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1. Introduction

When solving time-dependent partial differential equations numerically, it is often desirable to use
implicit methods for reasons of numerical stability. This is particularly true for parabolic equations where
the time step restriction is severe for explicit methods. In more than one space dimesion, however, impli-
dt methods lead to linear systems of equations with compli~ited structure which cannot be solved effi-
dently by direct methods.

Consequently, a wide variety of dimensional splitting or fractional step methods have been used. In
these methods, a single multidimensional impliat time step is replaced by a sequence of steps, each of
which is implicit in only one coordinate direction. In that direction, the equations can be solved along one
line of gridpoints at a time, giving a banded system of equations which can be easily solved. The reader is
referred to {2}, {4], [10], [13] for an introduction to many of the methods used in practice.

One difficulty which has sometimes flugued these methods and frequently caused confusion amorg
users is the proper speaification of boundary conditions for the intermediate solutions which arise beiween
the individual steps of this sequence. The purpose of this paper is to show how the proper boundary con-
ditions can frequently by determined quite simply and logically by considering the “modified equation” (or
"model equation”) corresponding to each finite difference approximation in the sequence.

We will illustrate this technique by considering several fractional step methods for the heat equation
in two space dimensions: the locally one dimersional (LOD) method, the alternadng-direction implicit
(ADI) methods of Peaceman-Rachford[11] and Douglas-Gunn[3], and the approximate factorization (AF)
method of Beam and Warming[1]. General boundary conditions wnvolving normal derivatives are handled.

We have chosen a simple problem and well-known fra tional step methods in order to lustrate the
technique as clearly as possible. The same ideas used her= can be applied to other methods and more com-
plicated equations. The extension to methods inveiving more than two fractional steps is illustrated by
considering the LOD method in three space dime-sions in Section 6.

Although here we only discuss dimensional splitting methods, the same approach can be used to

determine the correct intermediate bound-ry conditions for any additive splitting method. Other contexts



where these ideas have already been applied include the splitting of hyperbolic systems into subproblems
with disparate wave speeds{8], [9], the splitting of convectior:-diffusion equations into hyperbolic and para-
bolic subproblems{8), and splittings of the incompressible Navier-Stokes equations{7].
For most of this paper we will consider the two-dimensional heat equation,
u=u, +u, =Ly in Q=[0,1]x[0,1] (1.1)
with boundary conditions on 3QQ. Alongth;boundaryx = x, (x, = 0 or 1), for example, we will consider

either the Dirichlet condition

u(x,y,t) = g(y.1) (1.29)
or the more general Robbins condition
a(y")"(xbiy") + BO,t)u,(be,t) = 1(’1‘)' (12b)
A fractional step method for this problem typically has the form
Q.U; = P.Uj; (1.3a)
Q.U = PUy (1.3b)

Here the P’s and Q’s are spatial difference operators, with @, and Q. involving differences in only the x-
and y-directions respectively. U7 represents the numerical approximation to the solution u(x;.y,.f,). For
simpicity, we take equal mesh widths A in the x and y directions, so x; = ih and y, = jh for

ij=0,1,.. N, where h = UN. The time stepis denoted by k,s0¢, = nk, n =0,1,....

The problem is to determine appropriate boundary conditions for the "intermediate solution” Uj;
which arises in (1.3). We typically require boundary data U,,, b = 0, N for (1.3a). ‘Ve may also require

Uy, b = 0, N, for (1.3b) if P, involves y-differences.

Typically, (1.3) gives a second order accurate approximation U""*, while the individual steps (1.3a)
and (1.3b) are not second order accurate methods for the original equation. Hence the intermediate solu-
tion U” is nonphysical and does not correspond to the true solution at any intermediate time. This makes

it difficult to determine a priori the proper boundary conditions.



The approach we will take consists of determining the modified equation for (1.3a), the differential

equation which would be solved to second order accuracy if we iterated with the scheme
QU = PUL.

The modified equation is derived by replacing the difference operators by expansions of differential opera-
tors. This expansion can be truncated at an appropriate point to give a differential equation.

We denote the modified equation by

u, =L (1.4a)

where L is a differential operator involving only spatial derivatives. Similarly, we can derive the modified
equation for (1.3b):

ut=L"u. (1.4b)
By truncating the expansions in each modified equstion appropriately, we will have

L=L"+L", (1.5)
an additive splitting of the original operator.
There is an obvious splitting of L into one dimensional operators, namely
L"=8, L"=a. (1.6)
This is precisely the splitting used by the LOD method discussed in Section 2. The other methods, how-
ever, use more complicated splittings of the operator L.
Once the modified equation (1.4a) has been determined, we can view (1.3a) as taking a single time
step on the equation (1.4a) with initial conditions

u(xyt,) = ulxyt,) Vxyell 1.7
Here we assume U, = u(x;,y,,1,). If the solution to (1.4a), (1.7) is denoted by u"(x,y,1) for 7 = 1,, then

U,-'j = u'(x,-,y/,tn+k) + o(b) (1.8a)
since (1.3a) is second order accurate on (1.4a). One approach to specifying boundary conditions for U” is
to simply employ a one-sided, second order accurate, finite difference approximation to (1.4a). Then we

are solving the same equation at the boundary as in the interior, but with a one-sided scheme instead of



the (presumably centered) scheme (1.3a).

The problem with this approach is that it does not make any use of the specified boundary conditions
(1.2). We can often do better by determining the boundary behavior of 4" (x,y,t) in terms of the (given)
boundary behavior of u. If we succeed in determining u”(x,y,f,+k) to O(k) for points along the boun-
dary, this gives us the proper spedfication of U".

Actually, it usually suffices to have boundary data which are one order of accuracy lower

than the interior scheme, i.e., we only need to insure that

Uj = u (x5t +k) + O(k) (1.8b)
at boundary points to maintain second order accuracy. For hyperbolic equations this is a result of Gustafs-
son[6]. For the heat equation it is a simple consequence of linearity and the maximum principle. How-
ever, in practice it is found that such boundary conditions can lead to a large increase in the error constant.
Although the results are second order accurate as the raesh is refined, the errors on any particular mesh
may be an order of magnitude larger than neccssary. This can make a significant difference in the effort
required to solve a multidimensional problem to a spedfied accuracy, and so we recommend using boun-
dary conditions with O(k?) accuracy whenever possible. Some examgles of the resulting increase in accu-

racy will be seen in later sections.

To determine the behavior of «~ along the boundary, consider a typical point alcng one of the boun-

daries x = x,. Expanding u"(x,,y,,+k) about time ¢, gives

W (xy,y 0, k) = u (x,,0,) + ku; (x,,y,t,) + %k—zu;(x,,,y,rn) + - - (1.9)

=u‘+ld,‘u'+—;-k2bfu'+
We obtain M~ by differentiating (1.4a) with respect to 1 anc replacing time derivatives of &~ on the right
hand side by L"u, so that M~ involves only spatial derivatives. For the linear equation considered here we

have M = (L"), but the same process can be applied even in nonlinear problems.



It is important that the final expression in (1.9) involves only spatial derivatives of 4™ at time ¢,. (We
make the convention throughout this paper that if a function occurs with no arguments on the right hand
side of such an expression, the point (x,,y,t,) is assumed.) According to the initial conditions (1.7),
4" = y at time ¢, and so L*«" = L u and similarly for any spatial operator (N.B. this is valid only at time

t,!). So (1.9) becomes

U (x,,yl,+k) = u+ kL'u + —lz-kzM'u + -, (1.10)
This can frequently be manipulated to yield an expression in terms of the original boundary data for u by
using the original equation (1.1) to replace L* and M~ by "tangential” operators involving only - and y-
derivatives. The form of the final expression obtained depends on the particular case in question. Rather
than continuing in such generality, we will demonstrate the process on particular examples in the following

sections.

2. The locally one dimensional (L.OD) method

The LOD method for the heat equation (1.1) takes the form
(1 - SKDYV; = A + kDD (2.1)

a- %kp_gw;ﬂ =1+ -%u)g)ui‘,. (2.1b)
Here we use

Dy = h™2 Uiy = Uy + ui_yy), DUy = h"2(U, 1y — 20Uy + u;.1).
Since (2.1a) is the second order accurate Crank-Nicolson method applied to

U = g, .2)

we can take this as the modified equation for (2.1a). The second step (2.1b) is the same in the y-
direction, and so the LOD method corresponds to the splitting (1.6).

Note that (2.1a) can be applied at j = b = 0, N in order to obtain the values U}, needed in (2.1b).

However, we still need to specify boundary conditions for U;,,. = 0, N. Consider a typical point (x,,y)



and expand «"(x,,y.f,+k) about (x,,y,t,) to obtain

N - - l -
U (x,,y.0,+k) = & (x,,y,t,) + ku;(x,.y.1,) + 5k2un(xb,y,t,,) + ...
=u" + ki + %Eu:m + - (2.3)
- 1,5
=u+ h‘u + Eb“tttr

which corresponds to (1.10). We now use the original equation (1.1) to solve for

u

o = Uy T Uy

and

Uege = Uy = b + Uy

This allows us to rewrite the boundary data (2.3) in terms of - and y-derivatives of 4 along the boundary

X = Xt

W (xy,y b, k) = u + k(u, —u,) + %lcz(un = 2uy, tu )t -

1,,

Wty by +R) =ty + SRy = ) + 2.4)

(- ka_f + %k:a_f + - Julx,,y,t,+k).

This can also be obtained by integrating (1.4b) backwards in time from U™ }; see Section 6 101 ic..."".

If the original problem specified Dirichlet boundary conditions, u(x,,y,t) = g(y,t), (2.4) immediately

provides the appropriate boundary conditions for {”. Based on (1.8a), we can take

1
U;_/ = g(y/"n+k) - kg_\y(yj,'n-'-k) + Ekzg_\)-_\-_\'(yj$tn+k)' (2'5)
With the Robbins condition (2.2b), appropriate boundary conditions are still easy to derive if a and B are
constant, so (2.2b) is
a"(xb’y:’) + B“x(xbsyv‘) = 'Y()’J)- (26)
Differentiating (2.4) with respect to x and taking the linear combination au” + Bu; gives the boundary

condition



au(x,,y b, +k) + Bu (x,.y,1,+k) = YO,t,+k) — by, (v,t,+k) + -;-k"v,m(y.r,.ﬂ)- 2.7
If « and B are not constant then the situation is more complicated since, for example, au,, + Bu,, # v,,.

Based on the second line of (2.4), we can still obtain a condition of the form

o’ + Uy = Y04 +E) = Ry + Butgy) < 2Ky By — 2oy, — 2Bugy) s (28)

but now the derivatives of u(x;,y,t,) on the right hand side must be replaced by finite difference approxi-
mations based on U}, Unless this is done carefully, numerical instabilities can arise. This is discussed in
more detail in Section 4.

To demonstrate the validity of the boundary conditions derived here, we present the results of two
numerical experiments with Dirichlet conditions. We first consider the prohlem (1.1) with exact solution

u(x,y,t) = sin(x/2 + y)e~ > (2.9)
and specify boundary conditions obtained by evaluating (2.9) along the boundaries, ¢.g., aleng x = 0,

8(y,1) = sin(y)e 15", (2.10)
We compare the results obtained with three different choices of boundary conditions Uj;. The first of
these is simply

Uy = 80y, +172). (2.11)

This has been recommended by some authors, but comparing this to (2.5) shows that it differs by O(k).

We thus expect this boundary condition to destroy the second order accuracy. This is confirmed by the

results of Table 2.1. Here we have displayed the errors at time ¢ = 0.75 measured in both the L,- and
L,norms. We have also computed the L,-rate of convergence, obtained by comparing the errors with dif-

ferent values of k (we always take k/A fixed as the mesh is refined and A = I/N). The L,-rate is defined
by log(eye,) / log(ky/k,), where e; and e. are the L,-errors obtained with time steps k, and k, respectively.

The second boundary condition used is
Uy = 80t,+k) — kg, 01, +K), 2.12)
which was derived by Dwoyer and Thames[4] using the "method of undetermined functions.” In this

approach, one inserts undetermined constants in place of the unkncwn boundary valucs and combines the



stages into a one-step method. Requiring that the resulting me:hod be second order accurate yields the
boundary condition (2.12). Since (2.12} corresponds to the first two terms in (2.5), according to our
comments concerning equation (1.8b) this shou!d be suffident to restore second order accuracy. This is
aiso confirmed by Table 2.1. Finally, we have used (2.5) itself. Again the method is second order accu-

rate, but the errors are reduced by an order of magnitude over those seen with (2.12).

In our second experiment, we investigate the effect of various boundary conditions on a steady state
solution obtained with the LOD method. Presumably the choice of boundary conditions will have little
effect on the rate of convergence to steady state, but may have a significant impact on the accuracy of the
resulting solution. To investigate this latter effect, we have taken initial data equal to an exact steady state
solution to (1.1), namely,

u(x,y) = cosh(y—.5) sin x + cosh(x—.5) sin y. (2.13)
Again, Dirichlet boundary conditions were obtained by evaluating (2.13) along t.ie boundaries. Within a
few iterations, the LOD method converges to a numerical steady state. Table 2.2 shows the error in the
nurnerical solution for each of the boundary conditions considered previously. Again, (2.11) gives only
first order accuracy while (2.12) restores second order accuracy. In this case, the use of (2.5) improves

the error constant by a factor of at least 20 over (2.12).

3. The Peaceman-Rachford and Douglas-Gunn ADI Methods

The ADI method introduced by Peaceman and Rachford[11] has the form
a - Liopu; = ¢ + Ty (3.1)

1 1
- -i-wf)usﬂ =@+ EkDZ)U;j . (3.1b)
Here the splitting is no longer simply (1.6). The ADI method is usually viewed in the following way:
Each step (3.1a) and (3.1b) is a first order accurate method for the original equation (1.1) on a time step

of 'ength k/2 which combine to give second order accuracy over a step of length k. Because (3.1a) is con-



sistent with the original equation, it is tempting to specify

Uy = 80Oty +k12), (3.2)
for example, in the case of Dirichlet conditions. However, it has long been known that this causes a loss
of accuracy since this boundary condition does not contain the O(k) error present in the interior which is
required to cancel out the O(k%) error in the second step. Fairweather and Mitchell[S] determined the

correct boundary conditions by the method of undetermined functions, obtaining

1 1 n 1 1 2 n
U;j = ‘2‘(1 - wa)g/ﬂ + —2—(1 + EkD;)gj (3.3)

where g7 = g(y;,f,). The same result can be obtained by the approach advocated here.
Rather than viewing (3.1a) as a first order scheme for (1.1) with time step k/2, we derive the modi-
fied equation for which (3.1a) is a second order approximation with time step k. We have
(- %-sz)u*(x,y,tn-rk) =(I + %kDf.)u'(x,y,r,,).
Expanding u"(x,y,t,+k) about u”(x,y,t,) and using, for example,

Dl = 3" + 0(K)

we obtain
~ + - 1 - 1 el - - _ " 1 -
u - k(ul - Euu) + ‘2—k‘(un - uxn) + 0(k3) =u + -2-ku‘v_\' + 0(k3)
or, solving for u;:

Tk, - 1) + 0. (3.

We can ottain expressions for u, and u,, by differentiating this. Plugging the resulting expressions back

0= S+ ) -

into (3.4) gives

0 = S0+ )+ gk~ ) (3.5)

(S

plus terms which are O(k?). Hence (3.1a) gives a second order accurate approximation to (3.5) on a time

step of length k and we can take
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1
2

Since (3.1b) is the same as (3.1a) but with x and y interchanged, deriving the modified equation for

L' = (33 + 83) + k(= 33, (3.62

(3.1b) gives

we _ 1.9 1 _
L" = 3(a‘ +97) + —S-k(G; ad. (3.6h)
Note that (1.5) is satisfied.

Using the equation (3.5), we can proceed as before to determine the boundary data. Since

L' = -;—L + —;-k(a: -3, M =)= %Lz + 0(k),

we now obtain, by (1.10),

u” (x,,y,8,+k) = u(x,,y.t,) + kL'u + %kzM‘u + -

1 1,,-_1 1.5,
= = = - = + <KLy + .
u+ 2kLu + 8k(L 2L)u 8k‘zL u 3.7

AXXY Y

= u(xbs)’:tn"'k/?«) + %kz(u -—u )+ e

Moreover, we can manipulate (1.1) to obtain

u u =u

wee My w2y,

so that this can be reexpressed in terms of ¢- and y- derivatives along the boundary. Hence, with Dirichlet

boundary conditions, we can take

Uy = 80yt kD) + R0t =281 0t (338)

This gives the required O(k°) correction to (3.2). Instead of using derivatives of the function g, one could

approximate (3.8) by any finite difference expression correct to O(k%). It is easy to verify that
Fairweather and Mitchell’s boundary condition (3.3) is one such approximation.

The approach taken here easily extends to more general boundary conditions. For example,

corresponding to the boundary conditions (2.6) with « and B constant, we obtain

- . 1
A" Gty tB) + By 0y ) = Y0+ K2) + TEL00) = 2y 0ot))
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Based on the formulas used above, it is also easy to determine the intermediate boundary conditions

for the ADI method proposed by Douglas and Gunn(3):

(I - kDU, = (I + kD)UY (3.9a)

(I — kDHU! = Uy + kDU, (3.9b)

Except for the factor 1/2, (3.9a) is identical to (3.1a) and the modified operator is easily determined to be
L = (03 +8) + k(3! - 3)). (3.10)

The intermediate boundary conditions in the Dirichlet case are found to be

Uy = £0, k) + TREOpt) = 28,0t (3.1
Although it is not necessary to compute the operator L™, it is interesting to do so since the equation
(3.9b) has a feature not seen before; it involves U" as well as U and U™*!. Because of this it appears
senseless to discuss the modified equation for (3.9b) since we cannot apply it in isolation. However, if we
multiply (3.9b) by (I + kD}) and use (3.9a), we can eliminate U" and obtain
(I + kD) — kDU — [( - kD7) + k(I + kKI)DI V" (3.12)
Note that this is a bit of a twist on the usual analysis in which one eliminates U” from (3.9) to obtain a
second order accurate method for (1.1). We have eliminated U to obtain a second order accurate method
for the (as yet unknown) modified equation (1.4b). In this equation we use initial data
u(, k) m (k) = U
and view U™ as an O(k’) approximation to u™ (t,+2k). Repladng U"*' by u™(r,+k) +

ku"(t,+k) + - - - ir 3.12) and proceeding as usual gives

L™ = k(3} - a%)

(S IE

after a tedious calculation Of course the same result can be obtained much more casily by using (3.10)
and (1.5). However, this sort of technique is sometimes necessary in dealing with multi-s*ep methods

involving more than one intermediate solution.
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4. The Approximate Factorization (AF) Method
Approximate factorization methods are typically written in a form different from (1.3), namely

Q.5 = PUG (4.1a)

0,8} =38 (4.1b)
where 8" = U"*! — U" so that the new approximation U™*! is obtained by setting

Ugt = Up + 8] 4.2)
after solving (4.1). Clearly (4.1) is a two-step procedure for solving

QtQ}'Ui’}+1 = (P + QrQ\)UZ
and Q.Q, is an approximate factorization of some two-dimensional spatial operator.

For the AF method, we need only specify boundary conditions for " along x = x,. If Dirichlet con-
ditions are imposed, then the proper bounda.y conditions for 8 in (4.1a) can be easily determined using
(4.1b):

5, = 0,8}

= Q)‘(BO]"H‘PI) - S(Yj!‘n))' (.4'3)
For more general boundary conditions, however, it is useful to pursue the modified equation approach.

Beam and Warming({1] consider AF methods for a more general problem with mixed derivatives:

u, = au, + bu, + cu, = Lu. 4.4)
They show that stable second order accurate methods can be obtained while handling the mixed derivative

term explicitly. One such method is

(I - wkaD)S}, = Ti—g {k(aos + DY + (g~e+%)V) + DD, + (§+%)V) +evlun (a5a)

(I ~ wkaD?)b} = &, (4.5b)
Here €, w, and 6 are parameters satisfying

w=0/(1+E§)
and
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YUr=Ut - Ul = Y

DDLU, = :‘}E(Uiu,/ﬂ = Uiyy-1 = Uimyyer + Uingy0)-
For the heat equationa = ¢ = 1, b = 0, and the simplest such method (corresponding to Crank-Nicolson)
is obtained by taking £ = 0, w = 8 = 1/2. Then the operator P on the right hand side of (4.5a) reduces
to
P = k(D + Dj).
For b # 0, other parameter choices give more stable methods, e.g., 8 = 1, & = 12, 0 = 2/3 (see [1]).
We have also found that with Robbins boundary conditions, the latter choice of parameters gives a more

stable method even for the heat equation.

In this section, we will consider the more general method (4.5) since the additional complicati >ns
only affect the operator P in (4.5a). We will see that this has essentially no effect on the derivation of
boundary conditions.

Thus the m=thod has the form (4.1) with

0, = (I - wkaD}) (4.6a)

Q. =U- wkan.) (4.6b)
and P given by (4.5a) (P could be even more complicated — e.g., for the incompressible Navier-Stokes

equations we could obtain a method of this form in which P oontains nonlinear terms [7]). In order to
derive the modified equation for (4.1a) without having to expand all the terms in P, we instead base our
expansion on (4.1b):

0y - U = U; - Uy @
Assuming as usual that U} = u’(x;,y;,t,+k) with initial conditions (1.6), we expand (4.7) to obtain

(1 - wkedd(u + Thu, + )=+ R4

all evaluated at time r,. Using u, = Lu = Lu" at time 1, solving for u, gives
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W = Le' + THL - 20cdlL - 3+, (4.8)

Differentiating this with respect to ¢ gives u, = L°w” + O(k). Inserting this in the final term of (4.8)
yields

u = Lu" — wkcdLu’ (4.9)

plus terms which are O(F’). Thus (4.5a) gives a second order accurate approximation to (4.9) if we set

U = U'+5". We thus have

L= (I - wked))L. (4.10)
We first ornsider the case of Dirichlet boundary conditions. Then (1.10) gives
U (x,y b, +k) = u + k{I - mkca_f)Lu + -;—FLlu + O(k%)
since (L"}2 = L? + O(k). Using the original equation ¥, = Lu, we can simplify this to obtain

W (5,0, + k) = ulx,y.t,+k) — wkcu, {x;,y.1,) + O(). (4.11)
We obtain the boundary condition for &~ by subwactiag u(x,,y.f,) = g(y,f,) from both sides, and dropping

the O(k*) terms,
8;}’ = (8()’;:‘.1-1) - 8\’)’1,‘")) - ‘“"‘:CS,_\T(,VJJ,,) (4.12)
Notice that using simply
8y = 80)sta-:) = 80ha) (4.13)

should give second order accuracy, but again ircluding the final term in (4.12) can lead to a significant
improvement in the error constant. It is interesting to compare (4.12) to the boundary conditions (4.3)
derived directly from (4.1). Using (4.6b), it is easy tc check that they agree to O(k%).

Table 4.1 shows some numerical results with Dirichlet boundary conditions for the same problem
used in Section 2. We see that (4.10) does give second order accuracy, but that the results are improved
by using (4.9). Note that for a steady state problem witk. time-independent boundary conditions, g, = 0

so that (4.10) and (4.9) agree.
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For the Robbins boundary conditions (1.2b), we can differentiate (4.11) with respect to x and take

the appropriate linear combination to obtain
Q™ U (.0, k) + BT (X, 0, HE) = ¥ = wliela u (x,040) + B iy, (x,.y40,)] (4.14)
where we use the shorthand a™* = a(y,t,..), for example. Subtracting a"*“u(x,.y,t,) + B" "¢, (x,.y,1,)

from (4.14) gives boundary conditions for §°:

a™ 8" + Bn*:s: = .y-w: - (a"’:u + er:ux) - wk:c(a"’:u,». + Bn«—ium}_) (4'15)

=@ =) - (@ - e+ (B = B ] - wkc(a™ uy, + BT u,).

Here we are abusing notation slightly and letting &~ also reprzsent the function u™(x,y,r) — u(x,y,t,)

evaluated at ¢ = £,... Note that if a and B are constant, (4.15) becomes simply

ad” + BS. = (v - y") - mkzc-yg_\.. (4.16)

When a and @ are not constant, it is necessary to discretize the derivatives of u(x,,y,f,) occurring on

the right hand side of (4.15). This can easily be done to the required accuracy, but in practice it appears

that great care must be taken in order to avoid numerical instabilities caused by high order differences in

the boundary conditions. One possibility is to transfer as many derivatives as possible onto the functions

a, B and v, as we now discuss. First note that if we assume the nondegeneracy condition B(y,r) # 0 for

all y, ¢, we can divide (1.2b) by B(y,t). Hence, by modifying a and y we can assume without loss of gen-
erality that § = 1.

With this assumption, computing v, gives

7:_\)~ = a,af(au + u\‘)

= QU + Uyt it oagu + 20,0 + 200, + au,.

Solving for au,, + u, gives ar. expression which can be used on the right hand side of (4.15) (note that

a" 4, = a"uy, + O(k)). Then (4.15) becomes

™8 + 8] = (" = y) - (@ - o) @17

-— L - n -_ n pu— n -— n - n
wkelyp, — afu — alu, = 2ahu, — 2afu, — afu].

This can be discretized in a straightforward mammer and appears to give mich more stable boundary
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conditions than directly discretizing (4.15). For completeness we present the details of our AF implemen-
tation in Secticn S.
As a numerical experiment, we compare (4.17) to the more naive conditions

a™ " + Bn*la: = (.yn’.'. - .yn) - (an*'. _ an)u (418)
which do not contain the O(k%) correction. We again use the heat equation (1.1) with solution

u(x,y,0) = sin(x+y—1) e . (4.19)
For simplicty, we spedfied Dirichlet boundary conditions along three boundaries and the Robbins condi-
tion

a(yu(ly,) + u(Ly.f} = y0.0)
only along the boundary x = 1. We take

a() = c0s0) ¢, Y0 = sin(dy) €™ + cos(y) €.
Table 4.2 gives a comparison of resui.s obtained at + = 0.3 with three different combinations of boundary
conditions:
a) (4.13)stx =0and(4.18) atx = 1,
b) (4.12) atx = O and (4.18) at x = 1, (4.20)

c) (412)atx =0and (4.17) atx = 1.
As expected, all three combinations give second order accuracy, but including the correct O(k%) terms

improves the error constant. The combination (4.20c) gives errors about 10 times smaller than (4.20a).

In this experiment we have used the parameters 6 = 1, § = 172, o = 2/3 for improved stability.

5. Implementation of the AF Method

We include a detailed discussion of our implementation of (4.5) since in performing the experimenis
presented above it was found that both the accuracy and stability of the scheme were greatly aff cted by

the manner in which the toundary conditions were imposed.
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For each fixed j = 1, 2, ..., N—1, (4.5a) gives rise to a tridiagonal system of equations of the form
—wrab;_.; — (1 + 2wra)b;; ~ wrad;,., = p,; (5.1)
for i =1,2,.., N—1, where r = &/h° and py is given by the right hand side of (4.5a). Note that
v = ,’}"- which can be saved from the previous time step. Since in general this is a three level
scheme, two time levels are required as initial data. In our numerical experiments we used the exact solu-

tion at time 0 amd k, but in, mactice a two—level scheme must be used for the first step.

When Dirichlet conditions are imposed, the syster (5.1) is completed by specifying 8;, and 8y, as
discussed in Seztion 4. For the Robbins condition we discretize the boundary conditions obtained for &” in

Section 4. For example, when a and 8 are constant we discretize {4.16) as

aby, + %(51:*1,; = 8,_:)) =By (5.2)
for b = 0 or N, with j,, representing the right hand side of (4.16). This can be combined with equation
(5.1) for i = b to eliminate 8~ (when b = 0) or 8,.., (when b = N). For example, at the right boundary

(b = N) we obtain
Biesy = By + By — abi) 53)
from (5.2). Inserting this in (5.1) gives the equation

—2wrady_. ; + [1 + 2wra(1 + ha/B)] 8y, = py, + mgahﬁ_w

with a similar equation obtained for i = G. We thus have a tridiagonal system of N + 1 equations for 5,

i=0,1, . .,N.

Note that the exprsssion for p;; (the right hand side of (4.5a) involves second differences of Uj; and
57 in the x-direction and hence evaluating py; requires values Uy.. ; and 8%.,,. These can be obtained
in the same way we derived (5.3) by discretizing (1.2b). We obtain

2k n
Ugory= Uiy “'3-(‘71 = aUj) (5.9)

and
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8331y = Uleyy — Ul
Actually, in practice we have found that the use of (5.4) leads to a considerable loss of accuracy

near the boundary which can be avouided by using a higher order approximation to the derivtive If

(1.2b) is instead discretized by

aly, + '61;._5(2Q5*1J +3UR — 6UL_., + URoy) = )

we obtain

Uiy = 530 + U3y = Gyog) + 707 = o) (53)
in place of (5.4). This did not seem to adversely affect the numerical stability but improved the errors
considerably.

When a depends of y and ¢ (and B = 1 as discussed in Section 4), the boundary condition (4.17) is
discretized to again give (5.3) with a replaced by a*! and

n+1

Py = =¥ - (@t ~ o)UY — wke[yl, — el URy — andiyik — al(Ufy . — U1 Vh

—al(857%, — 85 L Vkh — al(UF .y — 2U, + UR -, Vh7).

6. Muliti-step methods
In many situations it is necessary to use fractional step methods involving more than two steps. Con-
sequently, additional intermediate solutions arise for which boundary conditions must also be specified.

For example, the LOD and +.F methods are easily extended to three space dimensions by adding a

third step to the process. We consider the LOD method, which becomes

- %ws)u’ =+ %wz)u" (6.1a)
a- %kD_&)l/" =@+ %w_g)u‘ (6.1b)
- %ws)u"ﬂ =+ %w,?)u". (6.10)

For clarity we have dropped the (three) subscripts on these variables and will also suppress the spatial
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arguments of functions where convenient. The method (6.1) corresponds to the splitting

L=L"+L"+L"
with L* and L™ given by (1.6) and L™ = 42. The boundary conditions for u” along x = x, are again

given by (2.3), but now we have

u, =L -L"-L"Ju=u—-u,-u,

u(((‘ = (L - L‘. - L..-)zu'
The boundary conditions for U” along x = x, become
U= - k@ +3)+ %E(ag + 307 u(x,,y,, 2,0, +k) . 6.2)
Note that this involves only tangential derivatives alorg the boundary x = x,.
In the second step, we need boundary data for U™ along y = y,. Recall that we view U™ as an
approximation to u (f,+2k), where u~ satisfies (1.4b) with initial conditions «™ = 4" at t =t +k.

Hence we can expand

uw(,+2k) = [I+ KT+ %E(L“P + - Jut (k). (6.3)

Using the previously determined expansion (1.10) i1 {(6.3) gives boundary data for U™ in terms of u(t,).
Actually, for three-step methods such as this, there is a much easier approach. By (6.1c), we can
view U™ as an approximation to the function obtained by solving (1.4b) backwards in time from

Ut = uft,,,) With time step —k we thus obtain

Ut =[1- L™+ —;—F(L"')z -t
so that the boundary conditions are
Us = u— ku, + i
ibf T 2 fre24
all evaluated at (x;,y,,2),t,41)-

Finally, we note that even in two space dimensions it may be necessary to use a three-step method if

the operator L is split as the sum of two noncommuting operators, as is typically the case in variable coef-
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fident ur nonlinear problems. Then second order accuracy is retained by using a three-step Strang split-

ting[12].



Tnble 2.1

BC | N| k | L,ermor | Ly-error | Lyrate
11 { .15 | 8.14E-3 | 3.69E-3

(2.11) | 21 | .075 | 4.50E-3 | 1.97E-3 91
31 { .05 | 3.17E-3 | 1.35E-3 93
11 | .15 | 1.54E-3 | 7.0SE4

(212) | 21 | .075 | 4.38E4 | 1.94E4 | 1.86
31 ] .05 | 2.04E4 | 893E-5 | 1.91
11 | .15 | 1.07TE4 | 5.49E-5

(2.5 |21} .075 | 1.51E-5 | 8.66E-6 | 2.66
31 |.05 | 4.73E-6 | 3.04E-6 | 2.58

Table 2.2

BC | N | k |L.eror | Lyerror | Lyrate
11 | .15 | 1.55E-2 | 5.28E-3

(2.11) } 21 | .075 | 9.87E-3 | 3.02E3 81
31| .05 | 7.23E-3 | 2.11E3 .88
11 | .15 | 2.64E-3 | 1.06E-3

(212) {21 | .075 | 7.94E4 | 2.93E4 | 1.86
311 .05 | 3.76E4 | 1.34E4 | 1.93
11 | .15 | 1.02E-4 | 4.45E-5

(25 |21 |.075 | 1.59E-5 | 8.59E-6 | 2.37
31| .85 | 6.09E6 | 3.41E6 | 2.28

21



Table 4.1

BC | N| k | L.eror | Ly-error | Lyrate
11 | .15 | 2.12E-3 | 9.55E4

(410) | 21 | .075 | 5.7SE4 | 2.50E4 | 1.93
311 .05 | 263E4 | 1.13E4 | 196
11 | .15 | 8.65E4 | 2.71E4

(49) |21 |.075 | 2.57E4 | 7.80E-5 | 1.80
311 .05 | 1.20E4 | 3.64E5 | 1.88

Table 4.2

BC N | k | L.eror | Lyerror | L-rate
11 | .06 | 1.35E-3 | 4.38E4

(4.20a) | 21 ; .03 | 4.11E4 | 1.15E4 1.93
31 ] .02 | 1.94E-3 | 5.20E-§ 1.96
11 | .06 | 6.55E-4 | 2.41E-4

(4.20b) | 21 |} .03 | 1.64E4 | S.STE-S | 2.11
31| .02 | 7.32E-5 | 2.41E5 | 2.07
11 | .06 | 1.40E-4 | 4.96E-5

(420c) | 21 | .03 | 3.46E4 | 9.80E-6 | 2.34
31 1 .02 | 1.24E-5 | 4.00E-6 | 221
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