for one frequency operation.

The ratio 12/I t , chosen in (5,4) determines the crosstalk level modelled. 	 The

value in dS of isolation is calculated from (5.3). The acoustic attenuation and

crosstalk error factors are fixed (crosstalk effects are signal dependent, but the

level is fixed), and thus their modelling does not require any random inputs.

The remaining errors are the time-varying noise and dark current P 3 errors,

L
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AO Cell	 Position

Region	 In

Center	 AO Cell

x  0.0 mm

X2 2.1 mm

xo 4.2 mm

X4 6.3 mm

XIS 8.4 mm

xe 10.5 mm

X 7 12.6 mm

xe 14.7 mm

xs 16.8 mm

xto 18.8 mm

Table 5-2:	 AO Cell Region Center Locations

which are additive errors. 	 These errors are always present in the detector

elements, and are not signal dependent (they do not depend on the magnitude of

the detector input).	 They are relative to the detector's dynamic range, or full-

scale	 These characteristics are evident from our simulation model below, which is

similar to that of the multiplicative errors, 	 These errors are considered to have a

Gwssian distribution because of their natural random nature. 	 Time-varying detector

noise is white and Gaussian, as explained in [38]. 	 A new N(0,1) vector is used

to model this at each TV

An additive error applied to a quantity z yields z where

^Z_ = z + o2D	 (5.10)

and a random additive error of o2D is used, where D is a N(0,1) deviate and 0'2

is the standard deviation.	 If the relation

3Xo2 X100% = P%xFS	 (5,11)

0
	 >I
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is	 used	 to	 dettermine oz,	 then	 (5.10) represents	 a	 Gaussian	 distributed	 additive

error,	 with a maximum percent	 error of P% of full-scale, where	 FS	 is	 the	 full-scale

range	 of	 the	 device being	 modelled. From (5.10),	 it is	 apparent	 that	 this	 error

does	 not	 depend	 on the	 input	 value z,	 but rather	 it depends	 on,	the	 full-scale

dynamic	 range of the device.

The form in (5.10) is used in our simulator to model the last two terms in

(5.5), time-varying noise and dark current. 	 The nl(t)'s and des are all determined

by 72D, where oz is separately calculated from (5.11) for both errors. 	 Since the

ni(1)'s vary with time, they will be different for all 32 detector elements in each

processor cyr.ie.	 Thus, every T 1 a new 32-component N(0,1) random vector is

generated to determine the D values for the 32 n l(t)'s.	 A 32-component N(0,1)

random vector is generated to determine the D values for the 32 d l 's.	 Since

dark rurrent is fixed, these deviates remain unchanged throughout the OLAP

simulation.	 This simulation modelling scheme thus appropriately distinguishes the

time-varying errors from the fixed spatial errors.

We recognize that detector dark current is not properly modelled with a

zero-mean distribution. Since dark current effects are additive, and will always

contribute positively to the detector element's output, the deviates must be unipolar.

The dark current modelling will be changed appropriately in future work. 	 However,

the modelling used here is still sufficient and appropriate given the binary nature of

the processor. Because of full-scale A/D clipping (to be explained next in this

section), a sufficiently large positive dark current deviate could only change a 0 to

a 1, and a sufficiently large negative deviate could only change a 1 to a 0 (with

the zero-mean modelling used in this report). 	 With the proper modelling (positive

deviates only), a sufficiently large positive deviate could change a 0 to a 1, but

these deviates should occur twice as often then in the previous case.	 Thus the

not amount of hit errnra would be the same.
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5.2.6 A/D Error Modelling

One other OLAP error source must still be considered and modelled in our

simulator.	 This is the A/D error for the 32 A/D's that follow each detector, as

shown in Figure 4-8.	 Analog - to-digital conversion of electrical signals is not an

exact operation.	 Specifically, some uncertainty exists in the digital output obtained

when the analog signal falls within a certain range between the levels

corresponding to two adjacent digital values. 	 For example, if 1 volt represents a

digital 0, and 2 volts represents a digital 1, a signal of 1.99 volts will practically

always be properly com tried to a digital 1.	 However, a signal of 1.60 volts will

not always be converted to a digital 1 (as it should be because it is closer to

2 volts than 1 volt). 	 However, we will assume that an analog level of 1.60 volts

is converted to a digital 1 more often than it is converted to a digital 0.

The following A/D error model used was derived to fit the observed behavior

of many A/D converters. It is more than adequate for our OLAP simulation. We

begin our A/D model by assuming a range of values around each digital level,

where conversion to the proper digital number is guaranteed. 	 In the intermediate

range, between the guaranteed ranges, a probability distribution function is used to

randomly decide to which digital level the conversion is made. The distribution is

properly centered such that values are more often converted to the closest digital

level.

The guaranteed range was chosen to be 0,25 of the range between digital

levels (on both sides of all digital levels). The output for data in the intermediate

0.5 of the range between levels is governed by a probability distribution function.

The probability distribution function must be finite for obvious reason,. and was

chosen to be triangular for simplicity.	 It is centered halfway between digital levels,

and goes to zero at the 0.25 points. 	 One side has a slope of t4, the other

side of -4.	 A diagram of this modelling appears in Figure 5-3.

The diagram shows digital levels at 1 and 2 volts for discussion purposes.

as '^
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TRIANGULAR
i	 DISTRIBUTION

	

i	 IN THE INDETERMINATE
RANGE

2 VO TLS	 1.75	 1.5	 1.25	 1 VOLT
LEVEL 1	 LEVEL 0

r — 0.25--*--	 0.5 — ---*--0.25 4

	

Figure 5-3:	 A/D Error Modelling

Any signal in the region 1.0 f 0.25 volts is always converted to a digital 1.

The A/D output for inputs between 1,25 and 1.75 volts is controlled by the

triangular distribution shown dashed, centered at 1.5 volts. For each A/D

conversion (32 every T 1 ), a random deviate, is generated from the triangular

distribution.	 This yields a value between 1.25 and 1.75 volts, and defines the

A/D threshold. 	 An input value greater than this threshold is converted to a digital

1, and an input value less than this threshold is converted to a digital 0. 	 The

threshold is usually near 1.5 volts, because of the centering of the triangular

distribution. This is appropriate for modelling the noise mechanisms in an A/D

converter, where an input value will be converted to the nearest digital level most

of the time, thus the threshold should be near 1.5 volts most of the time.

In	 the	 simulator, the binary	 bits	 are represented	 by real numbers,	 so	 that

errors	 may	 be added to	 them.	 The	 levels	 for	 A/D conversion are	 simply 0 and

1.	 Also	 included	 in the A/D	 model	 is the	 effect	 of	 full-scale	 clipping	 at	 the

ends	 of	 the	 A/D	 range,	 as would	 be the case	 with	 real A/D's. For	 example,	 if

Figure	 5-3 represented the full	 range	 of	 the	 A/D	 (a	 1-bit A/D), any signals above

2 volts	 would be converted to	 a	 digital	 1, and any signals below 1	 volt would be

converted	 to	 a	 digital 0.
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Depending on the type of analog-to-digital converters used, sample-and-hold

circuits may be present before the A/D's. 	 This circuitry will introduce only small

errors and thus is not considered, 	 Aperture time error will not be of concern

since the detector output will not be changing during the sample-hold period TV

The only other error to be considered is acquisition tine error. However, this

error is small and can be combined with the time-varying detector noise, since it

is additive and changes with time.

We	 recognize that	 our	 A/D model	 is	 not	 as	 exact	 as	 it could be,	 however

it	 ;s	 more	 than adequate	 for our simulations.	 There	 is	 never an actual guaranteed

range	 around	 digital levels,	 as	 a finite	 uncertainty	 always	 exists. The A/D error is

better	 modelled	 by a	 Gaussian, with	 some	 type	 of	 tail	 truncation to	 make	 the

f distribution	 finite. It	 would	 cover	 the	 entire	 range	 between digital levels.	 Our

triangular	 distribution modelling	 is simpler, and a Gaussian model would not create	 a

significant	 difference in	 simulation results.	 However,	 the	 A/D error model	 will	 be

changed	 appropriately 	 in	 future	 work.

5.3 Olap Simulation Software Details
The software for simulating the OLAP and its optical errors was written in

DEC Fortran for the VAX 11/750.	 It consists of four programs, a main program

and three subroutines, plus various IMSL [39] noise generation routines. 	 The

programs simulate the OLAP operation and model its errors. The LU decompositon

algorithm for the OLAP, as described in Chapter 4, is implemented. 	 The binary

encoded data in all MOO processor channels and N=32 AO cell channels is

explicitly represented within the programs. 	 The four programs are named FINSIM,

DCTOBN, OPTPRC, and ECLSFT.

The main program is FINSIM, which reads the finite element case study data.

It then reads in the OLAP processing and error modelling inputs. The OLAP

processing inputs consist of two parameters: the number of bits to be used (this

is variable for future use), and the power-of-two weighting of the most significant
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bit.	 The number of bits is 32 for all simulations,	 The weighting of the MSB will

be 210 for all case study simulations, and thus the weighting of the LSB was

2"21. This choice accounts for numbers between 2' 21 and =2 11=2047.9999 anti is

chosen because it matches the range of data in our finite element problem.

Them are eight	 variable	 error	 model	 inputs,	 one	 for	 each	 error	 source,	 and

a	 starting	 seed value	 for	 the	 IMSL	 random	 number	 generation	 routines.	 Only	 one

seed	 is	 needed because	 a	 new	 seed	 is	 returned	 from each IMSL	 subroutine	 call,

which	 is	 used for	 the	 next	 IMSL	 subroutine	 call.	 For	 fixed	 errors,	 the	 same

N(0,1)	 deviates are	 used	 at	 each	 T 1 .	 For	 time-varying	 detector	 noise,	 a	 new

N(0,1)	 deviate	 is used	 each	 T 1 .	 The	 first	 error	 modelling	 input	 specifies	 the	 P1

input	 spatial	 gain maximum percent error (MPE),	 The	 second input specifies the	 P3

detector	 spatial response	 maximum	 percent	 error	 (MPE).	 The	 third	 and	 fourth

inputs	 specify the	 levels	 of	 detector	 time-varying	 noise	 and	 dark	 current

respectively,	 as maximum	 percent	 of	 full-scale	 errors	 (MPFSE).	 The	 fifth	 input

specifies	 the	 acoustic attenuation	 of	 the	 multi-channel	 AO	 cell	 in	 dB/mm.	 The

sixth	 and	 seventh	 inputs	 specify	 the	 crosstalk	 isolation	 (positive	 dB	 values)	 in	 dB

for	 adjacent	 and even-odd	 channel	 crosstalk,	 respectively.

The final error modelling input ie the starting seed for the IMSL noise

generation routines.	 Only one seed is required, as each IMSL subroutine

generates a new seed for use on the next subroutine call.	 This seed is kept

the same for all simulations.	 The seed determines the deviates for fixed and

time-varying noise, which are generated differently as noted above.	 It is necessary

that the same deviates are generated each simulation, because the deviate values

create the errors within the processor. Thus, for meaningful and significant

comparisons of errors and error levels in different simulations, the starting seed is

kept the same.

The subroutine DCTOBN is used to convert all of the real-valued elements in

the finite element case study matrix equation to 32-bit fixed-point binary

,^rT
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representations (with the MSS	 representing	 2 10).	 The	 OLAP	 processes	 32-bit

magnitude	 data and handles	 bipolar	 data	 using	 sign-magnitude	 representation	 as

!	 explained	 in	 Chapter 4. Therefore,	 DCTOBN	 actually	 creates	 33-bit	 sign-magnitude

representations, with the extra	 bit	 being	 a	 sign	 bit	 An	 exclusive-or	 of	 the	 sign

bits	 of	 the	 nonzero P 1 input,	 and	 the	 number	 in	 the	 corresponding	 region	 of	 the

AO	 cell	 at	 P2, is	 formed to	 determine	 the	 sign of the	 product	 (in OPTPRC),

The OLAP	 operates	 with the	 bits	 of	 nim	 numbers	 fed	 to the inputs	 every

T2. The bits	 of each number in	 the	 multichannel	 AO cell	 are	 fed	 in	 parallel and

move into a new region 01	 the cell	 every	 T2.	 Each T2 consists of 32	 bit	 times,

T 1 . Every T 1 ,	 a	 new	 bit	 in each	 number	 is	 presented	 to	 the Pt inputs,	 while

the	 data in	 the	 AO cell moves a small amount but remains in the same T2 region.

Every T 1 , the	 detector	 values	 are	 A/D'ed	 and	 shifted,	 to	 perform the convolution.

The program FINSIM implements the LU decomposition algorithm. It forms the

decomposition matrices, and performs the necessary matrix-matrix multiplications.

Each n by n matrix-matrix multiplication is performed as n 2 vector inner products,

With one VIP performed on the OLAP every T2, as detailed in Chapter 4.	 Each
	

t

T2, FINSIM calls the subroutine OPTPRC, which receives the 10 binary numbers fed

to the P1 inputs, and the 10 binary numbers present in the P2 AO cell, OPTPRC

implements the 32 T, cycles (the 32 convolutions and partial product sums) and

applies all seven optic&I error sources to the binary data The diagonal partitioning

is explicitly performed.	 The main diagonal is partitioned separately and processed,

then the remaining 14 lower diagonals (since Pk is lower triangular) are partitioned
I

in 10-diagonal increments, requiring 3 partitions per matrix,

The	 IMSL routine	 GGNML is	 used to	 produce 74	 Gaussian	 deviates:	 10	 for

the P1	input	 spatial	 gains,	 32 for	 the Pa	 detector spatial	 responses,	 and	 32	 for

the P3	 detector	 dark	 currents. Since these	 are fixed	 for	 the	 OLAP	 operation,

they are	 generated once	 in	 FINSIM and passed	 to OPTPRC each T2.	 GGNML is

also used	 to	 generate	 the	 32 fime-varying	 detector noise	 Gaussian	 deviates	 each

L

i
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T, within OPTPRC.	 OPTPRC thus calls the subroutine ECLSFT 32 times each Tz,

once at the and of every T V ECLSFT simulates the A/D process and the shift-

add process in the Pa detector array, 	 The A/D process is simulated as

described in section 5.2. 	 A triangular distribution deviate is generatgd for each of

the 32 A/D conversions each T 1 by the IMSL routine GGTRA.

OPTPRC converts the mixed	 binary	 vector inner product to a real number and

returns	 it	 to	 FINSIM.	 This represents	 one element	 of	 a	 matrix-matrix multiplication.

A real	 number is	 returned for storage and handling	 convenience,	 rather than a 33-

bit	 binary	 representation.	 This	 is	 a	 result of	 multiplying	 each	 mixed	 binary bit	 (of

the	 63	 from	 the	 32-bit	 convolution)	 by	 its appropriate	 power	 of	 two and	 adding

them.	 DCTOBN	 is	 used to	 convert	 the real	 value	 to	 the	 33-bit	 sign-magnitude

binary	 representation	 when it	 is	 subsequently	 needed.	 In	 the	 actual OLAP,	 the

digital	 system would	 always use	 the	 binary values.

The final result from the LU decomposition algorithm is the upper-triangulerized

system of equations, (4,20). The OLAP is intended to produce (4.20), since the

triangularization process represents most of the computations required to solve

(4.19).	 Equation 4.20 would then be solved in digital hardware, since it is such a

trivial operation. 	 It should be pointed out that triangular systems of equations can

also be solved with the standard optical processor of Figure 4-1, as described in

[26].	 An adaptation of that algorithm should be possible for our binary encoded

OLAP,	 Once FINSIM completes the LU decomposition algorithm and produces the

triangular matrix equation (4.20), it is then solved digitally for the unknown DOFs,

Some	 remarks about	 the	 programming	 and	 running	 of	 the simulator	 are now

advanced.	 First,	 the	 coding	 of	 the	 LU decomposition	 algorithm with	 partitioning	 is

quite	 complicated. The	 indexing	 for	 the data	 flow,	 as	 diagrrimmed	 in	 Figure 4-9

requires	 very	 careful	 bookkeeping.	 The simulation	 program	 14so requires	 a large

amount	 of	 computer time.	 Solving	 a	 24 by	 24 case study m.^' ,x	 equation using

our	 OLAP	 simulator averages	 4	 hours	 of CPU time on a VAX 11/750,	 with only
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To detail the steps required, we consider a 24 by 24 case study (problem

of chapter 3 with the boundary conditions noted in subsection 4.5.3), and we note

that the LU decomposition algorithm requires

[242+232+...+32+22] + [ 24+23+...+3+2] c 4899+299 n 5198 (5.12)

vector inner products: 4899 VIPs for the matrix-matrix multiplication in (4.13), and

299 VIPs for the matrix-vector multiplication in (4.13), where the multiplications in

both equations are reduced in dimensionality by one every step (there are N-1

steps). With pk being partitioned 3 times as explained earlier in this section, this

number must be multiplied by 3 to give 3X5198=15594 iota] VIPs for the LU
'I

decomposition of the case study.	 This is the number of TZ s simulated, and the

number of times OPTPRC is called from FINSIM.	 OPTPRC must perform each of

the scalar-vector (1-bit scalar it P1 1 32-bit vector in P2) multiplications serially to

property simulate the optical errors. 	 Each VIP (every T2) thus requires 10 real
, 	 I

multiplications (since M=10) of the 32-bit vectors, or 320 multiplications every TV

Since there are 32 TO in every T2, each VIP requires 320X32 multiplications.

Thus, a total of 15594X32oX32 = 180X10 s multiplications must be performed

aerially in the simulator for the LU decomposition of the case study, In addition,

every T 1 the shift, adds, noise generations, noise additions, and A/D conversions
i

(requiring a call to GGTRA) must be performed, not to mention all the program

overhead and control. Thus, to complete approximately 100 simulation runs

necessary to fully evaluate the CLAP performance with optical errors, over 2

weeks of CPU time will be required.

5.4 Initial Simulation Results

• This	 section describes	 and	 discusses	 the	 results	 of	 simulating	 the	 multiplication

of	 three	 pairs	 of 32-bit	 numbers. We	 expect	 the	 OLAP	 to	 be	 able	 to	 tolerate

significant	 optical errors	 because	 of	 the	 binary encoding	 used.	 This	 occurs

I because	 the	 processor	 need	 only represent	 two levels.	 The	 errors	 that	 limit
r
a
`- analog	 processors to	 30-40 dB of dynamic	 range can	 thus	 be	 substantially	 larger

ibefore they	 will	 adversely	 affect	 the binary	 data	 in our OLAP, which only	 requires

3 dB of dynamic range.i .

C1
l
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The effect of the optical errors is significantly dependent on the position of

the is and 0's within each number in the processor, and how many 1's and 0's

there are.	 This occurs because the multiplicative errors and acoustic attenuation

have no effect on 0's, It the power-of-two weighting of the most significant bit

(10 for our simulations) is varied, the simulation results with optical errors will vary

because the locations of the 1's and 0's will change in the fixed point

representation.	 The effects of both types of crosetalk will also be influenced by

the positions of the 1's and 0's.

The	 dependency	 of processor errors	 on the	 position	 and	 number	 of	 1's and

0's	 is	 now demonstrated, and	 it	 is quantified by	 the	 data	 in	 Tables	 5.3,	 5.4, and

5.5.	 Each table	 contains	 entries which	 show	 the	 results	 of	 a	 single	 32-bit

multiplication on the OLAR Each	 multiplication requires . one	 T2,	 i.e.,	 32	 T t 's. The

simulations	 were	 performed with	 the previously described	 software,	 slightly	 modified

so	 that	 one 32-bit	 number is	 input to	 point	 modulator	 1,	 and	 the	 other	 input data

is	 in	 region 1	 of	 the	 P2 AO	 cell channels. The	 same	 starting	 seed	 was used

for	 all	 runs,

For each test, an individual error source is added, and the two numbers are

multiplied with the OLAP simulator.	 The result of a 32-bit multiplication by digital

convolution of two numbers is a 63 bit mixed binary number. In each test, the

number of mixed binary bit errors resulting from the OLAP multiplication is tabulated.

The 63 mixed binary bits (as explained in section 4.3) are the sum of 32 shifted

sets of cl outputs (1 set every Td aft , • A/D conversion to binary values.	 The

number of bits that differ from the 63 mixed binary bits produced by an error-free

OLAP multiplication are tabulated 	 The size of the differences is not considered

(most differed by one or two bits). 	 The individual tests are referred to by Ihe`r

test number on the left-hand side of each table.

The number and position of the 1's and 0's in the 32-bit binary numbers

depends on 1) the number itself, and 2) the power-of-two weighting given to the

I	 t

^ vv
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most	 significant	 bit.	 The	 latter is	 included under	 the	 heading	 "MSBASE" in the

tables.	 Another	 factor	 affecting the	 positions of	 the	 1's	 and	 0's in	 the	 OLAP is

3)	 which	 number	 is	 the	 multiplicand	 led	 to the	 multi-channel	 AO cell	 at	 Pz, and

which	 number	 is	 the	 multiplier led	 into	 the point	 modulator	 in P,.	 Thus, to

illustrate	 the	 affect	 of	 changing positions	 and different	 numbers	 of is	 and	 0's in

the	 OLAP,	 the	 three	 factors	 just mentioned	 were	 varied	 to	 produce the	 results in

Tables	 5.3,	 5.4,	 and	 5.5.

The data in each table corresponds to the multiplication of one of three

different pairs of 32-bit numbers, each shown in Figure 5-4, 	 The throe pairs of

numbers exhibit different features.	 The first pair of numbers (Table 5.3 data) have

about an equal and randomly distributed number of 1's and 0's. The numbers

used in the Table 5.4 tests represent an extreme case where many 1's are

present and close together in both numbers. The numbers for Table 5.5 represent

another extreme case where there are very few 1's in each number separated by

many 0's.	 the variations between the three pairs of numbers account for

variations in factor 1 above.

The second and third factors above are varied within each table. For each

individual error source, tests include the error source levels that yielded no bit

errors, and other error source levels up to those that yielded many bit errors.

This is done for each error source separately for MSBASEz10. 	 Variations in the

multiplicand and multiplier were also considered in each table. 	 In each table, the

first number (led to the PZ AO cell) is the multiplicand and the second number

(fed to the P, point modulators) is the multiplier. Other variations in the last two

factors (MSBASE and the or0ar of the multiplicand/multiplier) are included in each

table.

Examination of the entries in Tables 5.3 - 5.5 readily shows how the position

I I	 of 1's and 0's in the OLAP affects the bit errors.	 Note that some of the MPE's

6	 and MPFSE's assumed are extraordinarily large in order to introduce errors. 	 This
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►.
Table 5.3:	 237.104 - 000111011010001101010'10000000000

78.655 - 00001 001 1 1 01 01 0011 1 1 0;1 01 11 000000
(a)

Table 5.4: 1023.9921875 - 00000001111111111111111100000000
1787.953125	 - 00000011 011111011111101 000000000

(b)

Table 5.5:	 528.0078125 - 010000100000000001 00000000000000
256.015625 - 001 00000000000001 000000000000000

(c)

Figure 5-4:	 Multiplication Pairs for Tables 5.3 - 5.5
is because we are dealing with one multiplication as defined, thus, only a single

fixed input spatial gain deviate. and 32 fixed detector spatial response deviates are

used. Simulation results for multiplication of many numbers, as in the case study

solution simulations that will be performed in the near future, are ex pected to yield

reasonable and predictable levels of tolerable optical errors, which will be

significantly larger than the error levels present in analog optical processors. The

intent here is only to show the effect of the positions of 1's and 0's in the

OLAP.

Each	 table	 contains a	 test	 number in	 the	 left-hand column	 to refer	 to	 the

test described	 in that row of	 the	 table. The first column contains	 the	 multiplicand,

the	 second	 contains	 the multiplier,	 and tiro third contains the	 value of MSBASE

used	 for	 that	 test.	 In	 Tables	 5.4	 and 5.5, only The	 digits	 to	 the left	 of	 the

decimal	 point are	 tabulated In	 the	 multiplicand and multiplier columns. In each test

it
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only one individual error source is used.	 Thus, only one entry will appear in one

of the next live columns, which shows the MPE, MPFSE, or isolation level of its

corresponding error source.	 acoustic attenuation was not Included because

demonstration of its effects requires more than one multiplication (i.e., more than

one Pz AO cell region must be used). 	 Only adlacent channel crosstalk was

included.	 The final column contains the number of mixed binary bit errors resulting

from the multiplication.

^.ra	
The	 effect	 of	 factor	 1)	 on	 the	 number	 of	 bit errors	 is	 easily	 seen by

comparing	 similar	 testa	 of	 different	 tables,	 such	 as	 tests 1.3,	 2.3,	 and	 3.1.	 In test

1.3	 a	 60%	 input	 spatial	 gain	 error	 resulted	 in	 15	 mixed binary	 bit	 errors.	 In test

2.3,	 a	 60%	 input	 spatial	 gain	 error	 with	 a	 different	 pair of	 numbers	 being	 multiplied

yielded	 12	 mixed	 binary	 bit	 errors	 in	 the	 product. However,	 in	 test	 3.1 the

multiplication	 with	 the	 same	 input	 spatial	 gain	 error	 yielded	 0	 bit	 errors. This

k	 comparison	 clearly	 shows	 how	 multiplicative	 error	 effects differ when	 the	 number of

F	 1's	 and	 0's	 differ.	 Since	 input	 spatial	 gain	 is	 a	 multiplicative	 error,	 it	 does	 not

affect	 0's,	 but	 only	 affects	 1's.	 The	 numbers	 in	 tests	 13	 and	 2.3	 both	 have	 a
i substantial	 amount	 Of	 1's,	 and	 thus	 both	 tests	 yielded many	 bit	 errors.	 In test

3.1,	 the	 numbers	 being	 multiplied	 have	 very	 few	 1's,	 thus	 the	 multiplication	 was
l'

not
h	 affected	 by	 the	 multiplicative	 error.

The effect of factor 2) on the number of bit errors can be observed by

comparing corresponding tests within the tables, such as 1.16 and 1.17, or 2.26

and 2.30.	 Test 1.16 involves MSBASE=10 and a 50% detector time-varying

detector noise error.	 It resulted in 7 mixed binary bit errors.	 In test 1.17,

'^ I
	

MSBASE was change to 14, which moved the positions of the 1's and 0's in the

32-bit fixed-point representations. 	 This resulted in the 50% time-varying detector

noise having a smaller impact on the multiplication, producing only 5 mixed binary

ttt	
bit errors.	 This is because the 32 cl values at each T1 appear on different

(	 detectors (a difference of 4 physical detectors since 14-10=4), and thus the

l^	 detector error has a different effect on the resultant convolution. 	 Similarly, tests

r
P

1i

e
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Individual Multiplication Error Simulation Reeulta - AvsraIs Case
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Table 6-1:	 Individual Multiplication Error Simulation ReruNa - Adjacent is
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Individual Multiplication Error Simulation Results - Few 1's
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I

2.26 and 2.30 show the same type of change, except that 60% detector dark

i
current in the error source that is used. 	 Tests 2.8 and 2.10 exhibit the same bit

error difference with 90% spatial detector response error.

The effect of factor 3) can be observed by comparing tests such as 1.22

and 1.24, or 2.3 and 2.5, or 3.4 and 3.13. 	 In tests 1.22 and 1.24 a 60%

detector dark current error is used, and MSBASE-10 for both. 	 The tests differ in

that the multiplicand and multiplier are switched between the two. 	 This means that

the 1's and 0's involved in the multiplication are represented in different planes of

the OLAP between the two tests.	 Thus, a different number of but errors is

expected hecause the positions of the 1's and 0's is varied greatly. 	 Test 1.22

yielded 10 mixed binary bit errors, while test 1.24 yielded 22 bit errors. Similar

resultei are observable between the other tests mentioned above, and elsewhere in

the tables.

Some other interesting, yet predictable, results can be observed from these

tables.	 in Table 5.5, the two numbers have few 1's. 	 Thus, a certain amount of

a given additive P3 error should cause about the same number of bit errors, for

given variations of factors 2) and 3). This occurs because there are so few 1's

that the additive noise almost always has the same effect on the 0's, since the

32 output ci values every T, will be mostly zeros. This behavior can be seen in

tests 3.22-3.33 for detector time-varying noise, and in tests 3.34-3.45 for detector

dark current.	 For example, tests 3.24, 3.26, and 3.32 are all for 50% MPFSE

detector time-varying noise.	 Each test is different from the others in either the

multiplicand/multiplier or MSBASE (10 or 20), however, they all yield 7 mixed binary

bit errors.	 It is not explicitly indicated in Table 5.5, but the bit errors occurred

in the same 7 bits in each test.

Tests	 3.15-3.21	 show	 another interesting	 phenomenon.	 The detector spatial

response	 error	 is	 multiplicative	 and thus	 only	 affects	 the	 very	 few 1's	 that arri	 in

the	 numbers	 being multiplied,	 and	 hence	 produced	 on the detector elements. Even

I'
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then, the	 only	 errors	 produced are	 those	 due	 to negative	 deviates,	 This	 is due

to	 the	 full-scale	 A/D	 clipping,	 where	 any	 positive deviate	 which Increases	 a	 1 will

l	
have

l

no	 net effect because	 the resultant	 value	 will be	 clipped	 to	 a	 full-scale value

of	 1 during	 the	 A/D	 conversion every	 TV	 In each	 test,	 the	 deviates	 were small

and very	 large	 spatial	 detector MPE	 levals	 were needed	 to	 produce	 bit	 errors.

The errors	 were	 in	 the	 same bits	 (as	 expected because	 there	 are	 so	 few non-

zero bits	 that	 can	 be	 affected), caused	 by changing a	 1	 to a 0.

Another interesting set of results can be seen by comparing the adjacent

channel crosstalk tests in each table: 1.25, 2.35, 3.48. When 5 dB crosstalk was

imposed on the Table 5.5 numbers (test 3.48), no mixed binary errors resulted.

This is because there are so few 1's in the multiplicand which is in the P z AO

cell. The first intuitive notion is that the same amount of crosstalk applied to the

Table 5.3 and 5.4 numbers would surely result in more bit errors for the Table

5.4 numhcrs because there are a lot of 1's adjacent to each other, which should

be detrimental in terms of adjacent channel crosstalk.	 However, many more bit

errors are actually produced for the numbers of Table 5.3 (test 1.25). A valid

explanation emerges after thinking about the crosstalk error producing mechanism.

Since crosstalk is additive and positive, because only 0's and 1's are represented,

it only affects 0's because anything added (positively) to a 1 gets clipped to a 1

by the A/D conversion full-scale clipping, as explained in se ,tinn 5.2. 	 The O's

that are affected by adjacent channel crosstalk are those adjacent to 1's. 	 It is

clear that there are many more such 0's in the numbers of Table 5.3, than there

are in the numbers of Table 5.4. 	 These remarks, however, are only valid when

one number is in the AO cell at Pz. When 10 numbers are present in the AO

cell (as there would be for normal operation), the crosstalk effect on one bit is

dependent on the 10 data bits in each of the contributing AO cell channels.

Only zeros are still affected, but other numbers contribute to the crosstalk as well.

I
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5.5 Summary and Conclusion

This chapter has presented the results of Initial error source simulations on

our optical linear algebra processor. A 10-cha, net CLAP was simulator was

developed because it represents a general purpose banded matrix-vector processor.

The error modelling used in the simulation program was presented and each error

source was described.	 The A/D conversion modelling was detailed, and the

simulation software was described.

Optical error simulations were parformed for the multiplication of three pairs of

32-bit numbers, 	 The results of the simulations of each multiplication were given in

three separate tables.	 Comparisons of the results were discussed, and they

revealed the error producing mechanisms that operate in a digitally encoded optical

processor.	 It was shown how any errors produced are dependent on the

numbers being multiplied. which determines the number of 1's and 0's in the

processor. and the selection of MSBASE and the choice of the

multiplier/ multiplicand, which determines where the 1's and 0's are positioned in the

processor.

ti
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6. Summary and Future Work

6.1 Summary

This report has presented a new digitally encoded optical processor. The

research focused on demonstrating the architecture's usefullness for finite element

problems, or banded matrix-vector problems that require high accuracy processing.

The proposed optical linear algebra processor computes with 32-bit accuracy and

performs multiplications by digital convolution. 	 The processor performs a 10-element

vector inner product every TV which is 0.5 µsecs.	 From section 5.3, the LU

decomposition algorithm implemented required 15594 TZ s to compute a triangularized

system of equations of size N=24. 	 Thus, the OLAP would require 15594X0.5 ps

27.80 ms to compute the triangularized equations. The processing is performed

(with 32-bit accuracy and existing components) at a rate of 2.OX tOr multiplications

and 1.8X 107 additions per second.

The	 finite	 element	 method	 was	 described	 in	 Chapter 2	 for	 structural

mechanics	 problems.	 A	 finite	 element	 equation	 derivation	 example was	 given	 for	 a

triangular	 plane	 strain	 element.	 The	 matrix	 equation	 (stiffness matrix)	 properties

were	 detailed	 and	 solution	 methods	 were	 discussed.	 Remarks	 on	 solving	 nonlinear

and	 dynamic	 problems	 were	 included	 at	 the	 end	 of	 the	 chapter, The case study

was	 detailed	 in	 Chapter	 3.	 It	 described	 the	 discretization	 of an	 aluminum	 plate

with	 eight	 plate	 bending	 finite	 elements.	 The	 stiffness	 matrix assembly	 process

was	 detailed	 and	 its	 properties	 were	 quantified.	 Chapter 4	 examined	 the

weaknesses	 of	 analog	 optical	 processors	 and	 presented	 our digitally	 encoded

processor	 architecture.	 The	 processor	 operation	 was	 detailed	 for	 existing

components,	 including	 a	 10-channel	 AO	 cell	 (input	 P t	array)	 and a 32-channel AO

cell	 (P2 ).	 Implementation	 of	 banded	 matrix-vector	 products	 was described,	 and	 a

direct	 LU	 decomposition	 algorithm	 using	 only	 banded	 matrix-vector products	 was

developed	 for	 implementation	 of	 our	 processor.	 The	 use	 of	 a 1-channel	 system

for	 the	 LU	 decomposition	 algorithm	 was	 detailed,	 and	 the	 subjects	 of	 large	 finite
1
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element and large matrix problems in general (using matrix partitioning) were

addressed.	 Finally, Chapter 5 presented the first error simulation program for a

digitally encoded optical processor. 	 The error sources and error modelling were

presented, and the software was described. 	 Initial simulation - results were

presented and discussed.

6.2 Future Work

This	 report	 described	 an	 optical	 error	 simulation	 program	 for	 solving a set	 of

finite	 element	 equations	 on	 the	 OLAP.	 Simulation	 results	 were	 only	 described for

individual	 multiplications.	 This	 was	 due	 to	 the	 large	 amount	 of	 CPU	 time required

for	 the	 simulation	 runs	 when	 solving	 a	 case	 study.	 The	 next	 phase of	 this

research	 is	 to	 fully	 evaluate	 the	 OLAP's	 performance	 with	 optical	 errors, and	 as

noted	 earlier,	 this	 will	 require	 approximately	 100	 simulation	 runs.	 The	 goal	 of	 the

evaluation	 will	 be	 to	 determine	 what	 levels	 of	 the	 various	 optical	 errors can be

present	 in	 the	 processor,	 and	 still	 yield	 accurate	 solution	 results.	 It	 is expected

that	 the	 processor	 can	 tolerate	 a	 large	 amount	 of	 optical	 errors,	 given	 its reduced

dynamin	 range	 requirements. 	 Some	 indication	 of	 the	 tolerable	 error levels	 is

available	 frwn	 the	 initial	 simulation	 results	 in	 this	 report,	 however	 many of	 those

error	 levels	 are	 axpected	 to	 be	 higher	 than	 tolerable	 levels	 for	 a complete

problem	 solution,	 since	 only	 single	 multiplications	 were	 performed.

I'	 There are many related topics to be investigated.	 One of these topics,

L	 mentioned in Chapter 4, is handling bipolar data with a twos complement

Crepresentation.	 There are many possibilities for such an representation on our

OLAP and similar architectures. 	 The next step in number representation is to

implement Boating pcint processing. 	 Up to now, all optical processing has been

described for fixed point operations. 	 Floating point representations will require

some sophisticated architectures and/or algorithms and implementations.

Another general tooic for future work is implementation of other algorithms on

the OLAP, and considering similar or different processor architectures. 	 Of special



interest are iterative (indirect) algorithms, which will be discussed in more detail

below.	 Many other direct and indirect algorithms can be developed for OLAP

implementation.	 Presently, our OLAP was used to solve finite element problems

formulated with a banded matrix.	 Algorithms using other kinds of. matrix formats

may prove useful, such as profile storage described in section 2.7. 	 Specialized

algorithms for use on dedicated special-purpose finite element machines may be

very efficient for optical processors. 	 Some of these algorithms are described in

[34],	 This report focusnd on the solution of a linear static finite element problem

only,	 The solution of nonlinear and dynamic problems (section .1.8) is also a

large future work topic.	 Other solution techniques could be implemented for

solving these types of problems.

The OLAP described in this report does not use frequency multiplexing in the

multi-channel AO cell at P2. Frequency multiplexing is another dimension that can

be made available on the processor by using F frequencies in P2, mid placing F

linear detector arrays in P3 of Figure 5-1.	 This is certainly a topic for future

work.	 The F linear detector arrays would be stacked in the x direction of Figure

5-1.	 If F frequencies are used, then F vector inner products are obtained in P3,

which represents a matrix-vector product.	 All linear algebra operations can be

performed in terms of the basic vector inner product and matrix-vector product

operations. Thus, although we do not propose using frequency multiplexing for

solving finite element problems, any of the algorithms employing frequency

multiplexing for the processor of Figure 4-1 are applicable to our digitally encoded

OLAP of Figure 4-8.

Two future work topics are very pertinent to the issues this report has

discussed.	 They are iterative (rather than direct) algorithm implementations and

encoding in radices greater than two (binary). 	 They have both been mentioned

thrnunhnut the re port. but will briefly be discussed in more depth below.

r
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6.2.1 Iterative Algorithms

Two solution methods are possible for solving systems of linear algebraic

equations: direct and iterative (indirect). 	 Section 2.7 discussed how iterative

algorithms are also useful for a Iving finite element systems of equations. A direct

solution technique, the LU decomposition method. was chosen as the equation

solver in this report because of the widespread use of similar algorithms in many

finite element programs for digital computers. 	 It is important to consider the

implementation of iterative algorithms on our OLAP.

There are two major drawbacks tp solving finite element problems with

iterative methods. The first is that they require an indeterminate amount of

computations (iterations) to converge to an acceptable solution, whereas with a

direct method, a fixed number of computations is required. 	 Second, the entire

iterative solution process must be repeated for a different right-hand side (i.e. the

P load vector) when the matrix K remains the same. 	 With a direct method, the

triangularization of K need only be performed once for multiple p vectors.

However, iterative methods have three significant advantages over direct methods:
i

they are easier to program, they require teas storage, and they are more tolerant

of errors.

	

The previous remarks are fairly standard for comparing direct and iterative 	 i

solvers.	 Some other remarks should be made in light of our concerns.	 Equation

2.21 defined a standard Gauss-Seidel iterative algorithm. 	 A more basic general

iterative procedure can be defined for the solution of

Ab = c	 (6.1)

as follows

bi+t =	 w(c-Abi )	 a	 bi (6.2)

where	 bi	is	 the	 solution	 vector	 at	 iteration	 i.	 An	 initial	 estimate
t

bo is	 used	 to

start	 the	 algorithm.	 The	 acceleration parameter w	 may	 vary	 with	 i and/or depend

on	 the	 previous	 bi	values.	 Other
Ir11

Abi	products	 at	 other	 steps i	 may	 also	 be

I	 included	 in	 the	 parentheses.



The important point i# that (8.2) shows how feedback is used In an iterative

solver.	 Past bi vectors are used to form the new bi,t vectors. This bi., vector

is then led back through a system to form a bi-2 vector.	 Since feedback is

used, iterative solvers are corrective. 	 If errors are introduced in one b i vector,

calculation of bit produces a vector that corrects the error towards the true

solution.	 More iterations are required, but the system will eventually recover from

the errors (assuming that a relatively stable indirect algorithm is used).

The corrective nature of iterative algorithms is attractive for optical processing

as well as digital processing. Since optical errors exist, a more reliable optical

processor may be one utilizing an iterative solver, since there is no error recovery

built into direct solvers.

There is no way to avoid the second drawback of iterative solvers mentioned

above, i.e., the need to repeat the solution process for new multiple right-hand

side vectors.	 However, the first drawback, the indeterminate amount of operations,

can be made less severe. 	 Some iterative algorithms have finite bounds on the

number of iterations required to achieve a certain solution accuracy, and they are

usually defined for ideal processing, i.e., no processing errors. The bounds are

dependent on the problem parameters, and most often dependent on a multiplicative

fraction of the condition number of the matrix in the matrix equation to be solved,

One such bound for an iterative algorithm is described in [37] and [40], where it

is proven that solution accuracy within 1% can be achieved with no more than 3C

iterations, where C is the condition number of the matrix, The condition number

is defined as the quotient of the largest and smallest eigenvatues of the matrix.

This is only one example, and many other iterative algorithms and iteration founds

exist.	 Higher accuracy requires more iterations, within the accuracy limit of the

processor.

As an example, the condition number for our case study, with N=24 after

boundary conditions as noted in subsection 4.5.3, is quite large. 	 The largest

ti
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eigenvalue is 12.212831, and the smallest is 0,000291. 	 Thus, C•41987.8 ,	 With

the algorithm mentioned above, approximately 128 thousand iterations would be

required for solution accuracy within 1%.	 This would require over 310 thousand

TZ s on our 10-channel CLAP, as compared with the 15595 TO required for our

direct LU decomposition solution. 	 In general, the number of iterations does not

increase appreciably when optical errors are present [35], [40].	 Indirect algorithms

should be simulated to determine those effects,
K:

Another fortunate aspect of iterative algorithms can be used to appreciably

reduce the large number of required iterations. If a good initial estimate of the

solution vector can be made, the number of iterations required for acceptable

accuracy can be greatly reduced. 	 Of course, a significant reduction in iterations

requires a good initial estimate. 	 Certainly, for linear static finite element problems,

very good initial estimates can be made.	 The ability to obtain good initial

estimates for nonlinear and dynamic problems depends on the problem and the

user's	 familiarity	 with	 similar	 results.	 Since	 most	 iterative	 algorithms	 are
	

1(

quadratically convergent, good initial estimates may create a large decrease in the	
'• 1

number of required iterations.

Most of the computational burden of iterative algorithms such as (8.2) are in

the matrix-vector multiplication Ab i .	 For finite element problems, A is banded, and

thus only banded matrix-vector products need to be performed. 	 Chapter 4

explained how our CLAP is well suited for those operations. 	 Other types of

iterative solvers exist, however many are less attractive because they cannot be

written and implemented as simply as (8.2).	 Some examples are the many

conjugate gradient solution techniques. 	 Implementations of these and other indirect

solvers have not yet been developed for optical processors. 	 They also surely

deserve attention in future work.

In
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6.2.2 Higher Radices

Another topic deserving future attention is encoding data in radices greater

than two (binary encoding).	 The system dynamic range requirements of such

schemes were described in section 4,4. 	 We have seen how • our OLAP is

relatively impervious to optical errors with binary encoding. It seems reasonable

that higher radix encoding can be used to allow fewer P 2 channels to be used

and with modest output dynamic range requirements, without significantly affecting

processing accuracy.	 Obviously, if a high enough radix were used, the optical

errors will affect the solution accuracy as if an analog processor were used.

The	 big	 advantage	 of	 using	 a	 radix	 larger	 than	 two,	 say	 radix R,	 is	 that less

R-bits	 (as	 opposed	 to	 binary	 bits)	 are	 needed	 to	 obtain	 32-bit	 accuracy. Thus,

less	 AO	 cell	 channels are	 required at	 P2,	 and	 each time	 period	 T2 required for	 a

10-element	 VIP	 would be	 significantly	 less	 than	 327 1 ,	 since	 32	 bits would	 not	 be

used	 in	 the	 number representations.	 This	 would	 increase	 processing	 speed and

reduce	 the	 processor size.	 Those	 advantages can then be	 traded off	 against less

optimal	 error	 tolerance or poorer processing accuracy.

If radix R is used, the following equation can be written

232 . Rx	 (6.3)

where	 X	 is the	 number of	 R-bits required	 to	 obtain 32-bit	 accuracy. Thus	 if	 a

radix	 of	 R=4	 was	 used for	 data encoding,	 only	 X=16	 R-bits	 would be	 required.

This	 would decrease	 the P2 	AO	 cell	 requirements	 by a	 factor	 of	 2, and	 cut	 the

processing time	 by	 hall	 (since T2 	would	 equal 16T).	 Other processing

requirements need	 to	 be detailed, such	 as	 the	 detector	 array	 processing. Briefly,

if	 M	 is	 the number	 of input	 point modulators	 defined in	 Chapter	 4, and	 if	 R	 is

the radix used then

M(R-1)2+1 = L
	

(6.4)

where L is the number of digital levels that need to be A/D converted at each

detector array element in P3.	 Thus, to find the number of bits required for the

t
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A/Q's,	 simply	 take LOG 2 	 if	 the express
i
on	 in	 (8.4)	 and round	 the	 result	 to	 the

next	 largest	 integer. Tnese are just	 initial	 remarks	 on	 the subject	 of	 encoding	 in

higher	 radices,	 and more work in the	 subject	 area	 will	 be forthcoming.

df^•	',ire ^	 _	 -
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I. Elemental Stiffness Matrix
The following page contains the 12 by 12 elemental stiffness matrix (Ke] for

the case study detailed in Chapter 3. 	 The corresponding OOF vector and

equivalent elemental load vector are given in (3.2). 	 A factor of 106 has been

factored out of the matrix.
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ti. Structure Stiffness Matrix
The following pages Contain the values in the 45 by 45 structure stiflne53

matrix for the case study detailed in Chapter 3, The DOF vector for the matrix

is given in (3.13), and the load vector corresponds to it exactly Ve. it is a

vector of the ioads for each DOF in equation 3.13, in the same order). 	 A factor

01 108 has been factored out of the matrix.

The matrix is given in 9 by 9 blocks, each containing the 9 rnatrix values

corresponding to the coupling between two Connected nodes in the structure.

Only the lower diagonal non-zero blocks are given (since the matrix is symmetric

and large). The rows and columns corresponding to the location of each 9 by 9

block in the stillness matrix are listed above each block.

Rows 1 - 3, Cotumns 1	 -	 3 Rows 4 - 6, Columns 1	 - 3

015 0. 136 —0.056 0 000 0.044 0.042

0 136 2.094 -0.321 0.049 0.870 0.000

—0.056 —0.321 1. 145 —0.042 0.000 0.373

Rows 4 - 6, Columns 4 - 6 Rows 7 - 9, Columns 4 - 6

0.030 0.272 0.000 0.000 0.049 0.042

0. 272 4.109 0.000 0.049 0. B70 0.000

0,000 0.000 2.289 —0 042 0.000 0, 373

4
t
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4

h.

Rows 7 - 9, Columns 7 - 9

0 015 0.136 0 056

0 136 2.094 0. 32 1

0.056 0 321 1.145

Rows 10 -	 12,	 Columns 4 - 6

-0 003 -0.058 -0 013

0 058 O.524 0 000

0. 01 3 0.000 0 2B6

Rows 13 -	 15, Columns 1	 •	 3

-0 003 -0.058 0.013

C, 058 0.524 0.000

-0 013 0.000 0.286

Rows 13 -	 15, Columns 7 - 9

'• 0.003 -0.058 -0.013

0 058 0. 0 24 O. 000

0.013 0.000 0.286

Rows 10 -	 12, Columns 1	 -	 3

-0.012 -0.127 0 001

0,127 0.958 0.000

0 001 0.000 0 173

Rows 10 - 12, Columns 10	 -	 12

0.030 0.000 -0	 11.t

0,000 4,189 0 00C,

-0.111 0.000 8.289

Rows 13 - 15, COIUmns 4 - 6

-0.024 -0.254 0.000

0 .^.54 1.917 0.000

0.000 0.000 0. 34 5

Rows 13 - 15, Columns 10 -	 12

0.000 0.000 0.084

0.000 1.739 0 000

-0.084 0.000 0.745

1'	 F

if.	 4
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S

f,

Rows 13 -	 15, Columns 13	 -	 15

0 061
is

0.000 0.000

C
0 000 8.378 0.000

0 000 0 000 4.578

Rows 16 -	 18, Columns 7 - 9

-0. 01 2 -0,127 -0 001

0 127 0.958 0.000

-0 001 0.000 0.173

Rows 16 - 18, Columns 16 -	 18

0.030 0.000 0.111

0.000 4.109 0.000

0.111 0.000 2.209

Rows 19 - 21, Columns 13	 -	 15

-0 003 -0.058 -0 053

0.058 0.524 0.000

0.013 0.000 0.286

•	 ^ r
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Rows 16 -	 18, Columns 4 - 6

-0.003 -0 058 0.013

0.058 0.524 0.000

-0.013 0.000 0 286

Rows 16 -	 18, Columns 13 -	 15

0.000 0.000 0.084

0.000 1.739 0 000

• • 0.084 0.000 0.745

Rows 19 - 21, Columns 10 -	 12

-0 012 -0.127 0,001

0,127 0.958 0.000

0.00i 0.000 0 173

Rows 19 - 21, Columns 19 -	 21

0.030 0.000 -0.111

O. V00 4,189 0.000

•-0. 111 0.000 2.204



M, `..	 •:;.

^I

Rows 22 -	 24, Columns 10 -	 12

-0 003 -0,058 0 013
i
i

O O58 0.524 0 000

-0	 017. 0.000 0 ',Be

t)	 I
Rows 22 -	 24, Columns 16 -	 19

-0. 003 -0,058 -0. 013

i 0.058 0.524 0,000

0.013 0.000 O. 286

y"

Rows 22 -	 24, Columns 22 - 24

f-t n 061 0.000 O. 00:)

1
0.000 0,373 0.000

l'
0 000 0.000 4. 579

pe

` Rows 25 -	 27, Columns 16 -	 18

t'

-0.012 -0.127 -0.001

1

0. 127 0.958 0.000

-0.001 0.000 0.173

r
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Rows 22 -	 24, Columns 13 -	 15

-0 024 --0.254 0.000
11

O 154 1.917 0.000

0.000 0.000 0,345

Rows 22 - 24, Columns 19	 -	 21

0.000 0.000 0 084

0.000 1.739 0. 000

-0, 004 0.000 0.745

Rowe 25 - 27, Columns 13 -	 15

-0 003 -0.058 0.013	 i

0.058 0.524 0.000

-•0.013 0.000 0.286	
]++

]̀

A

Rows 25 - 27, Columns 22 - 24

0. 000 0.000 0, 004

0.000 1.739 0.000'

--0.084 0.000 0	 '74

1
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Rows 25 - 27, Columns 25 - 27

0 030 0.000 0 111

0 000 4 184 0 000

G	 111 0 000000 2. 285

Rows 28 - 30, Columns 22 -	 24

-0.003 -0 056 -0 01+

0 059 0.524 0 000

0. 013 0 000 0 28a

Rows 31	 - 33, Columns 19 -	 21

-0 003 -0.058 0 013

0 056 0. 524 0. 000

-0 013 0 000 0 286

Rows 31	 - 33, Columns 25 - 27

•• 0 003 -0.05B -0.013

0.058 0.524 0.000

0.013 0.000 0.284,

Rows 28 -	 30, Columns 19 -	 21

-0 012 -0 127 0 001

0 12 7 O 95B 0 000

0 001 0 000 0 173

Rows 28 -	 30, Columns 28 - 30

0 030 0.000 -0 111

0. 000 4.189 0 000

-0	 1 1 1 0.000 2 26ci

Rows 31 -	 33, Columns 22 - 24

-0 024 --0.254 0 00_

0,254 1.917 0 OOi

0.000 0.000 0. 34:

Rows 31 -	 33, Columns 28 - 30

0.000 0.000 0.004

0.000 1.739 0.000

--0.084 0.000 0 745
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Rows 34 - 36, Columns 22 - 24

-O 003 -0 058 0 01?

0 050 0. 524 U 000

-0 017 0 000 0.:Bc.

Rows 34 - 36, Columns 31 - 33

0. OOCl 0 000 0 004

0 , 000 1 739 0,000

-0.084 0.000 0.745

Rows 37 - 39, Columns 28 - 30

-0.012 -0 127 0.001

0 127 0.958 0 000

0,001 01000 0. 173

Rows 37 - 39, Columns 37 - 39

0 015 -0.136 -0.056

-0 136 2.094 0.321

-0.056 0.321 1 145

` Rows 34 -	 36, Columns 25 - 27

-0 012 -0 12 7 -0 001

0 1 ?7 0.958 0.000

-0 001 0.000 0.173

Rows 34 -	 36, Columns 34 - 35

0	 0:^'D 0 000 n 11:

0	 00 •11) 4 187 0, 00,

0	 1 1 1 0. 000 2. 282

1
Rows 37 -	 39, Columns 31 - 33

-0. OC13 -0.058 -0 013

0 058 0.524 0. 000

0, 013 0.000 0 286

1.]

Rows 31 -	 33, Columns 31 - 33

0 061 0 000 0 000

I
I	 0 000 8 378 0.000

0 00? 0 000 4 476
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Rows 40 -	 42, Columns 28 - 30

-0 003 -0 0". 0 013

0 098 0.3:4 0 000

-0 013 0.000 0 206

Rows 40 -	 42, Columns 34 - 36

-0 003 -0. 058 -0 013

0 058 0 524 0 000

0.013 0.000 0 X66

Rows 40 -	 42, Columns 40 -	 42

0 030 -O.i7a 0 000

-0 .72 4.189 0 000

0.000 0. 000 2 289

Rows 43 -	 45, Columns 34 - 38

-0 012 -0,127 -0 OO1

0 127 0.95E 0.000

-0.001 0.000 O. 173
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Rows 40 -	 42, Columns 31 - 33

-0 024 -0 294 0 ON,

0. ?54 1 917 0.001,

0 ON, 0 00r, 0 345

Rows 40 -	 42, Columns 37 -	 39

0 000 --0,049 0 042

-0 049 0.870 0.000

•• 0 04P 0.000 0 373

Rows 43 -	 45, Columns 31 - 33

-0 003 -0.056 0.01:•

0.058 0 524 0 OOO

-0 013 0.000 0. 28&

Rows 43 -	 45, Columns 40 - 42

0.000 -0 049 0 042

-0 049 0.870 0 000

-0,042 0 000 0.373
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