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The maX1mum 11kel1hood est1mator has been used to extract stab111ty and control der1vat1ves from 
fl1ght data for many years. Most of the 11terature on a1rcraft est1mat10n concentrates on new develop
ments and applIcatIons, assum1ng famIlIarIty w1th bas1c concepts. Th1s paper br1efly d1scusses the 
max1mum 11kel1hood est1mator and the a1rcraft equat10ns of mot10n that the est1mator uses. The current 
strength and lim1tat10ns assoc1ated w1th obta1n1ng fl1ght-determ1ned aerodynamIC coeff1clents 1n extreme 
fl1ght cond1t1ons 1S assessed. The 1mportance of the careful comb1n1ng of w1nd tunnel results (or calcu
lat1ons) and fl1ght results and the thorough evaluat10n of the mathemat1cal model IS emphas1zed. The 
bas1c concepts of m1n1m1zat10n and est1mat10n are exam1ned for a s1mple computed aIrcraft example, and the 
cost funct10ns that are to be m1n1m1zed dur1ng est1mat10n are def1ned and discussed. Graph1c represen
tat10ns of the cost funct10ns are g1ven to help 111ustrate the m1n1m1zat10n process. F1nally, the bas1c 
concepts are general1zed, and est1mat1on of stab111ty and control der1vat1ves from flIght data IS 
d1scussed. 

Currently, an Important thrust In the aerodynamIC commun1ty 1S to spec1fy completely the aerodynamic 
mathemat1cal model for an a1rcraft. The ult1mate goal of th,s thrust 1S to obtaIn a complete understand-
1ng of the phys1cal laws (phenomenology) govern1ng all aspects affectIng the behav10r of the a1rcraft. 
Presently we fall short of th1S goal 1n all fl1ght reg1mes, but we have a part1cularly long way to go In 
pxtreme flight reg1mes, such as transon1C or h1gh-angle-of-attack fl1ght, wh1ch are tYP1cally dom1nated by 
separated flow. As much as poss1ble, we rely on experIence and analog1es that can be drawn from better 
understood reg1mes, such as subson1c fl1ght w1th attached flow. But even w1th th,s wealth of exper1ence, 
we still progress very slowly to the complete understand1ng of a1rcraft be1ng flown at extreme fl1ght con
dlt10ns 1n complex flow f1elds. 

In trad1tlonal reg1mes of less complex flow f1elds, certaIn aspects of understandIng a part1cular phe
nomenon can sometImes proceed In a s1mple fash10n, more or less 19nor1ng the results of those work1ng 1n 
dIfferent hut related d1sc1pllnes. Th1s 1S not the case for understand1ng the phys1cal laws that deter
mIne the character1stlcs of flIght dom1nated by complex separated flows. We must beg1n by postulatIng 
candIdate mathematIcal models, then test these models w1th all the techn1ques ava11able. In add1tlon, new 
testIng technIques must be developed when eXlst1ng techn1ques are not capable of test1ng port10ns of the 
mathemat1cal model. Currently, the techn1ques that can contrIbute to val1dat1ng the mathemat1cal model 
can be div1ded 1nto three categor1es w1nd tunnel test1ng, computat10nal flu1d dynam1c analYSIS, and 
flight test1ng. 

WInd tunnel test1ng, computat1onal flu1d dynam1c analYSIS, and fl1ght test1ng serve complementary 
roles (w1th some overlap) to the overall val1dat10n of the mathemat1cal model. Each category can contrl
hute In a un1que way to the overall val1dat10n. Quite probably, val1dat10n wIll not be poss1ble w1thout 
contrlhutlons from each category. System IdentIfIcatIon and parameter estImatIon technIques are needed to 
analyze fl1ght test data because forces and moments cannot be measured d1rectly. These techn1ques are 
uspd to extract force and moment coefflc1ents from the mot1ons measured 1n fl1ght. 

Th1s paper d1scusses ways 1n wh1ch analysiS of fl1ght data can contr1bute to the formulatIon and test
Ing of the mathematIcal model. To date, no comprehenSIve fl,ght results are ava11able for extreme fl1ght 
condlt10ns. Th1s paper is Intended to Inform nonfl1ght spec1alists of the current state of fl1ght data 
coeff1c1ent est1mat10n. The references CIted 1n the paper reflect a representat1ve sampl1ng of current 
flIght results. The paper f1rst p01nts out some of the d1fferences between the approaches used for the 
1 ess comp 1 i cated, tradl t lOna 1 f1 ow regl mes, and the approaches used for extreme f11 ght condit Ions 1 n the 
'"parated flow regIme. It dIscusses the 1nterrelat10nsh1p of the mathemat1cal model, the w1nd tunnel, and 
computat10nal fluid dynam1c results, and how they can be used w1th fl1ght results. Parameter est1mat10n, 
which 1S the pr1mary method of extract1ng est1mated coeff1c1ents from flIght data so that results can be 
uspd to assess the mathematIcal model, 1S descrIbed 1n deta11. The descr1pt10n 1S 1ntended to emphas1ze 
the character1stlcs (both strengths and weaknesses) of system 1dent1f1cat10n and parameter est1mation. 
The mathemat1cs Involved are av01ded wherever poss1ble. 

2. SYMBOLS 

A,Il,C,D,G system matr1ces coeff1clent of yaw1ng moment 

h reference span, ft c reference chord, ft 

c~ coeffICIent of rol11ng moment f('), g(.) general funct10ns 

coeff1c1ent of pItching moment GG* measurement n01se covarIance matr1x 
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Ix, Ixz ' 
~, Iz 

J 

L 

L' 

m 

N 

n 

p 

q 

q 

r 

T 

t 

u 

V 

x 

z~ 

a 

6 

moment of lnertla about subscrlpted 

aX1S, slug-ft 2 

general index 

cost functlon 

rolllng moment dlvlded by Ix, deg/sec2 

rolllng moment, ft/lb 

mass, slug 

number of tlme pOlnts or cases 

state nOlse vector or number of 
unknowns 

roll rate, deg/sec 

pltch rate, deg/sec 

dynamlc pressure, Ib/ft 2 

yaw rate, deg/sec 

reference area, ft 2 

tlme lncrement, sec 

tlme, sec 

control lnput vector 

forward veloclty, ft/sec 

state vector 

observatlon vector 

predlcted Kalman-flltered estlmate 

angle of attack, deg 

angle of sldesllp, deg 

3. PARAMETER ESTIMATION AT EXTREME FLIGHT CONDITIONS 

n 

a 

Subscrlpts 

e 

m 

p,r,a,S, 

o 

tlme sample lnterval, sec 

control deflectlon, deg 

alleron deflectlon, deg 

measurement nOlse vector 

mean 

vector of unknowns 

standard devlatlon 

tlme, sec 

bank angle, deg 

headlng angle, deg 

gradlent wlth respect to ~ 

englne 

measured quantlty 

partlal derlvatlve wlth respect to 
subscrlpted quantlty 

bias or at tlme zero 

Other nomenclature 

predicted estlmate 

eSt1mate 

* transpose 

moment, ft-lb 

General overVlews of the problems of understandlng aerodynam1cs and fllght characterlstlcs are g1ven 
ln Refs 1 and 2. The lssues affectlng parameter estlmat10n of fllght characterlstlcs and some of the 
results are glven ln Refs. 3 to 5. References 3 and 4 concentrate on estlmatlon of characterlstlcs 
obtalned in tradltlonal fllght reglmes not dominated by unsteady aerodynam1cs. 

To appreclate the complexltles of valldatlng the mathematlcal model for fllght data obtalned at 
pxtreme fllght condltlons (such as hlgh-angle-of-attack fllght, transonlC fllght, or fllght domlnated by 
separated flow), lt lS useful to compare 1t to valldatlon ln tradltlonal fllght reglmes, such as low angle 
of attack, subsonlc, well establlshed supersonlc, or reglmes wlth all flow essentlally attached. The flow 
chart ln Flg. 1 deplcts the general elements requlred to valldate the mathematlcal model ln tradltlonal 
flight regimes. Wlnd tunnel test and computatlonal fluld dynamlc calculatlons are used to deslgn an alr
craft wlth characterlstlcs that meet the des1gn criter1a for a spec1f1c a1rcraft. These data are used 
along with lnformatlon from other dlsc1pllnes (such as control, structural, thermal, or propuls10n charac
teristics) to deflne an alrcraft. Once the alrcraft lS bUllt, lt wlll be flight tested. The data acqul
sltion system must be speclfled based on the type of alrcraft and the fllght reglmes to be flown. The 
mathematlcal model expressed by equatlons of motlon, WhlCh lS representatlve of the alrcraft dynamlc char
acteristics (usually lncluding stab111ty and control derlvatlves), lS then speclf1ed. Representat1ve 
forms of the equatlons of motlon are glven ln Refs. 6 to 8. Then, knowlng the mathematlcal model and the 
fllght condltlons of lnterest, the pertlnent mass characterlstlcs are estlmated. At thlS pOlnt, the 
maneuvers that are needed for model valldat10n are deflned and flown. A parameter estlmatlon technlque, 
such as a maXlmum llkellhood estlmator, lS then used to determlne the stablllty and control derlvatlve 
pstimates from the fllght data (Refs. 9 to 11). (Parameter estlmatlon lS d1scussed ln detall 1n a later 
section.) These parameter est1mates are assessed, summarlzed, and compared to the best predlcted set of 
computatlonal and wlnd tunnel estlmates These predlcted estlmates may be the data set that was used to 
deslgn the alrcraft, or they may be that data supplemented wlth subsequent computat10nal and wlnd tunnel 
results produced after the aircraft deslgn was frozen. The compar1son of fllght estlmates wlth other 
estlmates may generate addltlonal fllght, computatlonal, or wlnd tunnel tests. These estlmates can then 
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bp assessed 1n the same way, as dep1cted by the flow chart. When all tests are complete and the1r results 
compared, a compos1te representat10n of these tests 1S put 1n a data base. Th1s data base may be used to 
a1d 1n future des1gn or may be put 1nto a real-t1me s1mulator to be used for p110t tra1n1ng, control 
system redes1gn, or m1ssion analys1s. 

In contrast to F1g. I, F1g. 2 shows the add1t10nal complex1ty 1nvolved 1n the mathemat1cal model va11-
dat10n for data obta1ned at extreme fl1ght cond1t10ns. F1gure 2 represents only the crosshatched area 
fran F1g. 1. The two f1gures are to about the same level of deta11. F1gure 2 1S representat1ve of the 
process and 1S not necessar11y an exact representat10n of the procedure followed by any g1ven analyst. 
The flow chart of f1gure 2 not only has more elements, but also 1S s1gn1f1cantly more complex 1n that the 
"flow" between the varlOUS elements may need to be 1terated more t1mes. In the follow1ng sect10ns, each 
of thp var10US elements 1S discussed 1n deta11. 

3.1 MATHEMATICAL MODEL SELECTION 

S1nce the pr1mary outcome of the flow chart 1S the val1dat10n of the mathemat1cal model, 1t 1S appro
pr1atp to spec1fy the mathemat1cal model f1rst. In1t1ally, a mathemat1cal model or a set of cand1date 
mathemat1cal models must be spec1f1ed. It should be kept 1n m1nd that each element of the chart 1S sub
Ject to change as the ent1re flow chart 1S 1terated. The form of the model may be spec1f1ed by w1nd tun
nel tests, as shown 1n F1g. 2. Probably the most prom1s1ng set of mathemat1cal models based on strong 
phenomenolog1cal cons1derat10n 1S g1ven 1n Ref. 12. The models are der1ved under the assumpt10ns that 
(1) response to a steady mot10n 1S 1tself steady, (2) the response 1S a s1ngle-valued funct10n of the 
or1entat10n of the body (although 1t may be nonl1near), and (3) the responses are 11near in the motion 
rates. The authors of Ref. 12 showed how a non11near var1at10n of the responses w1th con1ng rate could be 
accommodated. The models as g1ven do not 1nclude the effects of control deflect10n. Control terms can be 
added to the model 1n a fash10n analogous to the way that the flow angle (a and 8) terms are 1ncluded, and 
probably would 1n1t1ally be funct10ns of angle of s1desl1p and angle of attack. Reference 12 also d1s
cusses the 1nclus10n of terms that 1nvolve aerodynam1c hysteres1s. For the mathemat1cal model to have 
much general1ty, 1t would probably need to account for hysteresis as 1t 1S h1ghly probable that hysteres1s 
occurs at extreme fl1ght cond1t10ns. However, regardless of the 1n1t1al model chosen, 1f the subsequent 
analys1s shows a need for hysteres1s terms, they can be added during a future 1terat10n. It 1S h1ghly 
probable that for the gyrat10ns observed at extreme fl1ght cond1t10ns, terms 1nvolv1ng nonl1near con1ng 
pffects and aerodynamIC hysteresIs would need to be 1ncluded In the general mathematIcal model. Refer
ence 13 dIscusses how phenomena that v101ate the restr1ct10ns of Ref. 12 can be accommodated with1n the 
mathemat1cal model. 

3.2 MASS CHARACTERISTICS 

The next element of F1g. 2 1S the spec1f1cat10n of the mass character1st1cs. These character1st1cs 
have, 1n the past, been g1ven very lIttle cons1derat10n 1n the analys1s of data obta1ned at extreme fl1ght 
condItIons, because experIence gaIned 1n the analys1s of data obta1ned In tradItIonal f11ght regImes has 
shown that the data only need to be known to an accuracy of about 10 percent. If an error of 10 percent 
1n ma~s character1st1cs 1S present 1n the analys1s of trad1t10nal fl1ght data, 1t w111 probably be noted 
whpn comparlng flIght results to w1nd tunnel est1mates, and, 1f necessary, can be compensated for at that 
p01nt However, data obta1ned at an extreme fl1ght cond1t10n 1S usually h1ghly osc111atory 1n all axes, 
and the k1nemat1c cross-couplIng effects are h1ghly dependent on the mass character1st1cs. The mass 1S 
usually eas11y determ1ned, but the moments of 1nertla are d1ff1cult to determ1ne accurately. Any error 1n 
account1ng for the k1nemat1c coupl1ng terms becomes an error that 1S added to the rema1nlng terms or the 
aerodynam1c terms. 

The follow1ng equat10ns (also g1ven 1n Refs. 6 to 8) demonstrate th1s d1fflculty 

pIx - rlxz - qr{Iy - Iz) - pqlxz = qsbCt (I ) 

(2) 

(3) 

Equat10ns (1) to (3) assume that Ixy and Iyz are zero. The 1nd1v1dual k1nemat1c terms (left s1de of the 
"quat TOns) are frequent ly 1 arger than the aerodynam1 c terms dur1 ng w11 d gyrat 1 ons and Sp1 ns. Even Cm 1 S 
affected by Ix, Iy ' Iz, Ixz , and IXe 1n a nonl1near fash10n. ThIS 1S st1ll true when the rates are known 

pxactly. Ix. Iy, and Iz are always slgn1flcant terms, and Ixz usually 1S. IXe would affect any a1rcraft 
w1th a rotat1ng eng1ne. A current challenge 1S to obtaIn an accurate set of these moments of 1nert1a to 
w1th1n les~ than 1 percent, Wh1Ch may not be w1th1n the current state of the art. 

It should also be noted that these nUPlbers vary slgn1f1cantly WIth the amount and locatIOn of the 
fuel dUrlng the maneuver. S1nce many of the maneuvers of 1nterest result 1n w11d gyrat10ns, an add1t10nal 
source of error 1S fuel slosh1ng. The 1ssues 1nvolv1ng fuel quant1ty and fuel locat10n (slosh1ng or 
otherw1se) and the rotat1ng eng1ne mass make unpowered a1rcraft more attract1ve as 1n1t1al candIdates for 
asses~lng mathemat1cal models. 

Current exppr1ence shows that 1f very deta11ed calculat10ns are made for the we1ght, locat10n, and 
1nert1as of pach component (no matter how small) of an a1rcraft, then fa1rly cons1stent values of the Plass 
character1st1cs are obta1ned. The other method of obta1n1ng moments of 1nert1a 1S by sW1ng1ng the vehIcle, 
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as discussed in Ref. 14. The author's experlence has shown that moments of lnertla obtalned by sWlnglng a 
vehicle are adequate for the traditlonal reglmes lf done wlth extreme care. These experlmentally obtalned 
numbers are ln good agreement wlth calculated numbers when both are done wlth extreme care. In general, 
it seems doubtful that SWlnglng the vehicle will provide adequate accuracy for analysls of an alrcraft 
during wild gyratlons. 

3.3 MANEUVER DEFINITION 

Definltion of the maneuvers to be flown lS the next element of the flow chart. Certaln characterlS
tic motions are necessary to assess any gIven mathematIcal model. Reference 12 dIscusses the character
lstic motlons requlred to assess the models lt proposes. These characterlstlc motlons can be generated, 
at least ln theory, ln a wind tunnel by uSlng a speclflc rig, such as the rotary rlg (Ref. 15). Unfortu
nately, an aIrcraft always flIes close to the trlmmed condltl0n, even when undergolng vl01ent gyratIons. 
The time required for a vehlcle to complete a wl1d gyratlon, lncludlng a spln, lS very short, therefore, 
these motions provlde very 11ttle lnformatl0n because all the state varlables are changlng rapldly. 
Figure 3 shows an example of thIS for an alrcraft enterlng a spln. In additl0n, osclllations tend to 
repeat a set of state variable values each oscl11atl0n. All these problems result ln traJectorles that 
repeat, are highly transient, and contaln only a small amount of lnformatl0n about the deslred charac
teristic motlon. Therefore, no matter how carefully a maneuver to be flown lS speclfled, one has very 
little control over how much of the characterlstlc motl0n lS obtalned. ThlS lS not to say that one cannot 
obtain useful lnformatl0n from careful speclflcatlon of maneuvers, lt s1mply means that the "matrix" of 
test conditions lS llmlted compared to those that can be obtalned ln the wlnd tunnel. Although thlS lS an 
obvious contrlbutlon of wlnd tunnel testlng (a hlghly controlled experlment), fllght test data do have the 
advantage of givlng exactly the correct motions throughout the fllght envelope, regardless of what the 
assumed mathematlcal model is. Even though the alrcraft cannot g1ve speclflc characterlstlc motlons, lt 
does give a great deal of hlghly dynamlc motl0n that can result ln lnvaluable lnformatl0n when analyzed 
with modern parameter estlmation technlques. ThlS lnformatlon descrlbes the alrcraft motl0n along the 
fllght traJectory, but lt does not completely deflne the global mathematlcal model. 

One would assume that aerodynamlc characterlstlcs (lnformatl0n about the "true" mathematlcal model) 
can be obtained from the comblned appllcaton of computatl0nal, wlnd tunnel, and fllght data analysls tech
niques that cannot be determined from any slngle technlque. 

3.4 INSTRUMENTATION REASSESSMENT 

The next element ln the flow chart of Flg. 2 lS the reassessment of lnstrumentatl0n. When an alrcraft 
lS flying at an extreme fllght condltl0n, the accurate measurement of the flow (flow angles, and dynamlc 
and static pressure) can be greatly compromlsed because of separated or vortlcal flows, or shock waves ln 
the vlclnity of the lnstrument or sensor. The sensor wl11 normally measure only the local flow, WhlCh may 
or may not be representatlve of the free-stream flow. In a hlghly dynamlc gyratlon, the flow measurement 
lS 11kely to be better at one tlme than lt lS at another. ThlS suggests that flow measurements should be 
made at several locatlons so that the true free-stream flow can be lnferred from the comblnatlon of meas
urements. If a flxed PltOt head lS used when flYlng at a high angle of attack, the Pltot head should be 
canted to obtain accurate pressures at hlgh angle of attack. Flow angles can be measured wlth elther 
vanes or pressure sensors. Problems can occur wlth elther of these technlques because of the dynamlc 
characterlstics of the vane or the tlme lags ln the pressure sensors. A detal1ed dlScussl0n of flow meas
urements is beyond the scope of thlS paper, but lt lS nonetheless extremely lmportant to obtaln accurate 
measurements of the flow. It may seem that the free-stream flow condltlons could be obtalned from lner
tial measurements. ThlS would be true lf one could fly ln an airmass that does not move wlth respect to 
the lnertlal frame of reference. One mlght occaSIonally encounter a portlon of the alrmass that lS at 
rest, but the rule lS that the alrmass lS constantly ln motl0n. The motl0n exhlblted by wlnds and turbu
lence not only varles spatially but also varies as a functlon of tlme. ThlS makes lt lmperatlve to obtaln 
external flow measurements if one lS to make sense of fllght data obtalned at extreme condltl0ns. Perfect 
flow measurements cannot be made by any lntruslve sensor, therefore, one must be able to lmprove the raw 
flow measurements by some means. The next sectlon treats this problem. 

3.5 DATA AND TRAJECTORY RECONSTRUCTION 

The next element ln the flow chart of Flg. 2 lS data and traJectory reconstructl0n, WhlCh lS sometlmes 
referred to as conslstency checklng. ThlS lS the generlc procedure that lS lntended to lmprove the raw 
flow measurements. Reconstructlon can lmprove all the measurements ln that reconstructlon procedures 
force the data to conform to the physlcal laws of a rlgld alrcraft. They also reduce the sensor modelllng 
errors and the sensor measurement nOlse. Most of these procedures use the extended Kalman fl1ter as the 
baslc algorithm. The extended Kalman fllter provldes a very powerful and conslstent technlque to improve 
the aircraft data measurements, but the procedure can be very tlme consumlng because welghtlng factors 
must be determlned for each of the measurements. The relatlve welghtlng of one measurement to another lS 
representatlve of the confldence one has ln a glven measurement. ThlS confldence can be a functl0n of 
vehIcle attltude or flow condltlon, so ln most cases lt wl11 vary over tlme and from maneuver to maneuver. 
Another difflculty encountered in uSlng the extended Kalman fl1ter lS that the fl1ter lmplementatl0n may 
become unstable, forclng the analyst to use ad hoc procedures to stabllize the fllter. A complete discus
sion of data and traJectory reconstructl0n technlques lS beyond the scope of thIS paper, but a represen
tative sample of these technlques lS g1ven ln Refs. II, 16, and 17. 

During the data and traJectory reconstructl0n phase, measurements obtalned from the ground can be used 
ln conJunction with those obtalned on board the alrcraft. Flgure 2 shows these ground sources as radar 
and optical measurements. The prlmary source of optlcal data lS phototheodollte. In the near future, 
data from the Global Posltlonlng System (GPS) wl11 also be aval1able. Radar, optlcal, and GPS sources are 
independent, lnertlally based data sources that can be used to Improve the accuracy of the reconstructed 
traJectory. It should be pointed out that data and traJectory reconstructl0n technlques are also used for 
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data obtalned In the traditlonal fllght reglmes. These technlques are used to lmprove onboard measure
ments and reduce the measurement nOlse so that nOlse-sensltlve regresslon or equatlon error technlques can 
b. used. These technlques are dlscussed thoroughly In Ref. 11. 

3 6 MODEL STRUCTURE DETERMINATION 

The key element of Flg. 2 lS the model structure determlnatlon (MSD) element. As shown, lt lS 
strongly coupled wlth other maJor elements of the flow chart. The model structure referred to here lS 
slwply another way of stating the form of the mathematlcal model. The proposed mathematlcal models of 
Ref. 12 are model structures. The concept of thlS block lS S11ght1y more restr1ct1ve 1n that there may 
be a large collectlon of candldate elements ln the mathematlcal model or model structure. Model structure 
determinat10n lS the procedure that, by some crlterlon, selects for the model structure only those terms 
that can be accurately estlmated from the avallable fllght data. Of course, the model structure can also 
be speclfled by lnformatlon from computatlon, wlnd tunnel, or prevlous fllghts. However, the lntent of 
the MSD element lS to further deflne the model structure based on the lnformatlon content of the fllght 
data. That lS, the candldate elements of the model structure could be some of those proposed In Ref. 12. 
Some elements could be ellmlnated, or thelr values flxed, on the basls of wlnd tunnel tests, such as 
rotary balance tests. The candldate elements can be based purely on phenomenologlcal conslderatlons or 
they can be based purely on ad hoc conslderatlons. 

Most of the MSD algorlthms use stepwlse regresslon to assess the effect of lndlvldual elements on the 
motlon observed from a fllght maneuver. Some of the proposed MSD algorlthms are descrlbed In Refs. 7, 18, 
and 19. The detalls of the algorlthm are not descrlbed here, but a heurlstlc descrlptlon lS glven. The 
algorlthm lS a regression technlque In which the lndlvldual candldate elements of the proposed mathematl
cal model are evaluated one by one. The elements are reJected lf they have a low correlatlon wlth accel
pratlon terms or a hlgh correlatlon based on a glven set of fllght data to one of the other more slgnlfl
cant elements. Belng reJected lndlcates that the element makes no slgnlflcant contrlbutlon to explalnlng 
the behavlor of the fllght data. The stepwlse regresslon technlque can be automated to select the best 
set of elements from a glven maneuver. Independent testlng on other data lS needed to determlne the flnal 
set of elements of the mathematlcal model. The models that stepwlse regresslon algorlthms evaluate fre
qupntly use spllne formulatlons wlth varlable knot partltlons (break pOlnts). ThlS means that the data 
arp partltloned as a functlon of the more lmportant alrcraft varlables, such as angle of attack or eleva
tor deflectlon. The stepwlse regresslon algorlthm can select the types of cand1date elements, 1nc1udlng 
thp spllne, as we11 as the partltlOns for the fllght data. 

3.7 RESULT EVALUATION 

The next step of Flg. 2 compares the output of the MSD algorlthm for several maneuvers and looks for 
conslstency or lnconslstency In the elements belng selected. The types of errors that are conslstent for 
several maneuvers are also examlned. The outcome of thlS step lS elther (1) that the proposed mathematl
cal model lS ln all llkellhood a good model and we should proceed to the flnal analysls of the fllght data, 
or (2) that the model lS found lacklng and addltlonal elements are requlred. At thlS pOlnt, the fllght 
results are compared wlth the computatlonal and speclal apparatus wlnd tunnel results. Inconslstencles In 
thlS comparlson may lndlcate that further modlflcatlons to the mathematlcal model or addltlonal computa
tlonal or wlnd tunnel results are requlred. 

ThlS concludes the dlScusslon of Flg. 2 and how lt lterates to converge on a promlslng mathematlcal 
model before flnal maXlmum llkellhood estlmatlon analysls lS performed. The detalls of the maXlmum llke
lihood estlmatlon are glven In the next sectlon. Some of the more encouraglng results for analysls of 
fllght data at extreme fllght condltlons are glven in Refs. 5 to 7, and 20 to 25. 

In summary, the slmplest mathematlcal model lS selected based on physlcal laws. The types of wlnd 
tunnel apparatuses and tests requlred are determlned based on thlS model. The results of the tests may 
lndlcate the nepd for changes in the mathematlcal model (to make lt elther less or more complex). Accu
ratp values of the mass characteristlcs must be obtalned as a functlon of fuel loadlng. Alrcraft maneu
vers must he deflned to stlmulate the characterlstlc motlons deflned by the mathematlcal model. The best 
lnstrumentatlon posslble for obtalnlng data at extreme fllght condltlons must be deflned and lnstalled. 
Data and traJectory reconstructlon must be performed to lmprove the flow measurements, to reduce the sen
sor nOlse and modelllng errors, and to lnclude radar and optlcal data lf avallable. The slmplest model 
structure for a glven set of data must be determlned. ThlS can be done wlth stepwlse regresslon tech
nlqups since the "measurement" nOlse was reduced In the preceedlng step. Elements and coefflclent values 
from the wlnd tunnel tests may be used ln thlS step. The Conslstency between the mathematlcal model and 
data for several maneuvers must be evaluated at thlS pOlnt. If the model lS found lacklng, the mathematl
cal model may need to be reevaluated and addltlonal computatlons or wlnd tunnel tests may need to be per
formed. If elther of these lS necessary, the steps ln the flow chart are lterated agaln to reevaluate the 
flight data. If the model lS found adequate, we proceed to the flnal analysls wlth the maX1mum llkellhood 
pstlmator. The model may stlll be found lnadequate at thlS point, lndlcatlng the need for a reflnement In 
the mathematlcal model. Once the model lS reflned, the flOWChart steps are lnterated agaln. 

In the prevlous sectlon the overall procedures were dlscussed for extractlng aerodynamlc lnformation 
from fllght data. That dlScusslon contrasted the relatlve complexltles for analyzlng data obtalned at 
tradltlonal fllght condltlons wlth the analysls of data obtalned at extreme flight condltlons. A param
eter estlmatlon phase lS requlred for elther of these reglmes. Parameter estlmatlon technlques are neces
sary hpcause dlrect force and moment measurement lS not posslble for an alrcraft In fllght. These tech
nlques pxtract aerodynamlc coefflcents from alrcraft fllght motlons. The parameter estlmatlon phase lS 
essentlally the same for data obtalned In elther of these fllght reglmes. The dlfferences are In (1) the 
complexlty of the underlYlng mathematlcal model that has been assumed, (2) the dlfflculty In gettlng the 
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parameter estImatIon algorIthm to converge, and (3) the InterpretatIon of the results. All of these dIf
ferences pertain to the degree to whIch the concepts of parameter estImatIon are Involved and not whether 
or not the concept IS fundamental to the estImatIon. Therefore, the remaInder of the paper Illustrates 
the concepts involved In applying the parameter est1mation algorithms to flIght data. The parameter est1-
mati on concepts are illustrated with simple models, but the concepts generalize to Include the most 
complex analysis of data from extreme flight regimes. 

The parameter estImation algorIthm dIscussed here IS the maX1mum llkellhood estImatIon algorIthm, or 
output error method. The theory and formulatIon of the method are gIven 1n Ref. 26, and an example of the 
computer code used for this type of analys1s IS gIven 1n Refs. 9 and 10. The mathematIcal models used In 
these examples are the same as those used for analys1s 1n the tradItIonal lInear flIght regImes for est1-
matIng stabll1ty and control coeffIcIents. The same estImation algorIthm IS used whether the mathematIcal 
model formulation IS lInear or nonlInear. 

The models of Ref. 12, IncludIng the one that accounts for aerodynamIc hysteresIs, can be Implemented 
and the algorIthm wIll remaIn essentIally unchanged. In essence, the model must be wrItten In some func
tIonal form. The functIonal form can be In a pIecewIse lInear or splIne form. IncreasIng the complexIty 
of the model does not change the essential estlmat10n algorIthm, it Just Increases the complex1ty of the 
ImplementatIon and the tIme requIred to execute the computer codes. In general, models that are hIghly 
nonlInear, include a very complIcated structure, or have a large number of states w111 requIre larger and 
more complex flIght maneuvers to provIde satIsfactory estImates from any estImatIon algorIthm. Computer 
roundoff errors are the only real lImitatIons on how complex the model (wrItten In functIonal form) can be 
or how many unknown aerodynamic coeffIcIents can be determIned from hIgh-qualIty fl1ght maneuvers. 

4.1 DESCRIPTION OF A PARAMETER ESTIMATION PROGRAM 

The IlIff-MaIne code (MMLE3 program) descrIbed In Ref. 9 IS used throughout the remaInder of thIs 
paper to obtaIn estImates of the coeffIcIents of the dIfferentIal equatIons of mot10n. 

FIgure 4 illustrates the maxImum lIkelIhood estImatIon concept for aIrcraft data as used by MMLE3. 
The measured response of the aIrcraft IS compared wIth the estImated response, and the dIfference between 
these responses is called the response error. The Gauss-Newton computat10nal algorIthm (Ref. 26, sectIon 
(2.5.2)) is used to fInd the coeffIcIent values that maX1mlze the lIkelIhood functIonal. Each 1teratlon 
of thIs algorIthm provIdes new estImates of the unknown coeffIcIents on the bas1s of the response error. 
These new est1mates of the coeffIcIents are then used to update the mathemat1cal model of the aIrcraft, 
providIng a new estImated response and, therefore, a new response error. The updat1ng of the mathemat1cal 
model continues IteratIvely until a convergence criterion 1S sat1sfled. The estImates resultIng from thIs 
procedure are the maxImum lIkelihood estImates. 

The maxImum lIkelIhood estImator also prov1des a measure of the rellab11ity of each estImate based on 
the information obtaIned from each dynamIc maneuver. Th1S measure of the relIabIlIty, analogous to the 
standard deviat10n, IS called the Cramer-Rao bound (Ref. 25) or the uncerta1nty level. The Cramer-Rao 
bound as computed by current programs should generally be used as a measure of relatIve accuracy rather 
than absolute accuracy. The bound IS obtained from the approximation of the 1nformation matrIx (Ref. 26). 

4.2 EQUATIONS FOR SIMPLE EXAMPLE 

The basIc concepts Involved In a parameter est1matlon problem can be Illustrated by uSIng a slmple 
example representatIve of a realIstIc aIrcraft problem. The example chosen here IS representat1ve of 
an aIrcraft that exhIbIts pure rollIng motIon from an aIleron Input. ThIs example, although slmpl1fled, 
typIfIes the motIon exhIbited by many aIrcraft 1n partIcular fl1ght regImes, such as the F-14 aIrcraft 
flying at hIgh dynamIc pressure, the F-lll aIrcraft at moderate speeds wIth the wIng In the forward POS1-
tion, and the T-37 aIrcraft at low speed. The model of thIs example 1S 11near, but the results from a 
more complex example would lead to the same conclus10ns. A more complex example only makes the basIc con
cepts more difficult to Illustrate. 

DerIvatIon of an equatIon descrIbIng thIs motIon IS stra1ghtforward. Figure 5 shows a sketch of an 
aircraft WIth the x-axIs perpendIcular to the plane of the fIgure (pos1tlve forward on the aIrcraft). The 
rolling moment (L-), roll rate (p), and aileron deflectIon (6a) are posItIve as shown. For thIS example, 
the only state IS p and the only control IS 6a• The result of summIng moments IS 

Ixp = L-(p,6a) (4) 

The fIrst-order Taylor expanSIon then becomes 

(5) 

where 

SInce the aIleron IS the only control, It 1S notat10nally slmpler to use 6 Instead of 6a for the dISCUS
sion of thIS example. EquatIon 5 can then be wrItten as 

(6) 



In the nondlmenslonal form thIs becomes 

(7) 

The dImensIonal form of Eq. (6) IS used hereafter sInce It IS sImpler notatlonally. 

Equation (6) IS a sImple aIrcraft equatIon where the forcing functIon IS provIded by the aIleron and 
the damping by the dampIng-In-roll term, Lp. EquatIon (7) can be wrItten and solved In the same form as 
Eq. (65) of Ref. 12, but the addItIon of the hysteresIs term In Eq. (65) would only complIcate the essen
tIal character of the estImatIon. In subsequent sectIons we examIne In detaIl the parameter estImatIon 
problem where Eq. (6) descrIbes the system. For th,s slngle-degree-of-freedom problem, the maxImum lIke
lIhood estImator IS used to estImate eIther Lp or L6 or both for a gIven computed tIme hIstory. 

Now that we have specIfIed the equatIons descrIbIng our sImple model, we can examIne the characterIs
tics of the maxImum lIkelIhood estImatIon In thIs sImple case. Chapters 2, 7, and 8 of Ref. 26 descrIbe 
maxImum lIkelIhood estImatIon in detaIl for the general case. Our sImple example requIres only a few of 
thp results from that reference, so those results are repeated brIefly below. 

Where, as In our example, there IS no state nOIse and the equatIons of motIon are lInear, the equa
tIons are 

x(tO) xo 

x(t) = Ax(t) + Bu(t) 

Z(ti) = Cx(t , ) + Ou(t, ) + Gn, 

where x IS the state vector, z IS the observatIon vector, and IS the control vector. 

The maximum lIkelIhood estimator mInImIzes the cost function 

N 
J(t) = t L [z(t , ) - i~(t,)]*(GG*)-l[z(tl) - i~(t,)] 

1=1 

(8) 

(9) 

(10) 

(11) 

where GG* IS the measurement nOIse covarIance, and Z~(t,) IS the computed response estImate of z at t, for 
a 91 ven va I ue of the unknown parameter vector~. The cost funct Ion I s a functIon of the dl fference 
bptween the measured and computed tIme hIstorIes. 

To ml nlml ze the cost funct Ion J (~), we can app ly the Newton-Raphson al gorl thm whl ch chooses success lYe 
estImates of the vector of unknown coeffIcIents, ,. Let L be the IteratIon number. The L + 1 estImate of 

~ IS then obtaIned from the L estImate as follows 

The fIrst gradIent IS defIned as 

N 

V~J(~) = - L [z(t , ) - i~(t, )]*(GG*)-l[V~i~(tl)] 
1=1 

The Gauss-Newton approxImatIon to the second gradIent IS 

N 
V~J(~) - L [V~i~(t,) ]*(GG*)-l[V~i~(t,)] 

1=1 

(12) 

(13) 

(14) 

The Gauss-Newton approxImatIon, whIch IS sometImes referred to as modIfIed Newton-Raphson, IS computatIon
ally much easIer than Newton's method because the second gradient of the InnovatIon never needs to be cal
culatpd. In addItIon, It can have the advantage of speedIng the convergence of the algorIthm. 

EquatIon (11) then gIves the cost functIon for maxImum lIkelIhood estImatIon. The weIghtIng GG* IS 
unllnportant for thIS problem, so let It equal 1. For our example, Eqs. (9) and (10) become x, PI and 
Z, = x, Therefore, Eq. (11) becomes 

N 

J(Lp,L6) = t L [PI - PI(Lp,L6)]2 
1=1 

(15) 

where Pi IS the value of the measured response p at tIme t, and PI(Lp,L6) IS the computed tlme hlstory of 

p at tIme t, for Lp = [p and L6 = [6' Throughout the rest of the paper, where simulated data are used, 
the measured tIme hIstory (sImulated) refers to PI' and the computed tlme hlstory refers to PI(Lp,L6)' 
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The computed time h1story 1S a funct10n of the current est1mates of Lp and L6, but the measured t1me 
history is not. The expression for obta1n1ng P1(Lp,L6) 1S g1ven 1n Ref. 9. 

The maximum 1ike11hood estimate 1S obtained by m1n1m1z1ng Eq. (11). The Gauss-Newton method descr1bed 
earlier is used for th1s min1m1zat10n. Equation (12) 1S used to determ1ne succeSS1ve values of the est1-
mates of the unknowns during the min1m1zat10n. The f1rst and second grad1ents are defined by Eqs. (13) 
and (14). For th1S simple problem, ~ = [Lp Lo]* and succeSS1ve est1mates of Lp and L6 are determ1ned by 
updating Eq. (12). 

The entire procedure can now be wr1tten for obta1ning the maX1mum 11ke11hood estimates for th1S s1mp1e 
example. To start the a1gor1thm, 1n1t1a1 est1mates of Lp and L6 are needed. This 1S the value selected 

for ~O. W1th Eq. (12), ~1 and subsequently iL are def1ned by uS1ng the f1rst and second gradients of 
J(Lp,L o) from Eq. (15). The grad1ents for th1S part1cu1ar example from Eqs. (13) and (14) are 

N 
- L (P1 - ii1 )V~P1 
i=l 

N 

~ L (V~ii1)* (V~ii1) 
1~1 

(16) 

(17) 

With the spec1f1c equat10ns def1ned 1n th1S sect10n for this s1mp1e example, we can now proceed 1n the 
next sect10n to the computat10na1 deta11s of a spec1f1c example. 

4.3 COMPUTATIONAL DETAILS OF MINIMIZATION 

In the prev10us sect10n we spec1f1ed the equat10ns for a s1mp1e example and descr1bed the procedure 
for obtain1ng est1mates of the unknowns from a dynam1c maneuver. In th1S sect10n we g1ve the computa
tional details for obta1n1ng the est1mates. Some of the basIc concepts of parameter est1mat10n are best 
shown with computed data where the correct answers are known. Therefore, 1n th1s sect10n we study two 
examples 1nvo1v1ng s1mu1ated t1me histor1es. The f1rst example 1S based on data that have no measurement 
n01se, which results 1n est1mates that are the same as the correct value. The second example conta1ns 
signif1cant measurement n01se s1m11ar to the n01se that occurs 1n data obta1ned at extreme f11ght cond1-
tions, consequently, the estimates differ from the correct values. Throughout the rest of the paper, 
where s1mu1ated data are used, the term "no-noise case" 1S used for the case w1th no n01se added and 
"noIsy case" for the case where noise has been added. 

For this simulated example, 10 t1me sample p01nts are used. The s1mu1ated data, Wh1Ch we refer to as 
the measured data, are based on Eq. (6). We use the same correct values of Lp and L6 (-0.2500 and 10.0, 
respectIvely) for both examples. In add1tion, the same 1nput (6) 1S used for both examples, the sample 
Interval (6) IS 0.2 sec, and the InItIal cond1tl0ns are zero. Tables of all the s1gnlf1cant 1ntermed1ate 
values are g1ven for each example. These values are g1ven to four s1gn1f1cant d1g1tS, although to obtaIn 
exact1l the same values w1th a computer reqU1res the use of 13 s1gn1f1cant d1g1ts, as 1n the computat10n 

of these tables. In both examples, the 1n1tia1 values of Lp and L6 (or €O) are -0.5 and 15.0, respec
tively. More complete detaIled calculatIons are gIven In Ref. 8. 

4.3.1 Example WIth No Measurement NOIse 

The measurement t1me history for no measurement n01se (no-noIse case) 1S shown 1n F1g. 6. The a11eron 
input starts at zero, goes to a f1xed value, and then returns to zero. The resultIng roll-rate t1me h1S
tory 1S also shown. 

For each value of L (number of IteratIons), we can get ~L by uSIng Eq. (12). Table 1 shows the values 

for [p, Co, and J for each 1terat10n. In three lterat10ns the a1gor1thm converges to the correct values 
to four sign1ficant d1g1ts for both Lp and Lo. Co overshoots S11ght1y on the f1rst 1terat10n and then 
comes quickly to the correct answer. Lp overshoots S11ghtly on the second 1terat10n. 

F1gure 7 shows the match between the measured data and the computed data for each of the f1rst three 
Iterations. The match IS very good after two iterations. The match IS nearly exact after three 
iterations. 

Although the algorIthm has converged to four-dlg1t accuracy 1n Lp and Lo, the value of the cost func
tion, J, continues to decrease rap1d1y between IteratIons 3 and 4. Th1s 1S a consequence of uS1ng the 
maxImum likelIhood estImator on data w1th no measurement noise. TheoretIcally, using lnf1n1te accuracy, 
the value of J at the mln1mum should be zero. However, WIth f1nlte accuracy, the value of J becomes small 
but never quite zero. This value IS a funct10n of the number of s1gnlf1cant dig1ts be1ng used. For the 
13-dlg1t accuracy used here, the cost eventually decreases to approxImately 0.3 x 10-28 • 

4.3.2 Example WIth Measurement N01se 

The data used In the example WIth measurement nOIse (noIsy case) are the same as those used In the 
prev10us sect10n, except that pseudo-Gaussian n01se has been added to the roll rate. The tIme h1story is 
shown in Fig. 8. The slgna1-to-noise rat10 IS qUIte low In th1s example, as one would expect 1n data 
obtained at extreme flIght condItIons. ThIS IS readIly apparent when F1gs. 6 and 8 are compared. Table 2 



shows the values of [p, [6, and J for each 1terat10n. The algor1thm converges 1n four 1terat10ns. The 
behav10r of the coeff1cients as they approach convergence 1S much 11ke the no-n01se case. The most 
notable result of this case is the converged values of Lp and Lo' Wh1Ch are somewhat d1fferent from the 
correct values. The difference in converged values 1S caused by the measurement n01se. As stated in 
Section 3.5, DATA AND TRAJECTORY RECONSTRUCTION, the parameter est1mates can be 1mproved by reducing the 
measurement n01se. The match between the measured and computed t1me h1story 1S shown 1n F1g. 9 for each 
iteration. No change in the match 1S apparent for the last two 1terations. The match 1S very good con
sidering the low signal-to-noise ratio of this example. 

9 

In Fig. 10, the co~puted time h1story for the no-n01se est1mates of Lp and L6 is compared to that for 
the noisy-case estimates of Lp and L6' Because the algor1thm converged to values somewhat d1fferent than 
the correct values, the two computed time h1stor1es are similar but not 1dent1cal. 

4.4 COST FUNCTIONS 

In the prev10us sect10n, we obtained the maximum 11kel1hood est1mates for computed t1me h1stor1es by 
m1nimiz1ng the values of the cost funct10n. To fully understand what occurs 1n th1S m1n1m1zat10n, we must 
study 1n more deta11 the form of the cost funct10ns and some of the1r more important characterist1cs. In 
this section, the cost function for the no-noise case 1S d1scussed br1efly. The cost funct10n of the 
noisy case is then discussed in more deta11. The same two time h1stor1es stud1ed 1n the previous sect10n 
are examined here. The n01sy case 1S more interest1ng because 1t has a mean1ngful Cramer-Rao bound and 1S 
more representat1ve of aircraft fl1ght data. 

F1rst we will look at the one-d1mens10nal case, where L6 1S f1xed at the correct value, because 1t 1S 
easier to grasp some of the characterist1cs of the cost funct10n 1n one d1mension. Then we w111 look at 
the two-dimensional case, where both Lp and L6 are vary1ng. It 1S 1mportant to remember that everything 
shown in th1S paper on cost funct10ns 1S based on slmulated time h1stor1es that are def1ned by Eq. (5). 
For every time history we might choose (computed or fl1ght data), a complete cost funct10n is def1ned. 
For the case of n var1ables, the cost funct10n def1nes a hypersurface of n + 1 d1mens10ns. It m1ght occur 
to us that we could Just construct th1S surface and look for the m1nimum, avo1d1ng the need to bother w1th 
the minimization a1gor1thm. However, th1S 1S not a reasonable approach because, 1n general, the number of 
variables 1S greater than two. Therefore, the cost funct10n can be descr1bed mathemat1cally but not P1C
tured graph1ca1ly. 

4.4.1 One-Dimens10na1 Case 

To understand the many 1nterest1ng aspects of cost funct10ns, 1t 1S eaS1est to f1rst look at cost 
functions hav1ng one var1able. In an earl1er sect10n, the cost funct10n of Lp and L6 was m1n1m1zed. That 
cost function is most 1nterest1ng 1n the Lp direct10n. Therefore, the one-var1able cost funct10n stud1ed 
here is J(Lp). All discuss10ns 1n th1S sect10n are for J(Lp) w1th L6 equal to the correct value, 10. 
Figure 11 shows the cost function plotted as a funct10n of Lp for the case where there 1S no measurement 
noise (no-no1se case). As expected for th1S case, the m1n1mum cost 1S zero and occurs at the correct 
value of Lp = -0.2500. It 1S apparent that the cost 1ncreases much more slowly for a more negat1ve Lp 
than for a pos1t1ve Lp. Phys1cally th1S makes sense Slnce the more negat1ve values of Lp represent cases 
of h1gh damping, and the pos1t1ve Lp represents an unstable system. Therefore, the P1 for pos1t1ve Lp 
becomes increas1ngly different from the measured t1me h1story for small pos1t1ve 1ncrements 1n Lp. 

In Fig. 12, the cost function based on the t1me h1story w1th measurement n01se (no1sy case) 1S plotted 
as a function of Lp. The correct value of Lp (-0.2500) and the value of Lp (-0.3218) at the m1n1mum of 
the cost (3.335) are both ind1cated on the f1gure. The general shape of the cost funct10n 1n F1g. 12 1S 
similar to that shown 1n Fig. 11. F1gure 13 shows the compar1son between the cost funct10ns based on the 
n01sy and no-noise cases. The comments relat1ng to the cost funct10ns' dependence on Lp error 1n the 
no-n01se case also apply to the cost functlon based on the noisy case. Flgure 13 shows clearly that the 
two cost functions are shifted by the dlfference 1n the value of Lp at the m1n1mum and 1ncreased by the 
difference in the m1nimum cost. The difference shown here illustrates the penalty 1f one does not pay 
close attention to reduc1ng the measurement nOlse. A slm1lar Shlft would occur 1f an lncorrect model were 
used. This was discussed earlier 1n reference to data reconstruct10n. 

Figure 14 shows the grad1ent of J(Lp) plotted as a function of Lp for the n01sy case. Th1S 1S the 
function for which we were trYlng to f1nd the zero (or equ1valently, the minimum of the cost funct10n) 
using the Gauss-Newton method that 1S discussed 1n a prev10us section. The grad1ent 1S zero at Lp = 
-0.3218, Wh1Ch corresponds to the value of the m1nimum of J(Lp). 

The usefulness of the Cramer-Rao bound was d1scussed earl1er. At th1S p01nt it 1S useful to d1gress 
briefly to discuss some of the ram1ficat10ns of the Cramer-Rao bound for tne one-d1mens10nal case. The 
Cram~r-Rao bound has meaning only for the noisy case. In the n01SY example, the est1mate of Lp 1S -0.3218 
and the Cramer-Rao bound 1S 0.0579. Th1S relat1vely large value of the Cramer-Rao bound is caused by the 
low signal-to-noise rat10 (data from extreme flight cond1t10ns) for th1S case. The Cramer-Rao bound 
indicates that we are gett1ng a poor estimate of the rate-dependent coeff1c1ent Lp. The Cramer-Rao bound 
is an estimate of the standard dev1at10n of the est1mate. One would expect the scatter 1n the est1mates 
of Lp to be of about the same magn1tude as the estimate of the standard dev1at10n. For the one
dimensional case discussed here, the range of Lp (-0.3218) plus or m1nus the Cramer-Rao bound (0.0579) 
nearly includes the correct value of Lp (-0.2500). If n01SY cases are generated for many t1me h1stor1es 
(adding different measurement n01se to each time h1story), then the sample mean and sample standard 
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deviatIon of the estImates for these cases can be calculated. Table 3 gIves the sample mean, sample stan
dard dpvlatlon, and the standard devIatIon of the sample mean (standard deviatIon d,v,ded by the square 
root of the number of cases) for 5, 10, and 20 cases. The sample mean, as expected, gets closer to the 
correct value of -0.2500 as the number of cases Increases. ThIS IS also reflected by the decreaSIng 
values column of Table 3, whIch are estImates of the error In the sample mean. The next to last column of 
Table 3 shows the sample standard deVIatIons, whIch IndIcate the approxImate accuracy of the IndIVIdual 
estImates. This standard deVIatIon, whIch stays more or less constant, IS approxImately equal to the 
Cramer-Rao bound for the noisy case beIng studied here. In fact, the Cramer-Rao bounds for each of the 
20 noisy cases used here (not shown In the table) do not vary SIgnIfIcantly from the values found for the 
noisy case being studIed. Both of these results are In good agreement WIth the theoretIcal characterIs
tics (Ref. 27) of the Cramer-Rao boundS and maXImum lIkelIhood estImators In general. 

The examples shown here IndIcate the value of obtaInIng more sample tIme hIstorIes (maneuvers). 
More samples Improve confIdence In the estImate of the unknowns. The same result holds true In analYZIng 
actual flIght time hIstorIes (maneuvers), thus It IS always adVIsable to obtaIn several maneuvers at a 
gIven flIght condItIon to Improve the best estImate of each derIvatIve. ThIS IS espeCIally true when ana
lYZIng data obtaIned at extreme flIght condItIons. 

The sIze of the Cramer-Rao bounds and of the error between the correct value and the estImated value 
of Lp IS determIned to a large extent by the length of the tIme hIstory and the amount of nOIse added to 
(or modelIng error present In) the correct tIme hIstory. For the example beIng studIed here, It IS 
apparent from FIg. 8 that the amount of nOIse beIng added to the tIme hIstory IS large. The effect of the 
power of the measurement nOIse (GG*, Eqs. (9) and (10)) on the estImate of Lp for the tIme history IS 
given In Table 4. The estImate of Lp IS much Improved by decreaSIng the measurement nOIse power. A 
reductIon In the value of G to one-tenth of the value ,n the nOIsy example beIng studIed YIelds an accep
tahle estImate of Lp. For flIght data, the measurement nOIse IS reduced by ImprovIng the accuracy of the 
output of the measurement sensors or through data and traJectory reconstructIon, as d,scussed In an ear
lIer section. 

4.4 2 Two-DimenSlOnal Case 

In th,s sectIon, the cost functIon (dependent on both Lp and Lo) IS studIed. The no-noIse case IS 
examIned fIrst, followed by the nOIsy case. 

Even though the cost functIon IS a functIon of only two unknowns, It becomes much more dIffIcult to 
visualIze than the one-unknown case. The cost functIon over a reasonable range of Lp and Lo IS shown In 
FIg. 15. The cost Increases rapIdly In the regIon of posItIve Lp and large values of Lo. The reason IS 
Just an extensIon of the argument for posItIve Lp gIven In the prevIous sectIon. The shape of the surface 
can be depIcted In greater detaIl If we examIne only the values of the cost functIon less than 200 for Lp 
less than 1.0. FIgure 16 shows a vIew of thIS restrIcted surface from the upper end of the surface. The 
mInimum must lIe In the curvIng valley that gets broader as we go to the far SIde of the surface. Now 
that we have a pIcture of the surface, we can look at the Isoclines of constant cost on the Lp-versus-L6 
plane. These IsoclInes are shown In FIg. 17. The mInImum of the cost functIon IS InSIde the closed 
IsoclIne. The steepness of the cost functIon In the posltlve-Lp dIrectIon IS once agaIn apparent. InSIde 
the closed IsoclIne the shape IS more nearly ellIptIcal, IndIcatIng that the cost IS nearly quadratIC 
here, so faIrly rapId convergence In thIS regIon would be expected. The Lp aXIs becomes an asymptote In 
cost as L6 approaches zero. The cost IS constant for Lo = 0 because no response would result from any 
aIleron Input The estImated response IS zero for all values of Lp' resultIng In constant cost. 

FIgure 17 Includes the mInImum value of the cost functIon, whIch, as seen In the earlIer example 
(Table I), occurs at the correct values for Lp and L6 of -0.2500 and 10.0, respectIvely. ThIS IS also eVI
dent from the cost functIon surface shown In FIg. 18. The surface has ItS mInImum at the correct value. 
As expected, the value of the cost functIon at the mInImum IS zero. 

SometImes nonestlmatlon speCIalIsts get the ImpressIon that the fInal estImate of a parameter (stabI
lIty and control coeffICIent) IS dependent on the startIng value, but thIS IS not the case for the maxImum 
lIkelIhood estImator. If the maxImum lIkelIhood estImator IS used to obtaIn the maxImum lIkelIhood estI
mates, the estimate WIll be the mInImum of the cost functIon, as shown In FIgs. 13, 16, and 18. These 
mlnlma are lndependent of the startlng values. If the estImatIon technIque Includes a pp~oP~ Informa
tlon In the cost functIon (such as a maxImum a pOBtep~op~ estImator), the mInImum value IS affected by a 
pp~op~ estImates of the coeffICIent. Usually the a pp~op~ value IS used as the startIng value for maxImum 
likelIhood estlmators, leadIng some to the conclUSIon that the estImate IS a functIon of the startIng 
values for all estImators. For all cases that are dIscussed In th,s paper the minImum of the cost func
tIon IS Independent of the startIng value. Of course, the further one starts the algorIthm from the mInI
mum value, the longer It takes the algorIthm to converge. Therefore, espeCIally for data obtaIned at 
extreme flIght condItIons, It IS Important to have good WInd tunnel and computatIonal flUId dynamIC estI
mates. These other estImates also can prove useful for fIXIng values of coeffICIents of the estImates as 
we dld L6 In the one-dImensIonal case. ThIS InformatIon can also be used In the maxImum a pOBtep~op~ 
estlmators. 

As shown before In the one-dlmenslonal case, the prImary dIfference between the cost functIons for the 
no-n01SP and n01sy cases was a shIft 1n the cost funct10n. In that Instance, the nOIsy case was sh1fted 
so that the min1mum was at a hIgher cost and a more negatIve value of Lp. In the two-d1menslonal case, 
the no-noIse and nOIsy cost functIons exhIbIt a SImIlar shIft. For two dImenSIons, the shIft IS In both 
the Lp and L6 dlrect10ns. The sh1ft IS small enough that the dIfference between the two cost functIons 
IS not v1slble at the scale shown In FIg. 15 or from the perspectIve of FIg. 16. FIgure 19 shows the 
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isocllnes of constant cost for the nOlsy case. The flgure looks much llke the lsocllnes for the no-nOlse 
case shown ln Flg. 17. The dlfference between Figs. 17 and 19 lS a Shlft ln Lp of about 0.1. ThlS lS 
the dlfference ln the value of Lp at the mlnlmum for the no-nOlse and nOlSY cases. Heurlstlca11y, one can 
see that the same would be true for cases with more than two unknowns. The prlmary difference between the 
two cost functions lS near the mlnlmum. 

The next logical part of the cost functlon to examine lS near the mlnlmum. Flgure 20 shows the same 
Vlew of the cost functlon for the noisy case as was shown ln Flg. 10 for the no-nOlse case. The shape 
lS roughly the same as that shown ln Flg. 18, but the surface lS shlfted such that ltS mlnlmum lles over 
Lp = -0 3540 and L5 = 10.24, and lS shlfted upward to a cost functlon value of approxlmately 3.3. 

To get a more preclse ldea of the cost of the nOlsy case near the mlnlmum, we once agaln need to exa
mlne the isocllnes. The lsocllnes (Flg. 21) ln thlS reglon are much more llke e11lpses than they are ln 
FlgS. 17 and 19. We can follow the path of the mlnlmlzatlon example used before by lnc1udlng the results 
from Table 2 on Flg. 2. The flrst lteratlon (L = 1) brought the values of Lp and L6 very close to the 
values at the mlnlmum The next lteratlon essentla11y selected the values at the mlnlmum when vlewed at 
this scale One of the reasons the convergence lS so rapld ln thlS reglon lS that the lsoc1lnes are 
nearly el1lptlcal, lndlcatlng that the cost lS very nearly quadratlc ln thlS reglon. Had we started the 
Gauss-Newton algorlthm at a pOlnt where the lsoc1lnes are much less e11lptlca1 (as ln some of the border 
reglons ln Flg. 19), the convergence would have been much slower lnltla11y, but much the same as lt 
entered the nearly quadratlc reglon of the cost functlon. The process, of course, results ln the same 
mlnimum regardless of the startlng values. 

A final pOlnt to be made ln examlnlng cost functlons deals wlth the re1atlve shape of the cost func
tlon. Although these shapes are somewhat apparent ln FlgS. 15, 16, and 17, they are most readl1y studled 
for constant-cost isoc1lnes as ln FlgS. 19 and 21. The result we want here lS related to the steepness 
of the cost near the mlnlmum. The mlnlmum shown ln Flg. 21 occurs at a cost of 3.3. If we proJect the 
lsoc1lne for the cost of J = 5 onto the Lp aXls, we lntersect values for Lp of approxlmate1y 0 and -0.7. 
This lS a small lncrease ln cost (about 50 percent), yet the values spanned for Lp are ~100 percent of 
the nOlse-contamlnated estlmate. If we proJect the same lsoc1lne onto the L5 aXls, we lntersect values 
for L5 of approxlmately 9 and 11. ThlS lS only a change of about 10 percent for the same lncrease ln 
cost. ThlS shows that the rate-dependent coefflclent Lp has a much flatter shape near the mlnlmum than 
does the control derlvatlve L5, WhlCh means that re1atlve accuracy ln estlmatlng Lp lS much poorer than 
for L5 ThlS result can be genera1lzed for all the rate-dependent coefflclents as compared wlth the 
primary stahility and control coefflcients, such as La, Na, and Le. GOlng one step further, the cross and 

cross-coup1lng coefflclents (such as Lr or La) are even flatter near the mlnlmum than are the rotary coef
flclents (such as Lp and Nr ). ThlS fact points out the necesslty of obtalnlng the best possible estl
mates from other predlctlve technlques for rate-dependent coefflclents. These coefflclents can be 
estl1nated from rotary balance or forced osclllatlon tests. It remalns to be seen lf these wlnd tunnel 
pstlmates wl11 be more accurate than the fllght-determlned estlmates. Currently the thought lS that each 
source of these coefflclents wlll have deflclencles, but wlth lnformatlon from both sources we may be able 
to determlne the relatlve lmportance of accurate values of the coefflclents ln deflnlng a good model. One 
flnal item on the relatlve flatness of the cost functlons lS that the flatness can be reduced by (I) 
lncreaslng the length of the fllght maneuver, (2) reduclng the number of unknown coefflclents (flxlng the 
values at computed or wlnd tunnel values), (3) reduclng the nOlse ln the lnstrumentatlon system through 
better lnstruments or through data reconstructlon, (4) reduclng equatlon errors wlth better estlmates of 
thp mass characterlstlcs, and (5) lncreaslng the lnformatlon content of the maneuver by deflning and 
flYlng speclflca11y deslgned maneuvers at extreme f1lght condltlons. 

Before concludlng our examlnatlon of the two-dlmenslona1 case, we need to examlne the Cramer-Rao bound. 
Fiyure 22 shows the uncertainty e11lpsold, WhlCh lS based on the Cramer-Rao bounds deflned ln an ear1ler 
sectlon. The relatlonshlps between the Cramer-Rao bound and the uncertalnty e11lpsold are dlscussed ln 
Ref. 27. The uncertalnty e11lpsold almost lnc1udes the correct value of Lp and L5. The Cramer-Rao bound 
for Lp and Le can be determlned from the proJectlon of the uncertalnty el1lpsold onto the Lp and L5 axes, 
and compared wlth the values of the Cramer-Rao bound, WhlCh are 0.1593 and 1.116 for Lp and L5, 
respectively 

ThlS paper dlscusses the lncreased complexlty and effort requlred ln comparlng parameter estlmatlon ln 
the tradltlonal and extreme f1lght regimes. The ana1ysls ln the extreme f1lght reglmes requlres more care 
and undprstandlng ln se1ectlng the mathematlca1 model, the mass characterlstlcs, the maneuvers flown, and 
the type and locatlon of lnstrumentatlon sensors. Addltlona1 ana1ytlca1 technlques, such as data and tra
Jectory reconstructlon and model structure determlnatlon, are needed. The eva1uatlon of results lS also 
more complex, and several lteratlons may be requlred to evaluate the mathematlca1 model. The essentla1 
characterlstlcs of the maXlmum llkellhood estimatlon technlque are studled wlth the help of a slmp1e, but 
representatlve, Slmulated alrcraft fllght example. The baslcs of mlnlmlzatlon and the general concepts of 
cost functions are dlscussed. The example showed the value of low measurement nOlse, multiple estlmates 
at a given flight condltlon, and the Cramer-Rao bounds. The re1atlve flatness of the cost functlons ln 
thp dlrectlon of the rate-dependent coefflclents lS demonstrated. ThlS flatness lS shown to result ln 
poor estimatlon of these coefflclents. The need for a close lnterp1ay between computatlon, wlnd tunnel, 
and flight analysis lS also dlscussed. 



12 

6 REFERENCES 

1. Oynamlc StabIlIty Parameters. AGARD-CP-235, 1978. 

2. DynamIC StabIlIty Parameters. AGARD-LS-114, 1981. 

3. Methods for AIrcraft State and Parameter IdentIfIcatIon. AGARD-CP-172, 1975. 

4 Parameter IdentIfIcatIon. AGARD-LS-I04, 1979. 

5. AIAA Atmospheric FlIght MechanIcs Conference ProceedIngs. AIAA CP849, Aug. 1984. 

6 Iliff, Kenneth W. AIrcraft IdentIfIcatIon ExperIence. AGARD-LS-104, paper 6, 1979. 

7. KleIn, VladIslav, Batterson, James G., and Murphy, PatrIck C. DetermInatIon of AIrplane Model 
Structure From Flight Data by USIng ModIfIed StepwIse RegreSSIon. NASA TP-1916, 1981. 

B. IlIff, Kenneth W., and MaIne, RIchard E. MaXImum LIkelIhood EstImatIon wIth EmphasIs on AIrcraft 
FlIght Data. Proceedings of Workshop on IdentIfIcatIon and Control of FlexIble Space Structures, 
June 1984. 

9 MaIne, RIchard E., and IlIff, Kenneth W. User's Manual for MMLE3, a General FORTRAN Program for 
MaXImum LIkelIhood Parameter EstImatIon. NASA TP-1563, 1980. 

10. Foster, G.W. A DescrIptIon of the WeIghted Least Squares Output-Error Method of Parameter 
IdentIfIcatIon. RAE TM FS 215, 1978. 

11. Mulder, J.A., Jonkers, H.L., Horsten, J.J., Breeman, J.H., and SImons, J.L. AnalysIs of AIrcraft 
Performance, StabIlIty and Control Measurements. Parameter IdentIfIcatIon, AGARD-LS-I04, 
paper 5, 1979. 

12. Tobak, Murray, and SchIff, LeWIS B. AerodynamIc Mathematical ModelIng - Basic Concepts. DynamIC 
StabIlIty Parameters, AGARD-LS-114, paper I, 1981. 

13. Tobak, Murray, and Chapman, Gary T. NonlInear Problems In FlIght DynamICs InvolvIng AerodynamIc 
BifurcatIons. Unsteady AerodynamIcs - Fundamentals and ApplIcatIon of Aircraft DynamICs, 
AGARD paper 25, May 1985. 

14 Wolowlcz, Chester H., and Yancy, Roxannah B. ExperImental DetermInatIon of Airplane Mass and 
InertIal CharacterIstics. NASA TR R-433, 1974. 

15. Malcolm, Gerald N., and SchIff, LeWIS B. Recent Developments In Rotary-Balance TestIng of Fighter 
Aircraft ConfIguratIons at NASA Ames Research Center. Unsteady AerodynamIcs - Fundamentals and 
ApplIcatIons of AIrcraft DynamICs, AGARD paper 18, May 1985. 

16. KleIn, V., and Schles, J.R. Compatablllty Check of Measured AIrcraft Responses USIng KInematic 
EquatIons and Extended Kalman FIlter. NASA TN D-8514, 1977. 

17. Bach, R.E., Jr., and WIngrove, R.C. ApplIcatIons of State EstImatIon In AIrcraft FlIght Data 
AnalysIs. AIAA-83-2087, 1983. 

18. Gupta, N.K., Hall, W.E., Jr., and Trankle, T.L. Advanced Methods of Model Structure DetermInatIon 
from Test Data. AIAA J. GUIdance & Control, vol. I, no. 3, 1978, pp. 197-204. 

19. Trankle, T.L., VIncent, J.H., and FranklIn, S.N. System IdentIfIcatIon of NonlInear AerodynamIc 
Models. The TechnIques and Technology of Nonlinear FIlterIng and Kalman FIlterIng, AGARD-AG-256 
paper 7, 1982 

20. Iliff, Kenneth W., MaIne, RIchard E., and Shafer, Mary F. SubsonIc StabIlity and Control DerIva
tives for an Unpowered, Remotely PIloted 3/8-Scale F-15 Airplane Model ObtaIned From FlIght Test. 
NASA TN D-8136, 1976. 

21. KleIn, V, and Batterson, J.G. EstImated Low-Speed AerodynamIc Parameters of an Advanced FIghter 
from FlIght and WInd Tunnel Data. 14th ICAS Congress, Sept. 1984. 

22. Anderson, L C., VIncent, J.H., and HIldreth, B.L. AV-BB System IdentIfIcatIon Results from Full 
Scale Development FlIght Test Program. AIAA-83-2746, AIAA/AHS/IES/SETP/SFTE/DGLR 2nd FlIght 
Testing Conference, Las Vegas, Nev., U.S.A, Nov. 1983. 

23. IlIff, K.W. Stall/Spin FlIght Results for the Remotely PIloted SpIn Research VehIcle. 
AIAA AtmospherIc FlIght MechanIcs Conference, AIAA-80-1563, Aug. 1980. 

24 Gupta, Naren K., and IlIff, Kenneth W. IdentIfIcatIon of AerodynamIc Indlclal FunctIons USIng 
Flight Data. AIAA AtmospherIc FlIght MechanIcs Conference, AIAA-82-1375, Aug. 1982. 

25. Ross, A J., and Edwards, G.F. CorrelatIon of PredIcted and Free-FlIght Responses Near Departure 
ConditIons of a HIgh IncIdence Research Model. Unsteady AerodynamIcs - Fundamentals and 
ApplicatIons to AIrcraft DynamICs, AGARD paper 31, May 19B5. 



26. Malne, Rlchard E., and lllff, Kenneth W. ldentlflcation of Dynamlc Systems. AGARD Fllght Test 
Technlques Serles, AGARD-AG-300-vol.2, 1985. 

27. Maine, Richard E., and lllff, Kenneth W. The Theory and Practice of Estlmatlng the Accuracy of 
Dynamlc Fllght-Determlned Coefflclents. NASA RP-1077, 1981. 

13 

Table 1 Pertlnent values for Table 2 Pertlnent values for nOlsy case 
no-nOlse case as a functlon of lteratlon as a functlon of lteratlon 

L Lp(L) 

0 -0.5000 
1 -0.3005 
2 -0.2475 
3 -0.2500 
4 -0.2500 

L<I(L) JL L Lp(L) 

15.00 21.21 0 -0.5000 
9.888 0.5191 1 -0.3842 
9.996 5.083 x 10-4 2 -0.3518 

10.00 1. 540 x 10-9 3 -0.3543 
10.00 1.060 x 10-14 4 -0.3542 

5 -0.3542 

Table 3 Mean and standard devlatlons for estlmates of Lp 

Number of 
cases, N 

5 
10 
20 

Sample standard 
Sample mean, Sample standard devlation of the 

~(Lp) de vi at ion, O(Lp) mean, o(Lpl/1N 

-0.2668 0.0739 0.0336 
-0.2511 0.0620 0.0196 
-0.2452 0.0578 0.0129 

Table 4 Estlmate of Lp and Cramer-Rao bound as 
a function of the square root of nOlse power 

Square root of Estlmate Cramer-Rao 
nOlse power, G of L bound 

0.0 -0.2500 
0.01 -0.2507 0.00054 
0.05 -0.2535 0.00271 
0.10 -0.2570 0.00543 
0.2 -0.2641 0.0109 
0.4 -0.2783 0.0220 
0.8 -0.3071 0.0457 
1.0 -0.3218 0.0579 
2.0 -0.3975 0.1248 
5.0 -0.6519 0.3980 

10.0 -1.195 1.279 

L<I(Ll JL 

15.00 30.22 
10.16 3.497 
10.23 3.316 
10.25 3.316 
10.24 3.316 
10.24 3.316 



14 

Aircraft design 
(wind tunnel tests and 

computational fluid 
dynamic analysis) 

Wmd tunnel 
and computatIonal 

results 

Postproduction 
wmd tunnel tests and 
computational fluid 
dynamic analysis 

AddItional flight or wind tunnel 
tests to resolve dIscrepancies 

Resultant composite representallon 
(data base) 

Ftg. 1 Approach to valtdattng mathemattcal model tn 
tradtttonal fltght regtmes. 



Reassess instrumentation 
requIrements 

(determIne Instrument 
mathematocal models) 

SpecIal wInd 
tunnel apparatus 

tests (such as 
rotary balance) 

F~g. 2 Approach to vat~dat~ng mathemat~cat modet 
at extreme ft~ght cond~t~on8. 

15 



16 

100 r=..~ 

d~9 -10~ UOIltfr 7 I 
e, 

deg 
100 F 

-10~ I--I-~------';:=--=~ 

de' -1~ C 
deg -30 1::~::II=:t±±±::::t::±::j 

40 F ° d' 0 r.""i"=:;=;:==;=::;=;::::; 
deg _ 40 L_IL....JIL....IL....I--'---'-----'-----' 

Or' 0 hLI ;::::;:=;:::;::==;:~ 40~ 
deg _ 40 L--1-...JIL....IL....I--'---'-----'-----' 

°a' 0 ....... ,-------40 F 
deg _ 40 L....JN~.....I....J.....l_..I._J.......J 

r, 
dog/sec 

a, 
dog 

lji, 
deg 

200~ /1 ~ 
-20~1 &LIi? LI1 

o 2 4 6 8 101214 16 
Time, sec 

Ftg. J Typtcal ttme htstory 
of sptn entry. 

Roll rate (p) , 
Roiling moment (L ) 

~ 
Right aileron 
deflection (da)\ I" 

Y::::~~~~::::~~~~~L~e~lt~a;lI;e~ro~~~====-
delieCtl;~ (d~ 

~F 
z 

Control 
Input 

Turbulence Noise 

Gauss 
Newton 

computational 
algorithm 

Maximum 
likelihood 

cost 
functional 

Ftg. 4 Maxtmum ltkelthood esttmatton 
concept. 

2 

Aileron 
deflection, 1 t-r---""\ 

d, 

deg 

20 

Roll rate, 
p, 10 

deg/sec 

o 
Time, sec 

Ftg. 6 Ttme htstory wtth 
no measurement notse. 

-' 

2 



-- Measured 
-- Computed 

20 
Iteration 0 Iteration 1 

Roll 
rate, 

10 / '-
p, 

deg/sec 
/-

0 

20 
Iteration 2 

r 
Roll 
rate, 10 
p, 

deg/sec 

0 0 2 
Time, sec Time, sec 

F1.g. 7 Compoptson of measuped and computed 
data fop each of the ftpst thpee ttepattons. 

-- Measured 
--Computed 

20 
Iteration 0 Iteration 1 

Roll rate, 
'-p, 10 / 

deg/sec 

0 

20 
Iteration 2 Iteration 3 

Roll rate, 
p, 10 

deg/sec 

0 0 2 
Time, sec Time, sec 

Ftg. 9 compaptson of measuped and computed data 
fop each tteratton. 

Aileron 
deflection, 

d, 

deg 

2 

o '-----'--'--..... 

20 

Roll rate, 
p, 10 

deg/sec 

o 
Time, sec 

Ftg. 8 Ttme htstopy wtth 
measurement "~8e. 

2 

--No noise 

20 
--NoIsy 

Roll rate, 
p, 10 

deg/sec 

o 
Time, sec 

Ftg. 10 Compaptson of 
esttmated pott pate fpom 
no-noise and notsy cases. 

2 

17 



18 

100 

90 

80 

70 

60 
Cost 

function, 50 
J (Lp) 

40 

30 

20 

10 

0 
-20 -10 

Damping In roll, Lp 

F~g. 11 Cost funet~on (J(Lp) as a funet~on 
of Lp fop no-no~se ease. 

---Noisy 
----- No noise 

100 

90 

80 

70 

60 
Cost 

function, 50 

J(Lp) 
40 

30 

20 

10 

, 
\ 

\ 
\ 

\ 
\ 

\ 
\ 
\ 

\ 
\ 

\ 
\ 

\ 
\ 

\ 
\ 
\ 

\ 
\ 

\ 
\ 

\ 
~ 

). 

oL-__ ~ ____ ~ ____ -L~~-L----~ 
-20 -15 -10 - 5 o 

Damping In roll, Lp 

F~g. IJ Compa~son of the cost funet~ons fop 
the no-no~se and no~sy cases. 

5 

100 

75 

Cost 
function, SO 
J (Lp) 

25 
EstImate 
(-03218) 

0 
-20 -10 0 10 

Damping In roll, Lp 

F~g. 12 Cost funct~on as a funet~on of Lp fop 
no~sy case. 

Gradient 
of cost 

function, 

V~J (Lp) 

100 

90 

80 

70 
60 

SO 

40 
30 
20 

10 
0 

-10 

-20 

-30 
-40 

-SO 

-60 
-70 

-2 -1 
Damping in roll, Lp 

- 3218 

F~g. 14 Gpad~ent of J(Lp} as a funct~on of Lp 
fop nouy ease. 

o 



I 
/ 

/ 
L 

\ 
\ 

\ 

I 
I 

I 

II-
I \ 

I \ 

/ \ 
I \ 

-2.0 
-15 

1000 

Cost 
function, 
J(Lp' La) 

-10 
~~~t;jjj~?JW""'~.w.,,",,:~._ 5 Damping 

power, 
La 

In roll, 
Lp 

F~g. 15 La~ge-scale ~ew of cost funct~on 
su~face. 

Damping 
In roll, 

Lp 

10 0 

_--1', 
I "-
I " I "-
I 
I 
I 
I 

Roll 
control 
power, 

La 

"-
" " "-

15 

"-
" 200 

Cost 
function, 
J(Lp' La) 

F~g. 16 Re8t~cted v~ew of cost funct~on s~face. 

19 



20 

24 

20 

16 

Roll 
control 12 
power, 

Ld 

8 

4 

-1 o 
Damping In roll, Lp 

F~g. 17 Isocl~nes of constant cost of Lp and 
L5 for the no-no~se case. 

,..--====- ---- 30 , 
I 
I I 25 I I 
I I 
I I , 

I 20 Cost I 

2 

I I I function, 
I I 15 

J(Lp,Ld) I I 
I I 
I I 10 I I I I I I I I 5 
I Correct value-

~ -I- _ 
I I , and minimum I 0 , 

~ I I / 
~ ---I- s 

I , 10 Roll control 
power, 

Damping Ld 
In roll, 

Lp 

F~g. 18 Deta~led V~~ of cost funct~on surface 
for no-no~se case. 



22 

20 

18 

16 

Roll 14 
control 12 
power, 

Ld 10 

8 

6 

4 

:L--L~I:=t~~~~~~ 
-24 -16 -8 0 8 16 24 

Damping In roll, Lp 

r--====~~-

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

-2 20 

21 

30 

25 

20 
Cost 

functIon, 
J(~, Ld) 

Roll 
control 
power, 

Ld 

F~g. 19 Isoel~nes of eonstant eost ~n Lp and 
L6 fo~ the nO~8y ease. 

F~g. 20 Deta~led v~ew of eost funet~on s~faee 
fo~ no~sy ease.10 

16 

15 
14 

13 

Roll 12 
control 11 
power, 

Ld 10 

9 

8 

7 
6L-__ L-__ L-__ L-__ L-__ L-__ L-__ ~~ 

-12 -10 - 8 - 6 - 4 - 2 
Damping In roll, Lp 

o 2 4 

F~g. 21 Isoel~nes of eonstant eost fo~ ~eg~on nea~ 
m~n~mum fo~ nO~8y ease. 

16 

15 
14 

13 

Roll 12 
control 
power, 11 

Ld 10 

9 

8 

7 
6~ __ J-__ -L __ ~ __ ~~ __ J-__ -L __ -L=-~ 

-12 -10 - 8 - 6 - 4 -.2 0 2 4 
Damping In roll, Lp 

Fig. 22 Isoel~nes and unee~a~nty ett~p80u1 of the 
eost funct~on fo~ the no~sy case. 



1 Report No I 2 Government Accession No 3 Recipient's Catalog No 
NASA TM-86730 

4 Title and Subtitle 5 Report Date 
EXTRACTION OF AERODYNAMIC PARAMETERS FOR May 1985 

AIRCRAFT AT EXTREME FLIGHT CONDITIONS 6 Performing Organization Code 

7 Author(s) 8 Performing Organization Report No 

Kenneth W. III ff H-1290 
10 Work Unit No 

9 Performing OrganizatIOn Name and Address 
NASA Ames Research Center 11 Contract or Grant No 
Dryden FlIght Research FaCIlIty 
P.O. Box 273 
Edwards, CalIfornIa 13 Type of Report and Period Covered 

12 Sponsoring Agency Name and Address TechnIcal Memorandum 
NatIonal AeronautIcs and Space AdmInIstratIon 

14 Sponsoring Agency Code WashIngton, D.C. 20546 
RTOP 505-43-11 

15 Su pplementary Notes 

Prepared as AGARD Paper 24, an InVIted paper for the AGARD SymposIum on Unsteady AerodynamICs -
Fundamentals and ApplIcatIons to AIrcraft DynamICs, Gottlngen, Federal RepublIC of Germany, 
May 6-9, 1985. 

16 Abstract 

The maxImum lIkelIhood estImator has been used to extract stabIlIty and 
control derIvatIves from flIght data for many years. Most of the llteratijre 
on aIrcraft estImatIon concentrates on new developments and applicatIons, 
assumIng famIlIarIty WIth baSIC concepts. ThIS paper brIefly dIscusses the 
maxImum lIkelIhood estImator and the aIrcraft equatIons of motIon that the 
estImator uses. The current strength and limitatIons associated with 
obtaInIng flIght-determIned aerodynamIC coeffIcients In extreme flIght con-
dItIons IS assessed. The Importance of the careful combIning of WInd tunnel 
results (or calculatIons) and flIght results and the thorough evaluatIon of 
the mathematIcal model IS emphas lZed. The baSIC concepts of mInImIzatIon 
and estImatIon are examIned for a SImple computed aIrcraft example, and the 
cost functIons that are to be mInImIzed durIng estImatIon are defIned and 
dIscussed. GraphIC representatIons of the cost functIons are gIven to help 
Illustrate the mInImIzatIon process. FInally, the baSIC concepts are gener-
alIzed, and estImatIon of stabIlIty and control derIvatIves from flIght data 
IS dIscussed. 

17 Key Words (Suggested by Author(s)) 18 Distribution Statement 

System IdentIfIcatIon, Parameter UnclaSSIfIed-Unlimited 
estImatIon, MaXImum lIkelIhood, 
Cost functIons; StabIlIty and 
control; Extreme flIght conditIons STAR category 66 

19 Security Classlf (of thiS report) 20 Security Classlf (of thiS page) 21 No of Pages 122 Price" 
UnclaSSIfIed UnclaSSIfIed 22 A02 

~For saLe by the Nat~onaL TechnicaL Information Service. SpringfieLd, Virginia 22161. 



End of Document 


