General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
A Three-Dimensional Turbulent Separated Flow and Related Measurements

F. J. Pierce

Principal Investigator
Mechanical Engineering
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

Final Report February 1985

Prepared for:
National Aeronautics and Space Administration

NASA Grant NSG 2301
For the period April 1978 - September 1984

J. G. Marvin, Grant Monitor
NASA-Ames Research Center
A Three-Dimensional Turbulent Separated Flow
and Related Measurements

Introduction

This final report summarizes the activities, the reports (both informal and formal), and the publications relating to NASA Grant NSG 2301 over the period April 1978 through September 1984.

Activities

The Grant activities covered consecutively two major areas of research.

Initially, the project continued some earlier work (initiated under NSF support) in reviewing and in determining the applicability of and the limits on the applicability of 11 near wall similarity laws from the literature specifically offered as characterizing three-dimensional turbulent boundary layer flows. This work required the use of a unique, direct force sensing local wall shear stress meter used in both pressure-driven and shear-driven three-dimensional turbulent boundary layers, together with extensive mean velocity field and wall pressure field data. This work resulted in a relatively large number of graphical comparisons of the predictive ability of 10 of these 11 similarity models relative to measured data over a wide range of flow conditions.

Subsequently, the project focused on documenting a complex, separated three-dimensional turbulent flow as a standard test case for evaluating the predictive ability of numerical codes solving such flows.

The particular flow selected was the horseshoe or junction vortex...
flow generated by a streamlined, teardrop shaped body placed normal to a flat plate. While the thickness to chord ratio of this body was relatively large to develop large secondary flows in the upstream boundary layer, several features of this kind of flow characterize the flow at, for example, the junctions of a wing and body, of a control surface and body, of a compressor inlet guide vane and passage wall or hub, and of a submarine sail and hull.

The documentation of the flow field was done in two phases. Phase one documented the flow upstream and around, but away from the separation region and outside the junction vortex, where the flow is properly described as a three-dimensional turbulent boundary layer. The computations of such a boundary layer flow requires an initial condition plane to start a calculation and edge conditions to maintain the calculations. Additionally, measurements within the flow field are useful for comparison with the numerically predicted flow. In this work, the mean flow and turbulence measurements were made with hot film/wire anemometry.

Initial condition plane measurements, at multiple transverse positions, include:

1) mean velocity field,
2) turbulent kinetic energy, and
3) three turbulent normal stresses.

Measured edge condition data includes:

1) mean velocity, and
2) wall static pressure.

Flow field measurements include:

1) mean velocity (three components),
2) turbulent kinetic energy,
3) three turbulent normal stresses, and
4) selected indirect (Preston tube) wall shear measurements which indicate the earlier direct force wall shear measurements can be used with a modest change in uncertainty.

The actual turbulence measurements also included the three turbulent shear stresses. However, differences in agreement between the measured shear stress in a zero pressure gradient two-dimensional turbulent boundary layer and classic data in the literature were sufficiently large so as to question the validity of the shear stress measurements. Similar comparisons of the normal stresses gave good agreement, hence these data are considered valid.

Phase two of the project documented the flow in and around the separation sheet and the junction vortex itself. This work included:

1) extensive flow visualization of the tunnel floor-body junction both on the body and on the floor and extending well into the surrounding flow on the floor,
2) surface pressure measurements both on the floor and on the body, and
3) very extensive mean flow measurements of local velocity, static pressure, and total pressure on three planes in and around the junction vortex made with a carefully calibrated five hole probe.

All flow field measurements were made with an automated, microcomputer controlled data acquisition system. Large volumes of data, together with very extensive calibration of probes and transducers, resulted in data of exceptionally high quality. Uncertainties in all the very extensive data reported are precisely stated and are estimated by rigorous and formal statistical procedures at statistically meaningful levels of significance.

Publications

The results of the work under phase one have been extensively
published in the open (journal/symposia) literature. Results of the more recent work under phase two are in various stages of preparation for release in the open literature.

The following is a list of formal and informal reports relating to the total project.


The following is a list of publications in the open literature relating to the total project. It is noted that portions of the work cited below were supported initially by the NSF, and subsequently by the
Mechanical Engineering Department. The full list is presented for completeness.


