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PREFACE

The Global Modeling and Simulation Branch (GMSB) of the Laboratory for
Atmospheres (GLA) is engaged in general circulation modeling studies related

to global atmospheric and oceanographic research. The research activities

are organized into two disciplines: Global Weather/Observing Systems and
Climate/Ocean-Air Interactions.

During the past year, a very large number of research projects have been
completed as indicated by the list of refereed papers included at the end of

this publication. The purpose of the review is to present a brief overview of

this research, and to document the status of other projects currently underway.

In addition, abstracts of the 1984 Summer Lecture Series jointly sponsored by

the Global Modeling and Simulation Branch and the University of Maryland are
also included.

vii





I. GLOBAL WE AT HE R / 0 B S E RV I N G S Y S T E M S

A. ANALYSIS AND FORECAST STUDIES





Analysis of Ocean Surface Wind Fields Using Seasat-A Scatterometer Data

E. Kalnay and R. Atlas

In addition to the Seasat forecast impact studies previously conducted
with the GLA model, a study was also made of the global analyses of surface

wind stress, wind stress curl, and surface sensible and latent heat fluxes,

which are generated as a by-product of the assimilation process. Both instan-

taneous analyses of these quantities and 15-day averages of each of these

fields were found to be in good qualitative agreement with published fields.

Examples of Synoptic (Instantaneous) Analyses

Fig. I presents the GLA surface wind streamline analysis for O0 GMT 15

September 1978. All the meteorological features described by Peteherych et al.

(1984), are also present in the GLA analysis. Among these note the two typhoons

off the coast of Japan, southwesterly monsoon flow on the coast of equatorial

West Africa and the Indian subcontinent, the cyclones and anticyclones in the

Northern and Southern Hemispheres, the strong westerlies that drive the Antartic

circumpolar Ocean current, and the trade winds from the Northern and Southern

Hemispheres meeting in the ITCZ at about 10°N, and others. In addition, a weak

cyclone at 45°N, was detected in the GLA analysis and not in the hand analysis

because it is in a region where no SASS data was available due to the SEASAT

orbital configuration.

Fig. 2 presents the instantaneous wind stress field for the same date. The
most notable feature is the intense stress associated with the enormous Southern

Hemisphere-cyclone pointed out by Peteherych et al. and centered at 320S and 135=W.

15 Day Averaged Surface Wind and Wind Stress Fields

Fig. 3a, b presents a comparison of the long term mean vector surface
winds in the GATE area during September adapted by Burpee and Reed (1981), and

our GLA analysis surface wind for the 15 day period 6-20 September 1978. There

is very good agreement between these fields, with a col at about 10ON and 27°W.

West of this col the trade winds converge into the ITCZ which is located at

about 10°N. East of the col, the winds are towards the east, converging towards

a broad cyclonic circulation located over the maximum surface temperature at

about 20°N and 10°W. The cyclone center in our analysis is displaced towards

the Greenwich meridian. The mean (vector) wind speeds are also in reasonable

agreement, with the larger values in the GLA analysis probably due to the short
averaging period.

REFERENCES
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stress using the GLAS GCM and Seasat scatterometer winds. Accepted by J.
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Fig.l GLA surface streamline analysis for 00 GMT 15 September 1978.

Fig.2 GLA surface wind stress (Nm-2) for 00 GMT 15 September 1978.
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Forecast Impact Simulation Studies

R. Atlas, E. Kalnay, W. E. Baker, J. Susskind, D. Reuter, and M. Halem

Laboratory for Atmospheres, NASA/Goddard Space Flight Center
Greenbelt, MD 20771

A series of simulation experiments is being conducted as a cooperative

effort between the European Centre for Medium Range Weather Forecasts (ECMWF),
the National Meteorological Center (NMC) and the Goddard Laboratory for Atmos-

pheres (GLA), to provide a quantitative assessment of the potential impact

of proposed observing systems on large scale numerical weather prediction.

For these studies an advanced analysis/forecast simulation system has been

developed which provides for a more realistic assessment of the impact of

proposed observing systems than was possible in earlier studies. This system

consists of four elements: i) An atmospheric model integration to provide a
complete record of the "true" state of the atmosphere (called nature). This

record is then used to fabricate observational reports and to evaluate ana-

lyses and forecasts. 2) A conventional data assimilation cycle that is used

as the "control experiment." The control experiment is like an operational
analysls/forecast cycle based on conventional observations, except that it
makes use of fabricated conventional data obtained from the nature run to

produce the analyzed fields. 3) A satellite data assimilation that differs

from the control in also including fabricated satellite data incorporated in
the forecast-analysis cycle. 4) Forecasts produced from both control and

satellite initial conditions. Comparison of these forecasts with nature

provides an assessment of the impact of satellite data.

Previous simulation studies have been characterized by the use of the

same model to simulate "nature" and observations and to produce forecasts.
This "identical twin" problem can distort the conclusions derived from such

studies. In the present study, we attempt to avoid these limitations by de-

signing a more realistic simulation system and calibrating its results by

comparison with real data experiments performed with a similar system, and
by simulating the expected accuracy and characteristics of observational

systems. In order to avoid the "identical twin" character of previous stud-
ies, the high resolution (1.875 ° x 1.875 ° x 15 levels) ECMWF model is used

as nature, and the 4° x 5° x 9 level GLAS model is used as the assimilation
and forecast model.

For all of the experiments which have been completed to date, the na-
ture run is a twenty-day integration from 0000 GMT i0 November 1979 using

the ECMWF model. All types of FGGE and conventional data were simulated by
NMC by interpolating the nature fields to observation locations and adding

assumed random or systematic errors to the interpolated values. Only satel-
lite temperature soundings were assumed to have systematic errors. LIDAR
wind profiles were simulated at the TIROS observational locations with l-3m

sec-I accuracy. Wind profiles were not generated at levels below which the
integrated cloud amount exceeded 90%.



Experiments have been conducted to calibrate the simulation system and

determine its realism, and to begin to assess the relative impact of tempera-
ture and wind profile observing systems. To this end, two real data assimi-

lation cycles, a control (which included only conventional data) and FGGE

(which included conventional data plus satellite temperature soundings,

cloud-track winds and drifting buoys and were performed for the period 0000
GMT i0 November to 0000 GMT 25 November 1979. Six simulated data assimila-

tion cycles, control, FGGE, control plus TIROS temperature soundings, control

plus perfect temperatures, control plus cloud-track winds, and control plus
wind profiles were then generated for the same period.

The NMC analysis for 0000 GMT i0 November was used as initial conditions

for the real data assimilation cycles. Initial conditions for the simulated

data assimilations were provided by a real data control assimilation from

0000 GMT 4 November to 0000 GMT i0 November. Eight five-day forecasts were

generated from each assimilation at 48 h intervals beginning on ii November.

The results from these experiments indicate that 3-dimensional wind

profile data are more effective than temperature data in controlling analysis
errors. If the proposed accuracies and coverage for LIDAR wind profiles can

be achieved, the experiments show that a very significant improvement in

Southern Hemisphere forecast skill will result. In the Northern Hemisphere,

the impact is smaller but still significant: a case study showed a major

improvement in the prediciton of a storm over the United States, which was
poorly forecasted with the simulated current system. The use of either

perfect temperature soundings or wind profile data resulted in an improved
cyclone forecast.

Further experiments with this system will be used to assess the degree
of forecast improvement that might result from different configurations of

Lidar observing systems. Improved methods for assimilating future observa-

tions will also be studied with the simulation system.



The Impact of Scatterometer Data on Limited-Area Model

Predictions of the QE II Storm

D. Duffy and R. Atlas

Experiments have been conducted to assess the impact of Seasat-A scatter-

ometer (SASS) data on high resolution model predictions of the QEII storm

and to explore different approaches for utilizing SASS data. For all of

the experiments, the model used is the limited-area model described by Duffy

(1981) with a horizontal resolution of i00 km.

Numerical weather forecasts were made from initial conditions which included

and excluded SASS data. The initial condition for the control run was the

global analysis from the National Meteorological Center (NMC) which we had archived

at the resolution of 4° latitude and 5° longitude. This field was bilinearly

interpolated to the model's i00 km by i00 km grid. For the SASS experiments,
the i000 mb winds were replaced by subjectively dealiased SASS winds wherever

they were available. Furthermore, SASS winds were allowed to influence the

upper-level winds through the use of a vertical correlation function (Yu and
MePherson (1984)). If the upper-level winds were not modified, the effects

from the upper levels soon overwhelmed the corrections that we had made at the
surface.

In Fig. i, we present the sea-level pressure and 1000-500 mb thickness at

the initial time of the experiments, 12 GMT 9 September 1978. We were primarily

interested in the evolution of the nascent low located just off Nova Scotia.

The results from the two different numerical forecasts are presented in

Figs. 2 and 3. In both cases the low located just off Nova Scotia has moved

out into the open waters of the North Atlantic Ocean. In the case of the

control, the low has intensified only slightly. The central pressure contour
at 36 hrs is i000 mb with peak winds of 21 m/sec. These results are slightly

better than those given by the operational llmited-area, fine-mesh model run

at the NMC and the Navy's operational model.

From Fig. 3 we see that the inclusion of SEASAT data has had a dramatic

effect on the cyclogenesis. The central pressure contour at 36 h is now 988 mb

and the peak winds are 37 m/sec. A study of the results indicates that the
deepening of the low occurs because of larger amounts of convective precipita-

tion in the SEASAT experiment than the control.

In Fig. 4 we show the observed NMC hand analysis of the QEII, valid at 00

GMT ii September 1978. From this figure we see that the forecast with SEASAT
data is closer to the observed storm than the control. However, there is still

a considerable position error.

These results show that scatterometer data can be important in defining

the initial conditions that result in rapid maritime cyclogenesis. Currently,

work is under way to determine improved ways to couple the surface winds to the
upper levels in global atmospheric models.



References

Duffy, D., 1981: A split explicit reformation on the regional numerical weather

prediction model of the Japan Meteorological Agency. Mon. Wea. Rev., 109,
931-945.

Yu, T.-W., and R. D. McPherson, 1984: Global data asslmilalon experiments with

scatterometer winds from SEASAT-A. Mon. Wea Rev., 112, 368-376.

Fig. 1. The initial sea-level pressure Fig. 2. The 36 h predicted sea-level
and 1000-500 thickness (dashed and 1000-500 thickness (dashed

lines) for 12 UT 9 September lines) field for the control
1978. experiment.
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Fig. 3. Same as Fig. 2 except for Fig. 4. NMC hand analysis of the QEII
SEASAT experiment, storm at 00 UT Ii September

1978.



Objective Determination of Heat Wave Patterns

N. Wolfson and R. Atlas

A simpleindex was developedin order to objectivelycharacterizea heat
wave pattern in either analysesor forecastsof 500 mb height. 500 mb height
was chosen because this parameteris usuallyamong the most accuratefields
predictedby numericalmodels. In addition,it is highly correlatedwith
the surface air temperature on many time scales.

The heat index IN is designedto be appliedto any region of interestand
to be used for any objectivelyanalyzeddata and specificallythose of NWP
models. IN is given by

IN=i__ f fH500 dsdt (I)
S.T T S

where H500 is the 500 mb height

H500 is the 500 mb climatological value of H500
£, t are location and time

ds is an area element (represented by a grid
box for an NWP model)

S is the total area of interest

T is the period under study

The index can be calculated for any time period, day, month or season

with usage of the corresponding H500(£ ). It can be used to study results

of NWP models by substituting forecasted values of H500(£,t ) into (i) or to

diagnose observations by using objectively analyzed values of H500(£,t ).

In formulating the index, it was assumed that point values of height are
representative of field values in an area element. The height field spatial

autocorrelations at 500 mb are very high for distances of _ 250 km (Buell,

1972). Thus for the distances involved here, within an area element, point
values can be considered to be highly representative for the areas involved.

The first integration over the area transfers the local anomalies to an

areal measure. It enables the determination of whether a distinct geographical
region is experiencing a heat wave or whether there is simply a local event.

The second integration in time assesses the temporal average anomaly of the
event.

To evaluate the seasonal representiveness of the index for the summer

season, June-September seasonal values for the years 1963-1977 were correlated
with average seasonal temperatures for the northern and southern Plains of the

U.S. The index was calculated from the U.S. National Meteorological Center
(NMC) 500 mb analysis after interpolation to the GLA grid. Average seasonal

temperatures were calculated by averaging monthly average temperature which
were taken from U.S. Dept. of Commerce (1981). The correlation coefficients

were .85 and .82 for the North and South Plains respectively.

i0



Figure i, which presents the daily variation of the heat wave index for

the North and South Plains, clearly shows the different nature of the heat wave

in these two regions. The horizontal lines are the seasonal threshold values,

i.e. higher values indicate a heat wave. The heat wave in the southern plains

was rather continuous with short breaks, the northern plains experienced numerous

spells of hot weather which were shorter than the southern spells.

As the area integral in (i) is reduced to one grid point one obtains the

measure for the local heat wave. A grid point by grid point calculation of

monthly values enables the monitoring of the local monthly variability. In

order to assess the severity of the heat wave at a local grid point g a "t"

measure has been applied thus

t(g) = IN(k) (2)
_E(g)

where IN(k) is the monthly index at location £.

OE is the monthly standard error of IN,

IN and oE are calculated from the same data, which can be observations
or forecasts. As both are in meters t(g) is dimensionless.

The numerator in (2) gives the temporal average anomaly. This information

is not enough to decide whether the heat wave was characterized by a series of

events with high anomalous values with frequent in between breaks or by a

persistent anomaly with no breaks. Dividing by the standard error allows us

to give weight to the heat wave character (small standard errors are indicative

of persistent H(g,t) - H(g,t) values during the time perids under consideration).

This concept is close to the "t" student test checking the null hypothesis
that IN(k) equals zero. Interpretations of t(g) as "t" student test values is

very complicated due to the difficulties in determining the effective number of

degrees of freedom and other statistical constraints. However, it is obvious

that higher t(g) values are indicative of a stronger heat wave as a combination

of the two factors of intensity and persistence.
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Fig. i. Daily changes of the heat wave index in the North and South Plains.
Threshold values for the heat wave are shown as horizontal lines

(gaps indicate missing data).
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Wave Structure Associated with the Summer 1980 Heat Wave and Drought

N. Wolfson and R. Atlas

A study has been made of the wave structure associated with the summer 1980

heat wave and drought in relation to other years. This study was performed for

the 500 mb level for the months of June-Sept. 1963-1977 and 1980. The data

was obtained from the National Meteorological Center (NMC) final analysis inter-

polated to the GLA 4° latitude x 5° longitude grid. For each year the 500 mb

height was spectrally decomposed. Then waves 1-3 and 4-7 were combined. The

decompositions were carried out for latitudes 30°N to 54°N every 4°. Fig. la

presents the longitudinal location of the ridge lines for waves 1-3 for the

period June-Sept. of 1963-1977, 1967 and 1980. One may see that there are three

ridge lines, one over Tibet and central Asia and the other two over the central

U.S. and eastern Atlantic. The ridge over the U.S. is very stable and does

not change much from year to year. This is indicated by the bar line on Fig. la

which indicates one standard deviation in the yearly location. The deviation

from the mean is usually smaller than 20 ° longitude.

As indicated by Fig. la the summer of 1980 has a different pattern and

shows large deviations from climatology. The ridge over the central U.S.

north of 38° shifted by 10°-20 ° eastward. This shift is more apparent in the
northern latitudes and is larger than the standard deviation.

The ridge lines of waves 4-7 are presented in Fig. lb. Ridges are observed

near main mountain chains i.e. the Alps, Caucasus, Tibet and the Rockies,

indicating the importance of these ranges in influencing the summer circulation.

One may note that over the central U.S. the planetary waves 1-3 and the shorter

4-7 waves support each other, with both contributing to the standing wave.

The ridge line follows the eastward slope of the longitude of the Continental
Divide supporting Wallace's (1983) hypothesis of the effect of orography on

the summer circulation. It is evident that summer 1980 was highly anomalous

in that the ridge north of 35°N shifted eastward by _ 15° longitude, while the

climatological standard deviation is only 5°-12 ° longitude.

Further evidence of the relationship between the location of the planetary
waves and average seasonal temperature is gained by analyzing the wave structure

for 1967, which was the coldest summer of the 15 years analyzed in the northern

plains. North of 38N, waves 1-3 were shifted westward (Fig. la) by 15°-25 °

longitude, while waves 4-7 showed a I0° average shift from the climatological

location in the same direction. Furthermore, the 1967 summer was the warmest

year on record between 1963-1977 in the pacific region.

In order to study the relative importance of the 1-3 and 4-7 waves during

the heat wave episode we have plotted their amplitude for the period June

through September 1980.

95°W is a representative longitude for the Great Plains. At 30°N,95°W the
main contribution of the heat wave is from waves 1-3 whose amplitude is almost

always larger than those of waves 4-7. However, both of these wave bands had

positive amplitudes and supported each other during this period. This is similar
at 34°N but the contribution of waves 4-7 was more important for the maintenance
during June and the second part of August. At 38°N the combination of 1-7 is

12



mostly positivebut it is the 4-7 band that is primarilyresponsiblefor the
anomaly.
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Fig. I. Longitudinalridge positionsfor waves 1-3
(a) and 4-7 (b) as a functionof latitude.
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Preliminary Results from Numerical Experiments on the

Summer 1980 Heat Wave and Drought

N. Wolfson, R. Atlas, and Y. Sud

During the summer of 1980, a prolonged heat wave and drought affected the

United States. The heat wave began in the southern Great Plains in June extendec

northward and westward in July and then in August and September weakened and
retreated to the Southeast.

A preliminary set of experiments has been conducted to study the effect

of varying boundary conditions on the GLA model simulation of the heat wave.

Five 10-day numerical integrations with three different specifications of

boundary conditions were carried out: a "control" experiment which utilized

climatological boundary conditions, an "SST" experiment which utilized summ-

er 1980 sea-surface temperatures in theNorth Pacific but climatological values
elsewhere, and a "Soil Moisture" experiment which utilized the values of Mintz-

Serafini for the summer 1980. The starting dates for the five forecasts were

ii June, 7 July, 21 July, 22 August, and 6 September of 1980. These dates

were specifically chosen as days when a heat wave was already established in
order to investigate the effect of soil moistures or North Pacific sea-surface

temperatures on the model's ability to maintain the heat wave pattern. The

experiments were evaluated in terms of the heat wave index (Wolfson and Atlas,

1985) for the South Plains, North Plains, Great Plains and the entire U.S. In

addition a subjective comparison of map patterns has been performed.

Table i presents the average ten day index values for the four regions.

The differences between the various experiments are very small at the beginning
of the integration (not shown), and usually develop after the fourth or fifth

day. One may note that the SST influence has been usually to decrease the index
value. This might be due to the cold ocean temperatures prevailing in 1980.

One may place confidence in these SST fields only for short-range forecasting
because a longer period of integration would demand global SST distribution to

be introduced. On the other hand, introduction of 1980 real soil moisture valueE

over the U.S. has enhanced the heat wave. This effect is much more prominent

over the northern plains than over the southern plains.

Table 2 summarized the impact of boundary conditions on the heat wave index.

In addition, "t" student test values are shown to indicate the significance of
the results.

Additional model experiments are being conducted to study the initiation
and breakdown of the heat wave and the effect of global sea-surface temperatures.

REFERENCE
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Table i: Average ten day index values

Experiment Control SST Soll Moisture

South Plains

6/11 56.06 52.38 55.16
7/07 58.8 57.69 62.38

7/21 46.7 45.55 44.56

8/22 64.52 55.72 58.88

9/06 60.70 58.33 64.23

North Plains

6/04 3.59 -1.68 4.50

7/07 50.8 47.18 54.30

7/21 50.99 52.26 54.15

8/22 47.0 44.18 53.71

9/06 54.0 47.76 58.81

Great Plains

6/11 26.2 21.69 27.54

7/07 54.3 51.73 57.79

7/21 49.1 49.36 50.00

8/22 54.58 49.17 55.95

9/06 56.90 52.33 58.93

U.S.

6/11 9.20 7.56 9.44

7/07 10.60 13/21 14.08
7/21 43.01 43.49 42.08

8/22 17.71 14.80 20.79

9/06 40.08 38.72 44.63

Table 2: Impact of boundary conditions on heat wave index
(significant values are underlined) with "t" value in lower
right side.

Region Average Impact I impact of
control value of SST Soll Moisture

South 57.36 -3.42 .31

Plains 2.68 1.17

North 41.28 -3.34 3.42

Plains 3.30 4.05

Great 48.22 -3.36 1.83

Plains 3.71 4.54
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Improved Cloud and Surface Fields Derived from HIRS2/MSU

J. Susskind and D. Reuter

The methods to retrieve cloud parameters from HIRS2/MSU data, described in

Sussklnd et al., (1984), have been shown to produce qualitatively reasonable cloud
fields but to underestimate cloud amount. Improvements have been made to the

cloud algorithm which allow for better determination of low clouds. These

improvements involve retrieving cloud fields at a higher spatial resolution,

which decreases the problems arising from multiple layer clouds, and increasing

the number of channels used to determine the cloud parameters from 2 15 _m lower

tropospheric sounding channels to 5 channels, including the II um window and 2

15 Bm mid and upper tropospheric sounding channels. The use of the II _m window
channel was very important in identifying low level clouds.

Another way of checking for the existence of low clouds, at least over the

open ocean during the day, is by looking at the reflected solar radiation in HIRS2

channel 20, sensing the near IR and red regions. Channel 20 was not used in the

cloud algorithm because of the desirability to use the same algorithms day and

night in order to generate meaningful statistics of day-night cloud differences.

Global one day cloud fractions and cloud top pressure fields have been

derived from the HIRS2/MSU data. These fields are completely consistent with

visible and infra-red imagery taken the same time from AVHRR but contain consider-

ably more information than the AVHRR images. In addition to cloud height informa-

tion, which is not apparent from the imagery, there is also good cloud information

at high latitudes where the visible imagery on AVHRR sees either no signal (per-
petual night) or shows reduced contrast because of background ice and snow cover,

and the II _ imagery on AVHRR is hampered because of the low thermal contrast

between the clouds, which are usually low, and the cold surface.

Monthly mean fields of cloud fraction, cloud top pressure, and cloud top

temperature, for both day clouds (3 PM) and night clouds (3 AM), and their

differences, have been prepared for a number of months. Average monthly mean

cloud fractions obtained in this fashion are about 40%, with 3 AM fields being

about 5% more cloudy than 3 PM fields. These cloud fractions are effective,

because the clouds have have been treated as black. They represent the product

of the cloud fraction and the cloud emissivity, which averages about .7 in the

15 _m region (Paltrldge and Platt, 1976).

Monthly mean "albedo" (actually per cent reflected solar radiation at a

specific angle in a specific wavelength interval) fields have also been prepared

by averaging the observations in HIRS channel 20, divided by the cosine of the

solar zenith angle. These fields show excellent agreement with the day-tlme

cloud fields, indicating most clouds which are apparent in visible imagery are

also found by the infra-red algorithms. The albedo fields also show features
attributable to deserts and ice and snow, though it is difficult to distinguish

the ice and snow from the cloudy regions around them from the visible imagery

directly.

The cloud algorithm, which does not use the visible data, provides the ability
to select scenes which are clear or cloudy. Monthly mean fields of "cloud free

albedo" were generated by eliminating all scenes from the instanteous albedo field
considered to be cloudy and averaging the albedo only for cloud free scenes.
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This procedure serves two purposes. First, it checks the extent that the cloud

algorithm may have missed clouds apparent in the visible, and second, if success-

ful, it provides a reasonable estimate of surface albedo once atmospheric correc-

tions can be made. The "cloud free albedo" fields indeed showed only slight trace

of low cloud contamination, whose sources we have identified and are correcting.
In addition, desert features were readily apparent and clear indications of ice

and snow fields emerged from the cloudy mld-latitude and polar regions. These
ice and snow fields were quite consistent with those derived from the surface-

emissivity at 50.3 GHz (channel i of the MSU, which has a surface transmittance
of .7) and the retrieved ground temperature. The agreement of these ice and snow

fields, neither of which could have been derived by single spectral region sound-

ing, shows the power of a combined infra-red, microwave, and visible monitoring
system.

Another extremely important parameter derived from the HIRS2/MSU soundings
is the monthly mean difference of the 3 PM and 3 AM ground temperatures. This

difference is related to the forcing function, given by incoming solar radiation,
and the response function, given by the thermal inertia of the ground, which

depends on soil moisture and evapotranspiration rate. Clouds affect the day-
night temperature difference in two ways. The direct effect of clouds is to

block incoming solar radiation during day, which slows daytime warming, and

reflect upwelllng longwave radiation back to the surface at night, slowing

nocturnal cooling. The indirect effect of clouds is to cause rain, which

increases soil mosture and again decreases the diurnal surface temperature
variation. Indeed, the day-nlght surface temperature difference fields are
quite consistent with the retrieved cloud cover fields for all the months

processed, especially in the regions of convective cloudiness.

The effects of clouds on incoming and outgoing radiation are, to first
order, not a factor in the day-nlght ground temperature fields because retrievals

are not performed under full overcast conditions and retrievals are performed
only in the clear portions of partially cloudy scenes as a result of the cloud

correction algorithm. The day-night temperature difference fields then should

be a measure of rainfall and soll moisture. Mintz et al. (1985) have developed

an energy balance model relating the monthly mean day-night ground temperature

field derived from HIRS2/MSU to soll mlosture and evapotranspiration and have
derived reasonable monthly mean fields for these parameters.

In summary, HIRS2/MSU data provides the posslblity of obtaining accurate
fields of a number of important climate parameters, all derived together in a

consistent fashion. This system, launched at the end of 1978, will be in place

through the 80's. The opportunity exists to develop a i0 year climate data set

from similar instrumentation. Our immediate plans are to process all of 1979

with a slightly improved version of the current system and possibly process all
data up to 1984.
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Intercomparison of Sea-surface Temperature Anomaly Fields

J. Susskind and D. Reuter

Sea-surface temperature anomaly fields produced from analysis of HIRS2/MSU

data at GLAS for the months November 1979, December 1981, March 1982, and

July 1982 were compared to those produced from data from ships, AVHRR, and SMMR

in a series of NASA sponsored sea-surface temperature workshops. The methods

used by GLAS to analyze the HIRS2/MSU data were similar to those in Susskind

et al., (1984), but improvements were made to the algorithm used to retrieve sea

and land surface temperatures and in the cloud filtering algorithm. One of the

improvements involved generating weights for a given sounding, which decreased

with increasing cloudiness and increasing humidity. These weights should be

used in generating monthly mean fields. The workshop generated statistics

for the weighted HIRS2/MSU field only for the month of July 1982.

Statistics generated by the workshop for the last two months, in which the

latest improved algorithm (called HIRS version 2 in the workshop) was used to

process the HIRS/MSU data, are shown in Tables I and 2. Climatology is also

treated as a sensor for comparison. The values given are C, the correlation

coefficient, B, the bias (sensor-ship), S, standard deviation, and N, the number

of grid points sampled (2 ° x 2° grid) comparing fields from a number of sensors

with ship fields. Statistics are given for global colocations and also for
those in the North Pacific and North Atlantic Oceans. Results are given for the

unsmoothed field, and also for 9 point smoothed fields, in which case, both the

ship field and retrieved field were smoothed and compared to each other.

To interpret the significance of the standard deviation from ships, an

anomaly field produced by a sensor can be considered skillful if its standard

deviation from ships is at least as low as that of climatology, which is represen-

tative of the ocean signal. A better indicator of skill is the correlation of

the sensor anomaly field with that of ships. Climatology, by definition, has
zero correlation and zero skill.

As seen in Tables 1 and 2, smoothing has reduced the noise and increased the
correlation coefficients for all cases. Part of this is due to random noise

reduction in the ship field and part due to noise reduction in the field being

compared to ships. The AVHRR field in March 1982 shows marginal skill in the

standard deviation sense and good skill in the correlation sense in the unsmoothed
fields. Statistics for the unsmoothed March HIRS field were not generated at the

workshop.

In the smoothed fields, AVHRR shows increased skill in both categories. The

statistics for the smoothed HIRS fields are almost as good as those of AVHRR with

regard to standard deviation but the correlations are considerably lower. It
should be noted that these statistics are for the unwelghted HIRS2 field. The

weighted field provides better visual agreement with the ship field but statistics

were not computed in the workshop using the weighted field. The SMMR field is

much more noisy but shows some correlation skill in the North Pacific Ocean. An

additional field produced using both SMMR data and ship data shows good agreement

in the vicinity of ships as expected. Surprisingly, the statistics are only

marginally better than those of AVHRR and HIRS which did not have the benefit of

including the ship data used to verify the solutions.
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When one looks at the actual anomaly fields for March 1982 (not shown), it

is apparent that March 1982 was indeed very close to climatology, expecially in
the North Atlantic Ocean. In the North Pacific Ocean, there are small cold

anomalies centered at about 160 ° W, 35 ° N and 175° E, 28 ° N and a small warm

anomaly about 115° W, 20° N. The weighted HIRS2/MSU field likewise shows small

anomalies in the North Pacific ocean, of the correct sign, centered at the
appropriate locations. The small anomalies in the Atlantic Ocean are in almost

perfect agreement with those in the ship field. The AVHRR field, on the other

hand, is shown to indicate extensive areas of cold anomaly in both the North

Atlantic and Pacific Ocean, sometimes exceeding 1.5 ° in magnitude. This feature
is consistent with the cold bias of .3° to .5=C indicated in Table I for AVHRR.

The AVHRR field also has a very large spurious warm anomaly in the region along
tile equator from 75° E to 155 ° E. Agreement of all fields in the southern

hemisphere is reasonable, but the AVHRR warm anomalies are larger than those

indicated by HIRS2/MSU or the ships. The unweighted HIRS field is somewhat warmer

than the weighted field and has essentially no anomalies in the North Pacific

Ocean. It is not surprising that small correlation coefficients were found in

the North Pacific Ocean for the unweighted HIRS Version 2 field.

Statistics for July 1982 are shown in Table 2. For this month_ statistics

were generated for both the weighted and unwelghted HIRS version 2 fields. As

observed from looking at the statistics comparing climatology with ships, July
1982 was much more anomalous than other months in the workship with a standard

deviation of about .6=C about a cold bias (shlps-cllmatology) of .96°C in the

North Pacific Ocean and .4°C in the North Atlantic Ocean. Therefore signals

are large and one expects larger correlations between retrieved anomaly fields and
ship fields. Correlations for AVHRR are similar to those of March 1982 but the

standard deviations are considerably larger than in the other months. HIRS

statistics show improved correlation over March 1982, as expeeted_ with standard

deviations slightly degraded over those of March 1982. Statistics for the weighted
HIRS field, relative to the unweighted field, show the soundings have become

colder on the average by about .35 °. Results have improved somewhat in the
Atlantic Ocean and degraded somewhat in the Pacific Ocean. SMMR results have

improved over previous months, both in the standard deviation sense and in the

sense of error correlation. The SMMR/Ship field shows good agreement with the

ships used to produce the field and shows more of an improvement with regard to
standard deviation over the HIRS2 field, which did not have the benefit of

including ships, than in March.

The detailed anomaly fields for this month show that HIRS again gives very

good agreement with the ship anomaly fields, which this time are quite large and
extensive in both the North Atlantic and North Pacific Oceans. The HIRS field

does have a few areas of spurious cold anomaly in July, located mainly within a

thin latitude band running from about 15° N - 25 ° N over most of the ocean, and

off the west coast of South American from 15° S to about the equator. These

spurious anomalies, which are mostly of the order .5° - I°C, may well be due to

the effects of aerosols put into the atmosphere by the El Chichon eruption. The

errors are amplified in the weighted field, which is in general colder. The

effects of this eruption on derived sea-surface temperatures are much more evident

in the AVHRR anomaly pattern which shows a large block of spurious cold anomaly
from I0° N - 35 ° N running across the entire oceanic area, with magnitudes of
the order of 2°C.

In summary, the HIRS2 sea-surface temperature fields are statistically

comparable to those produced from AVHRR, but the errors tend to be spatially
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random while the AVHRR errors are more spatially coherent. The effect of the
E1 Chlchon eruption on derived HIRS sea-surface temperatures appear to be consid-
erably less than on those retrieved from AVHRR.

Table 2

Table 1 Comparison of Monthly Mean Anomaly Fields
Comparison of Monthly Mean Anomaly Fields With Ships > 5/Cell

With Ships > 5/Cell July 1982March 1982

uMseoor.eo II s.oo_eo UHS.OOTU_D s.oor._D

O,.O,_I,.,_C. IN._. CLO,_.[,.rAC. ,.A_. C_ ,.PAC.IN.A_. CLOn'_I".'AC-"-^_--
C .67 .52 .67 .77 .58 .80 C .62 .59 .66 .70 .63 .84

AVHRR B -.36 -.50 -.29 -.44 -.54 -.30 AVHIUt B -.48 -.37 -.57 -.35 -.17 -,48
S .51 .48 .42 .29 .29 .21 S .79 .93 .60 .52 .62 .37
N 795 434 267 368 210 153 N 644 320 258 274 i17 157

C .55 .30 .66 C .49 .43 .51 .78 .52 .85
HIES2 B .29 .36 .21 HIRS2 B -.07 .01 -.08 .09 ,14 .04

VERSION 2 S .31 .34 .22 VERSION2 S .69 .72 .62 .38 .39 .36
N 368 210 153 N 662 337 259 327 170 157

C .24 .37 -.OS .15 .54 -.09 HIRS2 C .52 .45 .56 .79 .45 .88
S_ B -.21 .05 -.76 -.17 .13 -.77 VEP.SIO_I2 B -.37 -.31 -.37 -.25 -.23 -.27
NIGHT S I.II .99 1.19 .79 .67 .69 I/EIGHTED S .69 .7h .61 .38 .43 .30

N 690 392 213 300 200 95 N 662 337 259 327 170 157

C .58 .57 .75 .75 C .46 .54 .32 .55 .62 .66
SF_IR/SHIP B .04 .03 .07 .07 S_fl_ B -.63 -.22 -.88 -,69 -.39 -1.07
COMPOSITE S .47 .46 .25 .25 _IGHT S .97 .87 .93 .60 .48 .51

N 638 39A 207 203 N 522 278 193 230 127 103

C .60 .50 .79 .79 C .76 .76 .86 .86
VAS B .90 .89 .91 .91 SlOW/SHIP B -.04 -.06 -.10 -.10

S .56 .52 .26 .26 S .53 .54 .27 .27
N 109 106 51 51 N 316 282 137 137

C .39 .38 .70 .70 C .49 .46 .42 .42
XBT B -.27 -.29 -.47 -.47 VAS B .48 .50 .55 .55

S .89 .91 .35 .35 S .46 .45 .22 .22
N 242 227 18 18 N 92 88 38 38

C .00 .00 .00 .00 .00 .00 C .58 .55
CLIN B .09 .27 -.O5 .13 .29 -.10 XBT B -.22 -.23

S .52 .68 .62 .35 .32 .27 S .94 .96
N 795 434 267 368 210 153 g 154 146

C .00 .00 .00 .00 .00
CLIN B .67 .26 .70 ,96 .40

S .73 .69 .63 .50 ,6h
N 338 259 336 179 157
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Experiments on the Assimilation of Patches of Data

Using a Barotroplc Model

F.H.M. Semazzl

Experiments are performed to examine the impact of adopting various

procedures in the assimilation of patches of data during the progress of a

numerical forecast. A barotropic model described by Takacs and Balgovind,

1983 is used for the experiments. The model is global and its discretization

is similar to the GLA Fourth Order GCM. The effect of orography is included
in the model.

The experimentsare of an "identicaltwin" kind. The "nature"run starts
from global fields of wind (u and v) and height (h) at 300 mb. They are real
data of January 1979 00Z which were interpolatedfrom the adjacent sigma levels
of the GLA GCM and then balancedby the boundedderivativemethod (Browning
et al., 1980, Semazzi,1985). From this initialstate a 6 day forecastis
performed. At intervalsof 3 hours this informationis saved over sectorsof
60° width in longitude,from the south pole to the north pole, to simulate
data coverageand observationalfrequencyof a polar orbiting satellite.

The initialwind field of the assimilationexperimentis constructedfrom
simple zonal averagesof the u-componentof the initialstate for the "nature"
run. The correspondingzonallyaveragedheight field is determinedfrom the
geostrophicrelationship. Every 3 hours the forecastin the assimilationexper-
iment is interruptedand data is insertedover the appropriatesector region
from the "nature"run.

The evaluation of the assimilation proccess is based on the global RMS
of the difference in height between the "nature" run and the assimilation
forecast. Fig. 1 displays the limiting case when all the three prognostic
variables, namely, u,v and h are simultaneously inserted. The two runs become
identical in about a day when the earth makes a complete rotation. Fig. 2
shows that the direct insertion of heights has only a small impact. Fig. 3
indicates that the insertion of winds only is far more effective than the
height (Fig. 2). Finally, Fig. 4 displays the impact of making geostrophic
wind correction in addition to the insertion of height. The improvement over
the results shown in Fig. 2 is dramatic.

We are presently exploring the prospect of accelerating the assimilation
by using a combination of the bounded derivative method and the estimation

theory of stochastic-dynamic systems suggested in Bengtsson et al. (1981).
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High-Latitude Filtering in a Global Grid-Point Model

Using Model Normal Modes

L. L. Takacs, I. M. Navon, and E. Kalnay

I. Introduction

The aim of hlgh-latitude filtering in the vicinity of the poles is to

avoid the excessively short time steps imposed on an explicit time-dlfferencing

scheme by linear stability due to fast moving inertla-gravlty waves near the

poles. In this paper we apply the model normal mode expansion toward the

problem of high-latitude filtering in a global shallow water model using the
same philosophy as that used by Daley (1980) for the problem for large tlmesteps

in P.E. models with explicit time integration schemes.

2. Computational Procedure

Starting from a non-l_near normal mode initialized state, we transformed

forward at each timestep n the dependent variables (u, v, h)n given to us by the
model, thus producing a normal mode coefficient set. The model used a conven-

tional explicit Matsuno tlme-integration scheme. To obtain the projection

onto the fast modes, we simply back transformed only those modes whose elgen-

frequency was greater than the maximum allowed derived from timestep considera-

tions. This produced Au, Av, and Ah, which were then subtracted from the current

fields to produce "filtered" new values of those variables. A new integration

step was then carried out.

3. Experimental results

Figs. I and 2 show difference plots after 3 days of the height and wind field

between three filtering techniques and a control run using no high-latltude filter

and a small timestep (60 seconds). The three filtering techniques are I) the norm

mode filter (NMF), 2) the prognostic field filter (UVH), and 3) the time-tendency
filter (DOT). The control run is considered as "truth" in these experiments.

From these figures we see that the NMF filter has the best simulation of

the control run, producing very little differences in high latitudes. The DOT

filter is not much worse. The UVH filter, however, shows major differences in

high latitudes and begins to spread its influence to lower latitudes as well.

4) Conclusions

A methodology has been developed in which fast-moving inertia-gravity waves

are transformed to normal mode space in order to perform a "surgical" high-
latitude filter required in global grld-polnt models. In contrast to other

high latitude filtering techniques, the new approach leaves the model's Rossby

modes intact, and is shown to best simulate a control, no-filter run.
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On the Improvement of Satellite Temperature Retrievals by

Means of Boundary Layer Models

R. Boers

A simulation study was conducted to determine whether boundary layer models

could be used to improve the accuracy of the satellite temperature retrievals

close to the earth's surface. We used the simplest type of boundary layer models

that only consider time changes in the mean boundary layer quantities such as

equivalent potential temperature and specific humidity, but neglect the details

of the turbulent structure in the interior of the layer. They can be run with

relatively few externally specified parameters: surface wind speed and divergence
rate. Extensive theoretical development of boundary layer models can be found

in the literature over the last 20 years (Tennekes, 1973, Stage and Businger,

1981 and many others). Model verification studies (Boers et el., 1984 and

others) show that under certain conditions the mean atmospheric structure can
be simulated very well.

The following process was carried out to study the impact of boundary
layer models on the retrieval accuracy.

a) A set of randomly distributed wind speed and divergence rates was

assigned to a randomly distributed set of oceanic temperature and

humidity profiles.

b) Boundary layer model runs (Stage et el., 1981) were performed on these

profiles until a stationary solution was found in boundary layer height

and temperature. These modified profiles were called the truth.

c) Brightness temperature (AMTS, HIRS) were computed for the truth and

temperature and humidity retrievals were performed using these bright-
ness temperatures.

d) Boundary layer model runs were performed on the retrievals until a

stationary solution of boundary layer parameters was obtained. The
solution was called the modified retrieval.

e) RMS errors of the retrievals and the modified retrieval with respect to

the truth were computed.

Tests included simulations whereby all externally specified parameters at

step (d) were left the same as those used in generating the "truth", and simu-

lations whereby each one was perturbed to study the influence of the uncertainty

of those parameters on the mixed layer solution. Early sensitivity tests

indicated that in order to acquire meaningful results an accurate scheme was

needed to compute the radiative sky temperature in case clouds developed at
the top of the boundary layer. We used the scheme of Harshvardhan et el. (1984)

to obtain the radiative sky temperature for both the truth and the modified

retrievals. We can draw the following conclusion from this study:

a) If wind speed and divergence rate are known exactly for computation of

the modified retrievals, the modified retrievals are more accurate than

the retrievals in representing the truth by .2° C to .8° C in the
lowest 200 mb.
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b) Typical perturbations of the wind speed by 30-60% do not significantly
affect these results.

c) Typical perturbations of divergence by 50-100% decrease the accuracy
of the modified retrieval to that of the retrieval.

d) The combined effect of b and c is of no improvement of the modified
retrieval over the retrieval.

e) We can significantly improve on the disappointing results of b and c

by selecting those cases where the truth and the modified retrieval

both contain clouds, or both contain no clouds, excluding all other
results. For these cases the modified retrieval is more accurate

than the retrieval by .4 to .6° C in the lowest 200 mb.

To illustrate some of our results we consider Figure i. The four lines

represent RMS errors in temperature of i HIRS-retrleval, 2 HIRS-modifled

retrieval, 3 AMTS-retrleval, 4 AMTS-modifled retrieval. Excluded are all non-

matching cloud - no cloud pairs in the truth and the modified retrieval.
RMS-errors of retrievals and modified retrievals are between .8 and 1.8°C.

AMTS retrievals are more accurate than the HIRS-retrievals by .2°C except close

to the surface. The modified retrievals for both HIRS and AMTS improve on the

retrievals by up to .8=C close to the surface.
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Applications of Fuzzy Clustering Techniques to Stratified by Tropopause

MSU Temperature Retrievals

By

Marie-Jeanne Munteanu and Paul Piraino

The purpose of this paper is to apply the method studied in a previous
paper (Munteanu [i]) for the three and four microwave channels which exist

on TIROS-N. The context is exactly the same as in that paper, namely, the

data used and the definition of the control experiment are identical.

In the earlier paper we used 8 channels, 3 MSU and 5 IR. The reason for

using only microwave channels in this paper is that the infrared channels used in

the previous paper are affected by clouds in the case of real data. That

study only dealt with simulated data, an idealized case.

The results of the previous paper will have to be changed in a major way

in order to be used on real data. We have applied the method of fuzzy

partitioned clustering to predict tropopause height only using microwave

information with an eye towards using it on real data under cloudy

conditions. After this, in the second stage, we have developed stratified by

tropopause regression temperature retrievals using only the three or four

microwave channels for each 40 mb range.

The data used are the 1575 radiosondes collected by N. Phyllips and their

corresponding simulated microwave brightness temperatures.

The first step in the experiment is the fuzzy partitioned clustering of
the microwave brightness temperatures. This method is a combination of standard

hard clustering and discriminant analysis. The new so called "fuzzy

partitioned clustering" uses all the generated probabilities of membership of

each pattern vector in any of the given clusters. These probabilities are
generated by dlscriminant analysis in order to locate the correct cluster.

The ultimate goal of standard discrimlnant analysis is to provide the

unique (correct) cluster to which the pattern vector belongs. That means it

takes into account only the maximum of all the generated probabilities and
discards the rest of them.

In our method we use all the probabilities and weight the regressions

generated within each cluster. These regression formulas predict the

tropopause height from the microwave brightness temperatures. With the

standard method of hard clustering and dlscriminant analysis the overall

r.m.s, error for prediction of the tropopause height is 42 mb for the summer

and 49 mb for the winter. Using fuzzy partitioned clustering the overall

r.m.s, error for prediction is 35 mb for the summer and 45 mb for the winter.

In the second step of the experiment we have stratified the microwave

regression temperature retrievals by tropopause height every 40 mb. The

control experiment is defined as in the prior paper, namely, the data is

stratified by land/ocean, summer/winter, and latitude bands.
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A table with total r.m.s, errors for the stratified microwave temperature
retrievals and the control experiment is displayed for three and four microwave

channels. Significant improvement is obtained at most of the mandatory levels
where we have satellite information using our method.

Reference:

I. Munteanu M. J., 1984: "The prediction of tropopause height from clusters of

brightness temperatures and its applications in stratified regression
temperature retrievals using microwave and infrared satellite measure-

ments", (Proceedings of the Workshop on Advances in Remote Sensing
Retrieval Methods, Williamsburg Nov.), submitted for publication at JCAM.

Comparison of R.M.S Retrieved Temperature Errors Stratified by Tropopause

Pressure Control Stratified Control Stratified

Experiment Regression Experiment Regression

4 MSU 4 MSU (40 mb) 3 MSU 3 MSU (40 mb)

30 mb 2.12 1.74 2.11 1.78

50 mb 2.21 1.55 2.23 1.63

70 mb 2.02 1.51 2.09 1.55

I00 mb 1.94 1.65 1.92 1.69

150 mb 2.25 1.60 2.41 1.73

200 mb 3.00 2.74 3.13 2.77

250 mb 2.69 2.52 2.77 2.60

300 mb 2.69 2.21 2.76 2.26

400 mb 2.91 2.25 2.90 2.25

500 mb 2.75 2.43 2.73 2.43

700 mb 2.35 2.10 2.51 2.51

850 mb 3.28 3.14 3.33 3.14

I000 mb 2.84 2.92 3.73 3.33

Total 2.57 2.19 2.70 2.35

I
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Applications of Fuzzy Set Theory to Satellite Soundings

Marie - Jeanne Munteanu

Cao Hongxing and Chen Guofan have used fuzzy partitions based on

imprecise relations to partition weather processes [I]. These authors have

applied the principles of fuzzy similiarity to the partition of daily
circulation processes during winter-spring of 1972.

The objective of their study has been to group all circulations into
different patterns that possess clear features in order to provide a basis

for weather forecasting based on principles of fuzzy relations and cluster
analysis.

The purpose of this paper is to propose, first, the introduction of an

appropriate fuzzy setting for satellite soundings and then, with this setting
in mind, to apply it to clustering methods via unimodal fuzzy sets in the

future. Methods of hard clustering analysis and fuzzy partitioned clustering

have been applied by the author on simulated data with very encouraging
results [3].

The new methodology proposed here is meant to apply to real data.

We will start with a discussion of the clustering technique proposed. The

notion of a unimodal fuzzy set has been chosen to represent the partition of a
data set for two reasons. First, it is capable of detecting all the locations

in the vector space where there exist highly concentrated clusters of points,
since these will appear as modes according to some measure of "cohesiveness."

Second, the notion is general enough to represent clusters that exhibit quite
general distributions of points.

The technique is optimal in the sense that it detects all of the existing
unimodal fuzzy sets and realizes the maximum separation among them. It is

economical in memory space and computational time requirements and also detects

groups that are fairly generally distributed in the feature space. The
algorithm is a systematic procedure instead of iterative in nature. Most

of the other algorithms are not capable of detecting categories with com-

plicated distributions in the feature space and a great many are not appli-
cable to large data sets.

An important distinction between the clustering unimodal fuzzy algorithm
and other clustering algorithms is that the latter use a distance measure

as the only means of clustering. In [2] Gitman and Levlne have

introduced another "dimension", the dimension of the order of importance

of every point, as an aid in the clustering process. This is accomplished

by associating with every point in the set a grade of membership or charac-

teristic value. Thus, the order of the points according to their grade of
membership as well as their order according to distance are used in the

technique. The order of importance is introduced via the grade of member-

ship notion which, in turn, is introduced via the fuzzy set setting.
This latter partitions the sample from a multimodal fuzzy set into unimodal

fuzzy sets. This is a very important step since any inversion method will
perform considerably better once we divide the multimodal data sets into
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ones that are unimodal in nature. The motivation behind this new methodo-

logy is the fact that our satellite data as well as our ultimate goal, the

set of temperature profiles, are multimodal in nature.

Now we will present the fuzzy sets setting which we propose for the

satellite soundings, a setting which has merits by itself and which will

also provide the context for the unimodal fuzzy clustering method proposed.

Fuzzy Sets

The theory of fuzzy sets has been invented with the idea of introducing
a multivalued logic which could possibly simulate some processes of the

human brain. It is well known that the human brain performs much better

than any computer in the world in the field of pattern recognition (and
many other subtle qualitative decision-making processes).

Experts in artificial intelligence have only begun to use fuzzy sets.

This context seems appropriate for satellite sounding because of the nature

of the information being associated with a specific weighting function.

Consider the weighting functions as membership functions and form
pairs of the soundings and their corresponding membership functions. There

are two very interesting cases. First, take the satellite information

at the peak of the weighting functions or as representing the information

at the peak of the weighting fuctions. In terms of fuzzy sets this repre-

sents reducing or approximating the weighting function by one point, namely

its peak. The second important case is the mean layer case. We take
slices of the weighting functions contained within the layer. There it is

possible to define how to extract the optimal information within a layer

as well as intermediary steps of approximations. In this way we can define
maximum information within a layer and eliminate redundancy by the nature of

operations in the fuzzy sets context.

This new context has the potential of providing solutions for the optimal

distribution of channels in order to solve important structure of the tempera-

ture profile and optimal ways of scanning given certain constraints. For this,

methods of optimization theory (among them dynamic programming) should be used.

For the first case, when information from a given channel is considered

at one point, classification of sounding data has been proposed with hard clus-

tering and fuzzy partitioned clustering on simulated data. These techniques
have been the object of two papers published by the author in the Williamsburg

1984 proceedings.

Further generalizations

If we consider the N-tuple element containing the satellite measurements

from one given channel and its varying membership function (with the angle,

the angle time, and any other important quantities) in the general context

of distributive lattices, then we can define different optimal methods of
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extracting information from our satellite data.

For these more complicated assumptions we have to generalize fuzzy

sets theory to fit our needs while keeping the same basic assumptions.

Specifically, we have to consider fuzzy sets in the framework of distributive

lattices. Once the optimal information is derived from satellite data,

different methods of inversion could be applied. We also can have an

estimate of the error by taking different degrees of approximation of the

given satellite data.

Another important point is that combining data optimally could lead to

new inversion methods. For example, if we take besides the satellite

data, its membership function as a function of angle and the angle itself we can

conceive an arrangement of data containing optimal information leading

naturally to the use of the computerized tomography method (used by H. Flemming).

One new important approach would be to arrange data optimally for

different two dimensional retrievals. We may take information at grid points

or along a satellite track.

In more dimensions we may have a two dimensional field such as total ozone

which, for example, we want to integrate in the general scheme as a constraint.

Taking such surface constraints would represent an optimal approximation in

three dimensions while taking information at a point would represent a minimal

approximation. Taking data along satellite tracks or other curves in

space would be an intermediate approximation for a three-dimenslonal solution.

In the last part of the abstract a few definitions of fuzzy sets theory

are presented.

The theory of fuzzy sets

By fuzziness we mean a type of imprecision which is associated with
indistinct sets, that is, classes in which there are no sharp boundaries and

no sharp distinction between membership and nonmembership.

Definition: Let X = {x} denote a collection of objects (points) x. Then a

fuzzy set A in X is a set of ordered pairs

A = {(x,pA (x)): x € X}

where PA(X) is termed the grade of membership of x in A and PA: X . M is a
function from X to a space M called the membership space.

The choice of M

I. We can assume M as the interval [0,I] with 0 and I representing respectively

the lowest and the highest grades of membership.

2. More generally, M can be a partially ordered set or more particularly a
lattice (which has a maximal and minimal element).
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Thus our basic assumption is that a fuzzy set, despite the unsharpness

of its boundaries, can be defined precisely by associating with each object x

a number between 0 and i which represents its grade of membership in A.

Definitions

Normality: A fuzzy set A is normal iff

Supx _A(X) = I.

Equality: Two fuzzy sets A and B are equal iff BA = BB that is

_A(X) = _B(X)

for all x £ X.

Containment: A fuzzy set A is contained in or is a subset of a fuzzy set B,

A C B iff

BA ! BB.

Complementation: A' is said to be the complement of A iff

BA' = 1 - BA"

Intersection: AOB is said to be the intersection of A and B iff

_AO B (x) = Min(BA(X), _B(X))

for all x £ X.

Union: A i_ B is said to be the union of A and B iff

_AUB (x) = Max (_A(X), _B(X))

for all x _ X.

Union and intersection are associative, they distribute over each other and

satisfy De Morgan's laws. It is easy to verify that

_A'UB' = U(AOB)'

_A'OB' = _(AUB)'
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Algebraic Product :

AB is said to be the algebraic product of A and B iff

_AB(X) = VA(X) • BB(X)

for all x s X.

Algebraic Sum:

A + B is said to be the algebraic sum of A and B iff

,_A+B(X) = _A(X)+ liB(X) - _A(X) • _B(X)

for all x E X.

The algebraic sum and product are associative, but do not distribute over

each other. They satisfy a form of De Morgan's laws. It is easy to verify

(A + B)' = (A'B')'.

The fuzzy sets as described here as well as the unimodal fuzzy clustering

are introduced with an eye towards developing an expert system for the
processing and interpretation of real satellite data.
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Applications of Some Artificial Intelligence Methods to Satellite Soundings

Marle-Jeanne Munteanu and Oleg Jakubowicz

In this paper we continue the research started in a previous paper

Munteanu et. al.[l] The new element is the use of fuzzy partitioned clustering
instead of hard clustering for temperature profiles.

We use exactly the same setting, namely, 1575 radiosondes collected by
N. Phyllips and the corresponding simulated satellite measurements. The control

experiment is formulated in exactly the same way, namely, the usual concept of

regression used by NMC based on stratification by land, ocean, summer, winter
and latitude bands.

In the first paper we used hard clustering of temperature profiles and
discriminant analysis to locate the correct cluster from satellite measurements.

In the second step we developed regression temperature retrievals within

each cluster and compared the total r.m.s, errors against the control experiment.

Excellent results have been obtained, namely, improvements of more than I°
appeared at all of the manda[ory levels where we had satellite information.

In this paper our aim was to refine this method using the probabilities
of membership of each pattern vector in each of the clusters derived with

discriminant analysis.

In hard clustering one takes the maximum probability and considers the

corresponding cluster as the correct cluster discarding the rest of the

probabilities. In fuzzy partitioned clustering we keep these probabilities and

the final regression retrieval is a weighted regression retrieval of several

clusters. We have used this method in the clustering of brightness temperatures
where the purpose was to predict tropopause height. (See [2]).

This is only the first step towards a fuzzy clustering where we minimize
more qualitative functionals than just the euclidean distance. A further

refinement in this work is the division of temperature profiles into three major
regions for classification purposes.

The results are summarized in the tables where we display total r.m.s, errors.

It seems that an approach based on fuzzy logic which is intimately related

to artificial intelligence methods holds promise. Larger improvements than in
the case of hard clustering are obtained at most of the levels.
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Comparison of RMS Temperature Retrievals (Summer) 5IR & 3 MSU

Pressure Control Clusters of Fuzzy Partitioned
Experiment Temperature Clusters of

Temperatures

30 mb 2.00 1.92 1.90

50 mb 1.88 1.76 1.69

70 mb 1.69 1.59 1.39

I00 mb 1.66 1.52 1.41

150 mb 1.93 1.69 1.40

200 mb 2.51 1.87 1.68

250 mb 2.36 1.80 1.59

300 mb 2.03 1.59 1.39

400 mb 1.80 1.37 1.24

500 mb 1.63 1.28 1.09

700 mb 1.84 1.51 1.39

850 mb 2.29 1.86 1.85

I000 mb 2.29 2.16 2.16

Figure 1

COmparisonof RMS TemperatureRetrievals (Winter) 51R & 3 MSU

Pressure Control Clusters of Fuzzy Partitioned
Experiment Temperature Clusters of

Temperatures

30 mb 4.71 4.19 4.09

50 mb 2.88 2.43 2.35

70 mb 1.89 1.74 1.70

100 mb 2.31 1.94 1.89

150 mb 2.15 1.97 1.88

200 mb 2.36 2.16 1.70

250 mb 2.43 1.86 1.80

300 mb 2.53 1.81 1.69

400 mb 2.40 1.73 1.51

500 mb 2.62 1.77 1.63

700 mb 2.57 1.86 1.69

850 mb 2.75 2.18 2.01

1000 mb 2.72 2.30 2.10

Figure 2
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C. ANALYSIS AND FORECAST MODEL DEVELOPMENT





A Factored Implicit Scheme for Numerical Weather
Prediction with Small Factorization Error

J. M. Augenbaum, S. E. Cohn I, and D. Marchesin 2

The time step used in current models for integrating the global baroclinic

primitive equations is limited by the Courant-Friedrich-Lewy (CFL) stability

criterion. In schemes based on explicit time discretization, for example,
whether finite-difference, pseudospectral or finite element in space, the time

step cannot exceed the quotient of the smallest spatial interval and the maximum

phase speed. This is a severe restriction first of all because the fastest

waves propagate roughly ten times faster then the waves which carry most of

the atmosphere's synoptic scale energy. Second, on a uniform latitude-longitude

grid the mesh spacing becomes very small near the poles. As a consequence the
time discretization error of explicit schemes is much smaller than the spatial

discretization error, especially in middle and low latitudes.

By using a scheme with more desirable stability properties, it is

possible to increase the time step without effecting overall forecast accuracy,

thereby increasing computational efficiency. Recently, Cohn et al. (1985) have

introduced a fully implicit scheme for the barotropic primitive equations based

on the work of Beam and Warming (hereafter referred to as B-W). The B-W scheme

is unconditionally linearly stable and allows use of a large time step, whose
size is determined solely by accuracy requirements. The method is based on a

spatial factorization of the implicit operator into one-dimensional operators,

and yields second order accuracy in time and fourth order accuracy in space.

The scheme is efficient because it only requires the solution of one-dimensional

block-tridiagonal linear systems. In an effort to analyze the accuracy of the B-W

scheme, for meteorological applications, we have carried out an analysis of the

factorization error for a linear shallow water system on a tangent plane. By

discretizing the equations o_ly in the time domain, while assuming a spatial
variation of the form Wn'= W_ei( kx + ly) we can derive analytic expressions

for the amplification matrix, F(k,l), in terms of the wave number (k,l) i.e.

 n+1=F(k,l)

The eigenvalues of F, for a given set of wave numbers, can then be used to find

amplitudes and periods of the various wave components of the solution. This

method can also be used to find the periods and amplitudes of the various modes

for the unfactored Crank-Nicolson scheme (referred to as C-N) and, with a slight

modification, the continuous (true) solution (referred to as CONT).

Numerical results (presented in table I) show that, for large time steps,

the factorization error can be significant, even for the slowly propagating

Rossby modes. We have formulated a new scheme based on a more accurate

factorization of the equations. By grouping separately the terms of the

equations which give rise to the fast and slow motion, the equations are factored

1 Courant Institute of Mathematical Sciences, New York University

New York, N.Y. 10012

2 Department of Mathematics, Pontificia Universidade Cat_lica do Rio de

Janiero, Rio de Janeiro-RJ, CEP22453, Brazil

43



in a more accurate way. The fast-slow factorization completely eliminates the
factorization error. If each of the fast and slow factors are now factored

again, this time according to spatial components, the resulting scheme only

involves the solution of one-dimensional linear systems, and is computationally
efficient. We have shown that the factorization error for the slow mode

component of the solution is negligible for this new scheme (which we refer to
as F-S).

In table 1 we present a comparison of several implicit schemes (including

the semi-implicit scheme, which we refer to as SIMP) for a Rossby wave with
wavenumber 16,8 in x,y directions.

The results of table 1 show that the fast-slow scheme is accurate, even
for large time steps, for middle and low latitudes.

We are currently conducting numerical experiments to compare the various
schemes for the full nonlinear barotropic shallow water equations.

Table 1

Period (in hours) for the Rossby wave component of a 16 x 8 wave with

At = 30, 60, 120 min. at lat 0 = 0 °, 45 °.

Lat = 0° Lat = 45 °

At(min)

30 60 120 30 60 120
scheme

CONT 27.82 27.82 27.82 20.90 20.90 20.90

C-N 27.85 27.94 28.30 20.94 21.08 21.59

B-W 30.70 39.35 74.01 23.60 31.73 64.43

F-S 27.84 27.89 28.07 20.93 21.01 21.33

SIMP 27.76 27.58 26.81 20.81 20.53 19.25
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Comparison of Optimum Interpolation and Cressman Analyses

W. E. Baker, S. C. Bloom, and M. S. Nestler

The objective of this investigation is to develop a state-of-the art

optimum interpolation (0/I) objective analysis procedure for use in numerical

weather prediction studies. A three-dimensional multivariate 0/I analysis
scheme has been developed for the purpose. Some characteristics of the GLAS

0/I compared with those of the NMC and ECMWF systems are summarized in Table

I. Some recent enhancements of the GLAS scheme include a univariate analysis
of water vapor mixing ratio, a geographically dependent model prediction error

correlation function and a multivariate oceanic surface analysis (Bloom et al.,
1984).

Figure i compares the 24 h and 48 h forecasts from 0000 GMT 13 January 1979
initial conditions provided by the 0/I analysis scheme with forecasts from a

successive correction method (SCM) of analysis developed earlier. As may be

seen in Fig. i, the forecast of the intensity and position of the cyclone which

moves northeastward across the United States as well as the ridging which follows,
is more accurate with the 0/I than with the SCM.

Future work includes completing vectorization of the 0/I on the Cyber 205,
a detailed comparison with the SCM, real and simulated data impact studies and
experiments with normal mode initialization.
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TABLE i. Characteristics of the GLAS Ol compared with those of other systems.

SALIENT GLAS NMC EC_WF
FEATURES

APPROACH 3-D; MULTIVARIAIEIN Z,U,V 3-D; MULTIVARIATEIN Z,U,V 3-D; MULTIVARIATEIN Z,U,V
UNIVARIATEIN W UNIVARIAIEIN RH UNIVARIATEIN Q

RESOLUTION 18 LEVELS;q° x _-5_(2-D) 125£EVELS;.- 3.15° UPPER AIR, 15 LEVELS;1.875°12 LEVELS;4° x (3-D) 2 SURFACE

AUTOCORRELATION DAMPEDCOSINEFORZ GAUSSIAN BESSEL
FUNCTION DAMPEDEXPONENTIALFORW

CROSS- GEOSTROPHIC(SCALEDTO O.O SAME SAmE
._- CURRELATION AT EQUATOR)
_' MODEL

ASSUMPTIONOF Z (YES)_U,V (NO) SAME SAME
ISOTROPY

GEOGRAPHICALLY YES NO YES (LATITUDINALLY
DEPENDENT_ DEPENDENT)

MULTIVARIATE YES (EKMANBALANCE) YES (GEOSTROPHIC} YES (GEOSTROPHICAT
SURFACEANALYSIS 1000 MB)



SCM Oil Observed-14 January

24 h
Fcst

_'- SCM 0/I Observed-15January...j

48 h
Fcst

Fig. i. Ol and SCM forecasts from 0000 GMT 13 January 1979.



Derivation of Model Topography

R. C. Balgovind

In the GLA Fourth-Order model it is necessary to represent the topography.

In doing so one has to address the problem of the representation of the topography
at grid points. Topographies we prepared were for the 4° x 5° and 2° x 2.5 °

forecast models. The tabulated source data came from the Navy Fleet Numerical

Oceanography Center at Monterey. This source has the global elevation given

at every I0 minutes in latitude and longitude. The accompanying figures show
six examples of different topographys [01, SI, $23, S3, Q3 and TI] for the
4° x 5° model derived from the source data.

We first attempted to derive an envelope topography. An example of this

is the Tlobtained by taking local mean plus one standard deviation at each

grid point and sigma filtering it. We found this method to be greatly influenced
by large standard deviations at steep mountains.

The Ol topography is just the local mean. The Slls obtained by Sigma*

filtering in both latitude and longitude the mean 01. S21s when the operation

is applied twice and $3 thrice. Q31s the sigma filtered local mean of the
upper third quantile of the source data - that is the mean of the one third of

the largest source data.

Presently experiments are underway to determine which is the best topography
for the Fourth-Order model. Preliminary results indicate a close contest between
Q3 and SI.

* For Sigma Fllter see paper by that name in this review.
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Sigma Filter

R. C. Balgovind

In deriving the topography for the GLA Fourth-Order model we needed to

smooth the topography. This is in order to remove the Gibbs phenomenon. The
Gibbs phenomenon occurs whenever we truncate a Fourier Series.

Sigma filtering is smoothing using Sigma factors. Cornelius Lanczos (1966)

introduced the Sigma factors for the purpose of reducing the Gibbs phenomenon.
The idea is that for a given Fourier Series

N

fN(t) = ao/2 + _ [ak cos kt + bk sin kt]
k=l

we apply the averaging operator

t + t/N

N f fN (x)dx
2_ t - t/N

The result of this is a smooth field

a°=--+ ok [ak coskt + bksinkt]
fn(t) 2 k=l

where

FI k = 0

sin(k_)
ok = - N otherwise

k_/N

0 k=N

That is the smooth Fourier series is nothing but the orginal Fourier series

with its coefficients multiplied by corresponding sigma factors.

This operator can be applied many times to obtain high order sigma filtered
field and is easily applicable using FFT. We found this filter beneficial in

deriving the topography.

Reference

Lanczos, C., 1966: Discourse on Fourier Series, Hafner Publishing, New York.

5O



Recent Developments in Nonlinear Normal Mode Initialization

S. Bloom

In order to assess the importance of a balanced initial condition upon GLAS

GCM forecasts and assimilation cycles, an effort to combine previous work on
normal mode initilization at GLA (Bloom, 1982, 1983; Navon et al., 1983) is

currently underway with the goal of developing an initialization process for

the production version of the GLAS 4th order GCM. The major aspects of this

work fall into two parts: vectorization of the linear projector code (Bloom,

1983), and the insertion of the mode projector and Machenhauer iteration algorithm
into the full GLAS GCM.

Memory and paging constraints place restrictions on the number of horizontal

modes stored for initialization purposes, as well as on the manner in which they
are Stored. Only the first five vertical structures of the gravity modes are

used; these account for only 40% of the total set of the model's normal modes.

One source of difficulty encountered in moving the projector code to the CYBER

205 lay in the use of different FFT packages on the two machines (NCAR on the
Amdahl, Temperton on the Cyber). Differing phase and normalization conventions

provided many elusive coding errors.

For the preliminary studies, a Machenhauer nonlinear normal mode initializa-

tion technique (Williamson and Temperton, 1981) is used. This method entails

the insertion of a modified version of the mode projector into the full GCM,

and the modification of the GCM to allow for iterative calls to the projector.
The main difficulties encountered with inserting the projector code have been

in obtaining the correct communication among the various model and projector

commons, and in performing the update to the correct variables within the

projector. The GCM is integrated for one time step in order to estimate the

time tendencies of the 'fast' gravity mode coefficients; however proper care

must be taken to save the original set of fields since the 'slow' coefficients

are never computed. If the original fields are not saved, the iterative process

diverges. This result is due to the 'slow' coefficients evolving in time away

from the adjusted 'fast' coefficients; the resulting unbalanced fields quickly

develop unrealistic winds. The GLAS GCM also has a special treatment of the

fields at the poles (using subroutines POLINP and POLOUT); if this is ignored

during the iterations, wildly unrealistic winds and pressures ensue. Finally,

if a timestep is chosen too small (for the model integration to estimate time

tendencies), then truncation error will cause the iterations to diverge.

The initialization process is still undergoing testing. Preliminary

results do show the Machenhauer process to be convergent over 4 iterations if

only the external vertical structure is initialized. However, tests initializing

the first two vertical structures diverge after the second iteration. Currently,
a shallow water version of the GCM (the same one as used in Navon et al., 1983)

is being used to test various parts of the initialization algorithm.

51



References

Bloom, S. C., 1983: NormalModes of the GLAS 4th Order Model. ResearchReview
- 1982, NASA Tech. Memo. 84983, 99-103.

Bloom, S. C., 1984: Design of a Linear Projectorfor Use with the NormalModes
of the GLAS 4th Order GCM. ResearchReview - 1983, NASA Tech. Memo. 86053,
101-105.

Navon, I. M., S. Bloom and L. Takacs, 1984: ComputationalAspectsof the
NonlinearNormalMode Initializationof the GLAS 4th Order GCM. Research
Review - 1983, NASA Tech. Memo. 86053, 106-112.

Willlamson,D. L., and C. Temperton,1981: Normal Mode Initializationfor the
MultilevelGrld-PolntModel. Part II: NonlinearAspects. Mon. Wea. Rev.,
109, 744-757.

52



Comparison of Two Orographical Data Sets for the GLAS Fourth Order GCM

H. M. Helfand, R. Balgovind, R. Dlouhy, J. Pfaendtner

The development of a 2° latitude by 2.5 ° longitude version of the GLAS

Fourth Order General Circulation Model has necessitated the specification of a

correspondingly fine horizontal resolution orographic data set to act as a lower

boundary condition for the GCM. Elsewhere in this volume, R. Balgovind has

described the development of two such fine resolution orographic data sets

which he has labeled the SI and the Q3 topographies. These differ from one

another primarily in their respective height specifications over rugged terrain.

The SI topography attempts to relate the mean areally-averged height of such

terrain while the Q3 topography emphasizes the effect of the flow of the tallest

peaks in such regions by specifying an exaggerated "significant height" as

described by Balgovind.

In order to assess the relative merits of these two orographlc data sets,

we have initiated a series of tests to evaluate the comparative weather forecasting
and climate simulation skills of the GLAS Fourth Order GCM when the SI and Q3

topographies are applied to the lower boundary. These tests were carried out at
both 2° x 2.5 ° and 4° x 5° horizontal resolutions.

Three sets of Northern Hemispheric winter forecasts at the 2° x 2.5 =

resolution indicate that the Q3 topography gives slightly better results over

the Northern Hemisphere than does the SI topography. The improvement did not

occur until after 4 days for Skill Score i and after 2 to 3 days for root mean

square error. Fig. i illustrates a typical example of this improvement. There

were no significant trends for forecasts over the Southern Hemisphere on tropical

regions. No forecasts were available at this resolution for the summer season.

The results of the 4° x 5° forecasts were mixed. For the first 3 to 4 days,

sea level pressure forecasts for the Northern Hemisphere were better with the
Q3 topography for a period of time. After this time, there were no consistent
trends.

In the Southern Hemisphere, forecasts with the Q3 topography were slightly

better than those with SI topography but not until after 3 to 6 days. In the

tropics, a June forecast was substantially better with the SI topography while

the (Northern Hemisphere) winter forecasts favored the Q3 topography at sea
level and were mixed at 500 mb.

It is apparent that more forecasts will be necesary at both horizontal

resolutions before any definitive conclusions can be made regarding the choice
of an optimal orographic data set.

53



-v- .... i t I I I I , _ .............................._. _I , . , -r
; ........:!............:L{-; ........i............]...............1_._i_..1_1.............!.........................t.......................r........... -l...l_
............[..............I...........!...........l............"_...........[_""l ........._.]..........Y'"_ -""_'j"'I-'___[V'"I_]'_'" :: ...........--r---]..........................t!.......................................................... 4.-..... -_-.-_-_. --.4--1.........................i.......................--...41.............................!:.I..............

..............I...........1.............._.............I..............I...............I.............._:._! .............._..............I............._.............. i _ I l

•o_-I--V-b_K-+:J .....{.... :i,..............i...................l.............I..............!.................I...............
.............F-I__ZZ[ ............__ .........._ "l__..:..i.......L-.LT..T..F--!--f-_]_ I=-F-]---_I --F--F1--I"_............l....._-__-.-_.'........-- ZT..-..I._..z.I.T:...-.......!............. ,,L__.....L_.#__L..L__£I....___"__!:.__-L::_""

.........•........................._............................,.............................• .....1......................,.............................,...........................,............. ! :$Z.-.._.IT.t.Z:::L:::.- I l..-, I T- T _ i i _ o

..............,...........................i......................................................,---,..........i....................i..................., _:_F:::?::_:_:_:F-.t:, f.............._..........................._'.....:........
o o i

0 I I _ _ 8 7 8 i |0 l| 12 13 14 0 I 2 3 4 _ ! ? m g I0 II 12 13 14
DAY DAY

_TFEI N I"IEHI,,T_Pt'I_II__.I-I
i

_.__L_?__ .............!............_ _ . • .. , .............;.--_;<z.r-m ..........t..............I.............t.............
140 i ..... : ....

............'...........T............................,..........................................ii .t ......-t-. .....-'-._--r--_--r--....t...._--
1] ,,o , i ......_..... "°- - T __ ........I-"---I............I.............I............]..............

, ".............i............. 3: Z: -H..T._--_--T:-';__ ,--I-T--]
i ! I i :............".........................._...........................i..............................!.............:, ,--; .........,...... 'oo .........

""............._.........................i..........................,..............---i--__...._........._..... ____::---i----F:i_.........I_.............i..........1..............i............i".......... ,.. , .....__,...................,.............................1... ...........i....................i.........................i.............I............i.............

'°=__"?'-'--_=::_ i - ...........t-...t..............i..............l-..........!.............,.............i..........."°__:-_:_:.--..:-- -_........._-- "°'__...._.......T.....-.-_--r-_.........._--............. '..........................."............ "............I"-"'-'I............i............I-...................................._.............i_ _l .i_ I I

0 I ! 3 4 : O ? e "R I0 II I1 13 14 0 I ! 3 4 : O _ O O I0 II 12 13 14
DAY OAY

Dotted = 2° x 2.5 ° with SI topography Fig. i Forecast skill for the Northern Hemisphere

Ticked = 2° x 2.5 ° with Q3 topography for a forecast beginning on Jan. 5, 1979.
Dashed = 4° x 5° with S1 topography The top panels represent sea level pressure
Heavy = 4° x 5° with Q3 topography scores, while the bottom panels represent
Solid = 4 ° x 5° with old topography 500 mb heights. Skill score 1 is shown

in the left panels, and root mean square
error on the right.

i



Development and Testing of the Variable
Vertical Resolution Fourth Order GCM

H. M. Helfand, R. Dlouhy, J. Pfaendtner, L. L. Takacs

The vertical coordinate of the Fourth Order Model has been generalized so

that the model can now run with an arbitrary number of vertical layers and so

that the thicknesses of these layers can be arbitrarily specified (in the e-

coordinate). This Variable Vertical Resolution (VVR) version of the Fourth

Order Model will soon replace the current production model although it will

probably still be run with 9 equally spaced layers when used for production

purposes.

In addition to the generalization of vertical interpolation and quadrature

calculation and of vertical array dimensioning, the VVR model contains the

following changes:

i) The strapping scheme for cumulus convection has been generalized from

the current 2-2-2 scheme to a three-layer scheme whose strapping para-

meters can be arbitrarily specified through namellst parameters.

ii) The redistribution of convective heating is now specified by a con-

serving quadratic interpolation scheme and the scheme for the redistri-

bution of convection moistening has been generalized.

iii) A relative humidity criterion for the onset of cumulus convection

(Helfand, 1981) has been specified as a namelist option.

iv) Subroutine COMP3 has been fully modularized for ease of testing and

development of new physical parameterization schemes.

v) The computation of large-scale precipitation has been improved by

limiting the evaporation of falling rainwater to the amount which can

be held by the receiving atmospheric layer as is computed by linear-

ization about the state of that layer before such evaporation occurs.

vi) Optical thicknesses of clouds are computed to reflect changes in the

vertical grid and in the strapping parameters for convective clouds.

vii) Planetary Boundary Layer (PBL) parameters are computed in the basis

of the depth of the lowest model layer.

Presently physical parameterization schemes are being developed so that the

vertical structure of the PBL can be explicitly resolved in the VVR model but this

work is currently to be regarded only as experimental.

To assess the skill of the VVR model, it has been run with 9 equally spaced

layers and compared with the current production model. In two Northern Hemis-

pheric winter cases and one summer case, the two models were virtually identical

in forecast skill for 6 to 7 days. After that the VVR model was slightly better

in the winter cases and the production model was slightly better in the summer

case. The only exception to this was that after 2 days the production model

gave slightly more skillful 500 mb forecasts in the tropics for the summer case.
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Surprisingly, there were substantial differences in the climatologies

produced by the two models. The mean January 500 mb height fields for simula-

tions initialized at OZ, 15 December 1978, for example (see figure i), were

markedly different in the location and shape of a North Atlantic ridge, in the

location of a trough over central Europe, in the shape and westward extent of

the Siberian low, and in the zonality of the Southern Hemispheric and mid-lati-
tude westerlies.

The simulation by the VVR model seems to be more in accord with mean

observations for January 1979 which suggests that the VVR model might give better

extended range weather forecasts. The simulation by the production model, on

the other hand, appears to be in better agreement with the climatological mean

with the exception of European trough. Obviously, the comparison of the two

models warrants further study.
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Parameterization of Surface Fluxes

in the VVR Fourth Order GCM

H. M. Helfand

The Variable Vertical Resolution (VVR) option of the GLAS Fourth Order GCM

(described elsewhere in this volume as well as in the 1980/81 Research Review)

allows one to enhance the vertical resolution of the region of the atmosphere

adjacent to the earth's surface. This, in turn, makes it possible to compute

turbulent suface fluxes of heat, momentum and moisture directly from the prog-
nosticated properties of the lowest model layer by use of the Monln-Obukhov

surface layer similarity theory. However, one must be extremely cautious in

doing so, for the similarity theory applies formally only to the "constant

flux" surface layer which is but a few tens of meters deep. It is not practically

feasible to work with a lowest GCM layer thin enough to satisfy these formal
constraints.

It is fortuitous that, at least under conditions of neutral stratification,

the similarity theory can be extended beyond its formal limits. Panofsky (1973)

points out that, because of the cancellation of opposing effects (decreasing

stress and less-than-linearly increasing mixing length), the theory still gives

reasonable looking results, when the distance from the ground becomes as large
as 150 m.

It is not infeasible to run the VVR model with a lowest layer thickness

on the order of 300 m (the center of the layer would then be 150 m above the

earth's surface), and so if one can prescribe similarity functions _m(_) and

_h(_) to adequately describe the entire "extended surface layer", the problem
of surface flux parameterization is solved.

For small values of I_I, the similarity functions should approach the

behavior of the similarity functions of conventional surface layers such as

those of Businger et al. (1971):

_m(_) = _(II- Vm_)-I/4+,_ _<0_<0

(1)

= _-J(i - yh_ )-1/2_ _ <__0

+ Ch_ _ < 0

As I_I becomes large, @m and @h should exhibit the appropriate asymptotic
behavior. For the unstable case _ < 0, this behavior is

@m,h(_ ) ~ _-I13 . (2)

For the stable case _ > 0, Clarke's (1970) mean stable case for the Wangara

Experiment suggests the asymptotic form
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@m,h(g ) ~ g-1 . (3)

To interpolate between the limits (I) and (2), the similarity functions
for the unstable case _ < 0 have been taken as the solutions to

@m4 - ym_@m 3 = i

_h2 - yh_@h 3 = 1 • (4)

For the stable case _ > 0, the similarity fuctions are

I + am, h gl

_m'h(g) = 1 + _m,hg (I + 0_n,h_I) (5)

where

,

gl = min (gl, _m,h) •

Thus (5) interpolates between (I) and (3).

For the stable case, --_m,h(g) can be integrated directly, while for the

unstable case, the integrals can be integrated in terms of the solutions of (4)

which can be solved, in turn, through mathematical iteration. The momentum and

heat transfer coefficients so obtained are shown in Fig. I. Note that they

approach the solutions of Businger et al. (1971) for small IRibl. For
Rib . -_ one has

CH = CuCT ~ Ribl/2

which gives the proper asymptotic limit

w0s = CH U AO ~ AO3/2 .

For Ri b . = the surface fluxes remain positive which correctly reflects

the facts that the Richardson number remains subcritical in an increasingly

narrower neighborhood of the earth's surface.
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this volume. The inset shows the behavior of the curves on an expanded

Richardson number scale about the neutral case Ri b = 0.
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Specificationof SurfaceRoughness

Over Oceans in the GLAS Fourth Order GCM

H. M. Helfand

The surface roughness height z0 is a parameter which measures the
effect of surface irregularities on the mean profiles which occur in the

atmospheric surface layer. Over land surfaces, z0 is a function of soil
composition, plant canopy type and distribution and other factors such as

buildings and structures. Over open water, z0 depends only on the
distribution of waves, wavelets and other surface irregularities. These,

in turn, are thought to be determined by the mean wind within the surface
layer.

Large and Pond (1981) have derived an empirical relationship

between the mean wind speed UIO at the ten meter level over open water

and the neutral drag coefficient CDN Their relationship covers the range

UI0 _ 2 ms-I.

Earlier, Kondo (1975) had computed a relationship between UI0
and CDN on the basis of laboratory observations which extended down to

the range of infinitely small wind speeds. Fig. I is an interpretation

between the relationships of Large and Pond for large wind speed and of
Kondo for small wind speed.

One can convert the relationship of Fig. 1 to the relationship
between the wind stress velocity

i12
u,= CDN UI0

and the surface roughness length zO. This has been done for the Monin -

Obukhov surface flux scheme in the GLAS Model so that z0 can be expressed
as

_ AI
z0 - -- + A2 + A3 u + A4 u,2 + A5 u 3U * * '

Where the Ai are defined separately over three separate domains of u .
The function (I) is shown in Fig. 2. *
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Development of an Optimum Interpolation Analysis Method for the CYBER 205

M. Nestler, J. Woollen, and Y. Brin

The GLA optimum interpolation (01) analysis method is a state-of-the-art

technique to assimilate the diverse observational database obtained during FGGE,
and thus create initial conditions for numerical forecasts. The Ol analyzes

pressure, winds, and temperature at sea level, mixing ratio at six mandatory

pressure levels up to 300 mb, and heights and winds at twelve levels up to 50 mb.

Conversion to the CYBER 205 required a major re-write of the Amdahl Ol

code to take advantage of the CYBER vector processing capabilities. Structured

programming methods were used to write the programs and this has resulted in a

modular, understandable code. We note here that the conversion effort is

continuing at the time of this writing.

We have included some degree of flexibility in the vector code in anticipation

of future experiments with the analysis. The options available include:

i) variable horizontal resolution (4° x 5°, 2° x 2.5 °)

2) variable vertical resolution (12 or 18 levels)

3) a two-dimenslonal or three-dimensional analysis

4) a two-dimensional troposphere/stratosphere analysis to 0.4 mb on a

4° x 5° x 18 level grid

5) the use of significant level data

6) the use of up to 20 observations to influence the analysis of a grid point

7) the use of different forecast error correlation models

Table i compares the Amdahl and CYBER CPU time required for one three-

dimensional analysis on a 4° x 5° x 12 level grid. A maximum of twenty observations

influences any grid point. Among the contributors to the increased speed of
the CYBER code are a vectorized covariance-calculation routine, an extremely

fast matrix equation solver, and an innovative data search and sort technique.

The solver stores up to 400 matrix equations for simultaneous solution. During

matrix decomposition, time is saved by computing the expensive reciprocal of

the square root operation on only selected diagonal terms. Vectorized routines
move the matrix elements into and out of the format needed for solution. To

locate data for use in the analysis, all grid points in the vicinity of a data

point are listed. After each data point has an associated list of gridpoints,

the lists are sorted so that each gridpoint now has an associated llst of data

points. This search and sort routine has also contributed to a marked decrease

in wall clock time required for the analysis.
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Table I: CPU Time in Seconds for One Analysis

Amdahl Cyber Amdahl/Cyber

Sea Level Temperature 66 9 7.3

Sea Level Pressure and Winds 120 18 6.7

Mixing Ratio 348 31 i1.2
i

Upper Air Heights and Winds 6240 306 20.4
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Model Development Highlight for 1984:
The GLA 4th Order GCM

J. Pfaendtner

A number of improvements have been made to the GLA Fourth Order GCM and

its associated run procedures during the past year. The purpose of this note

is to document the major changes which have been made, and to indicate the
current direction of our model development efforts.

• Model Resolution

Model versions using the 4 degree latitude by 5 degree longitude grid

resolution and 9 sigma layers are now completely core contained in the 1M word

CYBER memory. They need 175 seconds of real time to complete a standard i day

forecast (Matsuno time scheme, 7 1/2 minute timestep, physics every 30 minutes,

longwave radiation every 3 hours, history records written at 6 hour intervals).
Forecasts are also routinely being done with a 2 degree latitude by 2 1/2 degree

longitude, 9-1ayer version of the model. At this resolution the hydrodynamics
is also core contained, but paging occurs in the model physics. A one day

forecast requires 26 minutes of real time and 14 minutes of CPU time. A 15-

layer version, which can use non-equidlstant sigma levels, is also running in

core at the 4 by 5 horizontal resolution.

On April 1,1985 an additional I M words of memory are scheduled to be
installed on the CYBER 205. With this additional space all model versions should

run in core. It is projected that a planned 2 by 2 1/2 degree, 15-1ayer model

will require 22 minutes of real time for one simulated day. The code management

and run procedures have been modified so that any version of the model can be

run at any desired resolution from a single set of resolution independent masters
for that version.

o Boundary Fields and Topography

The model was modified to allow the boundary fields (sea surface temperature,

albedo, ground wetness, sea ice extent) to be interpolated in time during a
forecast or climate simulation. The fields can be taken either from climatology

or from the actual observed anomalies during the period being simulated. This

feature was used extensively for the recent study of the 1980 heat wave drought

(Wolfson and Atlas). It is also being used for a study of the effect of local

SST anomalies on the Ethiopian drought. A number of improved topography fields,

including an envelope topography, have been prepared for both horizontal resolu-

tions of the model (Balgovind). The effects of the altered topographic forcing

on medium range forecasts and the model climatology were considerable (Helfand).

o Post-processlng of model results on the CYBER

Changes were made to the model to enable it to output history fields on

mandatory pressure levels as well as on sigma surfaces. This feature, which

will appear in the next production version of the model, is important in two

respects. First, it will provide an orderly sequence of pressure level history

tapes for each experiment with data management handled automatically by the

model merge job. Second, when running the forecast/analysls cycle, it will
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enable the direct examination of the analysed fields. Until now, the GLAS

analysis has been interpolated from the pressure levels on which it is done to

the model sigma levels for inclusion in the sigma level history tapes. An

interpolation from the sigma levels back to pressure was required when examining
the analysis.

The generation of verification statistics using the pressure level history

on the CYBER has been implemented. Plans are being made to extensively expand

the options available for examination of model results on the CYBER. Model

energetics and time averages will be the first options to be added.

o Improvementsto model sourcecode

The model code for parameterizations of physical processes, including that

for the longwave radiative cooling, was rewritten and modularized. The new

code will be considerably easier to maintain and modify.
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Responseof Winter Forecastsmade with the GLA 4th Order GCM
to Changesin the HorizontalGrid Resolution

J. Pfaendtner

The GLA Fourth Order General Circulation Model was modified in 1984 to allow

it to be run at a finer horizontal grid resolution. Previously the standard model

versions integrated the primitive equations on a 4 degree latitude by 5 degree
longitude grid. In this paper forecasts made at this resolution are compared

to others which were made using the finer 2 degree latitude by 2 I/2 degree
longitude grid resolution.

Three winter cases are included with initial conditions from 15 December

1978, 5 January 1979 and 21 January 1979. The 21 January 1979 initial conditions

were taken from a GLAS analysis (experiment 2728) which incorporated the GLAS

temperature retrievals. The other two cases used European Center Analysis for
initial conditions. The forecasts were all verified against European Center
Analysis.

Table I presents a summary for the three winter cases over North American

and Europe. In general, the forecasts done on the finer grid were better out
to day six. The first four days show significant reductions in the RMS errors.

After day six, the 2 by 2 1/2 degree forecasts are worse than those done at 4

by 5 degrees. A possible cause for this degredation is the stronger smoothing
(Sth order Shapiro filter rather than 16th order) used in the finer resolution
model. The RMS errors for the individual forecasts are shown in tables 2

through 5. A summer case (European Center initial condition from 15 June 1979)
is also included in these tables.

Table I: Percent Change in RMS Forecast Errors (2 x 2 I/2) vs. (4 x 5)
Average of Three Winter Cases

verification day

1 2 3 4 5 6 7 8 9 10
North Amer.

pres. -6 -16 -9 -6 +2 -12 +8 -14 +13 -i

Europe
pres. -3 -23 -38 -29 +4 -13 +I +36 +20 +28

North Amer.

500 mb height -13 -21 -26 -10 -10 -18 +5 -15 +15 +38

Europe
500 mb height -15 -29 -27 -25 -20 -4 +3 +i -5 -4
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Table 2: RMS Sea Level Pressure Errors for North America (mb)

verification day

I 2 3 4 5 6 7 8 9 I0

3553 15 Dec 78 3.2 5.5 5.8 I0.I 13.7 14.5 ll.O 11.5 12.1 15.9

3509 05 Jan 79 3.1 4.1 5.8 6.1 8.0 8.1 9.8 14.3 16.3 14.8

4 x 5 3533 21 Jan 79 4.1 7.1 9.4 10.1 6.7 7.7 8.0 9.1 7.6 10.7

cases Ave. of 3 winter cases 3.5 5.6 7.0 8.8 9.5 I0.I 9.6 11.6 12.0 13.8

3577 15 June 79 2.8 3.1 4.6 5.5 5.0 5.8 8.1 7.2 4.1 4.6

3643 15 Dec 78 3.6 4.5 5.5 10.4 15.3 13.0 Ii.0 9.0 13.5 13.7

3511 05 Jan 79 2.7 3.5 5.7 6.4 7.1 7.0 9.7 10.9 13.5 -

2 x 2 L/2 3531 21 Jan 79 3.5 6.0 8.1 8.2 6.7 6.8 ....

cases Ave. of 3 winter cases 3.5 4.7 6.4 8.3 9.7 8.9 10.4 I0.0 13.5 13.7

3727 15 June 79 2.7 3.8 4.8 5.7 7.0 9.0 8.4 9.1 9.3 12.8

Table 3: RMS Sea Level Pressure Errors for Europe (mb)

verification day

l 2 3 4 5 6 7 9 I0

3553 15 Dec 78 3.2 4.5 7.5 lO.l 11.7 15.7 18.3 17.1 19.1 16.6

3509 05 Jan 79 2.5 5.2 12.7 11.5 9.3 7.9 11.4 13.8 15.1 17.4

4 x 5 3533 21 Jan 79 3.0 4.8 6.5 I0.0 9.3 10.5 14.0 I0.6 12.8 15.7

cases Ave. of 3 winter cases 2.9 4.8 8.9 I0.5 I0.I 11.4 14.6 113.8 15.7 16.6

3577 15 June 79 2.5 4.2 5.0 5.2 4.6 5.9 9.0 9.1 9.0 8.9

3643 15 Dec 78 3.4 3.5 5.3 5.8 10.8 12.5 17.4 20.5 21.4 21.5

3511 05 Jan 79 2.3 2.8 5.5 8.5 12.1 9.0 I1.9 17.1 16.2 -

2 x 2 I/2 3531 21 Jan 79 2.7 4.8 5.8 7.9 8.6 8.2 ....

cases Ave. of 3 winter cases 2.8 3.7 5.5 7.4 10.5 9.9 I14.7 18.8 18.8 21.5

3727 15 June 79 2.4 4.0 4.2 5.5 4.7 5.8 7.9 8.5 11.9 11.8
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Table 4: RMS 500 _b Geopotential Height Errors [or North America (m)

verification day

! 2 3 4 5 6 7 8 9 I0
I

3553 15 Dec 78 41.7 68.7 91.0 124.01154.0 158.01126.0i I13.0 125.0 135.0

3509 05 Jan 79 24.2 50.0 60.0 66.7 82.6 81.91 98.9 146.0 145.0 132.0

4 x 5 3533 21 Jan 79 41.1 78.0 II0.0!134.0 134.0 130.0!107.0 125.0 124.0 121.0

cases Ave. of 3 winter cases 35.7 65.6 87.1 108.0 124.01123.0i IIi.0 128.0 131.0 129.0

3577 15 June 79 25.2 32.4 46.8 52.71 54.8i 50.6 62.4 58.2 50.9 52.5

3643 15 Dec 78 36.0 54.3 71.8 125.0 180.0 168.0 155.0 122.0 152.0 178.0

3511 05 Jan 79 22.6 38.2 44.1 62.71 62.6 60.9 76.8 96.4 150.0 -

2 x 2 I/2 3531 21 Jan 79 34.2 63.7 78.31104.01 91.4 74.3 ....

cases Ave. of 3 winter cases 30.9 152.1 64.7! 97.2'111.0 I01.0 116.0 109.0 151.0 178.0

3727 15 June 79 21.5 27.5 48.31 58.5 66.9 82.0 82.1 61.9 64.4 81.4

Table 5: RMS 500 mb Geopotential Height Errors for Europe (m)

verification day

I 2 3 4 5 6 7 8 9 I0
I

3553 15 Dec 78 23. 2 45.9 93.6124.0 144.0 148.0 179.0 210.0 203.01174.0

3509 05 Jan 79 25.2 67.2 133.0 146.0 119.0 90.2 119.0 180.0 232.0 258.0

4 x 5 3533 21 Jan 79 35.0 44.5 65.4 91.8 120.0 Iii.0 161.0 182.0 179.0 196.0

cases Ave. of 3 winter cases 27.8 52.5 97.3 121.0 128.0 116.0 153.0 191.0 205.0 209.0

3577 15 June 79 23.4 43.3 65.3 63.6 63.5 69.5 81.3 77.8 84.3 I01.0

3643 15 Dec 78 20.7 41.8 79.5 92.4_I07.0 143.0 18870 211.0,217.01201.0
!

3511 05 Jan 79 20.1 31.8 71.4 89.7 115.0 105.0 128.0 174.0 171.01 -i

2 x 2 [/2 3531 21 Jan 79 30.4 38.0 61.3 88.5 86.2 85.2 - - -

cases Ave. of 3 wlnte= cases 23.7 37.2 70.7 90.2 103.0 IIi.0 158.0 193.0 194.0 201.0
i

1 3727 15 June 79 23.9 39.8 61.8 64.5 64.6 57.4 80.0ri03.0!151.0 168.0
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D. ATMOSPHERIC DYNAMICS AND DIAGNOSTIC

STUDIES





Comparison of Forecast and Observed Energetics

W. E. Baker and Y. Brln

The objective of this investigation is to perform diagnostic studies aimed
at furthering the understanding of the atmospheric general circulation and

providing useful insight into the NASA/Goddard analysis/forecast system as it
continues to evolve.

An energetics analysis scheme has been developed for this purpose to compare
the observed kinetic energy balance over North America with that derived from

forecast fields of the GLAS fourth order model for the 13-15 January 1979
cyclone case. The major findings of that investigation are:

l) The observed and predicted kinetic energy and eddy conversion are in good
qualitative agreement, although the model eddy conversion tends to be 2 to 3

times stronger than the observed values (see Figs. i and 2). The eddy conversion

being stronger in the 12 h forecast than in observations may be due to a number

of factors (e.g. an imbalance from the initial data, overestimation of the

release of available potential energy from the physical parameterizations,
etc.) which we plan to investigate.

2) In agreement with previous studies of cyclonic disturbances (see Fig. 3)

vertical profiles of kinetic energy generation and dissipation exhibit lower
and upper tropospheric maxima in both the forecast and observations.

3) An interesting time lag is noted in the observational analysis with the

maximum in the observed kinetic energy occurring at 0000 GMT 14 January over

the same region as the maximum eddy conversion 12 h earlier (compare Fig. la
with Fig. 2a).

Future work includes the examination of the forecast error over North

America in terms of the energetics utilizing the llmlted-area, analysis scheme

previously developed. The observed energetlcs will be compared with those from

model forecasts in which the resolution, physics, or initial data have been modified.

Reference

Baker, W. E., and Y. Brin, 1985: A comparison of observed and forecast energetlcs

over North America. Quart. J. R. Meteor. Soc., in press.
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Fig. I. Vertically integrated (surface to I00 mb) kinetic energy in 106jm-2 for 0000 GMT 14 January 1979.
a. Observations (station analysis).
b. 24h forecast.



Fig. 2. Vertically integrated (surface to 100 mb) eddy conversion in 10 wm- 2 for 1200 GMT 13 January 1979.
Stippling indicates areas of negative conversion.
a. Observations (station analys1s).
b. 12h forecast.
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Fig. 3. Vertical profiles of area-averaged kinetic energy
generation and dissipation for 1200 GMT 13 January
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line and the 12h forecast by a dashed llne.
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Error Growth in Operational 10-day Forecasts

E. Kalnay and A. Dalcher*

Laboratory for Atmospheres

NASA/Goddard Space Flight Center

Greenbelt, Maryland, U.S.A.

Lorenz (1981) estimated the rate of growth of forecast errors using as data

base I00 consecutive 10-day operational forecasts from the European Centre for

Medium Range Forecasting (ECMWF). He parameterized the growth of the difference

between two model forecasts verifying the same day. We extended Lorenz'

parameterizatlon of error growth by including the effect of model deficiencies

as well as their scale dependence . In this way we are able to fit real forecast

error growth and determine the scale dependence of the derived parameters (rate

of error growth, external error source due to model errors, and saturation

levels). This work is a necessary step in the application of the Lagged Average

Forecasting (LAF) technique (Hoffman and Kalnay, 1983, 1984) to the ECMWF 10-day

forecasts (Dalcher et al., 1985). Like Boer (1984) and Savljarvi (1984), we

found that for both the analyses and the forecasts, there is an approximate

equipartition of energy between all the zonal wavenumbers m corresponding to
the same total wavenumber n.

In this work, we parameterlze the growth of the error variance V by

including both an external source of error and the saturation effects:

dV = e (V + S) (V. - V) (i)
dt

This equation has the solution

V(t) = V= _ - S 1 (2)
I+_ I+_

where B = cee (V_ +S)t, and the constant c = V(o) + S is related to the initial
v. - v(o)

error variance V(o).

The solution (2) can also be expressed as

V(t) = 1/2 (V_ + S)(I + tanh (in c + = (V_ + S)t)/2) - S (3)

This parameterlzation work works remarkably well when all scales are

combined together. Furthermore, the shape of the individual error growths for

each total wavenumber suggests that the same parameterlzatlon can be applied to

each total wavenumber. In Fig. I we apply the same function to three individual

wavenumbers n, also showing an excellent fit, and indicating that the saturation
error is attained at different times for different scales.

*M/A COM Sigma Data Corp. at NASA/Laboratory for Atmospheres
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Equation 1 is scaled for each wavenumber by dividing the error variance by

the maximum observed value, which generally occurs at day I0. Some resulting

parameters are presented in Fig. 2. In Fig. 2a we see that the scaled error

growth rate e increases rapidly with wavenumber and is larger for the external

errors (comparing forecasts with analyses) than for the internal errors

(comparing two forecasts).

The last result, Fig. 2b corresponds to the predictability time as a

function of wavenumber, defined as the time needed to reach 95% of the error
saturation value. The external error curve shows that for low wavenumbers

(n < 9), there is still predictability in the ECMWF model after i0 days, whereas

larger wavenumbers become saturated at increasingly shorter times. The curve

corresponding to internal errors suggests that with a perfect model, predicta-
bility would be significantly larger, reaching over 3 weeks for n < 5.
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Fig. 2. Fitted parameters (6 parameters model) as a function of total wave number.

a) Scaled error growth rate. b) Predictability time
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Mechanistic Experiments to Determine the Origin of Southern Hemisphere

Stationary Waves

Eugenia Kalnay and Kingtse C. Mo

Laboratory for Atmospheres

NASA/Goddard Space Flight Center

Greenbelt, MD 20771

Kalnay and Paegle (1983) reported the existence and structure of large

amplitude stationary Rossby waves with zonal wavenumber ~ 7 between 20°S and

40°S over and in the lee of South America. (Fig.l) These waves, present during

January 1979, disappeared in February 1979. Kalnay and Paegle (1983) discussed

their possible origin, and concluded that the waves were not orographically

forced because they corresponded to a ridge in the lee of the Andes, and were

not forced by observed sea surface temperature anomalies because of their

space and time phase relationship. They suggested that the waves were probably

forced by tropical heating.

In this paper we perform two 15 day forecast experiments with the GLAS

Fourth Order General Circulation Model, and initial conditions corresponding to

5 January and 4 February 1979. These forecasts reproduce reasonably well the

presence of the January wave. (Fig.2) and their absence in February. Several

mechanistic experiments to determine the origin of the waves are then performed.

A "No Andes" forecast shows that the waves do indeed exist independently of oro-

graphic forcing. (Fig.3) Several experiments modifying the coefficient of

latent heat lead to the conclusion that tropical heating is important in the

maintenance of the waves (Fig.4). Furthermore, the convection in the subtropical

waves themselves is important in sustaining their amplitude and phase, and the
Walker type of circulation associated with the SPCZ is also a contributor to
the maintenance of the South American waves. These results confirm the existence

of a relationship between the occurrence of a strong South Pacific Convergence

Zone (SPCZ), (Fig.5) somewhat eastward from its climatological position, and

the strong "South Atlantic Convergence Zone" (Fig. 6) observed in outgoing long

wave radiation maps.

Reference

Kalnay, E., and J. Paegle 1983: Large amplitude stationary wind in the Southern

Hemisphere observations and theory. Proceedings of the first International
Conference on Southern Hemisphere Meteorology.
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?ig.l 15 day averaged meridional velocity Fig.2 Same as Fig.l but for the January
at 200 mb from the GLAS analysis, control forecast.

from 5 to Jan 20, contour interval
5 m/s.

Fig.3 Same as Fig.2 but for the "no Andes" Fig.4 Same as Fig.2 but for the reduced
experiment, tropical heating experiment.



Energy Sources of the Dominant Frequency Dependent

3-Dimensional Atmospheric Modes

Siegfried Schubert

As part of an on-golng study of atmospheric variability we present here the

energy sources and sinks associated with the zonally asymmetric winter mean flow.

The observational work of Blackmon et al., (1984) showed distinctly different

horizontal structures for the long, intermediate and short time scale atmospheric
variations. In this study we look into the 3-dlmenslonal structure of the

fluctuations and examine the relative roles of barotroplc and barocllnlc terms•

In the context of a two-level quasl-geostrophlc model the energy tendency
terms are

• • • 2 s 2 s

<K T + K_ + P> = i/4_ f {V _ (kx V_ • V_ ) + V T (k x V_ • VT )

2 s 2 s 2 s

+ V _ (k x VT • VT ) + V T (k x VT • V_ ) + r T (kx V_ -VT)}d< (I)

where KT and K@ are the vertical mean flow and shear flow kinetic energy (KE)
associated with the anomalies, respectively and the superscript (s) denotes the

winter mean flow. The available potential energy (APE) associated with the

anomalies is P = r2_2/2 where r is the non-dimensional inverse Rossby deformation
radius• The anomalies are defined as deviations from the winter mean flow where

T and _ are one-half the vertical sum and difference of the 200 mb and 700 mb

stream function fields, respectively. The data consists of I0 years of Northern

Hemisphere winter stream function fields where, in practice, _ is approximately
by the 500 mb field. The first four terms on the RHS of (I) combine to give the
total barotropic conversion, while the fifth term represents the conversion of
the time mean flow APE to the anomaly APE.

In order to isolate the relative roles of these terms for the wide range of

frequencies which exist in the atmosphere, five different filters were applied to
the anomalies• Filters A-E were designed to retain fluctuations longer than 45

days, 20-45 days, 10-20 days, 6-10 days, and 2.5-6 days, respectively. For each
of the five frequency bands the data was expanded in empirical orthogonal functions
and only the first five EOFs were retained.

Figure 1 compares the time averaged total KE conversion term and the APE

conversion term for the first five EOFs in each frequency band for a deformation
radius typical of middle latitudes (I000 km). Positive values indicate a source

(sink) for the anomalies (mean flow). These results show a dramatic shift in the

nature of the source terms from a predominantly barotropic source for the lowest

frequency modes to a predominantly barocllnic source for the synoptic time scales.

Further details of these conversion terms including their spatial distributions
may be found in Schubert, 1985.
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Figure I. The tlme-average energy sources associated with the winter mean flow

for the first five PCs for filters A through E. PCs 1-5 correspond to filter

A (lowest frequencies), PCs 6-10 correspond to filter B, etc. See text for

filter characteristics. The ordinate is the energy tendency divided by the
variance of the associated PC.
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A Comparison of the Bounded Derivative and

the Normal Mode Initialization Methods Using Real Data

F. H. M. Semazzl and I. M. Navon

Browning et al. (1980) proposed an initialization method called the bounded

derivative method (BDI). They used analytical data to test the new method.

Kasahara (1982) theoretically demonstrated the equivalence between BDI and the

well known nonlinear normal mode intlallzation method (NMI). The purposes of

this study are the extension of the application of BDI to real data and comparison
with NMI. The unbalanced initial state (UBD) is data of January 1979 00Z which

were interpolated from the adjacent sigma levels of the GLAS GCM to the 300 mb

surface. We use the global barotroplc model described by Takacs and Balgovlnd
(1983). Orographlc forcing is explicitly included in the model.

Many comparisons are performed between various quantities. However, we only

present a comparison of the time evolution at two grid points A(50 ° S, 90 ° E) and
B(IO ° S, 20 ° E) which represent low and middle latitude locations. To facilitate

a more complete comparison an initialization experiment based on the classical

balance equation (CBE) was also included. Figs. la, Ib and Ic show the time

evolution of the height corresponding to UBD, CBE, BDI, and NMI at coordinate A.

The forecast starting from UBD suffers from contamination by high frequency

oscillations with a dominant period of about 6 hours. Regarding CBE, BDI and NMI

the time evolution is smooth. The classical balance equation performs well since

the influence of orography is small at A. The plots for the time evolution for

coordinate B are presented in Figs. 2a, 2b and 2c. Notice the balance equation

performs relatively worse than the NMI and BDI. This is mainly because the

balance equation is not capable of handling the gravity waves produced by orography

In this case these waves are excited by the high elevation over equatorial Africa.

It is also instructive to note that at low latitudes the amplitude of gravity

waves can be larger than that of synoptic motions. However, over higher latitudes
the relative importance of gravitational motions is smaller. This indicates the

importance of performing suitable initialization over the low latitude regions

of the earth, particularly for purposes of short range numerical weather predic-
tion.

References
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The Vertical Structure of Global Rotational Normal Modes

David M. Straus

The relevance of global rotational normal modes to the behavior of the

atmosphere has been a concern of meteorologists for nearly half a century.
Although the mathematical properties of these fundamental linear solutions

have been explored at various levels of approximations over the years, it is

only recently that the availability of reliable global data has made meaningful
global observational studies possible.

In one such recent study, Lindzen et al. (1984) examined the amplitude

and phase evolution of Hough mode projections at 500 mb. The Hough modes

represent the simplest normal mode approximation available, and correspond to
the neutral eigenfunctions of a shallow water fluid with no mean zonal flow.

In this study, it was found that when the observed amplitude of a rotational

Hough mode was large, it tended to propagate at the phase speed of a normal

mode in the presence of mean 500 mb winds, giving a strong indication that
normal modes are of relevance to the atmosphere.

Continuing along these lines, we have explored the vertical structure of

the approximately defined rotational normal modes by projecting observed data

(from the ECMWF's FGGE analyses) onto Hough functions at levels other than

500 mb. As in Lindzen et al. (1984), the stationary and eastward propagating

components were filtered out at each level. The evolution of the amplitude in

time throughout the troposphere is shown for several modes during summer and
winter in Figures 1-4. The episodic nature of the normal modes at 500 mb found

by Lindzen et al. is evident at other levels, and it continues to be true that

large amplitude is associated with phase propagation at the theoretical phase
speed (corrected for the presence of meanzonal winds).

What is suprising about the vertical structure depicted in these figures
is that the level of maximum amplitude is 300 mb, so that the amplitude decreases

with altitude in the upper troposphere. This is contrary to the predictions

of both the simple theory and more complete theoretical-numerical determinations

of normal mode vertical structure that the amplitude increases throughout the

troposphere and even, in some cases, the stratosphere.

This anomalous distribution of amplitude is potentially of great interest,
for it may indicate either that some vital ingredient has been left out of

standard normal mode calculations, or that the observed modes' phase progression
at the normal mode speed is fortuitous and the identification as normal modes

incorrect. (These two possibilities are not necessarily distinct.) A third, and
perhaps more likely alternative, is that the vertical structure observed in the

figures is the result of using Hough functions, rather than eigenfunctions

which take into account the presence of the mean zonal wind, which itself tends
to be a maximum above 300 mb.

Current research centers on projecting data from each level onto shallow
water eigenfunctions which take into account the mean zonal wind at that level in

order to clarify the question of vertical structure. This is of importance for
future work on the role of these modes in numerical forecasts.
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Quasi stationary states in the Southern Hemisphere

Kingtse C. Mo

Pattern correlations between daily anomalies (Horel 1984) have been used

to study the persistency of the Southern Hemisphere circulations. The data set

consists of the daily Australian analyses of 500 mb heights and sea level

pressure for the period from 1972 and 1983. Compared to the Northern Hemlspherej

the pattern correlations are much smaller and more variable in the Southern

Hemisphere. The mean one day lag is only 0.57, (0.82 for the NH). The corre-

lations increase significantly for the filtered anomalies which consist of the

long planetary waves from 0 to 4.

Subjective criteria based on the pattern correlations are used to select

the quasi stationary events. A series of 5 or more daily maps is quasi stationary
if the pattern correlations between all consecutive pairs of maps in this time

series are larger or equal to 0.5.

In winter, events can be classified in terms of wave numbers. Wave 3 and
4 are by far the most dominant waves. There are total 24 events in winter.

There are 14 events which have large 3 amplitude. 8 out of these 14 events

have fixed phase locations. The composite (Fig. i) of the total anomalies for

these 8 events shows lows at 50S, II5E, 60S, 0W and 55S, 140W. The same wave 3

signal has been found in the winter teleconnection pattern using monthly mean

data. (Mo and White, 1984).

There are 3 events which also have a large wave 3 amplitude but opposite

phase locations. The composite of the total anomalies of these 3 events is

given in Fig. 2. The reversal of positions of highs and lows may suggest the

superresonant and subresonant states described by the multiple equilibria
theory. (Charney and Straus 1980).

In summer, these are only 12 events. All of them fall in months where the
Southern Oscillation reaches extremes.
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Fig. i Composite of anomalies for 8 quasi stationary states with large

wave 3 amplitude.

Fig. 2 Composite of anomalies for 3 quasi stationary states with large wave 3

amplitude but different phase relation from Fig. i.
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Trends in the Southern Hemisphere

Kingtse Mo

and

Harry van Loon

I. Introduction

The station data of monthly mean sea level pressure, surface air tempera-

ture as well as monthly mean upper air rawinsonde observations were used to

study the trends in the southern winter (June, July and August) and summer

(December, January and February). This study covers the period 1951 to 1981.

Most of the surface data have continuous 31 year records, however, for some

high latitude stations, both surface and upper air records started in 1957 or
even later.

The normalized anomaly for a given variable Z is defined as the departure

from the 1951-1981 grand mean divided by the standard deviation during the same

period. To eliminate the large fluctuations in the data, the 1-3-1 smoothing
has been applied to the time series of normalized anomalies.

II. The Sea level pressure

Figure i plots the smoothed normalized anomalies of sea level pressure for

31 stations during the winter season. The thick line gives the parabola fit

for unsmoothed anomalies. The trends are highly regionally dependent. Except

for stations at high latitudes, the mean sea level pressure fell at stations

on the Indian and Atlantic side of the hemisphere from the 1950's to the 1960's

but it rose over the other half of the hemisphere. These trends in general
reversed from the 1960's to the 1970's.

At higher latitudes, e.g. Campbell and Macquarie on the Pacific side,

sea level pressure increased during these 30 years. On the opposite side,

e.g. Ushuaia and Stanley, the pressure fell. At Halley Bay and S.A.N.A.E. the
sea level pressure was higher during the 1960's than the 1970's.

These trends affected the amplitude of the half yearly wave in the midlat-

itudes (Mo and van Loon, 1984, Swanson and Trenberth, 1981). They also influenced

on amplitude of the planetary waves.

III. Other Points

In this study, we document the trends of monthly mean temperatures and
heights from the surface to 200 mb level. Other conclusions are: i. Trends

of all these elements are highly regionally dependent. The mean temperature
of the earth and its changes can not be adequately described if the selected

stations are not evenly distributed over the globe. 2. The trends of the

height fields are equivalent barotropic. 3. There are no major differences
in trend between stations on land or sea (Chen 1982). 4. A linear trend

indicates a large increase in heights throughout Antarctica from 1957 to 1981
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at all levels. This shows an increase of the total mass in the atmosphere
over that region (Kraus 1977). 5. There was a notable warming over Antarctica
from the 1960's to the 1970's except in a small area from 90W to 120W at all

upper levels. (Hanson et al., 1981).
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Fig. i The smoothed normalized anomalies (thin line) of sea level pressure in

winter, the thick line gives the parabala fit for unsmoothed anomalies.
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The Seasonal Cycle of Storminess as Measured by Band-Pass Fluctuations

David M. Straus

An important prerequisite to the successful modeling of climate variations
is the ability to simulate the observed seasonal cycle in both the time and
space averaged fields and in the fluctuations of these fields. With the advent
of high speed vector computers, a number of multi-year simulations with differen
GCMs has been carried out with the seasonal cycle in boundary conditions (solar
insolation, sea surface temperature, etc.) imposed. The comparison of the
seasonal cycles produced by the GCMs with the observations should be a priority
item on the agenda of modeling groups.

This endeavor will require the compiling of appropriate observational
statistics. The seasonal variation of the mean fields is well documented and

several climatologies of local time variances during winter and summer are
available. However, good statistics for the transition seasons of spring and
fall are harder to obtain. We are undertaking the compiling of climatologies
of local time variances and covariances for all four seasons from a 15 year
dataset consisting of NMC operational (Northern Hemisphere) analyses from May
1963 through December 1977. The emphasis is to be on the clear depiction of
the seasonal change of the (co)variances.

In this note we present a sample of such statistics, namely the seasonal
cycle of baroclinic storms, as represented by band-pass filtered geopotential
height variances at 850 mb. The particular filter used is that suggested by
Blackmon and White (1982), and retains periods of approximately 2.5 to i0
days. The time series of height (at each grid point) were filtered by removing
the annual and semiannual cycles for that point, and by removing zonal wavenumbe_
higher than 20. The band-pass filter was then applied. The height variances
of the filtered fields were then computed for each winter season (December-
February), each spring season (March-May), each summer season (June-August)
and each fall season (September-November). These variances were then averaged
by season. Figures l(a)-(d) show maps of the standard deviation. These figures
show clearly the seasonal cycle of bandpass fluctuations. The strong maxima
over the Atlantic and Pacific Oceans are present in all seasons, with a signific_
weakening (and slight northward shift) only in the summer. The major seasonal
variation is thus seen to consist mostly of a summertime weakening and shift;
spring and fall appear nearly identical to winter. The corresponding results
at 500 mb (not shown) are similar, but with the stormtrack variance being
slightly larger in spring and fall compared to winter.
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The Contrasting Northern Hemisphere Winters of 1980-81 and 1981-82

Glenn H. White

Seasonally averaged statistics calculated from daily operational analyses
by the European Centre for Medium Range Weather Forecasts (ECMWF) for December

1980-February 1981 (winter I) and December 1981-February 1982 (winter 2) are

used to contrast the two seasonal mean circulation patterns present in the
Northern Hemisphere and to investigate possible causes for the differences.

The differences between winter 1 and winter 2 resemble patterns associated

with the Southern Oscillation (White, 1984) and may be forced by a weak warm
E1 Nino-Southern Oscillation (ENSO) event in 1980.

Low-level diabatic heating is much stronger over the North Atlantic in

winter 2 (Fig. i), where changes in sea surface temperatures imply a much

greater loss of heat by the ocean to the atmosphere in winter 2. Changes in
the flow pattern over the United States and the North Atlantic from winter I

to winter 2 resemble the response to warm sea surface temperature anomalies

found by Phillips (1982) in a nonlinear model of a barocllnlcally unstable

atmosphere. A large change of opposite sign in diabatic heating, strongest at
500 mb, is observed over Japan.

Zonally averaged and three-dlmenslonal Eliassen-Palm fluxes (Plumb, 1984)

for the two winters (Fig. 2) suggest that stationary waves are mainly forced

near the surface in midlatitudes. The forcing appears to be significantly less
in winter 2, particularly near the south coast of Alaska where the low-level

seasonal mean flow over orography was much weaker in winter 2. Since changes

in the low-level flow over the Pacific appear related to changes in equatorial

sea surface temperatures and precipitation in the Pacific (Fritz (1984)), a

weak ENSO event in 1980 may have produced a delayed response in the circulation
over the Pacific in winter i that resulted in unusually strong orographlc
forcing over Alaska and western Canada.
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On the Global Distribution of Three-dimensional

Eliassen-Palm Fluxes by Stationary Waves

Glenn H. White

New insightsinto the propagationof atmosphericwaves have recentlybeen
gained from the use of zonally averagedEliassen-Palm(EP) fluxes (Edmonet al.,
1980). If wave dynamicscan be describedby linear planetary-wavetheory and if
the polewardgradientof quasl-geostrophlcpotentialvortlcltyis positive,EP
fluxes measurethe net propagationof waves and can be used to infer the forcing
of waves. A three-dlmenslonalEP flux for stationarywaves has recentlybeen
derivedby Plumb (1984):

F = (P) cos _ [(_,2 _ 1 _(V_ ) i + (-_*v* + 1 8(_ )
Po 2f Bx 2f Bx

+ f I_",_',_ 1 _)("_T" ))/_]
S 2f i)x

where ( ) represents a tlme-mean, ( )* the departure from the zonal mean, u and

v the zonal and meridlonal winds, T temperature, _ geopotentlal, @ latitude, f
the Coriolls parameter, S static stability (allowed to vary only with pressure
p), and Po = i000 mb. Plumb (1984) presented observational results for the

extratropical Northern Hemisphere wintertime climatological circulation based

on statistics calculated from NMC operational analyses for 1965-1976.

This study investigated the global distribution of three-dimenslonal EP

fluxes (Fig. i) by using statistics for Dec. 1980-Feb. 1981 (Figs. la, b) and
June-August 1981 (Figs. Ic,d) calculated from operational analyses by the

European Centre for Medium-range Weather Forecasts. Results at i000 (Figs.
la,c) and 150 mb (Figs. ib,d) are shown. During the NorthernHemisphere(NH)
winter strong upward fluxes can be seen at 1000 mb (Fig. la) in the lee of the
Himalayasand Rockies,windwardof the CanadianRockiesin the east Pacific,
to the north of the Atlanticstormtrackand over the west Pacificin a region
of strong land-seathermalcontrast. Upward fluxes also appear near the west
coasts of the SouthernHemisphere(SH) subtropicalcontinentsregionsof strong
land-sea thermalcontrast. At 150 mb (Fig. ib) the strongestupward flux now
occurs south of Alaska. The horizontalfluxes imply polewardpropagationfrom
the convectionover Indonesiato 20°N, a regionwhere the assumptionsunderlying
EP fluxes are not well-met. Equatorwardpropagationdominatesthe NH midlatltudes
except over the Pacific.

During June-August1981 at I000 mb (Fig. ic) upward fluxes appear off the
western coastsof the subtropicalcontinentsin both hemispheresbut are parti-
cularly strong in the NH where strong land-seathermalcontrast is found. At
150 mb (Fig. id) strong fluxes from the Indian monsooninto the SH can be seen
where easterlywinds prevail,which theory and numericalmodels predictwould
preventpropagation(Websterand Holton,1982). Strong fluxes also occur at
30°N over the easternMediterranean,a region of strong sinking, and over the
Pacific and the southeastern U.S., regions of rising motion (White, 1983).

The fluxes shown in Fig. 1 offer tantalizing hints of the sources of

stationary waves, but also show several puzzling features and a rather cavalier
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disregard of regions of easterly wind. The physical meaning and interpretation
of three-dimensional EP-fluxes is not yet clear.
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Transient eddies in the UCLAGCM

Glenn H. White

The simulation of transient eddies in the nine-level UCLA general circulation
model (GCM) has been examined and compared to observations, with emphasis on
the Northern Hemisphere winter. Qualitatively, the UCLA GCM reproduces many
features of the observed circulation and the relationship between the time-mean
flow and transient eddies; however, the magnitudes of transient eddies in the
UCLA GCM, particularly at frequencies lower than those associated with baroclinic
instability, appear to be much less than those observed.

Fig. la shows the wintertime mean 500 mb height field for one simulated
winter. The Asian trough appears broader than in the observed climatology (Lau
et al., 1981) while the ridge over western Canada is well to the east of its
climatological position. The North American trough is much weaker than observed,
while an unusually strong ridge occupies the east Atlantiq. Such anomalous
features can be observed in seasonal mean fields for individual winters (Lau
et al., 1981); however, the other two winters in the simulation examined show

very similar anomalous features, implying a departure of the climatology of the
UCLA GCM from observations.

The patterns of low-level transient eddy heat fluxes were similar to
observations and acted to dissipate the low-level seasonal-mean temperature
field, as observed (Lau et al., 1981). The simulated shape of transient
disturbances also appeared similar to observations, with eddies of baroclinic
time scales displaying a north-south elongation and disturbances of longer time
scales an east-west elongation (Hoskins et al., 1983). Baroclinic eddies in
the simulation dissipated when they encountered a longer-lived ridge, a pattern
also observed (Hoskins et al., 1983).

The simulated transient eddy kinetic energy at 300 mb is displayed in
Fig. ib for eddies of all time scales shorter than a season, in Fig. ic for
time scales associated with baroclinic instability, and in Fig. id for time
scales longer than in Fig. ic. (The actual filters used were the "Lorenz"
filters discussed on pg. 7 of Lau et al., 1981.) The pattern in Fig. ib is
somewhat similar to that observed at 250 mb by White (1983, pg. I0); however
the maximum values in Fig. ib are only a third of the maximum values found by
White (1983) and are located 10° further north. The maximum values for eddies

of baroclinic timescales (Fig. Ic) are three-fourths of those observed (White,
1983), suggesting, as Fig. Id shows, that the UCLA GCM is deficient in low-
frequency variability, a shortcoming found in other GCM's (Straus and Shukla,
1981). The poleward shift of the simulated storm tracks relative to observations

may reflect a similar shift in the region where the seasonal mean flow is
baroclinically unstable, particularly in the Pacific.
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B. CLIMATE AND OCEAN MODELING





On Fofonoff's Mode

Lee - Or Merklne

Department of Mathematics Technlon Israel Institute of Technology

Kingtse Mo and Eugenia Kalnay

The classical barotroplc ocean model of Veronls (1966) is re-examined to

verify the possible existence of Fofonoff's (1954) steady free inertial mode by
considering the balance

J ( n,RV2n + y)=0 (I)

where J is the Jacobian, _ is the streamfunction of the horizontal velocity,

and R is a parameter of nonlinearity. A linear functional relationship between

the potential vortlclty and the streamfunctlon and inertial boundary layers
along the ocean basin was suggested by Fofonoff.

R V2n + y = G (n)

where G (_) is an unknown function

As in Veronis' work, we assume a square basin with the consequent boundary
zondltions.

n = 0 on x = 0, u and y = 0,

and a wind stress given by
.

k • V x T = - sin x sin y

We consider a very strong beta effect such that R = 10-6 and _ = 10-4 where

measures the strength of the dissipation. This set of parameters puts the system
In the range where the Fofonoff's hypothesis holds.

However the numerical integration shows that the system is barotropically
_nstable. The typical instantaneous field is shown in Fig. I. The statistical
_quilibrium state n is depicted in Fig. 2. Although it resembles Fofonoff's

solution, it is maintained by the Reynolds stress field induced by the eddies in

,ddition to the wind stress and dissipation. The plot of n versus R V 2 n +y
Ls given in Fig. 3. It shows that the Fofonoff's linear relation between the

_otential vorticity and the streamfunction does not hold uniformly over the
_ntire basin. The above results show that the Fofonoff's solution can not be

:ealized physically.
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I. An instantaneous streamfunctlon field. The 2. Averaged streamfunctlon field.
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Analysis of a Simulated Cloud Climatology

D. Randall, Harshvardhan, D. Short, and T. Corsetti

Cloudiness simulations with the UCLA/Goddard GCM have been analyzed by

comparison of simulated cloud and radiation statistics with corresponding
observations. A description of the model formulation is given by Suarez et al.

(1983), and some results are discussed by Randall et al. (1985).

The global mean cloudiness is near 50%, in agreement with observations.

However, comparison with the satellite observations of Susskind et al. (1983)

shows that the model produces too many low-level clouds at high latitudes and

too few high clouds in the tropics. The Intertropical Convergence Zone is

hardly visible in the simulated cloudiness maps, although it is quite apparent

in the simulated precipitation field. In the subtropics, the marine subtropical

stratocumulus regimes are correctly positioned, but the cloud amounts are

seriously underpredicted. The Arctic summer stratus is not well simulated.

Over the Northern Hemisphere continents in winter the model produces an

overabundance of low clouds, although these are geometrically and optically very

thin, and might well be missed in the observations.

The simulated outgoing longwave radiation at the top of the atmosphere is

too low in middle and high latitudes, and much too high in regions of deep

convection (Fig. I). The standard deviation of daily mean outgoing longwave

radiation is overpredicted in regions of deep convection. These results suggest

that cirrus clouds are too infrequent and too variable in the model results.

Seasonal variations of outgoing longwave radiation in the tropics and

subtropics, as measured by the phase of the first annual harmonic, are fairly

realistic in regions of observed low-level cloudiness, and quite unrealistic in

regions of observed high-altitude cloudiness.

In summary, the most serious deficiency of the current model's cloudiness

simulation is its gross underprediction of the cirrus cloudiness associated

with deep convection. We are currently working to remedy this problem by

incorporating a prognostic variable for cirrus cloud water.
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TERRESTRIAL RADIATION AT THE TOP OF THE ATMOSPHERE (W m-2)
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The Moist Available Energy
of a Conditionally Unstable Atmosphere

D. Randall and T. Corsetti

Lorenz (1978, 1979) defined the moist available energy (MAE) of a given

state of the global atmosphere as the difference between the moist enthalpy of

the given state and that of a hypothetical "reference" state for which the

moist enthalpy is minimized by reversible adiabatic rearrangement of the

air parcels. Within the reference state, the pressure and density are horizontally

stratified, hydrostatic equilibrium holds, and the stratification is statically

stable. However, a given horizontal surface in the reference state may contain

both a saturated cloudy region and an unsaturated clear region.

For an atmosphere containing no moisture, the MAE is identical to the

"available potential energy" or "dry available energy" discussed by Lorenz
(1955). In general, however, the MAE of a humid atmosphere is greater than

its dry available energy. For a realistic atmosphere which is everywhere
statically stable (or neutral) in the dry sense, but contains regions of condi-

tional instability, the moist available energy arises in part from horizontal

temperature gradients and in part from the conditional instability.

Consider a hypothetical horizontally homogeneous atmosphere for which the

temperature and moisture soundings are typical of conditionally unstable regions

in the tropics. For such an atmosphere the MAE is entirely due to the presence

of conditional instability, and is a measure of the degree of conditional

instability. How is the MAE of this atmosphere related to the cloud work

function of Arakawa and Schubert (1974), or to other conventional measures

of conditional instability? The cloud work function is a measure of the energy

available to a particular type of circulation, represented by a very simple

model of a cumulus cloud. The simple cloud model is actually used in the

computation of the cloud work function. The MAE, on the other hand, is the max-

imum energy available to any clrculatlon, and its definition does not involve a
particular cloud model. It is therefore more general than the cloud work func-

tion, and must exceed the cloud work function in most cases.

Lorenz (1978, 1979) suggested graphical and numerical algorithms for

computing the MAE for a given state of the atmosphere. Both algorithms encounter

some difficulty when the given state is conditionally unstable. We have devised

two simple methods for computing the MAE for cases in which the total number of

parcels is fairly small. The first is a "swapping" routine that finds the

reference state by exchanging parcels whenever the swap reduces the total

enthalpy. However, we can prove by contrived example that the swapping algorithm

does not always find the true reference state. A second "brute force" routine
actually eXamines all possible arrangements of the parcels and chooses the one

with the smallest moist enthalpy. At present, both routines allow only horizon-

tally homogeneous reference states.

In an exploratory study, we have used the swapping routine to find MAE and

reference state for a tlme-sequence of GATE soundings, all of which are condi-

tionally unstable. In spot checks, the brute-force routine always agreed with

the swapper. Results show that in passing from the given state to the reference

state the lowest three hundred mb of the atmosphere typically exchanges places
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with the 300 mb above it. The reference state then contains a dry warm layer

near the surface, and a supersaturated but cool layer in the middle troposphere.

The upper portion of the sounding is not modified in passing from the given
state to the reference state.

We are continuing this work by comparing the MAE with the cloud work

function, by investigating the rates at which MAE is generated by surface

fluxes and large-scale vertical motion, and by investigating the possibility
of horizontally inhomogeneous reference states.
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Preliminary GCM Results with a New Radiation Parameterization

D. Randall, Harshvardhan, R. Davies, and T. Corsetti

We have developed new parameterlzations of solar and terrestrial radiation

and they have been tested UCLA/Goddard GCM. The solar radiation parameterization
is based on that of Lacis and Hansen (1974), but with zenith-angle-dependent

surface albedoes, and revised treatments of cloudiness. The terrestrial radia-

tion parameterization is based on the work of Chou 1984) for water vapor, Chou

and Peng (1983) for carbon dioxide, and Rogers (1968) for ozone, with a new

parameterlzation of the effects of clouds. Some details are given by Harshvardhan

and Corsetti (1984).

The codes have been designed for efficient execution on a vector processor,

and we find that, for all gridpoints in a 4 x 5 degree 9-1evel GCM, one pass

consumes about 2 cpu seconds on Goddard's two-pipe CDC Cyber 205. This excellent

computational speed allows us to do a full radiation calculation once each
simulated hour.

We have compared results obtained with the new parameterizations to those

obtained with the earlier parameterization described by Schlessinger (1976).

Several dramatic improvements have come to light. For the most part these

are related to the fact that the new terrestrial radiation paramerization includes

the effects of the water vapor continuum, while the earlier parameterization

does not. In the moist tropical planetary boundary layer, continuum emission

leads to much stronger cooling of the PBL over the oceans. Over land, however,

the cooling of the PBL is significantly reduced. The latter, somewhat para-

doxical result is due to the strong diurnal cycle of the continental PBL. At

night the shallow continental PBL is overlain by a moist layer created by

mixing during the previous afternoon. The moist upper layer acts as a radiative

blanket, reducing the time-averaged radiative cooling of the continental PBL.

The stronger cooling of the marine tropical PBL leads to an increase in the

surface sensible heat flux, and an increase in the relative humidity at the PBL

top. These are both improvements in the realism of the model results.

We have corrected an error which caused cumulus anvils to be ignored, with

radiation calculation. As shown in Fig. I, this has resulted in a simulated

diurnal cycle of precipitation over the oceans, in agreement with the observation

of Gray and Jacobsen (1977).

In summary, changes to the model's radiation parameterization have led to

significant improvements in the simulated climate.
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Figure I. Simulated departure of the total precipitation rate from the time

mean, as a function local time of day, composited for 24 ocean
grid points.
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Multiple Equilibria of the Barotropic Vorticity Equation on a Sphere

M. J. Suarez

In their landmark paper on multiple-equilibria, Charney and Devore (1979)

(CD) argued that in the presence of topography a forced zonal flow can satisfy

the zonal momentum balance in more than one way. For a strong zonal flow the

stationary wave is small and results in little form drag on the zonal flow so
that it can be at equilibrium near its forced value. A second state can occur

provided the mountain is sufficiently high, the wave damping sufficiently
small, and the forced wave is contained in a resonant cavity. In this state

the wave amplitude is large, and the form drag on the zonal flow can balance a

large departure from the forcing. Such a state is possible only if the zonal
flow is being forced to a value well above that at which one of the waves

excited by the topography is resonant.

For a two-dimensional non-divergent flow between rigid boundaries the
zonal momentum balance is

_[u] = [v* _*] +--f [v'h*]- < ([u] - [U]e) . (i)
_t Ho

Here brackets indicate zonal means and asterisks deviations from the zonal

mean. The height of the topography is h and the me@n depth of the fluid Ho.

The zonal flow is forced to a value [u]e in time <-_. f is the coriolis
parameter and _ the relative vorticity. In CD's argument a relative maximum of

the second term on the r.h.s as a function of [u], which is associated with a

strong wave response near resonance, results in the second and third terms

balancing each other in the ways just described. The first term on the r.h.s.

plays no role. Although the argument is based on the linear wave response for

a given zonal flow, CD goes on to show through numerical solutions that the full

equations on a beta-plane channel also possess multiple stable states.

The purpose of this paper is to present multiple states of the barotropic

vorticity equation in which the balance is between the first and third terms

on the r.h.s, of (i). Solutions of this type were also considered by CD in

their discussion of thermally, rather than topographically, forces waves.

Whereas in the case of topographic forcing the multiplicity arises from what

they called "form-drag instability" in the wave-zonal flow interaction, in the

"thermal forcing" case the associated instability appears to be the Rossby-wave

instability discussed by Lorenz (1972), and the multiple states of the highly

truncated model proved to be unstable when more degrees of freedom were added.

The multiple statistically steady solutions described below are thus

novel in that they do not involve form-drag instability, they have stable

statistics in calculations with a large number of degrees of freedoms, and they

occur on the sphere, with no artificial confinement in a resonant cavity.

Further the solutions are obtained with no external forcing of the zonal flow.

We will use the full non-linear equations for two-dimensional non-divergent

motion between smooth, rigid boundaries on a sphere. The zonally asymmetric

part of the flow is governed by
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a_!__= _ 1 i-_ (uq - [uq]) + ___ cos€ (vq - [vq])} + F*, (2)
at acos_ a_ a_

where q --_ + f is the absolute vorticity. We will consider only
simple forcings of the form

F* = _ (_e- _*) , (3)

where K is constant and _e a prescribed function of latitude and longitude,
with

[_e] = 0 .

With no topography (h* = 0), and no external forcing of the zonal flow ([u]e
= O) (I) becomes

a[u] = [v*_*]- K [u] , (4)
at

a simple balance between frictional and eddy stresses. Eqs. (i) and (4) are

solved numerically using finite differences on latitude-longitude coordinates.

A resolution of 2° latitude by 2.5 ° longitude is used. Integrations are carried

forward until a meaningful statistical steady state can be obtained, usually
400 days. The forcing used is of the form

_e = _o exp - {€ + @o }2 sin(mX) . (6)
A+

In all cases Ai = 15°, _o = 40°' and k = 1/15 d-I.

Experiments with m = 3.

Experiments were performed with various wavenumbers and frequencies of forcing.

Here we show results only for a stationary forcing in wavenumber 3, which illustrate
the multiple states we found. Similar multiplicities occur for shorter waves with

eastward propagating forcing.

Figure 1 shows the zonal flows obtained for four values of _o when the calcu-
lations were started from rest. The interpretation of these is straight forward:

westerlies appear at the latitudes where the waves are forced and friction on

the zonal wind balances eddy convergence of westerly momentum. Away from the

forcing the forced wave is damped, depositing easterly momentum. This produces

a zonal flow with critical latitudes for the forced stationary wave just north

and south of the region of forcing. Note that easterlies are stronger on the

poleward than on the equatorward side, as one would expect if the waves tend to

transport equal angular momentum in both directions.

As the forcing is increased this zonal flow pattern is amplified. However,

since the zonal mean absolute vorticity gradient is being modified as the zonal

flow changes, this amplification cannot continue indefinitely with increased

forcing without a substantial change in the flow. Figure 2 shows the quantity Bm,
as defined by Hoskins and Karoly (1981),

116



8m = 2_ cos2€_ co___.Es@ a 1 a (cos€ [u]
a a a¢ cos€ a¢

which is cos_ turns the absolute vorticity gradient. In the westerly jet, it is

increased above its planetary value, and in the easterly jets it is depressed.

For the largest forcing it is already slightly negative in the polar easterly
jet, so that the inviscid stability condition is not satisfied. This is in fact

the strongest forcing for which solutions like those in figure 1 were obtained.

Above this value the solution is dramatically different, with no polar easterlies,
a broad, strong westerly jet over the forcing, and balancing easterlies in the

subtropics of forced hemisphere and mid-latitudes of the unforced hemisphere.

This very sharp transition in the response suggested a bifurcation of the solution

for which two stable branches may exist for some range of parameters. To explore

this possibility the four experiments were repeated using initial conditions

with a westerly jet of _ 80 m/s at 40 ° in both hemispheres and easterlies in the

tropics. The first three cases quickly evolved to the solutions shown in figure
i. ¥or the strongest forcing, however, a stable upper branch solution was
obtained. Figure 3 shows the time evolution for this case when started from

rest and when started from the strong westerly jet. The characteristics of the
upper branch steady state just described are evident.
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A New CO2 Transmittance Parametization and its Impact on the GLA GCM

R. L. Wobus, M.-L. C. Wu, and J. Susskind

As reported last year (Wobus et al., 1984), we are improving the Wu-Kaplan

radiation parameterizatlon (Krishnamurthy, 1982) used in the GLA GCM by replacing

its fixed tables of CO2 transmittance in the 15 _n band with models developed
by regression on line-by-line transmittances.

The transmittances (_i,j) between layers are modeled ($i,j) as products

of effective sublayer transmittances (_i,k+l):

j-i7i
Ti,j = _ Tk,k+ 1

k=i

Of the models tested offline, we select for the first sublayer (k=i) the 4-term

model bilinearly dependent on layer temperature and surface pressure and for

the remaining sublayers (k#i) the 2-term model linearly dependent on layer
temperature.

We have integrated the GLA GCM for 20 days starting at 0Z, January 21,
1979, using the transmittance model described above. In the control run the

fixed table of 15 _m C02 transmittances is used. The effect of the change
of initial cooling rate is illustrated by (Fig.l) a map of the difference

of 50 mb temperature after 6 hours. The cooling is reduced over high

topography, where the fixed table underestimates the transmittance, and is
reduced slightly throughout the tropics and the north polar area where

the stratosphere is relatively cold. Over elevated topography the surface

cooling (not shown) increases, also as expected. The final 10-day cross-section

of temperature is shown in Fig. 2. The stratospheric temperature increases
over a degree in the arctic and smaller amounts over Antarctica and elsewhere.

Tropospheric equilibrium temperature response is obscured by time dependent
differences in synoptic disturbances.

The introduction of more accurate C02 transmittances allows us to evaluate
two effects which are neglected in the present model. The increase of transmit-

tance between levels as the layers grow thinner over elevated terrain affects

both surface and stratospheric cooling rates. The change of C02 transmittance
in the stratosphere with temperature, due to the inactivity of the hot bands at

low temperatures, leads to warming over the winter pole. If this result is

confirmed when the test runs are extended we plan to implement the new parameteri-
zation in the GLA GCM.
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C. CLIMATE SENSITIVITY EXPERIMENTS





A GCM STUDY OF THE ATMOSPHERIC RESPONSE

TO TROPICAL SST ANOMALIES

Max. J. Suarez

The response of the atmosphere to anomalies in equatorial sea surface

emperatures (SSTs) has received a great deal of attention in recent years.
oth statistical studies using observational data and general circulation

odel experiments have clearly established that the ocean temperature perturba-

ions occurring during warm E1 Ni_o episodes cause a discernible climate

ignal over much of the globe. A body of theory has also been developed that

ttempts to explain the mld-latitude portion of the response in terms of global

_leconnectlon patterns and propagating Rossby waves forced by the anomalous

tmospherlc heating. The most recent (1982/83) warm episode is of particular
nterest because of the exceptional strength and highly unusual sequence of
he SST anomalies.

The purpose of the work presented here is to understand the evolution of

he atmospheric anomalies associated with the most recent warm episode by the

se of simulation studies wlth,the UCLA general circulation model (GCM). Our

pproach is to integrate the model using the observed sequence of SST anomalies

uring 1982/1983, and compare it with a control run in which all boundary

_ndltlons vary from month to month as in the climatology.

The control for the experiment was a three year simulation using seasonally

arylng climatological SSTs. The anomaly calculation was initialized from 15

_ne of the first year of the control. From 15 June to I July, the SST was

_adually modified by the anomalies observed during June - July of 1982.

rom I July on, the run was continued using the control's SST plus the 1982-83

aomalles. SSTs were varied daily, interpolating between monthly means. This

econd integration was carried to the end of February of the second year ('83

n the anomaly). Only anomalies over the tropical Pacific were used.

Figures I and 2 summarize the model's response. Seasonally averaged

ST anomalies are shown together with the resulting precipitation and surface

ind anomalies. During September - October - November (SON) maximum preclplta-
ion anomalies occur over the equator between the dateline and 120°W with the

reatest anomalies just east of the dateline. The precipitation anomaly is

hus well west of the SST anomaly. By December-January-February (DJF) the

esponse has shifted east some 30 ° and anomalies of _ 6mm/day extend to the

outh American coast. The total rainfall averaged over the tropical Pacific

hanges little. Positive anomalies over the equator are compensated by nega-
lye anomalies over a large horseshoe-shaped region poleward and westward of

he increased rainfall. The major effect of the SST anomaly is thus a redls-

rlbutlon of the precipitation over the tropical Pacific. The anomaly in the

urface wind, which must be doing the bulk of the anomalous transport of water

apor, is also shown on the figure. Over the western half of the region of

axlmum forcing - (180W-150W during SON and 150W-120W during DJF), - the result

s qualitatively as one would expect from the simplest linear theory. Cyclonic
urface flow north and south of the equator just west of the maximum forcing,

nd strong westerly anomalies over the equator. East of the maximum rainfall

nomaly, however, the response is very different from what one would expect
rom linear theory. The model produces a strong merldional convergence with
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particularly strong northerly flow just north of the equator. The linear

response about a state of rest would lead to either flow away from the equator

or, far east of the forcing, no meridional component.

(SON)

F
Surface Temperature Anomaly Precipitation and

Figure l Surface Wind Anomalies

(DJF)

.:.:-,_':.,

Surface Temperature Anomaly Precipitation and
Figure 2 Surface Wind Anomalies
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INFLUENCE OF LAND SURFACE PROCESSES ON THE INDIAN MONSOON

- A NUMERICAL STUDY -

Y. C. Sud and W. E. Smith*

Laboratory for Atmospheres, Goddard Space Flight Center, Greenbelt, Md 20771

Twelve July integrations are made with the

GLAS GCM (Sudand Smith,1984)to investigatethe :)4"_i-a ,""......."-. _'_

influenceof local changes in the land surface __o.0t o '1,'- -;_''t -'_

fluxes,that may be producedby changesin the , , . .. • .....
land surface vegetation, on the monsoon circula- , , a-. " -,._".;,,"a-2_

The study consistsof an ensemblemean of three ' ' ', ""

2__--%_..,: ,'integrations each for four separate cases: (a) t_l ." i ,J /v| ,_ -_ -,

boundary conditions, called C; (b) three other '0" _ '" '' ....

integratlonswlth the surface albedo increased _,_ Io__ ,_I,I/17.,'..,_
(from 0.14 to 0.20) on the Indian subcontinent, ,4, . ,

called El; (c) another set of three integrations
with the surfacealbedo increasedas above to- '°"[ __ *_'_%/_q 4" __ 4_ I
gether with a decrease of surface roughness
(from 45 cm to 0.02 cm), called E2; and (d) a
last set of three integrations with higher sur-
face albedo and low surface roughness as above,

but with no evapotransplratlon, called E3. Except "Ibl. ,,. :;:'_i_::i:i:>_)//for these changes in the anomaly region (delimit-

ed by solid llne, Fig. Is) all other boundary __:: II,. _,%_ ! / _i_//7/__
conditionswereprescribed,(Kalnayetal.,1983); ,,,_ -I_-_._...._....... ,',-.....:€*Mll*_,4[i-l'l
consequently, their time evaluation is unaffected , , i ,' ,,,,I-.... _tJ),._ ,, , ,,,::irIs. II' b I

t ......%:.....by the earth-atmosphere interactions. A,[:',\'.-_'_4

Table l gives the regional summary of impor- _r,",° '
tact physical and diagnostic fields as well as ,8.

the intrinsic model variability. Except for

500 mb heights, all other differences are statis- ,._...,!._::: ,.:__--_o_._1_)_:_ _

tically significant. The most important fields
(l.'r'e ll,'p, o m ,-e._ •

are those of heat and moisture balance. Large

differences were expected in these fields for E 1
and E3; nevertheless, the surface roughness ano- " _ _ 7oE .oc _ ,o_
maly experiment E2 has also shown significant
differences in the surface radiation balance and

34N .

the PBL fluxes. The rainfalldifferencesfor i€_ ," ........."L-'-I"',",//_---_
%/ , l .- . -_ t jo

the three experiments are shown in Figs. la, b [; ,"_-,-,., ,_ ...... ', ,.'_ ._...... "}'" ,_oJ _/_and c respectively. The surface albedo and sur- _ * ) "'" "" ' '

face roughnessanomalieshaveproducedcomparable _ ' ,' -,- • " ." '"','," ',°"
[ ' " .....cant reductions in rainfall are found over north- , , ,',, , ',,'

northwest India (Fig. 2). The overall influence " _ S_' ':_ "*
of the increased surface albedo is to reduce the , ','__, ..','

rainfall over India;the rainfall differencesE1 ,8,,"c_- .'_"'..t>..".
minus C show an average decrease of about 1.6 : "" "_"

mm/day with a maximum decrease of about 3 mm/day.

This occurs due to relative subsidence (reduced

rising motion) and diabatic cooling precisely in
conformity with Charney's (1975) albedo hypothe-

sis. For experiment E2 the reduction in rainfall _ _ _ ,o_ _ ,_
was even larger (2.7 mm/day) with a maximum t_,_
decrease of about 5mm/day; it was caused by east-

ward shift of rainfall maxima. Fig. I. Rainfall anomalies (Experiment-Control)

mm/day for El, E2 and E 3 designated by
•M/A-Com Sigma Data under contract No. NAS5-28074 a, b and e, negative contours are dashed.
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The current findings could be easily under- The evaporranspiratton is set to zero in
stood by examining the moisture convergence experiment E3; however, there is little change
fields for experiments E1 and E2. In nature, the in the rainfall between experiments E2 and E3
July rainfall anomalies over India are caused by because the enhanced moisture convergence in the
changes in moisture convergence in the lower trop- PBL, produced as a consequence of the increased
osphere. Often, small changes in the moisture sensible heating over dry land, compensated for
flux (Vq) can produce a large change in the mois- the lack of evapotranspiratlon. This is an ex-
ture convergence (V • Vq). This is indeed true ample of the typical 'heat island' effect, e.g.
for our simulations. We found that for smoother Malkus (1963). In July, the moisture for preci-
land the PBL wind vectors turned eastward which pitatton is advected from the nearby Indian
consequently produced the rainfall anomalies. Ocean; the increased sensible heating from non-

evaporating land enhances this process. This
TABLE I. EXPT. MINUS CONTROL AND STD. DEVIATION Is consistant with previous results (Shukla and

Mintz, 1982; and Sud and Fennessy, 1984).

Expt. - Control These studies demonstrate that any modlflca-
Fields St. Dev. tlon of the biosphere in the Indian subcontinent

El - C E2 - C E 3 - C may be expected to influence the monsoon circula-

tion by altering the surface energy balance, ori-
entation of motion fields and moisture conver-

Surf. Short Nave -17.9 -18.9 -12.3 4.10 gence, and the hydrological cycle. The results
(ASW; W m-2) further suggest that excessive land use vla de-

structlon of vegetation would weaken the monsoon;
Surf. Net Radn. -19.5 -35.8 -65.9 7.92 conversely, increased surface roughness and more
(ANR; W m-2) vegetation would strengthen the monsoon. One

can also infer that even substantial changes in
Surf. Sen. Flux -12.7 -44.5 45.5 2.72 the biosphere may not install a permanent desert
(ASH; W m -2) over Indla, but a 3-5 mm/day reduction in the

monsoon rainfall would be enough to seriously
Evapotransplratlon -0.24 0.34 -3.85 0.i0 impact the agriculture.
(AE; ram/day)

Despite various limitations of numerical
Percepltatlon -1.62 -2.7 -2.8 0.68 models, we have confidence in the present results

(AP; mm/day) because they can be explained by a sequence of
well understood physical mechanisms independent

Surface Stress -0.04 -0.18 -0.16 0.03 of the behavior of the GCM. We hypothesize that
(Az; N m-2) feedback effect of land surface processes may be

partial contributors to the well documented pro-
Vert Vel. 500 mb 2.2 3.0 0.15 1.14 gresslon of the That desert into neighboring

(Au; mb s-1) arable regions. The non-crltical role of evapo-
transporatlon for the monsoon rainfall is another

Dlabatlc heating -57.2 -111.6 12.1 19.50 important result.
(AQ; W m-2)

Surface Temp. -0.5 -0.8 2.8 0.17 References

(ATB; °C)
Charney, J. G., 1975: Dynamics of Deserts and

Ground Temp. -0.6 2.1 10.5 0.II Drought in the Sahel. Quart. J. Roy. Meteoro.

(ATG; °C) So___c.,I01, 193-202.
Kalnay et al., 1983: Documentation of the GLAS

Geopotentlal 500 mb -4.72 -5.56 5.72 4.26 Fourth-Order General Circulation Model. NASA
(A_; GMP) Tech. Memo 86064, Vol.l NTIS, Washington D.C.

Malkus, J. S., 1963: Tropical Raln Induced by a

Small Natural Heat Source. J. Appl. Meteor.,
Vol. 2, No. 5, 547.

Shukla, J. and Y. Mlntz, 1982: The influence of
Land Surface Evapotranspiratlon on Earth's

Climate. Science, 215, 1498-1501.
Sud, Y. C. and H. J. Fennessy, 1984: A Numerical

Study of the Influence of Evaporation in Seml-
arid regions on the July Circulation. J. of

Climatology, 4, 383-398.- Sud, Y. C. and W. E. Smith, 1984: Ensemble For-

mulation of Surface Fluxes and Improvement In
Evapotranspiratlon and Cloud Parameterlzation

In a GCM. Bound. Layer Meteor., 29, 185-210.

Fig. 2. Rainfall anomaly/model's Variability
plots; negative contours are dashed;
stgnifleant regions are hatched.
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INFLUENCE OF LAND-SURFACE ROUGHNESS ON ATMOSPHERIC CIRCULATION AND RAINFALL:

A SENSITIVITY STUDY WITH A GCM

Y. C. Sud, J. Shukla* and Y. Mintz*

Laboratory for AtmosPheres, Goddard Space Flight Center, Greenbelt, MD 20771

1 • INTRODUCTIO N

The dependence of atmospheric circulation on lom _l q" "" Q_
various aspects of land surface boundary condl- _., I_

lions has been discussed for many years. However, Z__it is only recently that numerical model slmula- Io_ _ ,_"
tlon studies have been made to investigate Influ- :: -_.
ences of surface albedo and soil moisture on the _o c

circulation. Mintz (1984) has reviewed eleven sol+_-_)_..1'#recent studies on the subject. Subsequently, a --. -_ _--"-

dozen more studies have appeared in the lltera- _...= _ _"';_
_ure. All of them, without exception, have EO _-_
shown a strong influence of these parameters on ....
_he ci_culatlon and rainfall. In this study, we + _'-I '_I"
have chosen to Investiga_e the sensitivity of 3De _' - : = ....._.-1.

atmospheric circulation to surface roughness of " " "
land This work follows the recent study of Sud J J
and Smi:h (1984b) on the influence of surface- eossso I_w loow sow 20w _ e_ 10_ 140E leo
roughness of deserts.

Fig. 2 Ensemble mean July moisture convergence
2. EXPERIMENTAL DESIGN differences: Experiment minus Control in

mm d-I. Negative contours are dashed.
An ensemble of three pairs (Control and Ex-

periment) of runs were made with a GCM (general
circulation model). The GCM employed for this

study has been described by Randall (1982). It

has been used for several studies in the past. However, the version of the GCM used in the pre-

sent investigation includes an ensemble PBL for-

•o_ _ _ _| _. __.. _ mulatlon by Sud and Smith (1984a) which in turn
I I '___ _, wasder+.ved,from,:he.",_ardorff_1_2)'_,,,..para-

>l+-_,.:.g._+ -_+.++.+.,+ .+<:_-(,_+_,,.__ntheControl_ne,thesurfaceroughness

_o _ " values were: 45 cm for land, 0.02 cm for Ocean,

°7'o,_+,__.o;_:..'.++j_i _!-tl :

+, ++oo++so.+_+++.o+.'_4"__" runs, the surface roughness over land was reduced

o__-_L__+_,_+_ _+ + tooo2cmwhichisatypicalvsiueforsandy
_o .... _-.:. . • deserts. For i km deep PBL this reduction in

.:" )'--_'_- ,:--_/r land surface roughness produces approximately a

+ ,, o ,+o+,+++ o+,+.+-tlons in the biosphere. Apart from this one

_- -_ changeallotherinitialandbounda+condi'ions
_L

eos were the same in each pair of runs.
¶80 140W lO_W 60W 20W 20_ _ 100_ 14_ 180

Fig. i Ensemble mean July rainfall differences: The two cases consist of integrations _.hru
Experiment minus Control in mm d-I. the month of July starting from two initial states

Negative contours are dashed, from the NMC analysis of observations for June 15,
1979, and June 15, 1980. The third initial state
was for June 20, 1980; i= was derived by averag-

ing NMC analysis of observations from June 7 thru
July 6, 1980. The differences in the July ensem-

•Professor Department of Meteorology University ble mean of the Controls and Experiments were
of Maryland, College Park, Maryland 20742 analyzed.
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Although lher,e wa_ [£t_le difference [n the

large d_f'ferences were found in the low level -., , "° (_.___
winds, mo£sture convergence and rainfall. Large e_ "-"

U.S. Central America, and Amazons in South ::-J_ _
_erica, Fig. I. The rainfall increases over 30N

:he [TCZ reglofi £n the monsoonal North Africa ( " _

Increase Is balanced by a corresponding reduction [o; '-I _
".- I :0,

in rainfall to the north and south of the ITCZ. _

Whereasthere was virtuallyno changein evapo- _l-
transpiration,but the PBL moisture convergence so8 _-I-_.If_ .. ,I.-2-.

remarkablecorrespondencewith rainfall differ- %_ _) _: )=_.
ences. This one-to_ne correspondence in the .S , "",_2:-_::::_

PBL moisture convergence and rainfall is not ..> _ , 1..::.--:'t::,b___
surprising because convective rain in July ob- '_._._-."-_": _ 3 _:. I.
_alnsmost of the moisture from the PBL. This _S _....i--_"'_ / "_i:2_j_..........
resultsuggeststhat it Is the variationin deep leo 140w ,_w sow 20w :mE aoG IooE _40_ _so
cumulusconvectionwhich essentiallyresponds to
moistureconvergencein the PBL. Fig. 4 Statisticalsignificanceof rainfall

differences:(V preclp/Vsmodel).

The vec=orplot of moistureflux (Vq--')Ident- Negativecontoursare dashed.
ify the physical mechanism responsiblefor the

change. I= is found _hat reduced surface drag Our study suggeststhat land-surfacerough-
over smootherland suppressesthe cross-lsobarlc hess is an importantparameter. In nature,land
moistureconvergenceIntothe low pressureregions surfaceroughness,surfacealbedoand evapotrans-
at highlatitudes,Fig. 3. On the otherhand, low plratlonare stronglyinfluenced by vegetatlbn.
surface roughness increases _he intensity of Therefore,it is vital that future simulations
winds and moisture convergenceinto the ITCZ. of weather and climate are made with GCMs that
This producessinkingand moisturedivergenceat includea suitableparameterlzatlonof the vege-
_he neighboringlatitudes. Some largedifference tatlonon land. Recently, Anthes (1984) has
oversouth China Sea and westernPacificmerely examinedthe possibilityof enhancementof convec-
reflecta slight shift in the strong _nsoonal tlve precipitationby employingmesoscalevar£a-
clrculaticn, tlon in vegetation. B_ed on our studieson the

largescale, we infer that vegetation induced
The statisticalsignificanceof our results, surfaceroughnesstoo can support such a design.represen=edby rainfall differences normalized

w!_h _he natural varlabllltyof the model,is References
shownin Fig. 4. All the Americasare slgnlfl-

canzlyiffected. The rainfall in the monsoonal Anthes,R. A., 1984: Enhancementof convective
regions is als¢_ _ign!flcantly affected. Over Preclplta=ion by Meeoscale Variations in

luropeand ,_ia =oo,there are several re_ions Vegetative Covering in Se_arid Regions.
of signif'ican_rainfall changes. J. of Climateand Appl.Meteor. 23,

pp 541-554.

Deardorff, Jo W., 1972: Parameterlzation of the
planetary boundary layer for use in general_ON _t

' _ -- ': ....... × circulationmodels. MortWed. Rev., i00,

.. ,...... _ ....... Mintz,Y. 1984: The sensitivityof Numerically

-- _f_'--_k''_:--"_'"_'_;=:i_-----_'_--'i__....... I_,_._"'""'--"-- ...... _--_ SlmulaCedCllmaCe to Land-SurfaceBoundary
..,,,........,.,__._........._.... , ;_,,.,,,,,.-,,,Conditions Chapter 6, The GlobalClimate

3_ -----_ r_ ........... (editor:J. T. Houghton)CambridgeUniversity

7,,1: .,,_ ..... _ Randall,D. A., 1982: Monthlyand SeasonalSimu-

[o .......... __..\...... _i(_......._._ ,,,:: ceedin_sof the Workshopon Intercomparis-_n' - , '.............
.....)....._'1[_7_I _ ' ' '! _ :--_-i; of _r_e-Scale Models Used for Extended
'--_'_f.ff I'_" ._-"-, _ _'-- ' _?_i Range Forecastsof the EuropeanCenterfor

_os _i!:t_:. _:_':t'___:!_.'-_,'_-'--_;- ;'-_'_-_-_'_': ;'-" _ Medium _n_e Weather Forecasts. Reading,
._. '"!:=_::_._--'--'___.i.'*" :'_.:_ ='- England, 107-166._o,i -::::4: .... : - :'l -"" -- ....--_ . "'_ Sud, Y. C. and W. E. Smith, 1984a: Ensemble

_so _4ow _w sow =ow _ eoE _ ,4o[ _so formulationof surface fluxes and improve-
ment in evapotransplrat!onand cloud para-

Fig. 3 Ensemble mean July moisture flux vector meterlzation in a GCM. _und. La[er Meteor.,
differences: Experiment minus Control in 29, 185-210.
(mm d-l)m. Arrow lengths are discretlsed Sud, Y. C. and W. E. Smith, 1984b: The influence

Small arrows: 0.5 x 106 to 5.0 x 106 of surface roughness of Deserts on the July
Medium arrows: 5.0 x 106 to I0.0 x 106 circulation - a numerical study. Bound.
_ng arrows: grea=er =ban I0.0 x 106 La_er _teor. (Approved for publlcatio-_-_.

130



III. S U M M E R L E C T U R E S E R I E S





The Structureand Dynamicsof an ObservedMoist Front

by

I. Orlanski

GeophysicalFluid DynamicsLaboratory/NOAA
PrincetonUniversity

Princeton,New Jersey 08542

The structureand dynamicsof the moist cold front of 25-26 April 1979,

the third observingday of the SESAME Experiment,are investigatedthroughthe

use of a three-dimensionalmesoscalenumericalmodel. This work is one of the

first studies in which model resultsare compared,in a one-to-onemanner,

with a detailedobservationalanalysis,namely that of Ogura and Portis (1982)

as taken from the SESAME observations. In addition,frontogeneticaleffects,

both adiabaticand diabatic,are studiedon a verticalcross-sectionthrough

the front; similaritiesand differenceswith the adiabaticanalysis of Ogura

and Portis are discussed.

The mesoscalemodel, which is describedby Orlanskiand Polinsky (1984),

is initiatedat 0000 GMT 25 April from the GFDL/FGGEglobal analysis and is

integratedfor 26 hours, using the same FGGE data at the synoptictimes for

boundary data, to producethe solutionof 0200 GMT 26 April to be compared

with the Ogura-Portisanalysis.

Many similaritiesexist betweenthe modeled and analyzedfields,although

the analysis tends to have weaker horizontalgradientsdue to the coarseness

of the observationalnetwork. Vorticityand convergencenear the surfaceare

found to have the same magnitude in both the model solutionand the analysis,

in contrastto idealizedfrontogenesismodels which predictvorticityto be

much larger than convergence. The model producesa strong low-leveljet ahead
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of the front,in agreementwith observations,whenmoistconvectionis active

but with only a simpleplanetaryboundarylaterused. Finally,vertical

penetrationof the frontalzone,indicatedby the line of maximumvorticityin

a verticalplanethroughthe front,is closeto the slopeanalyzedby Ogura

and Portis. In fact,an analogoussolutionrunwithoutmoistureproducedmuch

shallowerpenetration,suggestingthat fluidparcelsin the moistenvironment

followthe more steeplyinclinedlinesof constantequivalentpotentialtem-

peraturejust as parcelsin the dry casefollowconstant-elines.

A study was also madeof the frontogenetical terms which act to enhance

and weaken the horizontal potential temperature gradients within the front.

The adiabatic terms, namely, the convergence, deformation, and tilting terms,

show good agreement, with regard to sign and vertical structure, with those

analyzed by Ogura and Portis. The low-level structure of each of the moist

fields is close to that shown in the dry solution, with convergence and defor-

mation being frontogenetical and tilting frontolytical near the surface.

However, moist terms exhibit a muchdeeper penetration with the tilting field

dominant in both the simulation and the analysis of observations. On the

other hand, when diabatic and diffusive terms are obtained from the numerical

solution, one finds that the tilting field is largely canceled by diabatic

heatingeffects(Figurela). Hence,the completefrontogeneticalfunction

(FigureIb) consistsof: frontogenesisaheadof the frontat low levels,due

to convergenceand deformation,and at middlelevelsdue to diabaticheating;

and frontolysisat middlelevelsto the rearof the maximumvorticityline,

due to tiltingand diffusiveeffects.
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Figure 1 -- Vertical cross-sections through the simulated cold front of 26 April 1979 showing (a)
combined diabatic and tilting terms and (b) total frontogenetical function, both in units of 10-10
K m- Is- 1. Frontogenetical effects (stippling) are shown at ground level and upper levels ahead of the
front, whereas frontolytical effects (cross-hatching) are shown behind the front. The effects at the
ground produced by adiabatic processes (convergence and deformation) and the frontolytical effects
(tilting) had been speculated from idealized studies. The upper frontogenetical effects ahead of the
front produced by latent heat release (diabatic processes) are shown for the first time by this study.

135



Some Recent Developments in Numerical Modelling at ECMWF

A.J. Simmons
European Centre for Medium Range Weather Forecasts,

Reading, Berks., U.K.

Extended Abstract

i. Introduction

A new atmospheric model was introduced into operational forecasting at

ECMWF on 21 April 1983. The principal differences between this model and

the Centre's first operational model were in the adiabatic formulation,

which, in the new model, includes use of aspectral representation in the

horizontal, a more general vertical coordinate, and a modified, more-efficient,

time-stepping scheme. In addition, new programming techniques and standards

were adopted to facilitate both the model's use as a research tool and

its adaptation to make full use of the features of the recently-acquired

CRAY X-MP computer. A number of revisions were also made in detailed aspects

of the formulation of the parameterisation schemes. The operational change

to this new model was accompanied by a second important change, namely

the use of a higher 'envelope' orography in the lower boundary conditions

of the model. An account of the design and early performance of the new

model has been given by Simmons and Jarraud (1984).

Since its operational implementation, effort has continued to be directed

towards the development of the new model. This effort can be divided into

two categories. The first concerns development directly related to problems

in the operational performance of the model. The second concerns the develop-

ment preparatory to the future operational implementation of a high resolution

version of the model on the CRAY X-MP.

2. Development of the Numerical Formulation of the Operational Model

(a) The representation of orography

In the version of the new model originally introduced into operational

forecasting, the spectrally-fitted envelope orography was modified iteratively

to reduce the height of the model orography in coastal areas, and thereby

increase the use of synoptic observations from such areas in the data assimilation
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_ubsequent tests showed that any beneficial impact of such data was more

than masked by the impact of an unrealistic model orography in near-coastal

regions. It was thus decided to use an orography defined by a direct spectral

fit of the envelope orography. In the construction of the latter, the

standard-deviation of the sub grid-scale orography was not used to enhance

the mean at model "sea" points (points for which more than 50% of the

surrounding grid-square is in reality covered by sea). Improvements in

local synoptic features were evident near regions of significant change

in the orography, and some of the precipitation biases were reduced.

In addition to making the above operational changes, the overall performance

of the envelope orography in routine prediction has been monitored. Comparing

the results of objective verifications for the summers of 1982 and 1983

showed the improvement in quality in surface forecasts anticipated from

previous comparisons of grid-point and spectral forecasts. However, a

clear improvement at 500 mb of the type found previously to result from

use of the envelope orography in winter forecasts was not evident. Although

results for 1984 are substantially better and suggest that such interannual

comparisons can be misleading due to variations in predictability in different

synoptic situations, experimentation has indicated a small detrimental

effect of the envelope orography in some summer forecasts. Some further

investigation has been carried out, but it was decided to concentrate

attention on co-ordinating this work with the experimental programme for

the development of a higher resolution operational model.

(b) The semi-implicit gravity-wave treatment and the horizontal

diffusion of divergence

Noise generated in the model vertical velocity field in conjunction with

intense convection has been found to be a recurrent feature of forecasts,

particularly in the short-range. In addition, noise has occasionally been

found to develop in the data assimilation in association with anomalously

strong mid-latitude jet streams, and a case of computational instability

was encountered operationally when the problem was exacerbated by serious

errors in satellite temperature data. Tests revealed sensitivity to the

treatment of gravity waves by the semi-implicit time scheme. Pending a
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fuller investigation of this problem, a solution has been adopted which

involves a minor modification of the semi-implicit scheme, together with

an enhanced (by a factor of 10) coefficient of horizontal diffusion for

the divergence field. The position of this diffusion within the model

code was also corrected so that it was executed after completion of the

semi-implicit correction of the temperature and surface pressure. The

overall impact on the accuracy of forecasts was extremely small, although

some indication of excessive damping of tropical features has been found.

c) Other operational changes

Other minor changes in numerical formulation have been introduced in the

light of operational experience. Horizontal diffusion is now applied not

to temperature itself, but to the deviation of temperature from a reference

profile in such a way as to approximate diffusion on surfaces of constant

pressure. This acts to suppress excessive precipitation over mountainous

areas in summer forecasts, which was formerly triggered by an erroneous

warming of mountain tops associated with the diffusion of temperature along

the terrain-following coordinate surfaces of the model. A small increase

in the time-filter coefficient and a modification of the reference wind profile

used for the semi-implicit treatment of vorticity and moisture advection

have enhanced the computational stability of the model. These changes

have had negligible impact on forecast quality.

3. Experimentation at High Resolution

Operational forecasting is currently carried out using triangular truncation

at wavenumber 63 (T63) in the horizontal and a 16-1evel vertical representation.

The acquisition of the CRAY X-MP computer allows use of a resolution up

to about T106 using 16 levels, or about T95 if vertical resolution were

to be increased to 20 levels. An experimental programme to assess the

performance of the forecast model at higher horizontal and vertical resolution,

and the sensitivity to orographic representation at such resolutions, has

thus begun.

First results indicate little sensitivity to an increase in vertical resolution,

but an overall improvement from an increase in horizontal resolution, at

least in the extratropical Northern Hemisphere. Differences in conventional
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objective verifications are not large in general but as no attempt was

made in these first experiments to optimize initial and boundary conditions

or model parameters, more substantial gains can be expected for the future.

Improvement is more evident for the medium and smaller scales of motion,

and can be clearly seen in the few precipitation forecasts that have been

examined to date. Use of an envelope orography appears more beneficial

at higher horizontal resolution, the small detrimental impact found in

summer T63 forecasts disappearing at T106 resolution in the limited number

of cases that have been completed. Further experimentation planned for

the coming months should help quantify these conclusions and aid understanding

of the sensitivity to orography.
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LARGE-EDDY SIMULATION
IN

PLANETARY BOUNDARY-LAYER RESEARCH

3. C. Wyngaard
National Center for Atmospheric Research

Boulder, CO 80307

We do planetary boundary-layer research for the same reason we do
research on any turbulent flow: to develop models (i.e., parameterlza-
tions) of its structure and dynamics. While the traditional approach Is
through experiments, two developments over the past decade bear on the
continuance of this tradition.

The first is that progress in PBL research seems to have reached a
plateau, in the vlew of a WMO working group (Andr_ et al., 19823. Ex-
periments are very expensive (the 1968 Kansas program required three
previous trials, 15 persons in the field, about 10 persons over the next
2-3 years in data analysis--all for measurements in the first 32 m!) and
Inoreaslngly difficult to justify. Furthermore, inherent uncertainty--
the inevltable difference between time-averaged and ensemble-averaged
structure--becomes much more important higher In the PBL, oauslng severe
data scatter problems. As a result, when we look at new experimental
ohallenges, such as reliably parameterizing subgrid-soale transport
through a cloud layer, we can easlly become discouraged; such problems
seem out of experlmental reach!

The second development is the growing realizatlon that large-eddy
simulation, or LES, can provide data bases on PBL structure, and thereby
supplement and extend the traditional direct measurements. LES refers
to three-dimensional, fine-mesh, time-dependent turbulent flow simula-
tion, with the spatial grid fine enough to resolve the energy-containing
eddies. Deardorff (19703 demonstrated its potential first in turbulent
channel flow, and then began his series of PBL simulations which pro-
duoed, for example, a study of the evolution of day 33 in the Wangara
experiment (Deardorff, 19743. LES is used rather widely today in fluid
mechanics research problems ranging from engineering flows (Rogallo and
Moin, 19843 to severe storms (Klemp and Rotunno, 19833. A recent
working-group report (Wyngaard, 19843 examines LES in detail and recom-
mends its wider use as a tool in PBL research.

In the Mesosoale Research Section of NCAR we are currently using

LES to study the structure and dynamics of the convective boundary
layer. In one study (Wyngaard and Brost, 19843 we simulated the
vertical transport of a conservative, passive scalar. Because of the
(mathematical) linearity of the governing transport equation for the
scalar, we were able to represent the scalar field as the sum of "top-
down" and "bottom-up" components. We isolated the statistical proper-
ties of these two processes and found them to be significantly differ-
ent; "bottom-up" diffusion has a larger (by a factor of 2 - 4) eddy
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diffusivity. We attributed this difference to the asymmetry in the
verticai profiie of buoyant production of turbuience, and to the differ-
ence in boundary conditions at bottom and top.

In a second study (Moeng and Wyngaard, 1984) we studied in more
detaii the statistics of top-down and bottom-up scaiar fieids. We found
substantial differences between them, due again, presumabiy, to the
asymmetry in the convective PBL. We deveIoped a generaiization of
mixed-Iayer scaiing which alIcws one to incIude the effects of top-down
diffusion (i.e., the effects of entrainment).

Chin-Hoh Moeng is now extending this work to the study of cioud-
topped boundary Iayers. We beIieve that LES has hlgh potential for
appiication to a very wide range of PBL probiems, inciuding turbuient
dispersion, the stabie PBL, and studies of mean wind profiies in baro-
ciinic cases. Some of tomorrow's fieid programs might take piace on the
supercomputer!
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