
I -, 

NASA Technical Memorandum 87053 
NASA-TM-87053 19850020980 

Vibration Control of Rotor Shaft 
Systems by Active Control Bearings 

Kenzou Nonami 
Lewis Research Center 
Cleveland, Ohio 

Prepared for the 
Design Engineering Technical Conference 
sponsored by the American Society of Mechanical Engineers 
Cincinnati, Ohio, September 10-13, 1985 

R C 

NI\SI\ .I.AI~GLEY f<£SfARCH CENTER 
LiI3H,!\RY, NASA 

VIRGINIA 

\ \\\\\\\\ \\\\ \\\\ \\\\\ \\\\\ \\\\\ \\\\\ \\\\ \\\\ 
NF00140 



VIBRATION CONTROL OF ROTOR SHAFT SYSTEMS BY ACTIVE CONTROL BEARINGS 

Kenzou Nonami* 
National Aeronautics and Space Administration 

Lewis Research Center 
Cleveland, Ohio 44135 

ABSTRACT 

This study describes suppression of flexural 
forced vibration or the self-excited vibration of a 
rotating shaft system not by passive elements but by 
active elements. Namely, the distinctive feature of 

~ this method is not to dissipate the vibration energy 
~ but to provide the force cancelling the vibration 
~ displacement and the vibration velocity through the 

bearing housing in rotation. Therefore the bearings 
of this kind are appropriately named "Active Control 
Bearings." 

A simple rotor system having one disk at the 
center of the span on flexible supports is investi­
gated in this paper. The actuators of the electro­
dynamic transducer are inserted in the sections of 
the bearing housing. First, applying the optimal 
regulator of optimal control theory, the flexural 
vibration control of the rotating shaft and the vibra­
tion control of support systems are performed by the 
optimal $tate feedback system using these actuators. 
Next, the quasi-modal control based on a modal anal­
ysis is applied to this rotor system. This quasi­
modal control system is constructed by means of 
optimal velocity feedback loops. The differences 
between optimal control and quasi-modal control are 
discussed and their merits and demerits are made clear. 
Finally, the experiments are described concerning only 
the optimal regulator method. 

INTRODUCTION 

It is well known that a damped flexible support 
rotor system suppresses the vibrations of the rotating 
shaft system. On this point of view, the several 
studies deal with the optimum tuned condition of a 
damped flexible support system applying a flexible 
support (1,2). But it is very difficult for this 
method to-supply appropriate damping on practical 
equipment or to change a damping coefficient according 
to system variation. So there are some suggestions 

about an active vibration control method which is 
different from that by a passive element. G. 
Schweitzer (~) tried vibration control of a rotating 
shaft by means of an active damper using electromag­
netic forces. In the same way, J.L. Nikolajsen et al. 
(i) carried out lateral vibration control of a marine 
transmission shaft with an electromagnetic damper. 
Most recently J. Salm et al. (5) have discussed a 
problem of vibration reduction-for a rotor with mul­
tiple degrees of freedom and have performed vibration 
control of an unbalance response using a magnetic 
bearing. H. Ulbrich et al. (Q) have conducted an 
experiment which enlarges a stable region of an asym­
metric rotor by applying a magnetic bearing. U. 
Gondhalekar et al. (2) have shown how to apply a con­
trol force to three poles of a magnetic bearing from 
two directional signals using a microcomputer and 
have indicated they are able to shift their critical 
speeds as a result of changing the stiffnesses. 

However the above expressed methods are not 
available when the setting positions of actuators are 
restricted. It is complicated and dangerous to con­
trol the shaft directly in high speed rotation. 
Therefore it is considered to suppress the vibration 
of the rotating shaft by controlling the nonrotating 
bearing housings. R. Stanway et al. have suggested 
an active control of bearing housings and discussed 
both controllability and observability (~). Moreover 
they have studied a pole assignment problem for a 
three degree of freedom system (9). J.W. Moore et al. 
have tested the efficiency of this method by means of 
control systems using a transfer function with veloc­
ity feedback loops (lQ) and experiments using loud 
speakers (ll). 

This paper is on the basis of an idea similar to 
that of R. stanway et al. Namely, a control method 
which moves the characteristic roots of a rotor system 
to the optimum positions is applied. The efficiency 
of this control method is demonstrated by simulations 
and experiments. As the bearing housings are actua­
tors of the vibration control, the bearings of this 
kind are appropriately named to the "Active Control 
Bearings." In this paper two control methods for 
active control bearings are discussed in particular. 



One is the control method by an optimal regulator with 
all state variable feedback (1£) and the other is by a 
quasi-modal control with velocity feedback based on a 
modal analysis. First, their design methods are 
explained about how to construct the control loop. 
Next, the two methods are compared as to their vibra­
tion control effects, their merits and demerits are 
made clear. The rotor system has two degree of free­
dom system with one disk at the center of the span on 
flexible supports. And the actuators were made by the 
use of a principle of an electrodynamic transducer and 
the experiments were performed by setting them. The 
results obtained agree with the simulations qualita­
tively. Therefore it is clear that unbalance vibra­
tions can be suppressed sufficiently by active control 
bearings. 

NOMENCLATURE 

A system matrix 

b control vector. 

Cr rotor damping coefficient 

Cs support damping coefficient 

F modal feedback gain matrix, n x n 

K stiffness ratio, K = kr/ks 

Kn stiffness matrix, n x n 

rotor shaft stiffness coefficient 

ks support stiffness coefficient 

M mass ratio, M = mr/ms 

Mn mass matrix, n x n 

mr rotor mass 

ms bearing housing mass 

P forced external vector, n 

Q 

R 

weighting matrix 

solution matrix of Riccati equation, solution of 
Eq. (8) 

T modal matrix, n x n 

U control input vector, n 

Ux control input in x direction 

Uy control input in y direction 

x state vector 

Xn column vector, n 
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Xr rotor absolute displacement in x direction 

Xs bearing housing absolute displacement in x 
direction 

Yr rotor absolute displacement in y direction 

Ys bearing housing absolute displacement in y 
direction 

£ rotor eccentricity 

p weighting coefficient between vibration energy 
and control energy 

(r rotor damping ratio, (r = Cr /2"mrkr 

(s support damping ratio, (s = Cs/21{msks 

W rotor angular velocity 

Wr single support critical speed, Wr =1{k r /mr 

VIBRATION CONTROL BY MEANS OF OPTIMAL REGULATOR METHOD 

Model of shaft system 
Figure 1 represents the model of a rotor shaft 

system. The shaft is considered as a massless clastic 
member and the rotor mass is concentrated in a disk 
mounted at the center of the span. The bearings are 
assumed rigid. The bearing housings are supported on 
damped flexible supports. If the control forces are 
added at both bearing housings as shown in Fig. 1, 
equations of motion for the rotor shaft system in 
complex notation reduce to the following. 

mrZr + C (X - i ) - k (Z - Zs) r r s r r 
(1) 

u 

where 

Zr = Xr + iY r , Zs = Xs + iYs , U = Ux + iUy (2) 

Considering dimensionless parameters, if only the x 
direction is shown because there is no coupling 
between x and y directions, their forms can be written 
as 

(3) 

where Xr/£ and Xs/£ are newly expressed as Xr 
and Xs. Transforming Eq. (3) into the state equation 
yields 

(4) 

where 
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In the same manner, the equation for the y direction 
may be expressed as follows: 

where 

Y AY + bU + wf 
- y - y 

• • T 2 
~ = (Y r' Y r' Y s' y s) • f y = w sin wt 

(5 ) 

The superscript T denotes the transpose. The state 
Eqs. (4) and (5) mean the control systems for the case 
of one input and four outputs. Comparing two control 
inputs Ux and Uy' they are identical except for the 
phase between Ux and Uy. Therefore the system of 
only the x direction is considered after this. 

Control system design with optimal regulator 
In this section. the control input Ux as shown 

in Fig. 1 is determined based on the optimal regulator 
theory in the modern control fields (J].l. Namely for 
the state Eq. (4), the problem is to find the control 
input Ux to minimize the following cost function 

where Q is a symmetric positive semidefinite matrix 
and it is assumed Eq. (4) is controllable. The 
optimal control input Ux to minimize Eq. (6) is 
given with state variable feedback as follows: 

(7) 

where R 
equation 

satisfies the following Riccati type algebra 

T T RA + A R - Rbb R + Q = 0 -- --
In Eq. (7). the following expression 

fO = bTR 

(8) 

(9) 

is the optimal feedback vector. Substituting Eq. (7) 
into Eq. (4), the optimal closed loop system is 
expressed except for the external force as follows: 

x = (A - bbTR)X (10) 

Equation (10) is called an optimal regulator. 
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Weighting matrix and root locus 
Equation (10) is asymptotic stable in any case of 

Q and the eigen values are automatically determined 
by Eq. (8) if Q is given. Therefore it is examined 
that the eigen values of the closed loop system show 
the behaviors in what manner as the variations of the 
weighting coefficients p. Hence the parameters used 
are M = K = I, 'r = 's = 0, Wr = 100 rad/s and 
ms = 1 kg. Figure 2 represents the root loci: (a) is 
the case of Q = diag (1,1,1.1) and weighting coeffi­
cients of the rotor displacement. its velocity. the 
bearing housing displacement and its velocity are all 
the same. When p = 0, it shows the open loop system 
or the uncontrolled system. Consequently the first 
and the second natural frequencies become the undamped 
ones and they are 0.62 and 1.62. As p increases. it 
is found that the damping ratio of the first and the 
second natural frequencies increase and the damped 
natural frequencies decrease. In this Fig. (a). it 
shows from p = 0 to p = 108 . The root loci in the 
case which p increases larger is considered by the 
root loci of the square of Kalman equation. From 
these results. in the case that p is infinite, three 
roots approach to equivalent zeros S = 0, S = ±iwr 
and the remaining root goes toward to the infinite 
point for the left direction along the real axis as 
like the first Butterworth pattern. 

(b) is in the case of Q = diag(l,l,O.l,O.l). It 
draws the root loci that the weights of the rotor· dis­
placement and its velocity are ten times as much as 
the ones of the bearing housing displacement and its 
velocity. When p increases, they separate from the 
imaginary axis and their damping ratios increase. But 
the second damped natural frequency is inclined to 
increase. In the case of p = 105 , the second damped 
natural frequency increases one and half times as much 
as the one of (a) and both damping ratios are almost 
the s~me. When p increases beyond this, their loci 
are slmilar to the ones of (a). That is, three roots 
converge to three equivalent zeros and one root 
indicates the first Butterworth pattern. (a) in more 
sensitive than (b) concerning the sensitivity of 
behaviors of their roots. Their roots hardly move 
beyond p = 106 in (a) and p = 107 in (b). 

steady state unbalance response 
In order to compute the steady state unbalance 

response extending whole rotational speeds, Eq. (3) is 
solved analytically. Ux of Eq. (3) is expressed by 
Eq. (7) as follows: 

Ux = - flX r - f 2Xr - f3Xs -.f4Xs (11) 

where f1,f26f3 and f4 are elements of the row 
vector of f. Substituti ng Eq. (11) into Eq. (3), 
the following equation is obtained. 

.. 
MnXn + CnXn + KnXn = e cos wt ( 12) 

- 2( r"'r J 
M f 4 

2( Mw +U .fff w +­r r s1i r M s 



From Eq. (12), the steady state solutions Xn are 
described as follows: 

Mll ", 2 2 p2 

Xr 
Pl + 2 cos(",t - 61) 2 

+ b2 a 

Mll}~P~ + 

(13 ) 
p2 

Xs 
4 cos(",t - 62) 2 + b2 a 

where 
a = (Kll - ",2Mll)(K22 - ",2M22) - ",2C llC22 - K12K2l 

+ ",2C12C2l 

b (Kll - ",2Mll)",C22 + (K22 - w2M22)wCll - K12wC 2l 

- K21 wC12 

Pl = a(K22 - w2M22) + wC22b 

P2 = wC22a - (K22 - w2M22)b 

P3 - aK2l - wC2lb 

P4 - awC2l + bK2l 

61 tan-l(PZ/Pl) 

62 tan- l (P4/P3) 

Mij , Cij ' and Kij are elements of M, C , and 
....!l. ....!l. 

Kn matrixes. Figure 3 shows the unbalance responses 

Xr and Xs given by Eq. (13). In this case, the 

parameters used are M = K = 1, 'r = 's = 0, 
wr = 100 rad/s ms = 1 kg and ~n = diag (1,1,1,1). 

The peak amplitudes at the first and the second crit­
ical speeds decrease in the case when p is large. 
If the same peak amplitudes in the case of p = 104 
are to be realized by passive devices, damping ratios 
and 's of them must be about 0.1.' It seems that it 
generally difficult for rotor systems supported on 
rolling bearings to supply such large damping ratios. 
For any the second peak amplitudes are higher than 
ones of the first. This is caused by that the damping 
ratio of the second mode is smaller than one of the 
first mode for root loci in Fig. Z(a). Even if p 

increases 100 or 1000 times as much as p = 104, it 
can not be expected that the peak amplitudes at reso­
nance decrease remarkably. And yet, the critical 
speeds can be actually ignored in the neighborhood of 
p = 106. For the case of the larger weighting coef­
ficient p, it seems from the root loci in Fig. Z(a) 
that damping ratios of complex eigen values decrease. 
However, since the root of the second mode hardly 
moves and the unvibrational root on the real axis have 
an effect on the complex root, the resonance peak does 
not appear nearby the critical speed on simple sup­
ports. This point fundamentally differs from the 
design of the optimum tuned dynamic damper and indi­
cates definitely that active control bearing systems 
of this kind are superior to any passive vibration 
control device. This reason is caused by the all 
state variable feedback, specially the optimal state 
variable feedback. If an active control bearing 
system is designed by an incomplete state variable 
feedback, for example. only the displacement feedback 
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.or only the velocity feedback, the resonance peak 
arises nearby the original critical speed "'r in 
the occasion of large loop gains. The control system 
becomes unstable in the worst case. These are dis­
cussed in detail in next Chapter. 

VIBRATION CONTROL BY MEANS OF QUASI-MODAL CONTROL 
METHOD 

Control system design method with quasi-modal control 
First, a control system design method is 

described in general. The following equation is 
considered. 

M X + K X = pet) + U(t) 
....!l.....!l. ....!l.....!l. - -

(14 ) 

Equation (14) is generally written and however a damp­
ing term is neglected for the simplicity. For the 
Xn vector of Eq. (14), the following transformation 

is performed. 

Xn = Ta or a = T-1X 
- ....!l. 

(15) 

where T is the modal matrix and it is assumed to be 
norma 11 zed. From Eq. (15), Eq. (14) is transformed 
as foll ows: 

TTM Ta + TTK Ta = TTp(t) + TTU(t) (16) 
-.J!-- -.J!-- - - - -

Hence TTM T is the unit matrix and TTK T is the __ n_ -....!l._ 

frequency matrix. Therefore Eq. (16) is reduced to 
the following equation. 

(17) 

where Q2 symbolizes the frequency matrix. After 
all, Eq. (14) is reduced to Eq. (17) separated the 
each mode and uncoupled. By the way. it is very easy 
to determine the optimal control inputs to each mode 
in the above expressed modal domain. That is, it is 
assumed to determined as follows: 

_ 2 T 0 
a + Q a = T pet) + U (t) ( 18) 

where uO is the new term determined as the desir--able optimal control force. As Eq. (17) and Eq. (18) 
should be equivalent, the following relation is 
introduced. 

( 19) 

From this, the control force supplied to the actual 
system is 

(20) 

where ft = LT. Now for the und~mped vibration system 
it is considered that optimal control inputs are 
velocity feedbacks assigned the critical damping on 
each mode. In this case, the modal control system is 
expressed by the block diagram as shown in Fig. 4. 

where 



-2(1(,)1 0 

F -2(2(,)2 (21 ) 
• . . 

0 -2(n(,)n 

Finally the modal control input is given from Fig. 4 
by 

U = H-l FT- l X 
.J2 

( 22) 

In n degree of freedom system, if the number of 
control inputs are less than n or the number of 
vibration velocities measured are less than n, this 
control system can not be called a modal control 
system. This paper names the such control system to 
il quasi-modal control system. For example, for two 
inputs and three outputs, the quasi-modal control 
system is expressed by 

h "'h 12 1n 

IJ • .. 

t11 t 12 .. ·t1n 

tZ1 t 22• .. t 2n 

If it is desired that modes from the first to the 5th 
are controllable, matrix F has to be regarded till 
the sth mode. And higher ~rder modes above this can 
be disregarded. That is, 

-2~1 "'1 0 

-2~2"'2 
• . 
·-2~ '" s s 

F = (24 ) 
0 

0 0 . 
0 . 

0 

Anyway the feedback gain of the quasi-modal control 
is given by in Eq. (22) and a linear relation exists 
between Q and X. 

~teady state unbalance response 
Figure 5 represents the unbalance response for 

the model in Fig. 1. The rotor vibration velocity and 
the housing velocity are measured and control forces 
are supplied the bearing housing as well as Chapter 3. 
Accordingly, this model becomes a quasi-modal control 
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system with one input and two outputs. If this system 
has two inputs and two outputs, it is an ideal modal 
control system. Figure 5 shows the results for the 
several modal damping ratios ,of Eq. (24). In this 
figure, displacements Xr and Xs show the mini­
mization nearby 0.35 or 0.7. For the case that ( 
is larger than it, new peak amplitudes appear nearby 
"'/"'r = 0.B5. The above expression leads to the 
result that the optimal damping ratio is the vicinity 
from 0.35 to 0.7 in this quasi-modal control system. 
On the contrary, for the ideal modal control system, 
the more the damping ratio , increases, the more 
the amplitudes Xr and Xs decrease. Namely it has 
the most desirable characteristics of the vibration 
control. 

Comparison optimal regulator system with quasi-modal 
control system 

Figure 5 illustrates the amplitude characteris­
tics in the case of the optimal regulator with 
p = 104 and p = 106. From Fig. 5, it is obvious 
that the peak amplitude by means of the optimal regu­
lator is equivalent to the minimum amplitude by means 
of the quasi-modal control method. This means that 
the efficiency of the vibration control by using the 
optimal regulator method approaches to a saturation. 
Because, even if the control system is constructed by 
the optimal control theory, it is theoretically impos­
sible to reduce the amplitude beyond the minimum 
amplitude of the quasi-modal control system. 

From two standpoints, a modern control theory 
and a classical control theory, the design methods of 
active control bearings have been discussed. The 
merits and demerits between the optimal regulator 
system and the quasi-modal control system are sum-
marized as follows: . 

The optimal regulator method: 
merits: (1) If a control object and a cost function 

are given, the feedback coefficients are 
automatically determined. 

(2) A closed loop system is always stable 
and optimum regions that peak amplitudes 
become minimum don't exist. 

(3) A closed loop system is reasonable 
because the feedback control system uses 
all state variable. 

demerits: (1) It is difficult for a multidegree of' 
freedom system to give a weighting 
coefficient matrix. 

(2) It is complicated for a multidegree 
of freedom system to compute a feed­
backgain. 

(3) All state variables are required. 
The quasi-modal control method: 
merits: (1) The physical prospects are good . 

(2) It is easy for a multidegree of 
freedom system to determine the feedback 
coefficients. . 

(3) Since this method consists of only the 
velocity feedback, the number of measure 
ments are a few. 

demerits: (1) If a damping term measurements are 
regarded, it is complicated to make the 
modal transformation. 

(2) Optimum regions that peak amplitudes 
become minimum always exist. And for a 
large feedback gain the closed loop 
system becomes unstable. 

(3) Since it consists of only the velocity 
feedback, the control system apt to be 
unreasonable. 



As damping forces always exist in the actual rotating 
machinery, these amounts have to be correctly esti­
mated if possible. For the quasi-modal control system 
in particular, estimated damping amounts have sensi­
tively an influence to the efficiency of the vibration 
control on account of the existence of the tuned con­
dition. Occasionally the rotor system becomes 
unstable because of the miss matching of this kind. 
Judging totally from the above mentioned results, it 
is able to conclude that the optimal regulator method 
is superior to the quasi-model control method for the 
control design of an active control bearing system. 

EXPERIMENTS 

Test rig 
Figure 6 shows the overview of the test rig. The 

rotor shaft is 10 mm in the diameter, the drill rod 
with the span length 800 mm and has one disk of the 
mass 1 kg at the center of the span. The mass of the 
bearing housing is 0.5 kg including the ball bearing. 
Therefore the mass ratio between the rotor and the 
bearing housing is unit. There are four springs sus­
pending the bearing housing and its spring constant 
is 0.49xl04 N/m (0.5 kgf/mm). The actuators are 
trial manufactured using a principle of a electro­
dynamic transducer. The active control bearing set 
up by means of four actuators is indicated in Fig. 7. 
The generating force of one actuator is approximately 
18 N versus the coil current 1 A and the force is in 
proportion to the current. Figure 8 shows the sec­
tional view of one actuator. 

Figure 9 illustrates the experimental block 
diagram. In this Chapter, it is described in only 
the case that the active control bearing system is 
designed by an optimal regulator. First the rotor 
displacement and the housing displacement are measured 
by the gap sensor. 

The first order lag filters are used in order to 
remove some noise. Xr and Xs are obtained by dif­
ferentiating these displacements. Next multiplying 
feedback gains fl,f2,f3,f4 and adding them, the 
actuators are controlled through the servo amplifier 
supplied this state feedback signal. The control 
system in y direction is also constructed in the same 
manner. 

Discussion of results 
For M = 1, K = 0.5, ~r = 100 rad/s, Ms = 1 kg, 

p = 104 and Q = diag (1,1,1,1), the optimal feed­
back gains are~given as fO = (-3100, 50, 3100, 
1000). Figure 10(b) shows the impulse response 
obtained by the experiments with this feedback gain. 
The efficiency of the active vibration control is well 
recognized in both the rotor and the bearing housing. 
Figure 11 shows the experimental data of the unbalance 
response with the parameter as same as in Fig. 10(b). 
In the uncontrolled case, there are two critical 
speeds at about 750 and 1600 rpm. The maximum ampli­
tude at the first critical speed attains about 2.3 mm 
in Xr . However, in the controlled case, the ampli­
tude at the first critical speed reduces to about 
0.4 mm and the second critical speed can not be con­
firmed. Figure 10(c) represents the results in the 
case of the larger weighting coefficient p, namely 
p = 3.5xl04 and fO = (-9000, 100, 9000, 200). Under 
this case, the impulse response of the housing is made 
better in comparison with Fig. 10(b) and the unbalance 
response is shown in Fig. 12. In spite of the 
response of the rotor in Fig. 12(a) is as same as one 
in Fig. ll(a) except for the drop of the first crit­
ical speed, the efficiency of the vibration control 
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of the housing i~ improved better than Fig. ll(b). 
Figure 13 indicates the numerical solutions concerning 
the experimental conditions in Fig. 11 and Fig. 12. 
The used parameters are M = 1, K = 0.5, ~r = 100 rad/s 
and Ms = 1 kg. Besides the damping ratios are 
estimated as (r = 0.02, (s = 0.03 by the analysis 
of the uncontrolled experimental data. From these 
results, it can be admitted that both the experiments 
and the simulations have good agreements. 

CONCLUSIONS 

This paper proposes two control design techniques 
to the active control bearings. The superiority or 
inferiority of these design technquies has been 
described in detail by the simulations. If a rotor 
shaft system is supported by active control bearings, 
it is possible to change damping ratios of the system 
because the arbitrary state feedback system or the 
velocity feedback system can be easily constructed. 
From this, the rotor system supported by the active 
control bearings system can be designed as satisfying 
a design specification for resonance amplitudes. 
Considering the difficulty of estimation of damping 
forces in a practical rotating machinery, it is 
expected that the optimal regulator method is superior 
to the quasi-modal control method for the control 
design of the active control bearing system. The 
active control bearing system is effective not only 
for unbalance forces but for unstable forces or 
external forces transmitted from a foundation. 
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Fig. 6. - Test rig overview. 

Fig. 7. - Active control bearing supported by four actuators. 
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