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ABSTRACT 

In this report a time-domain Green's Function Method for unsteady supersonic poten­
tial flow around complex aircraft configurations is presented. 

We focus here on the supersonic range wherein the linear potential flow assumption is 
valid. In this range the effects of the nonlinear terms in the unsteady supersonic compress­
ible velocity potential equation are negligible and therefore these terms will be omitted in 
this report. 

The Green's function method is employed in order to convert the potential-flow dif­
ferential equation into an integral one. This integral equation is then discretized, in space 
through standard finite-element technique, and in time through finite-difference, to yield 
a linear algebraic system of equations relating the unknown potential to its prescribed 
co-normalwash (boundary condition) on the surface of the aircraft. The arbitrary complex 
aircraft configuration (e.g., finite-thickness wing, wing-body-tail) is discretized into hy­
perboloidal (twisted quadrilateral) panels. The potential and co-normalwash are assumed 
to vary linearly within each panel. Consistent with the spatial linear (first-order) finite­
element approximations, the potential and co-normalwash are assumed to vary linearly in 
time. 

The long range goal of our research is to develop a comprehensive theory for unsteady 
supersoni.c potential aerodynamics which is capable of yielding accurate results even in the 
low supersonic (i.e., high transonic) range. 
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LIST OF SYMBOLS 

speed of sound 

contravariant base vector, see equation (25) 

contravariant base vector, see equation (25) 

(M50 - 1)1/2 

domain function, see equation (15) 

Dirac delta function 

Kronecker delta 

finite-element shape function 

Green's function 

Heaviside function 

reduced frequency, w£/Uoo 
reference length 

free stream Mach number Uoo/o,oo 

unit normal to (J B 

unit normal to EB 

total number of elements 

total number of nodes 

circular frequency 

point having coordinates x, y, z 

control point, (x*, y*, z*) 
point having coordinates X, Y, Z 

control point, (X*, Y*, Z*) 

Hadamard finite part 

p -p* 
hyperbolic radius, see equation (11) 

time 

nondimensional time, o,oof3t / £ 

velocity of undisturbed flow 

space coordinates 

nondimensional Prandtl-Glauert coordinates· 
X = x/f3£,Y = y/£,Z = z/£ 
surface of body in x, y, z space 

surface of body in X, Y, Z space 

surface of elementi in X, Y, Z space 

perturbation velocity potential 
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nondimensional perturbation velocity 
potential, ¢/Uoo £ 

'!jJ co-normalwash in x, y, z space 

\II co-normalwash in X, Y, Z space 

Opera.tors 

\7
0
2 a2 + a~: + a2 

lTX1 ay'}. az2 

Laplace operator in the physical space 

\7 0 \7 a(i2 - a~}~ - 1;2 
d a a 
dt m+UOO&x 
o Supersonic dot product, see equation (5) 

1. INTRODUCTION 

In this report we demonstrate how the Green's Function Method of Potential Aero­
dynamics may be implemented in the time domain so as to enable it to handle unsteady 
supersonic flow around complex aircraft configurations. 

We focus here on the supersonic range wherein the linear potential flow assumption is 
valid. In this range the effects of the nonlinear terms in the unsteady supersonic compress­
ible velocity potential equation are negligible, and therefore these terms will be omitted in 
this report. 

The Green's function method (Ref. 1) is employed in order to convert the pot.ential­
flow differential equat.ion into an integral one. This integral equation is then discretized, in 
space through standard finite-element technique (Refs. 2 and 3), and in time through finite­
difference (Ref. 4.), to yield a linear algebraic system of equations relating the unknown 
potential to hs prescribed eo-normalwash on the surface of the aircraft. The arbitrary 
complex aircraft configuration (e.g., finite-thickness wing, wing-body-tail) is discretized 
into hyperboloidal (twisted quadrilateral) panels. The potential and co-normalwash are 
assumed to vary linearly within each panel. Consistent with the spatial linear (first­
order) finite- elem.ent approximations, the potential and co-normalwash are assumed to 
vary linearly in time. 

A frequency-domain first-order Green's function formulation for linear oscillatory su­
personic flow has been developed recently (Ref. 5). Presented here is the corresponding 
theory formulated in the time-domain setting. 

The long range goal of our research is to develop a comprehensive theory for unsteady 
supersonic potential aerodynamics for the low supersonic (i.e., high transonic) range. 
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1.1 A Brief Description of the Green's Function Method 

Before getting into the specifics of this report we begin with a brief description of 
the Green's Function Method. This method applies to the equation of the perturbation 
velocity potential. The potential function <:I> at any point P * in the flow field is given by an 
integral of terms containing the value of tll(> potential and its co-normal derivative on the 
surface, (J, surrounding the body and its wake. An integral equation for the potential on the 
surface of the body is obtained by letting the point P * t approach a point on the surface. 
With this method, the wake is a natural by-product and is treated as a layer of doublets. 
It may be noted that the integral equation does not require that the boundary condition 
on the co-normalwash be satisfied, but rather makes use of the continuity of the potential 
as the control point approaches the surface (J. The tangency boundary conditions are 
automatically satisfied by the type of representation obtained with the Green's Function 
Method. 

In current applications, the surface of the aircraft is divided into small quadrilateral 
elements. Each element is replaced by a paraboloidal hyperboloid surface defined by the 
four corners of the element. In this process the continuity of the surface is maintained 
but discontinuities in the slopes are introduced. The aircraft wake, on the other hand, is 
divided into strips parallel to the streamlines. These wake strips originate from the trailing 
edge and (>xtend to infinity downstream. It should be noted that integrals over these wake 
strips may be carried out in an analogous way to their subsonic counterpart (see Refs. 3 
and 6). 

In the oth order theory, the unknown <1> (in the Prandtl-Glauert Space) is assumed 
to be constant within each element, while in the 1st order theory <:I> is taken in the form 
<:I> = <1>0 + ~<:I>l + 17<:1>2 + ~17<1>3 where ~ and 17 are local element-wise surface coordinates, 
and the coefficients <1>0' ••. , <:1>3 are chosen to interpolate the <1> values at the four corners 
of the element. In either situation the integral equation is approximated by a system 
of algebraic equations. This system of algebraic equations is then solved by standard 
numerical methods. It has been found (see Ref. 7) that in the supersonic range at least a 
I-st order theory is required in order to yield a nonsingular set of algebraic equations due 
to a numerical rather than physical anomaly. The numerical implementation presented in 
this report employs 1st order panels. 

2. ·UNSTEADY SUPERSONIC FLOW 

Our point of departure is the lineariz(~d equation for the unsteady potential compress­
ible aerodynamic flow 

2 1 d2rP_ 
VorP - ~.~. dt 2 - 0 (1) 

where V~ is the Laplace operator in the physical space while rP is the perturbation potential. 
Choosing a frame of reference such that til(' undisturbed flow has velocity Uoo in the 

t The bar is used herein to indicate vector quantities. 
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direction of the positive x-axis, the linearized total time derivative is given by 

d 

dt 

Introducing the generalized Prandtl-Glaucrt transformation 

x = xl (31, Y - yll, Z = zll, T = aoo (3tll, <P - ¢IUool 

(2) 

(3) 

where I is a characteristic length, Moo = Uoolaoo and (3 - (MJo - 1)1/2, Eq. (1) yields* 

(4) 

where 0 stands for the supersonic dot-product defined as 

(5) 

where (], and 6 are two arbitrary vectors. Thus the operator \7 0 \7 stands for 

(6) 

Note that a 0 a is not necessarily positive. We define the 'super-norm' of a vector a as 

(7) 

and will use this notation in later sections of this report. 

2:.1 Supersonic IntegI'll] Equlltion 

In order to obtain the Supersonic Green's function integral equation we proeeed as 
follows: With P and P * representing the sending and reeeiving points respectively, the 
Green's function G for Equation (10) satisfieH 

G = 0 at 00 

one well known solution of which is given by (see Ref. 7) 

where 

H(P,P*)={~ 
------------------------

:j See Appendix C for derivation. 

if X - X* ~ 0 and R 0 R ~ 0 
otherwise 
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Here we define 

while 

with 

It = P - p. = (X - X.)z + (Y - Y.)Y + (Z - Z.)k 

R' - Illlll = I(X - X.)2 - (Y - y.)2 - (Z - Z*)21 1
/
2 (11) 

(12) 

(13) 

Here {PIH(P,P*) - I} defines the zone ofinfiuence, or Mach forecone, with vertex at P*. 

N ext for a closed bounded surface B bounding a volume V, we define the domain 
function 

E (P ) = {I if !!. ~ V 
• 0 if p. E V 

(14) 

Note that for P* on B the function E(P*) will measure the so-called supersonic solid angle 
of B at P .. (see Ref. 7 for details). Hence E(F.) satisfies the notation 

(15) 

where IV is the outward unit normal to L Applying the Green's Function Method, with 
the Green's Function G given by Eq. (9), it can be shown (see Ref. 7 for details) that Eq. 
(8) may be integrated to yield 

/h([€f>]e+ + [€f>]e-)7J~-c (if,) dB -

Ji~ {[~~]e+ ~~: _ [~~]e- ~~; };'dB (16) 

where the co-normalwash \II is defined as 

(17) 

with the conormal N C defined as 

(18) 

so that 

(19) 

Furthermore 
(20) 
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It should be noted here that E includes the surfaces of the aircraft and its wake. 
Throughout this report, for simplicity, the condition of supersonic trailing edge will be 
assumed. Thus, in the absence of the wake, E represents the aircraft surface. However, 
the general method employed here is not limited to the supersonic trailing-edge condition. 
The treatment of the wake whpn trailing edges are subsonic is analogous to the timp-domain 
subsonic formulations and hence the reader is referred to Ref. 4 for furthpr dptails. 

3. NUMERICAL FORMULATION 

In this section, a space and tim~~ discretization procedure will be introduced in order 
to approximate the integral equation by a linear algebraic system of time-delay differpncp 
equations. Solving this time-dpppndpnt systpm in a step-by-step mannpr yields the desired 
timp-deppndent perturbation vplocity potpntial solution on the aircraft surface. Once thp 
velocity potential is known at a given time step, the pressure coefficient may bp computed 
through Bernoulli's Thporpm. 

3.1 Finite Ele:rn.ent Formulation 

Assllming that the surface E is divided into Ne small finite elements E i , Equation (16) 
yields 

Each surface element Ei is approximated by a hyperbolic paraboloid given in the form 

(22) 

where :Pc , [>1, 1>2 and P3 are obtained in terms of the locations of the four corner points 
as (See Fig. 1) 

1 1 
1 -1 
1 1 
1 -1 

\) (PI+ J Ip + 
1 .. 

P 

(23) 

Here, l'J j ,for instance, refers to the element corner for which e == + 1 and 11 == -1. The 
other corners, ],>++, P _ t and P _ are defined similarly. It may be noted that the surface 
defined according to Eq. (22) is continuolls since adjacent elements have in common the 
straight line connecting the two common corner points. 
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3.2 Surface Geometry for Hyperboloidal Elements 

We note that the geometry of the hyperboloidal element is a particular case of the 
general equation for a surface in three- dimensional Euclidean space which is given by 

p - P(~, 17) (24) 

where ~ and 17 are generalized curvilinear coordinates on the surface. For a hyperboloidal 
surface, the two basis vectors a] and li2 are given by 

uP .... --
a} = -at = PI + rtP:l 

uP - --
a2 = 7Jry = P 2 + € p 3 (25) 

(See equation (22). 

The unit normal to the surface is given by 

N = a1 x adla} x a21 (26) 

and is directed according to the right hand rule such that the normal points outward from 
the surface (see Fig. 2). The surface element dJ.:, is given by 

dJ.:, = la} d~ x a2drtl 

or 
(27) 

3.3 First Order Space Discretization 

In what follows we shall take the potential function cp( €, rt, r) over a surface element, 
say J.:,i, at a fixed time r, as 

cpi(~,rt,r) = [(1 + €)(l- rt)cp+_(r) + (1 + €)(1 + 17)cp++(r) 
+ (1 - €)(l + rt)cp_+(r) + (1- €)(1 - rt}cp ___ (r)]/4 

(28) 
Equation (28) expresses the values of cpi at any point (€, rt, r) of J.:,i in terms of the values 
of cp at the four corner points-also at time 7. 

More generally, consider the first-order global shape function with the following defi­
nition: 

I 
(1 + e)(l - rt}/4 

(1 + €}(l + rt)/4 

Fik (~, rt) = (1 + e)( 1 + rt} /4 

l:1 -0(1 -n)/4 

if node k coincides with corner +- of element i 

if node k coincides with corner ++ of element i 

if node k coincides with corner -+ of element i 

if node k coincides with corner -- of element i 

otherwise. 
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(29) 

With Fik defined by Equation (29), Equation (28) may be rewritten as 

Nn 

q,i(e,1],r) = :L FidC1])q,k(r) (30) 
k=l 

where Nn is the total number of nodes on the surface E, and q,k denotes q, at the kth 
node. 

Similarly, the supersonic co-normalwash w(= N 0 \7q,) may be represented by (See 
Ref. D) 

N n 

Wi ( e , 1] , r) - L Fid e, 1] ) W k ( r ) (31 ) 
k 1 

The same first-order finitc-element approximation, Equation (29), has been employed for 

w. Not.e that if q, is approximated by the 1st order finite-element expression while W 

is represented by a oth order formula, wi (e,1],r) = wi(O,O,r) = const., a mixed type 

formulation would result. In subsequent portions of this report, q, and W will be taken 1st 

order. 

3.4 Numerical Approximation of the Integral Equation 

Due to the hyperbolic nature of the governing unsteady supersonic velocity potential 
equatiion, the Heaviside function appears in the resulting supersonic Green's function inte­
gral formulation, (eqs. (16) and (21)). The appearance of the Heavisidefunction H(P,P*) 
under the integral restricts the integration to that portion of the panel that is within the 
Mach Forecone with vertex at P *. 

Note here that the potential, q" and th(' co-norma.lwash, W, under the integral are 
both confined to the Mach Forecone re[.!;ion. A Taylor expansion in both space and time 
may be written for <P and W so that they l)('coIIle explicitly dependent on the space and 
time variables. The spatial derivatives of the Taylor expansion for q,(orw) may be COIIl­
puted through the first-order finite- element representation introduced in the preceding 
subsection. The temporal derivatives, on the other hand, may be approximated by a hack­
ward finite-difference in time. With <J?(w) expressed as an explicit function of time, the 
constraint that <P(w) varies within the Forecone may be imposed, through the Heaviside 
function, in a straightforward manner. 

W(~ remark that the tim(~ variable includes a delay term which is a function of the 
spatial variables (see Eq. (13)). The kernels of the integrals are essentially of the type 
(R't n (where n equals 1 for source and n equals 3 for doublet). We adopt the tactic of 
treating R', in addition to e and 1], as independent variable. Thus, we express <P and W 
via Taylor expansion in these variables. Explicitly, let us rewrite the time delay expression 
as 

T - e± - r(e,r/,T) ± R' (32) 

II 



where 
(33) 

Thus, <I> may be expanded in e,17 and R' around a point "0" which is the geometric center 
of the portion of the element that is in the Mach Forecone, i.e., 

<I>(e, 17, 7 ± R') ~ <I> (eo, 170, 70 ± R~) + (~} + ~~ Z~) 10 (e - eo) 

+ (~% + ;~ Z~) 10 (17 170) ± ~! 10 (R' - R~) (34) 

+ (:;:~ + :;:i Z~ + :::iZ; + ~:; Z~Z~) 10 (e - eo)(17 - 170) 

la
2
<I>1(' Ro')2 +275;'[ 0 R 

where the subscript 0 denotes evaluation at the geometric center of the portion of the 
element that is in the Mach Forecone while 

(35) 

and 

(36) 

with 
ap --- -

Xl = ae . i = (PI + P317) . i (37) 

ap - -- - -
X 2 = 017 . i = (P 2 + P3 e) . i (38) 

a2p .-
X3 = 7nri"" . i - P3 . i (39) 

Expansion (34) is 2nd order accurate. Consistent with the finite-element approximation 
for the space variables, the 2nd order spatial derivative terms, i.e., a2<I>jae2 and a2<I>jar,2, 
and higher order spatial derivatives, vanish and hence it is sufficient to include up to 2nd 

order terms only in Eq. (34). 

Next. recall in Section 3.3 that 

N n 

<I>i (e, 17,7) L Fik (e, 17) <I> d 7) 
k=l 

where Fide, 17,7) is given by Eq. (29) and 7 is a prescribed time. Hence we may compute 
the spatial derivatives of <I> at the point 0 as 

a<I>_~ig~~g;/o ± 13l) _ ~ aF~k~er!'!!)<I>k(70 ± R~) 
k J 

(40) 
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iJi/> i (eO'~;f' "c R~) = f ~1"i,,~ ~,_nol i/>" r 0 ± R:,) 

8
2

<I>i( ~0~0}_!~~_!l~) _ ~ ~:!!,~leJ~()_, 1]01 mk(T ± R') 
~ - ~ 8 t 8 '*' 0 0 
u1] Ie=l (." 1] 

82 <I>t'(eo, 1]0' To ± R~) I: 8Fid~o,1]0) 8<I>dTo ± R~) --------arti;.------- = Ie~c 1 ----. -8{----- ----~---

82 <I>i ( ~o, 1]0' To ± R~) I: 8Fid ~o, 1]0) 8<I>d To ± R~) 
-'-----a~a;.--·------ = Ie=l --J~-'-'-- -----lFr---·--· 

(41 ) 

(42) 

(43) 

(44) 

Making use of Equations (40) through (44) with ]5" coinciding with the node j, Equa­
tion (21) h('('oulPS 

N
n 

{ 47rEj <I>j(T) = L Bile[WIe(T - 0jiJ + WIe(T - 0 jle )] 
, Ie=l 

A' +' + B)Ie[WIe(T - 0 jle ) + wk(T - 0jle)] 

+ Bjk[~dT - 0jl.) + WdT - 0jle)] 

+ Cjd<I>Ie(T - 0jle) + <!>k(T - 0jle)] 

+ cjd<h(T - 0jle) + <h(T - 0)-le)] 
V" +" + Cjle [<I> Ie (T - 0 jle ) + <!>1e(T - 0jle)] 
A. -+' + Djle[<!>Ie(T - 0 jk ) + <!>k(T - 0jk)] 

+ Dile[<h(T - 0jle) + i,h(T - 0jk)]} 

(45) 

where (0 \ and 0-~k are understood, for notational simplicity, to be evaluated at the point 
.1 ) 

() and 

(46a) 

(46b) 

(46c) 

1') 
.J 



(47a) 

Gjk = ~ !f,)F,1 :~ 10 (e - eo) + F;k;~ 10 (~ - ~Q) 
+ (?£f~ Z~ 10 +?:~~z IJ (e - eo)(17 170)] 

( 47b) 

+ (R' - Rb) ate (.~If-)dL. 
(47c) 

(48a) 

(48b) 

where Fi/e' for instance, indicates Fik evaluated at (eo, 170)' 

Equation (45), with the coefficients defined by Equat.ions (46) through (48), is the time­
dependent aerodynamic operator relating the potential to its co-normalwash at N n nodal 
locations. These integral coefficients will be evaluated by a hybrid analytical-numerical 
scheme. More explicitly, each of these integrals will be integrated analytically in the ~­
direction followed by a Gaussian Quadrature numerical integration pro(,edure in the 17 
direction. Discussion of these integrals will be presented in Section 4. 

In Equation (45); the spatial variables have been discretized by a 1st order finite­
element approximation. Following the procedure introduced in Ref. 4, discretization of 
the time-dependent functions, <t> and \II, will be discussed in the following. 

First, the time variable may be written as 

T:::;: (n + a)b.T where n is an integer and 0 S a < 1 (49) 

Next, a continuous function g(T) with T given by Equation (49) may be approximated 
as 

g(T) :::;: g[(n + a)b.T] ~ (1- a)g(n~T) + ag[(n + l)b.T] (50) 



Setting T =: n!lT and using Equations (46) through (50), Equation (45) may be written 
as 

N
n 

{ 41TEj<Pj{n) = L Ejk (1 - ajk)wdn - mj,J + (1- ajk)wk(n - mj,J 
k=l 

+ ajkwdn - mjk - 1) + a;k wd n - mjk - 1)} 

+ BJk{ (1 - ajk)~k(n - mjk) + (1-- ajk)~dn -- mjk) 

+ ajk ~k(n - m;tk - 1) + O'jk ~dn - mJk 1)} 

+ BJk{ (1 - O'}k)Wk(n m)k) + (1 - ajk)Wk(n -- mJ-k) 

+ a)kWdn - mjk -- 1) + ajk {j,k(n - mjk - 1)} 

+ C>Jk{ (1 - ajk)<Pdn - mJk) + (1 -- aJk)<Pk(n -- mjk) 

+ aJk<Pk(n - m1k -- 1) + ajk<Pdn - mjk - 1)} 

A{ +' -t • + ejk (1 - aJk)<Pdn - mJk ) + (1 - ajk)<Pdn - mjk) 

+ aJk<Pdn - mJk -- 1) + aik<h(n - mjk - 1)} 

+ CJ-k{ (1 - aJk)iPdn - mjk) + (1 - ajk)ii>dn - mjk) 

+ .. + .. } + aJk<Pdn -- mJk -- 1) + aJk<Pk(n -- mjk - 1) 

+ DJk{ (1 ajk)<Pdn - m;k) + (1 -- aj:-k)<Pk(n - mjk) 

1 ' + ' } + aJk<Pdn -- mJk -- 1) + O'Jk<Pk(n -- mjk - 1) 

+ Djk { (1- ajk)iPk(n m)k) + (1 -- ajk)iPk(n - mjk ) 

-t .. + .. } + aJ-k<Pdn - mjk -- 1) + aJk<Pk(n - mjk - 1) 

where !IT has been dropped for notational simplicity (i,e" <P(nb.T) = <P(n) ) and 

eJk = (mjk + a7k)~T 

(51 ) 

(52) 

On the other hand, the time derivative of <P may be evaluated by finite-differenee as 

(53) 

where T± = To ± R~ and b.T is an arbitrary small time increment. 
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Note that if the time increment is sufficiently large, the integer delay-time index (for 
instance, mjk ) might be zero so that at the present time step an unknown would appear 
on the right hand side of Equation (51). The co-normalwash on the other hand is known 
(prescribed) at all times-including the current time step. 

In order to express ~dn) explicitly (in terms of ~k(n - m'JU ), re-define the integral 
coefficients so that 

B;: = (1 - aJk)(Bjk + EJk/!J..T + EJk / !J..T2) 
1_ _ - A V 2 

BJk = (1 - aJk)(BJk + BJd!J..T + BJd!J..T ) 

B}; = BJkO'lk - BJdI - 20'J\)/ fj,T - BJk {2 - 30'lk)/ !J..T2 

2 A V 2 
B]lc - BJkO'jk BJk(l - 2aik)/ fj,T - BJk {2 - 30'Jk)/!J..T 

"-1 v 

= -BJkO'Jk/!J..T + B Jk (l 

= -Bjkajk/!J..T + EJk (l 

3ulk ) / !J..T2 

2 3ajk ) /!J..T 

if mjk = 0 

if mjk f 0 

if mjk = 0 

if m"ik i= 0 

C 1., :::: {(1- aJk)[GJk + (eJk + DJk)/!J..T + (G'Jk + DJk )/!J..T2
] if mjk i= 0 

Jk 0 if mjk = 0 

Nn 

L AJk~k(n) - bJ(n) 
kc I 

(54) 

(55) 

(56) 



with 
A E Co-t - C o --

jk - "Jk 'jk /Jk 

C;t<I>k(n - rnlk - i + 1) + Cjic <I>k(n rnJk i + 1)} 

where Ejk is defined according to Eq. (15). 

(57) 

Thus, solving the algebraic system of equations (56) yields the solution <I>, at current 
time step n. Note that the right hand side of Equation (56) is completely determined since 
it includes only <I> at preceding time steps. 

4. PANEL INTEGRALS FOR THE SOURCE AND DOUBLET COEFFI­
CIENTS 

The supersonic unsteady Green's Function numeri('al formulation, Equation (45), Sec. 
:~, involves essentially two types of integrals. The source integrals (Equations (46a-c)) 
possess an integrable singularity on the Mach forecone, so they may be interpreted in a 
classical sense. The doublet integrals (Equations (47a-c)), which involve a derivative of the 
Green's Function and hence must be viewed in distribution sense in order to be properly 
in terpreted. 

With this in mind, we shall formulate the procedure for calculating the supersonic 
coefficients. This procedure is described in detail in Ref. 5. With the exception of the 
two additional integrals arising in the process of introducing the time-domain numerical 
formulation, (Equations 48a and b) the remaining integral calculating procedure is pre­
sented in Ref. 5. Therefore, for completeness, it is sufficient to give only a summary of 
this procedure here. 

As mentioned earlier, once the coefficients in Equations (45) through (48) are com­
puted, the potential at time t may be given in terms of the potential and co-normalwash 
at preceding times through the algebraic relation in Equation (56). Due to the complexity 
of these surface integrals, it is impossible to obtain closed-form analytical expression for 
them. As in Ref. 5, we shall follow the tactic of computing these double (surface) integrals, 
in ~ and rJ, analytically in the ~ direction and numerically in the rJ direction. 

4.1 Some Definite Integrals 

In what follows we shall allow the rJ integral to be evaluated numerically and will 
analytically compute the ~ integral. 

By using equation (29) of Section 3.2, we deduce that 

(58) 

We now make the approximation 

(59) 
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where 
(60) 

and 

(61 ) 

Making use of Equation (59) and recalling the relationship (27), the integrals (46) 
through (48) may be reduced to the consideration of the following ~-integrals: 

and 

t] 

am(rJ) = p.r. J ~m(f(,)3de 
] 

+l H 
(3m(rJ) = J ~m Rld~ 

-1 

+1 

'Ym(rJ) - J em H R'de 
-] 

(62) 

for m = 0,1,2 

The (3m (rJ), 'Ym (rJ) and K: m (rJ) are convergent integrals while the 'p.f.' in the am (rJ) 
and ~m (rJ) integrals indicate that these integrals must be interpreted in the sense of the 
Hadamard Finite Part in order to assume a finite value. 

4.2 Some Indefinite Integrals 

In this section we shall explicitly obtain the indefinite integrals 

(63) 

and 
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for m = 0,1,2 

which occur in the process of evaluating the first order supersonic source and doublet 
coefficients. 

For convenience we write 

(64) 

where 

a = al 00,1 

b = 2(Po + 'f)Pz) 0 a1 (65) 

c = (Po + 17Pz) 0 (Po + 'f)Pz) 

We also let 

(66) 

From standard integral tables we obtain 

--(4aE + 2b)/dR', for d t- 0 

-1/ R'(2aE + b), for d - 0 

notE, 'f)) - J ~~1 = 

a>O 

l ~C3/2 for d = 0 
(67) 

a=O 
c>O 

otherwise 

-(aR')-l - (b/2a) &0 for a t- 0 

dt-O 

2R'/bz + (2c/bZ)/R' for a = 0 

J~$ = 

dt-O 
&t{(,'f)) 

-(aR')-1 - (b/2a)&0 for a > 0 
(68) 

d-O 

ec-?,jZ /2 for a = 0 
b=O 
c>O 

0 otherwise 
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A third basic integral we shall need is 

lnl(2R'Ja + 2a~ + b)/Jal/Ja 

ln12R'Ja + 2a~ + bl/Ja 

2R'/b 

o 

for a > 0 
dfO 

for a < 0 

dfO 

for a> 0 
d=O 

for a 0 
dfO 

for a = 0 
d = O,e > 0 

for otherwise 

In terms of fi o , a] and (30 above we are able to express the integrals fi 2 , j"h, '10 

((30 - bal - eao) / a 

[(2/3)R'3 - 4eR' - 2e2 / R'] /b3 

A J ede Q2(e, 17) = R,3 = l <,c-3
/
2 /3 

. 0 

o 
20 

for a f 0 

for a = 0 

bfO 

for a = 0 
b = O,e > O. 

otherwise 

for a f 0 

for a = 0 
bfO 

for a = 0 
b = 0, c > 0 

otherwise 

for a f 0 
dfO 

for a = 0 
dfO 

for a = 0 
b = O,e> 0 

otherwise 

(69) 

(70) 

(71 ) 

(72) 



In terms of ~o, ~l and ~o we obtain ~l '~2 and ~2 

1 

[(2/3)R'3 - b~()J/20, 

[(2/5)R'5 - (2e/3)R':3J/b2 

~de, 1]) = J eR'de = l ~2yTc/2 
(e/20,)R' - (3b/40,)~1 - (e/20,)~() 

for a i- 0 

for 0,=0 
bi-0 

for 0,=0 
b = O,e > 0 

otherwise 

for a i- 0 

(2/5)(be + e)5/2 /b3 - (2e/b)~1 - (e 2 /b2)~o for a = 0 
bi-0 

&,((, n) = t·';.< = l:' /3yTc 

I 
(e - 5b/60,)R'3 /40, + (5b2 - 40,e)~()/160,2 

[(2/7)R'7 - (4/5)eR'5 + (2/3)e2 R'31/b3 

~2(e, 1]) = J e R'de = ' 

for a = 0 
b=O 
e>O 

otherwise 

for a i- 0 

for 0,=0 
bi-0 

for 0,=0 

(73) 

(74) 

l :'yTc/3 b = O,e > 0 
otherwise 

Next, consider the basic integral 

From standard tables we find 

log[(20,e + b -- .,f(i)/(20,e + b + Vd)]/Vd for a > 0 
d>O 

2tan 1 [(20,e + b)/~]/~ for a > 0 
d<O 

'&o(e,1]) = 
-2/(20,e + b) for a > 0 

d=O 

log Ibe + cl/b for a = 0 
bi-0 

Uc for a - 0 
b = 0, 
ei-O 

(75) 

(76) 



(log lae + bE + cl - b~o) /2a 

E!b - clog Ib€ + cl/b2 

e/2c 

for a"1 0 

for a = 0 
b"10 

for a = 0 

(77) 

b = O,e"1 0 

and 

Note also 

J 

(€ - b~l ~ c~o)/a 

A Cz /2b - e~l/b 
~2(C,11) = 

I e/3, 

Ko = J de = c 
K} = J cdc = e /2 

KZ = J ed€ =e/3 

for a"1 0 

for a = 0 
b"10 

for a = 0 
b=O 

(78) 

(79) 

In sections 4.3 and 4.4 we shall see how the indefinite integrals am, {3m 1m, ~m and Km 
given above are utilized in evaluating D:m(11),f3m(11), Im(11), .6.m(11) and K m(11) for m = 0,1 
and 2. 

4.3 EVALUATION OF THE INTEGRALS FOR FULL PANELS 

In the case of a full panel, i.c. one in which {( e, 11) I - r::; e ::; + 1, -1 ::; 11 ::; + I} lies 
entirely within the open Mach forecone = {RIX - X. <0 and R 0 R > O} the evaluation 
of the D:m , f3m and 1m follows easily. In this situation these integrals are convergent and 
the Hadamard Finite part is not needed. 

The indefinite integrals am, {3m, 1m,.6.m and Km given above are to be utilized in eval-
uating D:m(11),f3m(11), Im(11), ~m(11) and K m(11) for m = 0,1,2. 

D: m (11) = am(1,11) - am (-l,11) 

f3m(11) = {3m(1, 11) - {3m( -1,11) 

Im(11) = 1m(1,11) - 1m(-I,11) 

~m(11) = ~m(1,11) - ~m(-I,11) 
K m(11) = Km(1, 11) Km( -1,11) 

(80) 

for m = 0,1,2 

In this situation the D:m(11),f3m(11),l'm(11), ~m(11) and K m(11) are analytic functions of 
11 for -1 ::; 11 ::; + 1, and the numerical computation of the definite integrals involving 
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these functions and appearing in Section 4 may be carried out by a standard numerical 
integration such as Gaussian quadrature. 

4.4 Evaluation of the Integrals for Partial Panels 

In the situation where a panel lies partially within the Mach forecone the evaluation 
of (}:m(rt),{;m(rJ), Im(rJ), 6. m(rt) and K:m(rJ) takes a bit more doing. We note that integrals 
(lC rrn rn 0,1,2 are singular on the Mach cone = {RIX - x. ~ 0, R 0 R = O}. Thus, for ~* 
such that R( ~*' rl) lies on the Mach cone, we must evaluate &m (~*' rJ) in accordance with 
the Hadamard Finite Part. We obtain 

(81) 

On the contrary, the integrals ~m' im and Km, m = 0,1,2, are not singular at (~*' rJ) so in 
order to calculate the value of these integrals at that point it is enough to plug that point 
into the expressions for these integrals. There are a few provisos however. A problem 
will occur in calculating ~o( ~*' rJ) from expression (69) in the case a < 0 and d f:. 0, since 
R'(~*, rJ) o. However the identity 

(82) 

for a < 0, d ::f 0 together with the fact that 2a~* + b = ±d and d > 0 for ~* with R( ~*' rJ) 
on the Mach cone shows that 

for a < 0, d::f 0 

In addition, we show, in Appendix A, that 

f A (C ) _ { f(-=Ji)3T2 sgn (2a~* + b) P .. 0'2\,;*,'rJ - a o 
for a < 0, d = 0 
otherwise 

(83) 

(84) 

Since the expressions ~1' io, i1, ~2 and i2 are all given in terms of &0 \ &1, ~o and R', 
there is no difficulty in evaluating these functions at ~* with R( ~*' 'rJ) on the Mach cone 
via use of Equations (70)-(84) where applicable. 

We are now ready to investigate our int.egrals for a fixed 'rJ with -1 ~ 'rJ ~ 1. We 
look at the intersection of the interval -1 ~ ~ ~ +1 with the Mach forecone {Rill 0 R ~ 
0, X -- X* ~ o}. Four cases may occur: 
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(i) The intersection is empty. 

(ii) The intersection is a closed interval [ell eu] with el s ell" 
(See Figure 3.) 

(iii) The intersection is a single point ~o with I ~ol = 1 but R( eo, fJ) 0 (11 =I- O. 
(See Figure 4.) 

(iv) The intersection is a single point ~o with 

(a) -1 < ~o < 1 and R(~o, 71) 00'1 = 0 (See Figur<' 5a.) 

(b) I~ol = 1 and R(eo, 71) 061 = 0 (See Figure 5b.) 

A point (~o, 710) where X - X* < 0, R 0 R = 0 and R 0 Ci! = ° is called a criticalpoint 
if -1 ::; eo s 1, -1 ::; 710 ::; 1, i.e., (~o, 710) is a critical point in Case (iv) above. 

Case (i) 

In this case we define 

Case (ii) 

In this case we define 

O'm(fJ) = 0, f3m(71) = 0, ')'m(71) = ° 
A m (71) = ° and Km(fJ) := ° 

O'm(71) = am(~u, 71) - am(~l' 71) 

(3m(71) = ~m(~u, rl) - ~m(~l' 71) 
')'m(fJ) = 'Ym(~u, 71) - 'Ym(6, 71) 

Am(71) = .&m(~n' 71) - .&m(~l' fJ) 
K m(71) = K:m(~n' fJ) - K:m(~l' 71) 

(85) 

for m = 0,1,2 

(86) 

for m = 0,1,2 

where am, ~rrn 'Ym, .&m and K: m are given as in Section 5. We remark however that if 
either eu or ~l or both lie on the Mach cone the evaluation of the am, ~m' and .&m for 
such ~* must follow (81), (83) and (84) of this section where applicable. 

Case (iii) 

In this situation, we have a limiting situation where either ~l -+ + 1 or ~u -+ -1. The 
functions am(e, 71), ~m(e, 71) and 'Ym(e, 71) are continuous at such a point and thus we find 
that 

O'm(71) = ° 
(3m (71) = ° 
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and 

Im(7]) = 0 

,6.m(7]) = 0 

Case (iv) - {Eo, rIo) is a Critical Point 

(87) 

for m = 0,1,2 

Assume at first that -1 < rIo < + 1. Then the equatioIl R 0 R = aE2 + bE + c = 0 
possess,,~s a double root at Eo = -b/2a with -1 < Eo < 1, provided a < O. At this point, 
d = O. (Note: If a = 0:1 00:1 > 0, we cannot have a point on the Mach cone with R 0 0:1 = 0 
unless IRI = 0 identically.) Now in accordance with Eq. (A.19) of Appendix A, we find 
that in this case (a < 0, d = 0) 

7T 
130(170) = -r-;; 

v-a 

13d7]o) = *"Eo 

132(7]0) = FaE~ 

while Im(7]o) = 0 and Km(7]o) = 0 for m = 0,1,2. 

(88) 

The om(7]), m = 0,1,2 behave in a more complicated manner. These expressions may 
be given in the form 

for m = 0,1,2 

where: 

(89) 

and 
reg() 7T 

O 2 7]0 = - (-a)3/2 

and the special distributional contribution to 0 0,01, and 02 is given by o~ 8 (17 -170) where: 

form 0,1,2 

In the cases where -1 < 7]0 < 1 and I Eol = 1 the only change with the above is that 
the special contributions o~p, o~p, and (X~p are divided in half. 

Thus 

(91 ) 
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We have not yet considered the situation where 11701 = 1. Here if I~ol < 1 we set 

if 170R 0 a2 > 0 

if 170R 0 a2 < 0 
(92) 

form=O,1,2 

and if both 11701 = 1 and I~ol = 1 we set 
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APPENDIX A-CRITICAL POINT AND SPECIAL SINGULARITY 

In this appendix we shall study singular integrals of the form 

(A.I) 

where 8 ( C TJ) is a polynomial in e of degree :S 1. 

We focus on the situation where a == 0,1 0 0,1 < 0 in the neighborhood of a point 
(eo,TJo),-l < eo < +1,-1 < TJo < +1 where 11 0 R = 0, R 00,1 = 0 and X-X. < O. 

We shall find that this integral (A.1) exists only in distribution sense as a function of 
TJ and in fact takes the 'value' 

(A.2) 

Proof: We study in detail the prototype situation of Fig. 6 where R 00,2 > 0 at (eo, 170) 

and the Mach cone intersects 17 = + 1 at two e values both with lei < 1. The situation 
with R 0 ([2 < 0 at (~o, TJo) with the cone inverted may be handled by analogy. 

We note that for TJ1 < TJo the cone does not interact the line TJ - 171 so that clearly for such 
171, Fs(17d=O. 

Further for 171 > 170 the integral (A.I) has a 3/2-order singularity at two distinct e 
values on the line 17 = TJ1' By definition of the Hadamard Finite Part it follows that 
Fs (TJ1) == 0 here again. 

In order to demonstrate (A.2) we therefore need only show that 

(A.3) 

In fact if we denote by 

.I (AA) 
YJo allowable ~ 

for TJ > TJo 

it is clear from previous remarks about Fs (17) that 

1: Ws (17) will be independent of 17 for TJ > 170' and that 

2: 
+1 

Ws ( + 1) :=: .I Fs (rJ) dTJ 
1 
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so that it suffices for us to prove that for any 17 > 170 

Interchanging order of integration in (A.4) we find that for any 171 > 170 

y/] 

Ws (17d = p.f. ! ! ~-~f317L d17 d~ 
allowable e '10 

We now denote by V (~, 171) the integral 

V(~,17d = P.f.] S~:317) d17 
'10 

We have previously seen that 

RoR> 0 

X - X* < 0 

is independent of 17 for 17 > 170. 

Let us now evaluate the integral (A.7) explicitly. 

We note that for any fixed 17 > 170 we may write 

If we now write 
U(e,17) 

V ( ~, 17) = Tn:=-~~)~( E,=-E,~)F72 
we find that 

WS = W s(17) = h:u 

[(E,u ~JJ~f(f)-~t)f172 

(A.5) 

(A.6) 

(A.7) 

for 171 > 170 

(A.8) 

Next making the change of variable ~ = (E,u - E,l)p/2 + (E,u + E,t) /2 in (A.8) we obtain 

(A.9) 
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From (A.7) we have seen that for 1] > 1]0 the integral (A.9) is independent of 1]. Now 
letting 1] 11]0 we of course have ~u (1]) 1 eo and ed 1]) i eo and then obtain that 

1 

Ws = U( eo, 1]0) j (1 _ ~2)1 = nU( eo, 1]0) 
-1 

Next we compute U(~o, 1]0) in terms of 8(~0, 1]0)' 

We note that 
R'V(e,1]) 
-----Tii~T-- = U ( e, 1] ) 

(A.lO) 

so setting e = ~o and using L'Hbpital's Rule as 1] 1 1]0 we obtain after simplification 

U( eo, 1]0) -- lim 
f/'f/o 

and then from (A.lO) we have 

S'(€o,1]o) 
lall(R 0 li2) 

(A.l1) 

Now in the situation as pictured in Fig. 6 R 0 li2 > O. In the situation where the Mach 
cone is inverted, R 0 li2 < 0 at (eo, 1]0), (see Fig. 7) but 1]2 < 1]0 in (A.6) causing a double 
sign reversal so that we obtain in either case 

f j
8(€,1])dC= 

p. . R,3 I, (A.I2) 

To complete our proof we note from Appendix B that at a point (eo' rIo) with R oR = 0 
and R 0 lil = 0 we have that 

(A.I3) 

so that finally from (A.I2) 

F()= .f. j~Je,1])dt= __ 8(eo,1]0) -\ n{;( - ) 
s 1] P R,3 I, IR - - I <_< 1] 1]0 - .al xa2 ,-,0 

'1='10 

(A.14) 

which completes the proof of (A.2). 

We: are now prepared to relate the foregoing to the evaluation of the O'm (1]) for m = 
0,1,2 at a critical point (eo, 1]0)' For simplicity we assume -1 < Eo < 1 and -1 < 1]0 < 1 
in our discussion. 

We: recall that the O'm (1]) are defined as' 

for m 0,1,2 
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In the cases m = 0 or m = 1, €m will of course be a polynomial of degree ~ 1 so that 
from item (A.2) we can immediately say that with 8(~0, 'flo) - ~iJl 

for m = 0 or 1 

In the notation of Section 7 we set o:~g (170) = 0 and 

for m = 0 or 1 (A.I5) 

In the case m = 2 we are dealing with 

This integral contains both a regular and a singular component. To isolate them let us 
note that if R' = (a€2 + b€ + c)1/2 then €2 = R,2 / a + S( €, 'fl) where S(~, 'fl) is a polynomial 
in ~ of degree ~ 1. Note that ~~ = S(~o, 170)' 

Thus we may write 

(A.16) 

Now the second integral on the right of (A.16) will equal 

by (A.2) but since ~~ = S(~o, 'flo) this integral must equal 

(A.17) 

and we set 

as we have stated in Eq. (83). 

To proceed we must have 
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But. t.his int.egral equals 

in our not.at.ion of Sect.ion 7. 

To show 

it. suffices t.o show t.hat. 
7f 

(3o(rJo) = ---
~ 

We proceed wit.h t.he latter. In fact. we comput.e (3m(rJ) for m = 0,1,2 at. once. Suppose 
t.he Mach cone cuts our panel as in Fig. 6 and we consider rJ > rJo. Then wit.h t.he not.at.ion 

R' = -J=-a ~-=-e)(Z--=6) we see that 

(A.18) 

for m = 0,1,2 

The change of variable e = (eu + el)/2 + (eu el)p/2 transforms A.IS into 

(3m('fI) = _1_ ]11(eu + efJ/2 + (eu - ee)p/2]m dp for m = 0,1,2 

~ --1 )1- p2 

Now letting rJ 1 rJo we have t.hat eu 1 eo and ee i eo so that in the limit 
+1 

(3m(rJo) = J~-;;,.f r!~p; =% 
-1 V J 

An almost identical argument shows that. 

~u 

Im(rJ) = ~ J em)(iu - ~)(e ee) de 
/;( 

t.ransforms into 
+1 

(A.19) 

for m = 0,1,2 

for m = 0,1,2 

Im(rJ) := ~ .f [(eu + ee)/2 + (eu - e,Jp/2]m [(eu - ed/2]2 /1 - p2 dp 
- 1 

for rn = 0,1,2 

so that. as rJ 1 rIo, eu 1 eo, ef i eo we obt.ain 

Im(rJo) = ° for m = 0,1,2 (A.20) 

Finally, consideration of .:lm(rJ) at a critical point. yields, in a similar way 

.:lm(rJo) = ° for m = 0,1,2 (A.21) 
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APPENDIX B.-A LEMMA CONCERNING SUPERDOT PRODUCT 

In this brief appendix we prove an elementary lemma concerning the superdot product. 
This lemma comes into play in proving formula (A.2) of Appendix A. 

LEMMA: Let a, band c be three vectors in R3. Assume that (i) a 0 a = O. (ii) a 0 b = 0 
and (iii) bob ~ O. Then 

(B.l) 

We refer the reader to Ref. 3 for definition and properties of the superdot product. 

PROOF: Without loss of generality we may assume coordinates have been rotated so that 
az = O. We may assume lal =F- O. 

Then a takes the form 

Let us write 
b = bxz + by}' + b)~ 

then 0 = axbx - ayby from (ii) or equivalently 

We now proceed by cases. 

Case 1: Ifax - ay =F- 0 then from (B.2) it follows that bx = by. Then 

a .j) x c = Det (~: ~~ ~ ) 
Cx c y Cz 

- ax(bycz bzc y) ay(bxcz - bzcx) 

= (axc x - aycy)bz 

Thus 0; • b x c = (a 0 c}bz and 10;· b x <:1 = Iii 0 elj -b 0 b in this case. 

Case 2: Here ax - -ay =F- O. 

It follows from (B.2) that bx = -by 

Then again 
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and so 

= ax (byc z - bzcy) - ay(bxcz - bzcx) 

= (axc x - ayc y) - bz 

= (a 0 c)( -bz ) 

10:' b x cl = 10: 0 elY! -b 0 b once again. 

APPENDIX C-DERIVATION OF' THE SUPERSONIC 
OSCILLATORY P.D.E. 

We begin with the linearized potential flow equation: 

(C.l) 

Passing to Prandtl-Glauert coordinates after the introduction of scaled variables as 
indicated in equation (3) we proceed as follows: 

82~ 82~ 82~ 

(32 8((31X)2 + alTvr + 8(lzfz 

1 82~ 2M 82~ 
_ __ 00 .. -=-:-::-:--~ - 0 
a~ 8(IT / aoo (3)2 aoo 8(lT / aoo (3)8((31X) -

which results after simplification in 

8X2 8Y2 (C.2) 

Then equation (C.2) can be written as 

282 <I> lJ2 <I> \7 0 \7 <I> + {; . __ .. -..... + 2M .- ... _.. = 0 
8T2 00 lJXaT (C.3) 

which is Eq. (4) of the text. 

33 



+-

L' i 

z 

x 

Fig. 1 Geometry of the hyperboloidal element 

Fig. 2 Surface geometry 
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Fig. 3 Illustration of case (ii) 

Fig. 4 Illustration of case (iii) 
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Fig. 7 Case of critical point, with R 0 iiz < 0 
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