Incident Beam Polarization for Laser Doppler Velocimetry Employing a Sapphire Cylindrical Window

James A. Lock
Cleveland State University
Cleveland, Ohio

and

Harold J. Schock
Lewis Research Center
Cleveland, Ohio

June 1985
INCIDENT BEAM POLARIZATION FOR LASER DOPPLER VELOCIMETRY EMPLOYING A SAPPHIRE CYLINDRICAL WINDOW

By

James A. Lock
Cleveland State University
Department of Physics
Cleveland, Ohio 44115

and

Harold J. Schock
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

ABSTRACT

For laser doppler velocimetry studies employing sapphire windows as optical access ports, the birefringency of sapphire produces an extra beam intersection volume which serves to effectively smear the acquired velocity flow field data. It is shown that for a cylindrical window geometry, the extra beam intersection volume may be eliminated with minimal decrease in the fringe visibility of the remaining intersection volume by suitably orienting the polarizations of the initial laser beams. For horizontally incident beams, these polarizations were measured at three intersection locations within the cylinder. It was found that the measured polarization angles agreed with the theoretical predictions.
1. Introduction

In the past, LDV measurements on motored pistons employing a full 360° optical access cylindrical chamber have been confined to nonfiring configurations using thin plexiglass\(^{1-2}\) or fused silicon\(^{3}\) cylinders. For these situations, the optics of the laser beams passing through the cylinder is relatively straightforward. However, such materials are prone to scratching due to the motion of the piston ring against the cylinder wall. For firing configurations, thin plexiglass and quartz cylinders do not suffice since they cannot withstand the pressures and temperatures associated with combustion. These mechanical problems are largely overcome by employing a sapphire cylinder.\(^{4-5}\) It has been determined that although a thin sapphire cylinder may not withstand the pressures associated with combustion\(^{5}\), a relatively thick sapphire cylinder would be able to withstand the thermal stresses produced if the cylinder is only intermittently fired.

However, in spite of its potential mechanical convenience, sapphire is an optically complicated material since it possesses a small degree of birefringence. If a laser beam is passed through the wall of a sapphire cylinder, at the surface of the sapphire the refracted ray breaks into two components, the ordinary and extraordinary rays. These two rays propagate in different directions within and beyond the cylinder wall. Applying this to LDV studies, if two converging laser beams pass through the sapphire cylinder before their intersection point, the birefringence produces two distinct intersection volumes possessing interference fringes. One is due to the intersection of the two ordinary rays and the other is due to the intersection of the two extraordinary rays. These intersection volumes are separated by up to 114\(^{\mu}\)m per inch thickness of the sapphire cylinder. Since the diameters of the intersection volumes are typically of the order of 25\(^{\mu}\)m, this results in a smeared sampling of the flow pattern. If both fringe volumes are used for flow measurement, any measured flow velocity is a weighted average of the flow velocities in the two measurement volumes. On the other hand, for a thick cylinder with the fringe volumes far enough apart, it is likely that the LDV photodetector system is finely enough tuned so that it might only register one of the two fringe volumes. Since each intersection volume contains only a fraction of the incident laser power, the counting rate resulting from registering only
one of the intersection volumes could be very low. If the birefringence of
the sapphire cylinder could be effectively negated, and a single fringe volume
produced, one would be guaranteed of obtaining maximally efficient counting
rates. An examination of the birefringency of sapphire shows that such an
effective negating is possible to obtain.

Sapphire possesses a single optic axis and the ordinary and extraordinary
rays within the sapphire are each linearly polarized. The polarization rota-
tions experienced by the ordinary and extraordinary rays within the material
are determined by the direction of the propagation of the incident light, the
direction of the optic axis, the direction of the normal to the window sur-
faces and, are independent of the polarization of the incident light. Thus,
it is possible to orient the polarization of an incident laser beam so that
within the sapphire its polarization direction is indetical to the polariza-
tion direction of either the ordinary ray or the extraordinary ray. For such
a matching of initial conditions, the light transmitted into the sapphire will
have 100 percent of its amplitude fed into one of the two modes and 0 percent
of its amplitude fed into the other of the two modes. Although both modes of
propagation within the sapphire are mathematically and physically allowed, the
initial conditions are arranged so that only one of them occurs.

This arrangement of initial polarizations produces a single fringe vol-
ume. Due to the requirement of matching the initial conditions at the outer
surface of the window, the two converging electric fields will not be parallel
at the intersection volume. This produces a contrast loss in the interference
pattern at the intersection volume again resulting in decreased counting
rates. It is the purpose of this communication to demonstrate that there
exist particular optical alignments which cause this contrast loss to be vir-
tually zero at the same time that the problem of cylinder birefringence is
circumvented. This means that in many situations, it is more advantageous to
go through the effort of suitably orienting the input optics and the cylinder
in order to eliminate one of the fringe volumes than it is to just ignore the
birefringence and measure either the smeared flow field or the flow field in
only one of the fringe volumes. If the birefringence is ignored, the counting
rates will certainly be lower, but if the birefringence is compensated for,
the decrease in counting rate can be made negligible. As a result, our claim is that sapphire is a viable material from which to machine optical access windows for high temperature LDV studies. Its good mechanical properties may be enjoyed at the same time that its optical complications may be largely overcome. In order to make it convenient for other investigators to adapt our formulation to their own cylinder geometries, a relatively complete presentation of the calculation details is included in this communication.

2. Cylindrical Window Geometry

We consider a single crystal of sapphire which has been machined to form a hollow right circular cylinder of outer radius \(r \) and of wall thickness \(a \). For purposes of analysis, the cylinder is oriented so that its axis of symmetry \(\hat{Z} \) along the \(Z \) axis of a reference coordinate system and its optic axis \(\hat{N} \) makes an angle \(\phi \) with the \(Z \) axis and its projection onto the \(XY \) plane makes an angle \(\phi \) with the \(X \) axis. The laser beams are incident upon the cylinder with their bisector parallel to the \(X \) axis and with the beams making angles of convergence \(\eta \) with the centerline. This geometry is shown for horizontally incident beams in Fig. la and for vertically incident beams in Fig. 1b.

A light ray passing through such a cylinder has its initial refraction (i) at the exterior surface of the cylinder and its final refraction (f) at the interior surface of the cylinder. At the initial refraction, the inward normal to the cylinder surface is \(\hat{n}_i \), the incident light propagation direction is \(\hat{k}_i \) making an angle \(\gamma_i \) with \(\hat{n}_i \), and the transmitted light propagation direction is \(\hat{k}_0 \) making an angle \(\gamma_0 \) with \(\hat{n}_i \). At the final refraction, the inward normal to the cylinder surface is \(\hat{n}_f \), the incident light propagation direction is \(\hat{k}_0 \) making an angle \(\gamma_h \) with \(\hat{n}_f \), and the transmitted light propagation direction is \(\hat{k}_f \) making an angle of \(\gamma_f \) with \(\hat{n}_f \). If \(n \) is the index of refraction for sapphire appropriate to the particular mode to be transmitted, then Snell's law gives

\[
\sin \gamma_i = n \sin \gamma_0 \tag{2.1}
\]
and
\[n \sin \gamma_h = \sin \gamma_f. \] \hspace{1cm} (2.2)

for either the ordinary or approximately for the extraordinary mode since the birefringence of sapphire is low. Similarly, the ordinary ray and extraordinary ray polarizations within the sapphire are given by
\[\hat{D}_{\text{ord}} = \frac{\hat{k}_0 \times \hat{n}}{\sin \xi} \] \hspace{1cm} (2.3)

and
\[\hat{D}_{\text{ext}} \approx k_0 \times \hat{D}_{\text{ord}} \] \hspace{1cm} (2.4)

where \(\xi \) is the angle between \(\hat{k}_0 \) and \(\hat{n} \).

At an interface, the polarization direction of non-normally incident light suffers a rotation upon either refraction or reflection. Such rotations are calculated by decomposing the incident light into its transverse electric (te, also known as the s polarization) and transverse magnetic (tm, also known as the p polarization) components, determining the amount of refraction or reflection of each of these components, and then recombining the new amplitudes after the interface. The te mode is parallel to the plane of the interface and perpendicular to the direction of propagation of the light ray (i.e., \(\hat{k} \times \hat{n} \)), and the tm mode is perpendicular to both the direction of propagation of the light ray and the te direction (i.e., \(\hat{k} \times \hat{t} \)). For our case, the te and tm directions before the initial interface are denoted by \(\hat{t}_{ei} \) and \(\hat{t}_{mi} \), and the angle that the initial field \(\hat{E}_i \) makes with the \(\hat{t}_{ei} \) axis is \(\alpha_i \). This geometry is indicated in Fig. 2. After the first interface, the te and tm directions are denoted by \(\hat{t}_{eo} \) and \(\hat{t}_{mo} \), and the angle that the transmitted field \(\hat{E}_o \) makes with \(\hat{t}_{eo} \) is \(\alpha_o \). Before the second interface, the te and tm directions are denoted by \(\hat{t}_{eh} \) and \(\hat{t}_{mh} \), and the angle that \(\hat{E}_o \) makes with \(\hat{t}_{eh} \) is \(\alpha_h \). After the second interface, the te and tm directions are denoted by \(\hat{t}_{ef} \) and \(\hat{t}_{mf} \), and the angle that the final field \(\hat{E}_f \) makes with \(\hat{t}_{ef} \) is \(\alpha_f \).
The components of an incident electric field normalized to unit magnitude may be written as

$$\vec{E}_i = \cos \alpha_i \hat{e}_i + \sin \alpha_i \hat{m}_i . \quad \text{(2.5)}$$

Then the components of the electric field transmitted at the first interface are

$$\vec{E}_o = F_e \cos \alpha_i \hat{e}_o + F_m \sin \alpha_i \hat{m}_o \quad \text{(2.6)}$$

where

$$F_e = \frac{2 \cos \gamma_i}{\cos \gamma_i + n \cos \gamma_o} = \frac{2 \cos \gamma_i \sin \gamma_o}{\sin (\gamma_i + \gamma_o)} \quad \text{(2.7)}$$

and

$$F_m = \frac{2 \cos \gamma_i}{n \cos \gamma_i + \cos \gamma_o} = \frac{2 \cos \gamma_i \sin \gamma_o}{\sin (\gamma_i + \gamma_o) \cos (\gamma_i - \gamma_o)} \quad \text{(2.8)}$$

Eq. (2.6) may be rewritten as

$$\vec{E}_o = \frac{F_e \cos \alpha_i}{\cos \alpha_o} (\cos \alpha_o \hat{e}_o + \sin \alpha_o \hat{m}_o) \quad \text{(2.9)}$$

where the polarization angle of the transmitted field, α_o is given by

$$\tan \alpha_o = \frac{\tan \alpha_i}{F_e/F_m} . \quad \text{(2.10)}$$

Our goal is to have \vec{E}_o be along the direction of \hat{D}_{ord} or \hat{D}_{ext} in order to insure that 100 percent of the transmitted amplitude is in the desired mode and that 0 percent of the transmitted amplitude is in the other mode. To place \vec{E}_o along the \hat{D}_{ord} direction requires that
\[
\tan \phi_{\text{ord}} = \frac{\hat{t} \cdot \hat{D}_{\text{ord}}}{\hat{t} \cdot \hat{D}_{\text{ord}}} = - \frac{\hat{N} \cdot \hat{e}}{\hat{N} \cdot (\hat{k}_{\text{f}} \times \hat{e})}
\]

\[
= \frac{\hat{k}_{\text{i}} \cdot (\hat{N} \times \hat{n}_{\text{i}})}{(\hat{N} \cdot \hat{k}_{\text{i}}) \cos \gamma_{\text{o}} - (\hat{N} \cdot \hat{n}_{\text{i}}) \cos (\gamma_{\text{i}} - \gamma_{\text{o}})}
\]

(2.11)

This result is pleasing in that the appropriate incident polarization direction for the laser beam may be calculated from Eqs. (2.10 - 2.11) without having to explicitly know anything about the direction of the beam inside the sapphire. By a similar analysis, if one wished to have the polarization of the refracted ray be coincident with \(\hat{D}_{\text{ext}} \), then the initial polarization would be aligned to the angle \(\alpha_{i} \) given by Eq. (2.10) with

\[
\alpha_{0, \text{ext}} = \alpha_{0, \text{ord}} + \pi/2
\]

(2.12)

For the treatment of the final interface, the electric field within the sapphire may be rewritten as

\[
\vec{E}_{0} = \frac{F_{e} \cos \alpha_{i}}{\cos \alpha_{0}} \left(\cos \alpha_{h} \hat{e} + \sin \alpha_{h} \hat{m} \right).
\]

(2.13)

In analogy with the treatment of the initial interface, after transmission through the final interface the final electric field becomes

\[
E_{f} = \frac{F_{e} \cos \alpha_{i}}{\cos \alpha_{0}} F' e \cos \alpha_{h} \left(\cos \alpha_{f} \hat{e} + \sin \alpha_{f} \hat{m} \right)
\]

(2.14)

where

\[
F'_{e} = \frac{2 \sin \gamma_{f} \cos \gamma_{h}}{\sin (\gamma_{f} + \gamma_{h})}
\]

(2.15)

\[
F'_{m} = \frac{2 \sin \gamma_{f} \cos \gamma_{h}}{\sin (\gamma_{f} + \gamma_{h}) \cos (\gamma_{f} - \gamma_{h})}
\]

(2.16)
\[\tan \alpha_f = \frac{\tan \alpha_h}{F_e'/F_m'} \] \hspace{1cm} (2.17)

\[\tan \alpha_h, \text{ord} = \frac{tmh \cdot D_{\text{ord}}}{teh \cdot D_{\text{ord}}} = -\frac{\hat{N} \cdot \hat{t}_e f}{\hat{N} \cdot (k_0 \times \hat{t}_e f)} \]

\[= \frac{\hat{k}_f \cdot (\hat{N} \times \hat{n}_f)}{(\hat{N} \cdot \hat{k}_f) \cos \chi_h - (\hat{N} \cdot \hat{n}_f) \cos (\gamma_f - \chi_h)} \] \hspace{1cm} (2.18)

\[\alpha_h, \text{ext} = \alpha_h, \text{ord} + \pi/2 \] \hspace{1cm} (2.19)

For calculating the power level in the intersection volume of the two laser beams, it is notationally convenient to rewrite the final electric field of Eq. (2.14) as

\[E_f = E_f \hat{u}_f \] \hspace{1cm} (2.20)

where the amplitude of the final field is

\[E_f = F_e F_e' \frac{\cos \alpha_i \cos \alpha_h}{\cos \alpha_0 \cos \alpha_f} \] \hspace{1cm} (2.21)

and where

\[\hat{u}_f = \cos \alpha_f \hat{t}_e f + \sin \alpha_f \hat{t}_m f \] \hspace{1cm} (2.22)

is the unit vector in the direction of the final electric field. At a point within the intersection volume of beams 1 and 2, the total electric field is then
where the e^{i\Phi} factor describes the positionally dependent relative phases of the two intersecting electric fields.

Then the total intensity is

$$I_{\text{total}} = |\vec{E}_{\text{total}}|^2 = E_{f1}^2 + E_{f2}^2 + 2 \cos \Phi \ E_{f1} E_{f2} (\hat{u}_{f1} \cdot \hat{u}_{f2}).$$

The fringe visibility is defined by

$$V = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}}$$

where I_{max} and I_{min} are the maximum and minimum intensities obtained by varying the relative phase factor Φ between constructive and destructive interference. In the intersection volume of the two beams, we obtain

$$V = \left(\frac{2E_{f1}E_{f2}}{E_{f1}^2 + E_{f2}^2} \right) (\hat{u}_{f1} \cdot \hat{u}_{f2})$$

where

$$\hat{u}_{f1} \cdot \hat{u}_{f2} = \cos \alpha_{f1} \cos \alpha_{f2} \ tef_1 \cdot tef_2 + \cos \alpha_{f1} \sin \alpha_{f2} \ tef_1 \cdot tmf_2$$

$$+ \sin \alpha_{f1} \cos \alpha_{f2} \ tmf_1 \cdot tef_2 + \sin \alpha_{f1} \sin \alpha_{f2} \ tmf_1 \cdot tmf_2.$$
3. Ray Tracing for Horizontally and Vertically Incident Beams

In the previous section it was seen that both the initial beam polarizations and the fringe contrast in the intersection volume depend on the geometry of the laser beams outside the cylinder and within the cylinder cavity. However, for each location of the beam intersection within the cylinder this geometry changes. Thus, it is necessary to perform a ray tracing calculation for the laser beams in order to determine this dependence of the beam geometry on the location of the beam intersection.

In this section such a ray tracing calculation is carried out for a particular example of a cylinder-optical system configuration. We assume that the cylinder is fixed in space in an upright position and that the entire laser velocimeter system plus final lens is mounted on a movable table. The table is free to move in the horizontal plane. In this example we assume that after leaving a laser velocimeter optical system, the horizontally incident or vertically incident laser beams are parallel and each is a distance \(\Delta \) from the common centerline. These beams are then incident upon the final converging lens of focal length \(F \). After passing through this lens, the angle of convergence of the beams is \(\theta \) where

\[
\frac{\Delta}{F} = \tan \theta
\]

and their resulting intersection point is taken to be located at the origin of the fixed coordinate system described in Section 2 and shown in Fig. 1. The cylinder is then placed so that its symmetry axis is coincident with the \(Z \) axis. After the insertion of the cylinder, the horizontally incident beams continue to intersect at the origin, while vertically incident beams now have their intersection point shifted to a location on the negative \(X \) axis. This is a result of the cylinder acting as an astigmatic lens for the incident beams.°

As mentioned before, in this specific example the laser velocimeter plus final lens system is mounted on a movable table. Translations of the table in the \(Y \) direction with respect to the table's initial position will be denoted by \(\tau \). Similarly, translations of the table in the \(X \) direction with respect to
The table's initial position will be denoted by ϵ. By suitably moving the table while keeping the cylinder fixed and thereby varying τ and ϵ, the intersection point of either the horizontal beams or vertical beams may be moved to any fixed coordinates (x, y) within the cylinder.

The first beam geometry considered is that of two converging laser beams in the horizontal plane with their centerline parallel to the X axis as is shown in Fig. 1a. Beam 1 is incident from the left and beam 2 is incident from the right as seen from above. Let θ_j be the angle between the X axis and a cylinder radius which passes through the outer diameter of the cylinder as shown in Fig. 3. Then

$$\gamma_{ij} = \theta_j \pm \eta$$

where the upper sign is associated with $j = 1$, the left incident ray, and the lower sign is associated with $j = 2$, the right incident ray. The index "i" means incident at the initial interface as shown in Fig. 2.

The equation of the outer surface of the cylinder is

$$x^2 + y^2 = r^2$$

and the equation of beam 1 outside the cylinder is

$$y = -(x - \epsilon) \tan \eta + \tau.$$ \hfill (3.4)

These two curves intersect when

$$\sin \gamma_{i1} = \frac{\epsilon}{r} \cos \eta + \frac{\tau}{r} \sin \eta.$$ \hfill (3.5)

A similar calculation for beam 2 gives

$$\sin \gamma_{i2} = \frac{\epsilon}{r} \cos \eta - \frac{\tau}{r} \sin \eta.$$ \hfill (3.6)

Inside the cylinder cavity the equation for each of the beams is

$$y = x \tan \psi_j + \frac{r \sin \gamma_{ij}}{\cos \psi_j}.$$ \hfill (3.7)
where
\[\sin \gamma_{ij} = \left(\frac{r}{r-\alpha} \right) \frac{\sin \gamma_{ij}}{n} \quad (3.8) \]
and
\[\Psi_j = \gamma_{ij} - \gamma_{0j} + \gamma_{hj} - \gamma_{fj} \neq n. \quad (3.9) \]

This geometry is shown in Fig. 3. The two interior beams intersect when
\[\frac{x}{r} = \frac{\sin \psi_{i1} \cos \psi_{i2} - \sin \psi_{i2} \cos \psi_{i1}}{\sin (\psi_{i2} - \psi_{i1})} \quad (3.10) \]
and
\[\frac{y}{r} = \frac{\sin \psi_{i1} \sin \psi_{i2} - \sin \psi_{i2} \sin \psi_{i1}}{\sin (\psi_{i2} - \psi_{i1})}. \quad (3.11) \]
Eqs. (3.10 - 3.11) may be inverted numerically to give \(\gamma_{i1} \) and \(\gamma_{i2} \), and via Eqs. (3.5 - 3.6) to give \((\tau, \epsilon) \) as a function of \((x, y) \).

The second beam geometry considered is that of two converging laser beams in a plane parallel to the XZ plane as is shown in Fig. 1b. Beam 1 is incident from above and beam 2 is incident from below. If viewed from above as in Fig. 4, the angle \(\beta_{2i} \) is the angle that the intersection of the laser beam and the outer surface of the cylinder makes with respect to the X axis. A geometric difficulty is encountered in this case which was not present in the case of the two horizontal beams. Although \(\hat{k}_i \) is in a plane parallel to the XZ plane, the refracted ray \(\hat{k}_o \) within the sapphire is not in this same plane, but acquires a small Y component due to the refraction. The plane of incidence for the initial refraction is not the same as the plane of incidence for the final refraction.

Due to this complication, the simplest way to view the refraction of the vertically incident beams is to consider the geometry in two orthogonal views. First we consider \(\hat{k}_i \) and \(\hat{k}_o \) as seen from above in Fig. 4a. Second we consider \(\hat{k}_i \) and \(\hat{k}_o \) as seen from the directions perpendicular to the vertical planes which contain \(\hat{k}_i \) and \(\hat{k}_o \) respectively as is shown in Fig. 4b. The calculation of \(\hat{k}_o \) for Figs. 4a-b gives
\[\cos \gamma_i = \cos \beta_i \cos \eta, \]
\[\sin \beta_0 = \frac{\sin \beta_i \cos \eta}{(\eta^2 - \sin^2 \eta)^{1/2}}, \]
\[\sin \beta_h = \left(\frac{r}{r-a} \right) \sin \beta_0, \]

and
\[\sin \eta_0 = \frac{\sin \eta}{\eta} \]

where again \(\gamma_i \) is the angle of incidence at the initial interface from Eq. (2.1). The equation of beam 1 outside the cylinder is
\[
\begin{cases}
 z = (x - \epsilon) \tan \eta \\
y = \tau
\end{cases}
\]

Its intersection with the outer surface of the cylinder occurs at
\[y = \tau \]
\[z_i = \tan \eta [(r^2 - \tau^2)^{1/2} - \epsilon]. \]

Within the cylinder the beam vertically drops a distance
\[z_o = \tan \eta_0 [r \cos \beta_0 - (r - a) \cos \beta_h] \]

and the intersection of the beam with the interior surface of the cylinder occurs at
\[x_f = (r - a) \cos \mu \]
\[y_f = (r - a) \sin \mu \]

where
\[\mu = \beta_i - \beta_0 + \beta_h. \]
Once inside the cylinder cavity, the projection of the beam travels a horizontal distance

\[L = \frac{z_i - z_o}{\tan \eta} \]

(3.23)

before crossing the XY plane. Thus the intersection point of the two vertically incident beams is

\[\frac{x}{r} = \frac{x_f}{r} - \frac{l}{r} \cos \Psi \]

(3.24)

and

\[\frac{y}{r} = \frac{y_f}{r} - \frac{l}{r} \sin \Psi \]

(3.25)

where for this vertically incident geometry, the angle \(\Psi \) is

\[\Psi = \beta_i - \beta_0 + \beta_h - \beta_f \]

(3.26)

and similarly

\[\sin \beta_f = \left(\frac{r}{r - \alpha} \right) \sin \beta_i . \]

(3.27)

Again, Eqs. (3.24 - 3.25) may be inverted numerically to give \((\tau, \epsilon)\) as a function of \((x, y)\).

4. Polarizations for the Horizontally and Vertically Incident Beams

In order to have the horizontally incident beams of Fig. 1a propagate solely in the extraordinary mode, we require from Eqs. (2.11 - 2.12) that

\[\alpha_{0j} = \arctan \left\{ \frac{1}{\tan \theta \sin (\beta_j - \phi - \gamma_o_j)} \right\} + \frac{\pi}{2} \]

(4.1)

for \(j = 1, 2 \), with \(\alpha_{ij} \) then being determined from \(\alpha_{0j} \) by Eq. (2.10). In Eq. 4.1, \(\theta \) is the angle that the optic axis makes with the Z axis, and \(\phi \) is the angle that the projection of the optic axis onto the XY plane makes with the X axis. The geometry of the horizontal beam configuration is especially
simple since the beams remain in the horizontal plane for their entire traverse. As a result

\[\hat{t}_{ei} = \hat{t}_{eo} = \hat{t}_{eh} = \hat{t}_{ef} = \hat{u}_z \] \hspace{1cm} (4.2)

where \(\hat{u}_z \) is the unit vector along the Z axis,

\[\hat{t}_{mo} = \hat{t}_{mh}, \] \hspace{1cm} (4.3)

\[\alpha_{hj} = \arctan \left\{ \frac{1}{\tan \Theta \sin \left(\varphi_{ij} - \varphi_{hj} \right)} \right\} + \pi/2, \] \hspace{1cm} (4.4)

\[\epsilon_j = \gamma_{ij} - \gamma_{oj} + \gamma_{hj} \mp \eta, \] \hspace{1cm} (4.5)

and

\[\hat{u}_{f1} \cdot \hat{u}_{f2} = \cos \alpha_{f1} \cos \alpha_{f2} + \sin \alpha_{f1} \sin \alpha_{f2} \cos \left(\psi_{f1} - \psi_{f2} \right). \] \hspace{1cm} (4.6)

In order to have the vertically incident beams of Fig. 1b propagate solely in the ordinary mode, we require from Eqs. (2.11 - 2.12) that

\[\tan \alpha_{oj} = \frac{\cos \Theta \cos \eta \sin \beta_i \mp \sin \Theta \sin \eta \sin \left(\beta_i - \phi \right)}{(\cos \eta \sin \Theta \cos \Phi \pm \sin \Theta \cos \left(\beta_i - \phi \right))} \] \hspace{1cm} (4.7)

Due to \(k_{oj} \) acquiring a small Y component within the sapphire, no simplifications for \(\alpha_{hj} \) and the \(\hat{t}_e \) and \(\hat{t}_m \) dot products analogous to Eqs. (4.2 - 4.6) are possible for the vertically incident beams. As a result we obtain

\[\tan \alpha_{hj} = \frac{\cos \Theta \cos \eta \sin \beta_i \mp \sin \Theta \sin \eta \sin \left(\mu - \phi \right)}{\left[\cos \eta \sin \Theta \cos \left(\psi_{hj} \pm \sin \eta \cos \Theta \right) \cos \beta_i \sin \Theta \cos \left(\psi_{hj} - \psi_{0} \right) \cos \left(\varphi_{0h} - \varphi_{0f} \right) \right]} \] \hspace{1cm} (4.8)

\[\hat{t}_{ef1} \cdot \hat{t}_{ef2} = 1 - \frac{2 \sin \eta}{\cos \eta \sin \beta_i + \sin \eta}, \] \hspace{1cm} (4.9)

\[\hat{t}_{ef1} \cdot \hat{t}_{mf2} = - \hat{t}_{mf1} \cdot \hat{t}_{ef2} = \frac{2 \sin \eta \cos \Theta \sin \beta_i \cos \beta_f}{\cos \eta \sin \beta_f + \sin \eta}, \] \hspace{1cm} (4.10)

and

\[\hat{t}_{mf1} \cdot \hat{t}_{mf2} = 1 - \frac{2 \sin \eta \cos \Theta \cos \beta_i}{\cos \eta \sin \beta_f + \sin \eta} \] \hspace{1cm} (4.11)
5. Polarization Measurements

The Intermittent Combustion Engine Branch of NASA Lewis Research Center had purchased a cylindrically machined single crystal of sapphire from Crystal Systems, Inc. with the parameters

\(r = 2.375 \text{ inches (6.033 cm)} \) \hspace{2cm} (5.1)

\(a = 0.625 \text{ inches (1.588 cm)} \). \hspace{2cm} (5.2)

The optic axis of this cylinder has been previously measured to be at

\(\phi = 18^\circ \) \hspace{2cm} (5.3)

with respect to the symmetry axis of the sapphire. The cylinder was illuminated with horizontally converging laser beams at the 0.5145 \(\mu \text{m} \) wavelength of an argon-ion laser. For this wavelength, the ordinary and extraordinary indices of refraction of sapphire were taken to be\(^{10-11}\)

\(n_0 = 1.774 \) \hspace{2cm} (5.4)

and

\(n_e = 1.766. \) \hspace{2cm} (5.5)

The laser beams were measured to have a convergence angle relative to the beam bisector of

\(n = 6.37^\circ \) \hspace{2cm} (5.6)

In order to test the polarization predictions of Sections 2–4, the sapphire cylinder was rotated to the \(\phi = 0^\circ \) orientation. This was done both because \(\phi = 0^\circ \) is interferometrically simple to locate and because \(\alpha_{i1} \) and \(\alpha_{i2} \) take on their maximum ranges at this angle. It was thought that it would be easier to measure the polarization angles if they varied significantly throughout the cylinder than if they were relatively insensitive to the beam intersection location as is the case for \(\phi = 90^\circ \) for example. With this input data, the polarization angles \(\alpha_{i1} \) and \(\alpha_{i2} \) for propagating the
horizontally incident beams solely in the extraordinary mode were calculated as a function of $\frac{\varphi}{r}$ for $\frac{x}{r} = 0$ and appear in Fig. 5. The fringe visibility V for the extraordinary mode propagation of the horizontally incident beams was also calculated as a function of $\frac{\varphi}{r}$ for $\frac{x}{r} = 0$ and appears in Fig. 6. The Y axis was chosen for calculation since LDV measurements along this line within a cylinder using horizontally and vertically incident laser beams correspond to the measurement of the radial and longitudinal components of an axisymmetric flow field respectively (for an axisymmetric flow, the angular component of the flow is constant by symmetry).

The horizontally incident beams were made to intersect at the three locations within the cylinder

$$(x, \frac{y}{r}) = (0.00, -0.25), (0.00, 0.00), (0.00, 0.50) \quad (5.7)$$

and the initial polarization direction required to propagate each of the beams solely in the extraordinary mode was measured at each location. In order to eliminate the uncertainty involved in obtaining exactly vertical polarization as a reference angle for the above measurements, all the polarization angles were measured with respect to the angle which produced solely extraordinary propagation of beam 2 for the center location. These measured polarizations are also shown in Fig. 5.

There are two major sources of uncertainty in the experimental measurements. The intensity of the ordinary focal waist as a function of initial polarization angle α_i is

$$I_{\text{ord}} (\alpha_i) = I_{\text{max}} \sin^2 (\alpha_i - \alpha_i, \text{ext}). \quad (5.8)$$

The minimum of this function is fairly broad, and as a result there is about 1° of uncertainty in determining the exact position of the relative minimum. Secondly, for every 1° of rotation of the polarization rotator dial, the actual polarization of the laser light was changed by 2°. Since the polarization rotator dial could not be read to any more accurate than 1°, this produced an additional ±1° uncertainty in the measured polarization angle. Taking these uncertainties into account, it is seen in Fig. 5 that four of the five data points agree with the theoretical predictions to within the experimental uncertainties.
With the intent of performing future simultaneous two-component LDV measurements employing such a sapphire cylinder, the initial polarizations required to propagate vertically incident laser beams solely in the ordinary mode and the associated fringe visibility were calculated for the parameters of Eqs. (5.1 - 5.4, 5.6) and as a function of \(\phi \) for \(\phi = 0 \) and appear in Figs. 7 and 6 respectively. Again it is calculated that the fringe visibility should be well over 99 percent. It should finally be noted that if the other alternative were attempted, i.e., causing the horizontally incident beams to propagate solely in the ordinary mode and the vertically incident beams to propagate solely in the extraordinary mode, the resulting fringe visibility would be lower, about 94 percent.

6. Discussion

In the introduction it was mentioned that for firing configurations for motored pistons, the mechanical and thermal difficulties encountered could be overcome by employing a sapphire cylinder. However, the sapphire introduced optical complications, which as we have seen in this communication, may also be overcome. The \(\phi = 0^\circ \) orientation of the cylinder was examined in Section 5 for two reasons. Firstly, this orientation is interferometrically simple to obtain. Secondly, it predicts a large variation of initial polarizations and this large variation is easy to observe and permits a relatively straightforward experimental testing of the polarization formulas. For actual LDV applications, it may well be more convenient to employ the \(\phi = 90^\circ \) configuration. This orientation is also interferometrically simple to obtain and as is seen in Figure 8 the polarization angles \(\alpha_{11} \) and \(\alpha_{12} \) vary minimally as the location of the beam intersection is changed. Thus for \(\phi = 90^\circ \) the polarization angles may be set at some average value at the outset, and measurements with these angles may be made with high fringe visibility at any location within the cylinder.

Lastly, if \(\phi \) is considered as a free parameter, calculations based on Eqs. (4.1 - 4.11) show that the largest fringe visibilities over the greatest ranges of \(\phi \) and \(\phi \) occur when \(\phi = 0^\circ \). Thus, it is most advantageous for dual beam laser velocimetry applications to machine the sapphire cylinder so that its optic axis is as close as possible to being along its axis of symmetry.
References

(a) Horizontally converging beams.

(b) Vertically converging beams.

Figure 1. - Converging laser beams incident upon a sapphire cylinder. The convergence angle of the beams is η.

Figure 2. - The transverse electric (ie) and transverse magnetic (im) components of a laser beam at the outside and inside interfaces of a sapphire cylinder.
Figure 3. - The angles of incidence and refraction for a horizontally incident laser beam passing through a sapphire cylinder.

(a) Projection from above.

(b) Projection from the side.

Figure 4. - Projections for a vertically incident laser beam passing through a sapphire cylinder.
Figure 5. - The polarization angles required to propagate the horizontally incident beams 1 and 2 solely in the extraordinary mode as a function of y/r for $x/r = 0$, $\theta = 18^\circ$, and $\Phi = 0^\circ$. The polarization angles are referenced with respect to the polarization of beam 2 at $x = y = 0$. The reference angle itself is at an angle of 2.07° counterclockwise from the vertical direction. Positive angles represent clockwise rotations as seen from along the direction of k. The five data points are the measurements of Section 5.

Figure 6. - The intensity fidelity obtained from propagating the horizontally incident beams (H) solely in the extraordinary mode and the vertically incident beams (V) solely in the ordinary mode as a function of y/r for $x/r = 0$, $\theta = 18^\circ$, and $\Phi = 0^\circ$.
Figure 7. - The polarization angles required to propagate the vertically incident beams 1 and 2 solely in the ordinary mode as a function of y/r for $x/r = 0$, $\Theta = 0^\circ$, and $\Phi = 0^\circ$. The polarization angles are referenced with respect to the projection of the vertical direction on the plane perpendicular to \hat{k}. Positive angles represent clockwise rotations as seen from along the direction of \hat{k}.

Figure 8. - The polarization angles required to propagate the horizontally incident beams $H1$ and $H2$ solely in the extraordinary mode and the vertically incident beams $V1$ and $V2$ solely in the ordinary mode as a function of y/r for $x/r = 0$, $\Theta = 18^\circ$, and $\Phi = 90^\circ$.
For laser doppler velocimetry studies employing sapphire windows as optical access ports, the birefringency of sapphire produces an extra beam intersection volume which serves to effectively smear the acquired velocity flow field data. It is shown that for a cylindrical window geometry, the extra beam intersection volume may be eliminated with minimal decrease in the fringe visibility of the remaining intersection volume by suitably orienting the polarizations of the initial laser beams. For horizontally incident beams, these polarizations were measured at three intersection locations within the cylinder. It was found that the measured polarization angles agreed with the theoretical predictions.
End of Document