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1. SUMMARY

Compressor stall phenomena are analyzed from a nonlinear control

theory viewpoint, based on bifurcation-catastrophe techniques. This new

approach appears promising and offers insight into such well known

compressor instability problems as surge and rotating stall; furthermore it

suggests strategies for recovery from stall. More specifically, three

interlocking dynamic nonlinear state space models are developed. The

models, which are based on Wenzel, Bruton (1982), represent compressor

operation under normal unstailed conditions (US), and stalled compressor

operation under normal and reverse flow conditions (PS and RS,

respectively). It is shown that the problem of rotating stall can be

viewed as an induced bifurcation of the solution of the (US) model. Both

equilibrium and bifurcation loci are generated in the state-parameter

space, based on parameter continuation techniques combined with

catastrophe/singularity theory. Hysteresis effects are shown to exist in

the stall/recovery process. Surge cycles (of about 50 cycles/sec) are

observed for some critical parameter values. It is shown that the oscilla-

tory behavior is due to development of limit cycles, generated by Hopf

bifurcation of solutions. More specifically it is observed that at certain

critical values of parameters a family of stable limit cycles with growing

and then diminishing amplitudes is generated, then giving rise to an

unstable family of limit cycles. This unstable family in turn bifurcates

into other unstable families (as indicated in the diagrams). The quan-

titative approach adopted for generation and continuation of limit cycles

employs a number of notions from topology, differential calculus, and

singularity theory. (Unstable limit cycles can not be detected by simula-

tion techniques, though their presence vastly influences the system

dynamics.) To further illustrate the usefulness of the methodology some

partial computation of domains of attraction of (US) and (PS) equilibria is

carried out, though this objective is clearly beyond the scope of this

investigation. This provides a global picture, suitable to address the

non-steady state 'off-design1 instability conditions which are present

before the onset of stall.

The domains of attraction of equilibria help define the 'position' of

system trajectories in a global sense, and in this way provide a natural

- 2 -



Scientific Systems

classification of trajectories with respect to their stall/recovery charac-

teristics. Three types of trajectories are defined according to the 'se-

verity' of their stall/recovery action: 1st stage recoverable, 2nd stage

recoverable, and 3rd stage recoverable. Finally, it is argued that the use

of corrected flow (e.g. a scalar output variable), as the sole indicator of

stall behavior may lead to incorrect conclusions with respect to recovera-

bility of trajectories. In particular it is argued that neither the

corrected flow rate nor the turbine area (or any other single scalar

variable) can provide an unambiguous measure of stability. The use of the

domain of attraction of some normal operating point(s) is proposed as a

useful mechanism for stall detection, and recovery. By varying the parame-

ters over their feasible range, the size and shape of the domains of

attraction change, leading to the determination of those trajectories which

may be recovered by appropriate control actions. Furthermore this approach

provides a natural framework for carrying out parameter sensitivity analy-

sis yielding the impact of various parameter changes on recovery from

stall. Some sample sensitivity computations are also offered.
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2. INTRODUCTION

Stability of aircraft engines over their operating envelopes is a pri-

mary design consideration. The degree of stability varies due to a number

of factors such as engine operating condition, inlet flow conditions, age,

and control tolerance and is generally a trade-off with performance; that

is, for a given engine, increases in performance are attained at the

expense of reduced stability margin. As a result, gas turbine engines have

experienced stalls or surges throughout their history as aircraft

power plants.

The stall problem has been receiving increasing attention in recent

years. It was the subject of a recent NASA Lewis Workshop (1983). The

major aircraft engine manufacturers such as GE and Pratt & Whitney are

developing complex simulation models, whereas research at universities

(MIT, Cornell) is aimed at developing a more basic understanding of the

problem.

Most stalls result in momentary disturbances to engine operation and

recover without any active intervention. Some stalls are of more serious

nature and require engine shutdown to restore normal engine operation.

Such stalls are typically characterized by low engine speed and high tur-

bine temperatures together with low thrust; these stalls are referred to as

nonrecoverable, stagnation, or hung stalls. Prolonged operation in nonre-

coverable state can result in turbine damage due to over-temperature; in

this state the engine is not responsive to scheduled inputs. Indeed, as

expressed in Stetson (1983), "one of the most critical functional problems

that a high technology turbine engine encounters is nonrecoverable stall."

In recent years, the incidence rate of nonrecoverable stall has

increased by a great deal. This is mainly due to the increased use of

augmented, mixed-flow, turbofan engines in modern aircraft due to their

wide performance range, compact size, and flexibility. In these aircraft

the engine is a highly interactive system. This interaction between com-

ponents can directly affect the stall/surge characteristics through compli-

cated feedback paths (Patterson (1983)).
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In Che following paragraphs we discuss the above issues in some more

detail.

Typically, multimission aircraft experience a wide range of Mach num-

bers, Reynolds- numbers, angles of attack., side slip angles and dynamic

motions in longitudinal and lateral planes. However, aircraft, including

the propulsion system, have historically been designed for steady con-

ditions with minimum attention to the effect of distorted flow. Actual

operation of the aircraft is in an environment which is unsteady, and in

which the propulsion system experiences distorted flows.

The propulsion system, consisting of the gas turbine engine, is par-

ticularly sensitive to these "off design" operating conditions. In parti-

cular, it is the compressor which has a narrow operating range. If one

exceeds the limits of the operating range, the compressor operation becomes

unstable. Such instabilities may affect the flow in the entire engine.

The corabustor or afterburner may discontinue burning, resulting in loss of

thrust for the aircraft.

The result of many of these instabilities is only a temporary disrup-

tion (less than a second, say) of the unstalled operation of the engine.

In some cases, however, the consequence of the initial instability is a

situation in which the engine will not recover to unstalled operation and

will have to be shut down and restarted in flight, and this has an obvious

implication for the effectiveness of the aircraft.

If such a non-recoverable stall occurs the sequence of events is that

the turbine inlet temperature will rise and the engine speed will fall.

The rate at which the former occurs is determined from the interactions of

the fuel control and the compression, burner and turbine system. The drop

in speed arises due to the mismatch of turbine and compressor work, because

of the very low compressor efficiencies in this regime. The danger from

non-recoverable stall is that the corabustor exit temperature (turbine inlet

temperature) will exceed the allowable limits for the turbine and/or that

the rotor speed will fall below the level that the gas turbine power cycle

is self-sustaining. If so, it is generally necessary to shut the engine

down and cool it before restarting.
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As seated this problem has received a great deal of attention in

recent years, and there has been much work on the topic, at levels ranging

from examination of the detailed fluid mechanics of unsteady boundary

layers on compressor blades to analysis and experiments which attempted to

consider a description of the overall system. These latter results have

proved to be of significant help in understanding the overall phenomenon.

A basic analysis of this type was presented in Greitzer (1976) in

which the nonlinear behavior of a model compression system was examined.

Experiments were also carried out to validate system modeling. Since that

study, system models have also been carried out by many other investiga-

tors.

At NASA Lewis, Wenzel and Bruton (1982) have developed a lumped para-

meter simulation model of the TF34 engine to study the nonrecoverable stall

phenomenon. This study, in fact, forms the basis of the models presented

in this report. Other relevant NASA reports include: Szuch and Seldner

(1975), Szuch, Seldner and Cwynar (1977), Szuch (1978); and Seldner,

Mihaloew and Blaha (1972). A major theoretical contributor is Frank Moore

(1983). Another contribution to the subject is the classic work of Emmons

et al. (1955), which appears to have laid the foundation for much of the

current research in the compressor stall area.

Though, as the bibliography indicates, there has been considerable

interest in the subject of stall, the phenomenon is still not well

understood, especially with regard to the system behavior subsequent to the

onset of instability, i.e., the post stall response of the system. This is

true not only as far as tests and/or experiments are concerned, but also as

far as modeling and analytical understanding are concerned. This is in

part due to the fact that .the post-stall transients involve very compli-

cated nonlinear interactions and feedback mechanisms — a heavily mathema-

tical subject. In particular, up until the present there has not been an

attempt to bring to bear on this problem some of the modern mathematical

techniques employed in nonlinear control theory. This report presents such

an analysis.
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This work addresses the application of bifurcation-catastrophe theory

to the problem of nonlinear compression system stability. It is thus an

attack on the problem from a different viewpoint than existing work in this

area. Hence it provides a complementary perspective for analyzing the

strongly nonlinear dynamics of compression systems.

The report is organized as follows. Chapter 3 presents some

background information on bifurcation theory used in subsequent chapters.

Chapter 4 presents three state space models of compressor dynamics: one

for the unstalled compressor, and two for the stalled compressor —

corresponding to normal flow and reverse flow conditions. (Appendices B,

C, and D present a derivation of the models based on the modified

Wenzel-Bruton (1982) results.) In Chapter 5, generation of equilibrium

surfaces is discussed. Chapter 6 is devoted to the analysis of

bifurcation-catastrophe points of the models; Hopf bifurcation points are

discussed. Issues regarding stall recovery are discussed in Chapter 7;

three types of trajectories corresponding to their stall/recovery behavior

are defined. Finally, Chapter 8 contains some concluding remarks.
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3. PERTINENT BACKGROUND IN BIFURCATION TECHNIQUES'-

3.1 Introduction

While linear control theory is well developed by now, the same asser-

tion cannot be made about the nonlinear theory. The problem is even more

frustrating if one is interested in obtaining computable results in par-

ticular. This is due to the fact that nonlinear theory tends to be more

qualitative.

One of the most exciting developments in the field of nonlinear stabi-

lity theory has been that of bifurcation theory — pioneered by the work of

Poincare, and later refined by Andronov (1937, 1966), Hopf (1942), and

others. The importance of this theory is in its practical applicability.

For example, in elastic stability, bifurcation is called buckling, and in

hydrodynamic stability bifurcating solutions are referred to as tran-

sitions. It has numerous applications in many other physical systems.

Another important feature of the theory is in its ability to provide a

global picture. That is, it gives information about all of the "turning

points" of the solutions. This is in contrast to linearization procedures,

in which only local stability is characterized. In fact, in a certain

sense, bifurcation theory takes over when linearization fails.

3.2 Hyperbolic Fixed Points and Linearization

We shall use the above remarks to motivate our discussion. Consider

the nonlinear differential equation

(3.1)

chapter is based on SSI's Progress Report (Jan. 1 - May 1, 1984) to
NASA Lewis.
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in which x -: X C Rn

u -- U C Rm .

We shall refer to x as the state vector and u as the control vector (or

sometimes as the parameter). For the purposes of illustration let u = 0,

i.e., consider the system

|| = f(x), x e X C Rn (3.1)'

Assume that the point XQ£ Rn is a stationary point of f in (3.1)':

0 = f(x0) (3.2)

and let the Jacobian matrix of partial derivates of f at xg be denoted as

Vf(x0).

Consider the linear system

ff = Vf(x0)z (3.3)

where

z = x0 + e,/ e

The major question to be addressed~Ts~~~what we can say about the solu-

tions of (3.1)' based on our knowledge of (3.3)? This question is of

interest since the solutions of (3.3) are given by:

z(t) = e z(0) (3.5)

To relate (3.5) and solutions of (3.1)' let 4>t(x) denote the flow generated

by f, i.e., a smooth function defined for all x e X and t e (a,b) C R such

that

(3.6)
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for all x -: X and t £ (a,b). We now state a fundamental result in nonli-

near system theory which provides the answer.

Result I (Hartraan (1964))

Provided that 7f(xg) has no purely imaginary or zero eigenvalues, there

is a continuous mapping with a continuous inverse (i.e., a homeoraorphisra),

say, g, defined on some neighborhood of XQ in Rn locally taking trajec-

tories of the nonlinear flow <J>t of (3.1)' to those of the linear flow

e 0 . The homeomorphism preserves the direction of the trajectories.

We will not provide the proof of this result here. The interpretation

is that roughly speaking, as long as the linearized system has no purely

imaginary or zero eigenvalues, it provides a good local picture of the

nonlinear system. (It is possible to strengthen this result in the sense

that the linear and nonlinear system solutions may be related via a dif-

feomorphism. But this requires certain "resonance" conditions among the

eigenvalues. We shall not discuss the matter here.) The important point

for our purposes is that when Vf(Xg) has no eigenvalues with zero real

parts it is acceptable to linearize. A stationary point XQ at which Vf(xg)

has the above property is known as being hyperbolic. (But of course bifur-

cating solutions occur precisely when this condition is not met!) The

following result will further characterize hyperbolic fixed points (or sta-

tionary points). But first we need the following definitions. Define the

local stable and unstable manifolds of XQ,

MS(XQ) = (x e X such that <t>t(x) ->• XQ is t ->• <*>
and 4>t(x) e X for all t > 0}

MU(XQ) = (x e X such that <j>t(x) ->• XQ as t > -»
and $t(x) e X for all t < 0}

Let Es. and Eu denote the eigenspaces associated with stable and

unstable eigenvalues. They are respectively said to be stable and unstable

eigenspaces.

- 10 -
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Result 2 (Hyperbolic Fixed Points)

Let XQ be a hyperbolic fixed point of (3.1)'. Then there exist local

stable and unstable manifolds MS(XQ), MU(XO), which are, respectively, of

the same dimensions dg and du as those of the eigenspaces E
s and Eu of the

linear system (3.3). Furthermore, the manifolds MS(XQ) and M^XQ) are

tangent to the eigenspaces Es and Eu, respectively. The manifolds are as

smooth as the function f.

Figure 3.1 Manifolds M3, and M"; Eigenspaces E3 and Eu.

3.3 Center Manifolds

As mentioned previously, in bifurcation problems we are specifically

interested in equilibria at which we have purely Imaginary -eigenvalues. On

the complex plane these eigenvalues are located on the imaginary axis and

separate the stable eigenvalues (e.g., those with negative real parts) from

the unstable ones, (e.g., those with positive parts). Hence they are

located in the "center". Thus in the linear analysis attention is focused

on this center subspace associated with the purely Imaginary eigenvalues.

In nonlinear problems we are interested in center manifolds. The other two

-11-
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manifolds are referred to as stable and unstable manifolds. By focusing on

this manifold we will in fact reduce the dimension of the problem in a

systematic manner.

The center manifold concept isolates the complicated asymptotic beha-

vior by pinning down an invariant manifold tangent to the subspace spanned

by the generalized eigenspace of eigenvalues on the imaginary axis. But

one problem here is that center manifolds are in general not unique. This

is in contrast to the stable manifolds.

The above discussion is made more precise in the following statement.

Result 3 (Center Manifolds)

Let f be k times dif ferentiable (denoted by Ck) with f(0) = 0. (This

may be accomplished by a shift of origin.) Thus the Jacobian in (3.3)

becomes the square matrix 7f(0). Split the spectrum of Vf(o) into os, oc,

0U such that

Re X > 0 if X e au

Re X = 0 if X £ ac .

Re X < 0 if X e as

with Es, Eu, and Ec denoting the respective eigenspaces of os, 0U, and ac.

Then there exist Ck stable and unstable invariant manifolds Ms and M"

tangent to Es and Eu at zero. Also there exists a Ck-1 center manifold Mc

tangent to Ec at zero. Both the stable and the unstable manifolds are uni-

que. But in general Mc may not be unique.

The following example, due to Kelley (1967) illustrates this point.

Consider the differential equation

(3.7)
x2 = -x2

It is easily verified that the solutions to this system are

- 12 -
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xl(t) = 1 - tc'

x2(t) = c2 e't

Eliminating t yields

"
cl xiL e "•

Figure 3.2 Center Manifold Is Not Unique

It is clear that for x > 0 the only solution approaching the origin is

x = 0. But for x < 0, any solution with zero slope at the origin is accep-

table. For example, the entire x^ axis is one such solution, and in fact

the only analytic one. This is illustrated in Figure 3.2. (Note that a

center manifold is an invariant manifold tangent to the center eigenspace.

Hence this tangency condition at zero can be satisfied by many center mani-

folds: take any solution curve with xj<0 pieced together with the positive

half of the xj axis; the resulting curve will be a center manifold.)

- 13 -
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_u

Figure 3.3 Stable, Unstable, and Center Manifolds

3.4 Hopf Bifurcations

The simple equilibria that we have discussed so far are examples of

point equilibria. It is possible, for example, to have situations in which

the state of a system hovers around in the state space without ever

reaching any stationary point. One such situation arises in the following

example.

2

a -

02 +

xl

X2

(3.8)

The solutions to (3.8) are of the form

- 14 -
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x2(t)

Ctl t= e i

cos 0.2 t -sin (12 t

sin c*2 t cos 02 t

= Scic

X!(0)

x2(0)

ntificSystems

(3.9)

For 04 > o the trajectories spiral away from the origin; for a^ < 0 the

opposite occurs. Bur for 04 = 0 the solutions become periodic — never

expanding or contracting. The Hopf theory is a body of results which

generalize this observation. Note that the eigenvalues of the matrix

04 -a2

are 04 ± ja2 and become purely imaginary for 04 = 0

Let's slightly generalize the form of (3.8):

(doq

x2 = (02 + cox + b(x| + x2)Xl + (dxi -I- a(x| + x|))x2

or expressing (3.10) in polar coordinates

r = (dcq

+ b r2)

(3.10)

(3.11)

where

-15-
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r = /x2 + x?.

9 = tan'1 —
X2

In equation (3.11) the radius r is independent of 9 and therefore r=0

in (3.11) yields the steady state trajectories — which are circles of

constant r.

In a fundamental sense, equation (3.11) captures the essence of the

Hopf bifurcation in that the addition of higher order terms will not make

a qualitative difference in the behavior of solutions near the origin:

Result 4 (Hopf Bifurcation)

Consider the nonlinear control system (3.1), and assume that it has a

steady state solution XQ corresponding to p = UQ with the property (PI):

vx f(xO»yo) nas a simple pair of purely imaginary eigenvalues and no other

eigenvalues with zero real parts.

Then there is a smooth curve of equilibria (X(U),UQ) such that

X(UQ) = XQ • The imaginary eigenvalue pairs X(y) and X(u) vary smoothly

with u. Furthermore, if

^<Re X(u)) = d t 0 (3.12)

Then there is a. three dimensional center manifold which passes through

(XQ.UO) in the product space RnxR. Furthermore, when (3.12) is satisfied,

there is a-smooth coordinate system in which the Taylor series expansion of

degree 3 on the center manifold is given by (3.10) (with the new notation

U replacing 04). in addition, if a .* 0, there is a surface of periodic

solutions in the center manifold tangent to the eigenspace of X(pQ) (and

- 16 -
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X(Ug)) which agrees to the second order with the paraboloid \i = r^.
d

For a < 0, these periodic solutions are stable limit cycles — while for

a > 0 the limit cycles are diverging. The proof of this well known result

can be found in any standard text on nonlinear dynamic systems (c.f.

Marsden and McCracken (1976)).

We will see in Section 6.3 that, for some critical parameter values,

the unstalled compressor exhibits surge cycles corresponding to Hopf bifur-

cation points; also in that section a more quantitative discussion of Hopf
rA«^H

solution points will be carried out. Mudr of the stationary operating

points of the compressor models will turn out to be of the Hyperbolic

Stable or Unstable type (e.g. Section 5.5)

- 17 -
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4. THREE INTERLOCKING MODELS

4.1 Introduction

In this chapter three separate state space models of a compressor rig

are developed. One corresponds to the compressor operation under normal

unstalled conditions (US); the other two are developed for the stalled

compressor - corresponding to the normal (positive) flow and reverse flow

conditions ((PS) and (RS), respectively). The reverse flow and normal flow

stall conditions are modeled separately to account for the different (e.g.,

opposite) heat and mass flow conditions in the compressor. Wenzel and

Bruton (1982) describe these conditions and provide explanations for the

approach; their work forms the basis of the models presented here.

The (simplified) Wenzel-Bruton model reported in Appendix A is used

exclusively in our development of the state space models. The reader is

assumed to be familiar with the related fluid mechanic terminology and

vocabulary as described in Wenzel and Bruton (1982) or similar treatments.

Refering to Appendix A (and Wenzel and Bruton (1982) for definitions) we

begin with defining the state vector x as

W2
(WT)2
d>2
W3
(WT)3

(4.1)

our objective is to derive from the relations of Appendix A, three state,

space formulations of the form

dx
^T = fi(x(t)f 8(t), u(t))dt (4.2)

1, 2, 3,

in which x, 9, and u represent the state vector, the parameter vector, and

the control vector, respectively. In addition a set of output relations of

the form

- 18 -
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. 9> ") (4.3)

i = I, 2, 3,

are also obtained.

A typical element of the control vector may be the area A determining

the flow rate downstream of the compressor. A typical parameter would be

the fractional corrected speed PN, or some design parameter such as in-

stall compressor performance at positive (or negative) flow KP (or KN).

The elements of the state vector are defined in (4.1). The first two ele-

ments denote the mass and (thermal) energy stored upstream of the
*

Compressor; u)£ represents the mass flow rate through the compressor; and

the last two elements are the downstream mass and energy variables.

4.2 State Space Relations for Positive Flow Stalled Dynamics (PS)

Keeping in mind the definition of the state x as described by Equation

4.1, Appendix B shows how the integral relations of Appendix A can be used

to derive a state space model of the stalled compressor rig in normal

(positive) flow condition. They are summarized below.

Summary of State Space Systems for Positive Flow Stalled Dynamics (PS)

Y TI - TI X2 " xz (PS2)

x

S3 81 KP + g2(PN) x2 ~- x5 (PS3)

(PS4)

-19-
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0.925 KP
X2X3 . ,

X.5 = Y—ll +

519

0.286

0.33 PN2 - 1

X3

/siT

YAR X5

where g's are defined in Appendixes B, C, D,

4.3 State Space Relations for Unstalled Dynamics (US)

Recalling from Appendix A that

'; PN) = P2

=7-i, PN) -•=r
L

62 T2

(PS5)

(4.4)

(4.5)

we now summarize the state space model derived in Appendix C for the

unstalled compressor.

Summary of State Space Systems for Unstalled Dynamics (US)

*2" £K-o R0V2
x2

x3 =-

X4

x5 = Y

1^ ' Fl

_ M

X3X2
xl

X1X2

- x3 x2/x

. PN)- ̂ 7

AR

'X1X2
X4

(Ul)

(U2)

(U3)

(U4)

(U5)
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where

14.7 V2

and corrected flow

4.4 State Space Relations for Reverse Flow Stalled Dynamics (RS)

The major distinction between the (PS) case and the present one is that

in the latter the flow through the compressor reverses — thus, roughly

speaking, the exit and inlet conditions are switched. In this case the

compressor flow is corrected by downstream conditions. However, the

correction to compressor speed is not switched, to preserve continuity at

zero flow. The detailed derivation of the relations are given in Appendix

D. Here we summarize the relations.

Summary of Reverse Flow Stalled Dynamics (RS)

(RS1)

X5

X4 = X3 ~ 7T~ ̂ ^4x5 (RS4)V3

-21 -
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i i ,ot.-x*5 = Y 1*3 — - — x5 — | (RS3)

where

corrected flow hr

(Other g's are defined in Appendix D.)

4.5 Typical Output Relations

The dynamic relations (US), (PS), and (RS) describe the compressor in

unstalled and stalled conditions. The state vector x in each case comple-

tely summarizes the past history of the variables and can be used to

generate future conditions under alternative input scenarios. In general,

the state variables are not all measurable — they represent "internal"

variables of the system. More often some other related variables, typi-

cally represented by a combination of the state variables, are measurable

or physically significant. They may be labled as output variables. The

output variables y^ may be written in the general form

yt(t) = gi(x(t), 6(t), u(t))

where i varies over the set of output relations of the models (US), (PS),

and (RS).

In the context of our work, typical output variables are the various

pressures and temperatures — both in absolute and relative terms. Another

important variable that is interpretable as an output variable is the
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corrected flow —; . This variable plays a crucial role in our analy-
62

sis, as will later be described. Here we cite some typical output rela-

tions (derived in Appendices B, C, and D).

X2 (4.6)

X2
~ (4.7)

P 3 =x 5 (4.8)

(4.9)

X1
hi: - g = gA —-— (US,PS) (4.10)

2

— = 86 7^~ (RS> (4.1D
2 /x4x5

P3
-- = F^hl.PN) (US) (4.12)

*
T3
— = F2(hl,PN) (US) (4.13)

(PS) (4.14)
xl X2
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Pi (Slx3) T
-=- = 1.194 H- 0.925 KP + 0.33 PN2 (PS) (4 .15)

(g X 3 )2 0.286
* 1.19 + 0.925 KP + 0.33 PN2 - 1

2l = ]_ + 519
T2 ~

/519 XJX2

(PS) (4.16)

87 X3
= (RS)
X4X5

O

-^- = 1.19411 + 0.2556 PN2 + 0.7746 KN
P2

(RS) .(4.18)

o (87X3)2 0.286
1.19(1 + 0.2556 PN2 + 0.7746 KN ̂ r^ - )
- V5

S7 X1
n0 + F4(PN,n0) —

PN

(RS) (4.19)

Despite the seemingly complicated appearance of the above functions, it is

clear that they are all of the basic (static) output form mentioned

earlier.
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4.6 Linking the Models

Having presented the three state space systems (US), (PS), and (RS), we

now describe how they are linked.

The criterion used for switching the models is the magnitude and direc-

tion of the corrected flow through the compressor. For a given corrected

speed PN, if the corrected flow falls below a certain positive threshhold

value tg(PN), the compressor is assumed to enter into stall (PS). At a

given speed PN, the requirement for recovery is for the corrected flow to

exceed a certain threshhold tr(PN). At the time the flow reverses through

the compressor, the (RS) dynamics are switched on; upon reentry into posi-

tive flow region, the (PS) dynamics are switched back on. This process is

described graphically in Figure 4.1.

hr 2 s hi 2 tr(PN)

hi £ ts(PN)

Figure 4.1: Linking of Models

In closing we note that the switching of the models is based on the value

of the corrected flow, which Is an output variable. There are some

possible criticisms of this approach — some of which we shall mention

later.
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5. EQUILIBRIUM LOCI

5 .1 Introduction

In this chapter we will trace the equilibrium solutions of the systems

(US) and (PS), continuously varying a parameter of interest. We will also

show that (RS) has no equilibria — a result which turns out to be quite

intuitive. Various types of fixed points such as hyperbolic stable and un-

stable points are encountered and discussed. The numerical results and

plots are obtained by the use of our in-house software package BISTAJJ; a

discussion of its features is also offered in this chapter.

5.2 (RS) Model Contains No Equilibria

In order to see that the in-stall reverse flow model (RS) can not have

any equilibria let us assume on the contrary that It does. This means, in

particular, that the left hand side of Equation (RS4) must equal zero,

i.e. ,

with X3(t) < 0 for all time t > 0. On the other hand, X4(t) and X5(t) be-

ing mass and energy, are both nonnegative quantities for all times t > 0.

Furthermore, the quantities A, R, and V"3 are all positive scalars. Thus,

the above assertion can not hold.

The above property of the in-stall reverse flow model is intuitively

correct, as the reversal of the flow direction in a real world situation is

only temporary and can not represent a steady state operating condition.

In this way when we speak of equilibria in this work we are referring

to the steady state operation of the compressor (model) in normal unstalled

operating conditions or in in-stall conditions with normal flow.
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Let's look at a stationary point of Equation (3.1). This makes the

left-hand side equal to zero,

0 = f(x,u) - (5.1)

Treating u as a parameter to be varied, the vector x can be viewed as the

dependent variable. Continuation methods deal with the problem of solving

(5.1) for the state vector x as a function of the parameter u; they do so

by utilizing results from differential calculus and topology. In general

y e Rm but here let's assume for the sake of simplicity that \i e R! ; as be-

fore assume x e Rn.

Differentiating (5.1) with respect to u yields

(5-2)

where,

F.-.-H (5.3)

It is clear that at a particular x as long as F is one-to-one, successive

values of x can be obtained as u is varied from some initial value. MQ.

Typically the initial value of \i is chosen at any point which is computa-

tionally convenient; the desired value of (x,u) is then arrived at by "con-

tinuation" of solution from (XQ̂ Q). (In' tne language of Chapter 3, the

stationary points at which F is invertible are said to be hyperbolic. The

points at which F becomes singular are called bifurcation points; at these

points more than one x satisfies (5.2), for a given u. Singular points at

which the rank deficiency of F is one are referred to as simple bifurcation

points — otherwise, they are called general bifurcation points.
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5.4 BISTAB: Computational Tool for. Bifurcation and Stability Analysis

In order to trace the equilibrium solutions of (5.1) for the compres-

sor models (US) and (PS) the computational software package BISTAB was era-

ployed; the package was developed by Scientific Systems, Inc., specifically

for this type of analysis. BISTAB contains three user interface FORTRAN V

functions and a number of supporting functions and subroutines. They:

(i) Trace connected bifurcating branches of solutions to Equation

(5.1), starting from some given initial point.

(ii) Provide stability analysis of the branch curves and report the

linearized stability type.

(ill) Spot Hopf, simple, and general types of bifurcation. (At present

only solutions starting from simple bifurcation points can be

traced.)

(iv) Read in the files generated by the bifurcation and stability ana-

lysis routines, and sort the points into curves of different

bifurcation or stability type, for plotting. We will not engage

in any in-depth analysis of the BISTAB package here; instead the

reader is referred to a recently published description of the

package by E.F. Wood, J.A. Kerapf, and R.K. Mehra (1984). In the

following section the equilibrium loci generated by BISTAB are

presented.

5.5 Equilibrium Solutions for (US) and (PS)

The unstalled system (US) equilibrium solutions are shown as a func-

tion of the parameter A, the downstream flow area in Figures 5.1 through

5.9. Each figure depicts a state variable x^ versus the parameter A. The

symbols O .and * on the diagrams stand, respectively, for the stability

and instability of the system (US). More precisely, the points labeled as

O and * correspond to hyperbolically stable and unstable equilibria,

respectively.

As will be discussed later, the question of stall must be related to

the stability of the underlying dynamic system. Thus we seek the stability
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behavior of (US) as the parameter A varies. We show that the use of A as a

proxy for system stability may Lead to some inconsistencies. We illustrate
2

the point by fixing PN at 60% (e.g., Figure 5.1).

It can be seen from Figure 5.1 that the stability effects of the para-

meter A on the system (US) is dependent on the location of the state in the

state space. Thus as the area A decreases, say, from 28 to 25, the stabil-

ity status of the system changes three times: at points 12, 23, and 34.

In the regions 1 and 3, the system is stable, and in the regions 2 and 4 it

is unstable. The points 12, 23, and 34 represent "border" points.

This means that a decrease in the flow area may or may not be desta-

bilizing — at least in a local sense. For example at an (unstable) equi-

librium point in region 3 which is "close" to the point 23, a "small" de-

crease in the flow area pushes the equilibrium point towards "inside" re-

gion 3. In this case a decrease in A is stabilizing — or, conversely, an

increase in A is destabilizing. The above example suggests that a higher

setting for the flow area A is not always associated with a higher degree

of stability. However, for (stable) equilibrium states in region 1, an in-

crease in A is always (further) stabilizing — as Figure 5.1 indicates.

In the same manner, (the stable) equilibrium points that are located

in the neighborhood of the point 23 of region 2, are pushed toward stabil-

ity by a "small" decrease in A; conversely, they are destabilized by a

small increase in A. Changes in A have the opposite effect on the stabil-

ity characteristics of the neighboring equilibria of the point 12 of the

region 2. However for points in region 4 decreases in A do further desta-

bilize the system — and vice versa.

Now, it can be shown that the flow area A and the corrected flow h^

move up and down together — in this same region of interest. (In fact,

the relationship is almost linear.) Thus the above discussion applies

2
This discussion was presented in SSI report (June 1 - Aug. 30, 1984) to
NASA Lewis.
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equally well with respect to the corrected flow — viewed as a parameter.

In this way, for example, an increase in the corrected flow is not neces-

sarily associated with "more" stability and vice versa. Therefore, it

seems clear that the observed (or computed) value of the corrected flow

does not — in a one-to-one manner — determine the system's stability rat-

ing.

We conclude our discussion of the subject by noting that the above

reasoning applies equally well to the uncorrected flow u>2( = X3)• *n Chap-

ter 7 we show that the situation becomes even more complicated when we en-

counter non-steady state "off-design" conditions. We will suggest a more

general approach to the problem which will alleviate the situation.

Finally, we wish to point out that the in-stall equilibria for this

range of parameters turn out to be stable hyperbolic. The corresponding

figures have not been included, for the sake of brevity. (Some equilibria

are shown in Figures 6.1 through 6.3 in the next chapter.)
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6. BIFURCATION - CATASTROPHE LOCI

6.1 Introduction

In the previous chapter equilibrium loci of the compressor model in

(US) and (PS) modes were described. This chapter emphasizes the bifur-

cation loci. It is shown that the unstalled compressor exhibits Hopf

bifurcation. The resulting family of limit cycle solutions are propagated

by parameter continuation; both stable and unstable limit cycles are

observed. Before the unstable family disappears, it further bifurcates

into 3 families. Frequency, amplitude and centroids of the cycles are

plotted in various state-parameter spaces. (The analysis is presented in

Section 6.3.)

Section 6.2, however, presents bifurcation points of a different type:

those corresponding to the switching of the models. Strictly speaking,

such points should perhaps be labeled as "induced bifurcation" points since

the jumps are induced by switching of the models. Hysteresis is shown to

exist in the stall/recovery process.

6.2 Bifurcation of Solutions and Stall/Recovery

Let's recall from Section 4.5 that the overall compressor model con-

sists of three interlocking models (US), (PS), and (RS). The models are

switched based on the threshold values of the corrected flow: tr(PN),

ts(PN), 5, and e (e.g., Figure 4.1).

In our analysis we have taken 5 = e = 0, indicating that at nearly zero

but slightly negative flow the (PS) model is replaced by (RS); at zero flow

(RS) is replaced by (PS). The values of tr(PN) and ts(PN) are given in

Appendix A.

Figures 6.1 - 6.3 depict the loci of equilibria and jump points for the

values of corrected fractional speed of 60%, 70%, and 100%, just to cite

three examples. Let's note that for example in Figure 6.1 (a), we have the

bifurcation diagrams for the (state, parameter) combinations (x̂ .A),

i = 1,5; each x^ represents a state variable. For example, X3 represents
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the airflow rate W2 through the compressor.

Labels (USE) and (PSE) are used for indicating the equilibria of the

unstalled and In-stall positive flow models, respectively. The dashed
*

lines are the bifurcation points, and represent catastrophe points of the

process using Thorn's terminology (1974); the arrows indicate the direction

of the movement of equilibria and jumps. Thus, for example, on the (23,A)

diagram of Figure 6.1(a), as the downstream flow area A of the unstalled

model is decreased from, say, 32, the flow 13 continuously drops from a

value of approximately 30 to that of 25 corresponding to A 2 25. At this

point there is a sodden drop in X3 to the stalled value of 13 2 19.

This process can also be described, for example, in terms of the

compressor pressure ratio f} (output 6 of Figure 6.1(b)) and/or temperature

ratio f2 (output 7 of Figure 6.1(b)). Thus at the stall point

corresponding to A 2 25 the pressure ratio falls from approximately 1.63 to

that of 1.34 and the temperature ratio rises from approximately 1.18 to

that of 1.20.

Once the compressor enters the stall mode, recovery requires "extra

effort" to take place. This la the result of hysteresis in the process.

As A is now increased from the stall value of 25 it must reach the value of

approximately 33 before recovery can take place. At this point the flow X3

jumps from the stall value on (PSE) of about 27 to the unstalled value of

about 31 on (USE). Or in terms of pressure and temperature ratios, the
*

pressure ratio P3/P2 ĵ p, from the 8tali value on (PSE) of about 1.38 to
*

that of about 1.59 on (USE); the temperature ratio T3/T2 drops from the

stall value of about 1.17 to that of 1.15. Figures 6.2 and 6.3 contain

the same type of information for PN - .7 and PN - 1.0. (We did not feel it

would be useful to Include other speed values here — though they were

computed.)

It is noted that the stall/recovery hysteresis loop grows as the

corrected speed PN is Increased. This Is due to the fact that the stall

thresholds increase with PN, while the in-stall characteristic remains

relatively unaffected; this Increases the unstall-to-stall gap at the point
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of stall. However, the stall-to-unstall gap may or may not increase —

depending on which segment of the unstalled characteristic the recovery

from stall to unstall takes place (e.g., compare gaps for PN = .6, .7, and

1 on Figures 6.1(a), 6.2(a), and 6.3(a)).

Figures 6.1 - 6.3 also illustrate that higher PN values require larger

throttle variations, i.e., the width of the hysteresis loop increases with

PN. In this way, for compressors with small allowable variations la

throttle ares, recovery from rotating stall becomes a difficult problem.

"Small" discontinuity in pressure change at stall is often associated with

the compressor operating with one or more stall cells that do not cover the

total height of the annulus. This is known as part span stall. For this

type of stall the hysteresis effect is relatively small. On the other hand

"large" pressure drops (associated with large hysteresis effects) charac-

terize the full span stall. Figures 6.1 and 6.3 illustrate these cases.

We have been speaking of stall/recovery in the context of bifurcation

of solutions. Figures 6.1 - 6.3 represent loci of equilibria and jumps.

Thus the equilibrium loci describe the steady state behavior, not the tran-

sient. In other words the notion does not involve the so-called

"off-design" situations. For this reason the stall and recovery process

described above is perhaps best viewed as local (static) stall and local

(static) recovery.

In order to capture the global transient or dynamic nature of the pro-

cess, a different notion is required, namely, the domains of attraction of

various equilibria and limit cycles. Though this subject is clearly beyond

the scope of this Investigation, we do nevertheless touch upon the subject.

However, this is deferred until the following chapter in which the

stall/recovery strategies are discussed; in that chapter parameter sen-

sitivities are also discussed.

We note that the previously described local and global notions are

intimately related — as the former provides the core for the latter. More

specifically, the equilibrium loci provide the attracting and repelling

poles for the trajectories of the dynamic process; thus they help shape the

various zones*
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We close by mentioning that the terms dynamic and static have been used

In the literature of stall In different contexts. In particular, Greitzer

(1980) discusses notions of static and dynamic stability. Roughly

speaking, his description of dynamic stability corresponds to our defini-

tion of (local) static stability.

6.3 Hopf Bifurcation

Conditions for existence of Hopf bifurcation were given in Section 3.4.

Here we describe the computational and algorithmic aspects of the problem,

together with graphical illustrations.

Let's recall that we are interested in (oscillatory) solutions of the

nonlinear dynamic systems

-*(*.u> (3.1)

with the property that

• ° (6.1)

for some XQ e RQ and T e (0,»), where we define $t(xo,uo) to be a

solution to (3.1) starting from XQ, with the parameter u set at UQ.

Let's define y e R0*! as

y - Ix.ul' (6.3)

and introduce an arc length parameter I, giving

Then (3.1) and (6.1) become

f(y(40» - *(y(*0)) - *t+T(y(40) - 0 (6.4)

where f £ R°.

We are interested in finding n+2 unknowns (T(10). y(*o) satisfying

(6.4). Suppose that for some w0 *• ̂ ow that there is a limit cycle solu-
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tion; then we seek the (n+1) vector (x0,T) satisfying n relations in (6.4);

thus we need a further condition. Chua and Lin (1975) describe a procedure

for fixing one element of XQ to carry out the necessary predictor corrector

iterations for honing in on the cycle.

The generic software package that we have developed contains a para-

meter continuation feature that generates a family of limit cycles as a

function of the continuation parameter u, starting from some easily

obtained known solution corresponding to some initial parameter value UQ-3

(We will refer to this generic package as the Hopf package.) Thus starting

from some Initial point "near" a limit cycle, the Hopf routine will close

in on the exact location and period of the cycle, for the particular value

of the parameter u that was selected. The continuation part of the routine

consists of updating the continuation parameter u and finding the

corresponding new limit cycles that are created. (See Carroll and Mehra

(1982) for a description of BACTM.)

Just as in the case of stationary equilibria, a limit cycle may or may

not be stable. This means that in the case of a stable limit cycle, ini-

tial points beginning near the limit cycle will converge to it; the con-

verse is true of unstable limit cycles. Hirsch and Smale (1974) present

conditions for stability of limit cycles. The issue is related to the sta-

bility of the matrix G

G :• . (6.5)
a XQ

Here we are interested in the stability of the discrete mapping $Q — as we

wish to compare the values x(tQ)> x(tQ + T) , x(tQ + 2T) , . . . x(tQ + nT),...

for various nonnegative integers n.* The precise condition for the stabi-

3This is the generic form of BACTM. BACTM is the acronym for Bifurcation
Analysis and Catastrophe Theory Methodology. The software was developed
by Scientific Systems, Inc. for the analysis of flight dynamics problems.

4$n is defined as the composite mapping $.$ repeated n times.
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lity of a limit cycle is that all but one eigenvalues of G must be less

than 1 in magnitude, while the remaining eigenvalue is always 1.

Unstable limit cycles are not easily observed in nature or in time

simulation experiments. However, their presence does change the underlying

dynamics. In the context of our investigation an unstable limit cycle can

"carry" a trajectory into the in-stall (normal or reverse flow) region, or

into the unstalled region — depending on the exact position of the cycle

and the intervening control actions adopted.

Returning to our discussion of compressor stall, we are interested in

determining whether the compressor exhibits any oscillation of the type

described by the Hopf theory. This type of oscillation is often asso-

ciated with surge in compressors (e.g., Greitzer (1982)). The present

investigation appears to be the first published work indicating that such

oscillations are due to Hopf bifurcation of solutions.

The unstalled compressor model (US) exhibits Hopf bifurcations at cer-

tain critical values of parameters. We have observed this behavior for

every given corrected speed PN value (of course at different parameter

settings). We have verified the oscillatory behavior by time simulations.

Figures 6.4(a) through 6.4(f) show the development of a stable limit cycle

for the corrected speed PN » 0.6. It can be seen that before the limit

cycle disappears it becomes unstable. The stable limit cycle family

reaches its peak amplitude for A = 27.2. Figure 6.4(f) indicates the

period of the limit cycles as the parameter A varies. The peak period of

the limit cycles is reached for A a 27.32; the corresponding period Tpg^ =

16.6 x 10~3 seconds. The minimum period of about 16.36 x 10~3 seconds is

reached for A » -26.9.

As A is increased front the value of approximately 27.2, the stable

limit cycle amplitudes decrease. For A = 27.3892 and beyond the stable

limit cycles disappear and a family of unstable limit cycles is born.
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6.4 Global Bifurcation of Limit Cycles

Equation (6.1) of the previous section describes the property that

limit cycle solutions must possess, namely, the existence of a pair (XQ,T)

such that a trajectory of (3.1) satisfies

for all times t > 0. Equation (6.5) was used to describe the local stabi-

lity of a limit cycle "starting" at xg and having the period T. Just as in

the case of stationary equilibria, at some critical parameter value, say

WQ» Equation (3.1) may admit a multitude of solutions, say m of them, with

the property

- 0 C6.6)

for "initial condition" x* and period T^, i - 1 ..... m.

Each limit cycle L^ would then have its local stability property as

described by the corresponding stability matrix G^, i » 1 ..... m

3 <|>t(xo,wc)
.

3 X0
(6.7)

If m represents the total number of limit cycles, then their determination

represents a global solution to the problem. The situation is depicted in

Figure 6.5. In this figure a total number of 3 limit cycles in the solu-

tion space X have been depicted for the parameter value uc.

Figures 6.6(a) - (b) depict the development and disappearance of a

family of stable limit cycles — giving rise to an unstable family which

subsequently bifurcates into three families of limit cycles; the con-

tinuation parameter is A, as before. Only 4 of 6 state variables are shown

— for the sake of brevity. Vertical bars indicate the amplitude of the

limit cycles. As can be seen from Figures (a),(b),(c), and (d) as the
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a: stable

u: unstable

Figure 6.5 Several Limit Cycles Contained in Space X for a
Critical Value wc of Parameter u
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parameter A is increased from its initial value of about 27.3890 the ampli-

tude and the period of the stable limit cycles continues to shrink.

Approximately at A * 27.3892 and beyond the limit cycle becomes unstable

while decreasing in amplitude. Further, Increase in A to a value of

approximately 27.3895 causes an increase in the number of limit cycles

(from 1) to 3. As can be seen from the Figures, this condition persists

until A exceeds a value of approximately 27.38955. At that point and

beyond once again a unique (unstable) limit cycle family is generated. It

can be seen from Figure 6.6(d) that the three limit cycles not only have

different amplitudes and "locations" but that their period* are also dif-
ferent. we note that the above graduations in A are too small to be experi-

mentally verifiable, even though the software was calibrated for a 10~ pre-

cision level. The point of the above discussion is to point out the theore-

tical possibility of obtaining 'multiple surge cycles' for some critical

parameter values. In fact we do not claim to have discovered all such cy-

cles. A further investigation is warranted to either validate or refute

this possibility in a number of realistic models.

We close by noting that the above solution classes represent a fairly

complex dynamic phenomenon, involving stable and unstable limit cycles of

varying quantity, amplitude, period, and location — all derived as a func-

tion of the parameter A. In this way it can be observed that the usual

one-to-one association of the values A with "stability" or "instability" is

at best an ambiguous notion. This same observation can be expected to

extend to other parameters.

6.5 Time Simulations

Here we will present several simulations of the process for various

values of the parameters PN and A. This will also serve as a confirmation

of SOM of the results obtained in previous sections by other means*

Figures 6.7(a),(b),(c), and (e) present the time profile of three
dW<> p*

variables: state variable X3:- —2. , output variable Fit- _3 and output
T P?

variable FT- _^ . Other variables have similar properties and have not
2" -

been sketched, for the sake of brevity.

- 56 -



Scientific Systems

F = P r e s s u r e Ra' -•

I

e m p e c a c u r e ?. i -

•* -«•

.3

Tlft
.11 •a ut

Figure 6.7(a). Growing Osclllaclooa la UnsCalled Compressors
Lead to (Rotating) Stall. PN - .6 and A - 25.94.
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Figure 6.7(b). An Increase in A from its Value in (a) to A - 26.7 Leads
to Unacalled Equilibrium
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Figure 6.7(c). A Further Increase in A from its Value in (b)
to A - 27.2 Leads to Sustained Limit Cycle
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Figure 6.7(a) presents a trajectory with growing oscillations which

begins in (US) and ends in rotating stall (PS). An increase in A to the

value of 26.7 restores equilibrium in the unstalled region; this is shown

in Figure 6.7(b). A further increase in A, however, brings about oscilla-

tory behavior. Comparing this case with that illustrated in Section 6.5

(e.g., Figures 6.4(a) through 6.4(f)), we see that these oscillations are

indeed limit cycles produced by Hopf bifurcation of equilibrium solutions.

It can be observed from the plots that both amplitude and frequency of

oscillations agree very closely.̂  A Phase Plot of the time function of

Figure 6.7(c) is shown in Figure 6.7(d); it shows how a trajectory

approaches the (stable) Halt cycle. A still further increase in A to the

value of approximately 27.5 further restores the unstalled equilibrium.

Thus from the point of view of recoverability it makes a difference by

how much a certain nominal value of A is changed and in what direction.

Both decreases and increases In appropriate ranges can remove surge type

oscillatory behavior. It should be observed that the implications for

surge/recovery due to area changes described in the previous paragraphs (or

changes in any other parameters) are dependent on the particular trajectory

in question, with respect to its location in the trajectory space. Thus

further characterization and analytical machinery is required. In the next

chapter we will address this problem in part. Finally, surges in the state

variables rate for corrected speeds PN of .7, .8, .9 and 1 are listed in

Figures E(a) through B(d) in Appendix E.

is clear that not every oscillatory motion corresponds to a limit
cycle.
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7. DOMAINS OP ATTRACTION FOR OFF-DESIGN STABILITY, STALL/RECOVERY, AND
SENSITIVITY ANALYSIS

7.1 Introduction

The problem of compressor stall Is ultimately related to the stability

behavior of the compression system under conditions other than the normal

steady-state operating environment. In Section 5 we discussed the loci of

solution equilibria; and the stability issues that were discussed referred

to the local properties of equilibria. However, a given trajectory may or

may not be 'near' any equilibria; its stability behavior depends on its

overall position, In a global sense.

In order to obtain a complete classification of trajectories we need

to compute the domains of attraction of equilibria. This problem, however,

is beyond the scope of this investigation. But in order to highlight its

usefulness for stall/recovery we discuss the issue in Section 7.3. In

Section 7.5 we show the applicability of the domain of attraction for use

as a criterion of stall. This appears to offer a natural generalization of

the notion that the (low) values of corrected flow can be used as proxy for

entering stall, e.g., Section 7.4. Partial computations of domains of

attraction are presented in Section 7.6. However, in Section 7.2 we first

define three types of trajectories according to the 'severity' of their

stall/recovery, and give some examples.

7.2 First Stage, Second Stage, and Third Stage Stall/Recovery

We have .seen that the total dynamic behavior of the compressor in

various conditions can be modeled as three interlocking dynamic models

(US), (PS), and (RS). Let's start with a compressor in normal steady state

unstalled condition and perturb the steady state operating point, say XQ,

to that of xj - XQ + 5xQ to create an off-design condition. A trajectory

based at X} and under the control regime U(') is defined as $c(xi,u).

Depending on the stability properties of XQ and the amount of perturbation,

the resulting trajectory may (1) only Involve (US), or (11) involve (US)

and (PS), or (ill) involve (US), (PS), and (RS).
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One can think of off-design transient conditions which, using the

available control action u, can be cleared without having the compressor

enter into either of the two stall conditions as being somewhat benign. We
$

define such trajectories as being first stage recoverable. On the other

hand, if despite all the available control action the trajectory still

enters stall but can be cleared without entering reverse stall, such a

stalling trajectory is defined to be second stage recoverable. Finally, if

the stalling trajectory can be cleared only upon entering (and leaving)

both stall conditions, the stalling trajectory is defined as third stage

recoverable.

The above terminology can be justified by noting that (i) physically,

every time a compressor stalls it stands a certain chance of being damaged,

perhaps due to some unmodeled factors and, (11) from a modeling point of

view a first stage recoverable trajectory will involve only one dynamic

model, thus involving the least amount of dynamic complexity, etc.

Figure 7.1(a) shows a trajectory that begins in the unstalled region

and eventually settles in a rotating stall equilibrium. This stalling

trajectory can be cleared by a combination of a decrease in PN (to 60Z) and

an increase in A (to 32). Figure 7.1(b) shows that the trajectory is first

stage recoverable. On the other hand, Figure 7.2(a) shows a different

stalling trajectory. It turns out that for this trajectory no combination

of parameter setting exists that can keep it from entering stall. Figure
g

7.2(b) shows that this trajectory is second stage recoverable.

These terms are defined intuitively only; one can refinp these definitions
by Introducing a mathematical notation.

For the sake of brevity only x, component of the trajectory is shown.
8
Here we limit ourselves to fixed parameter settings.
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;!
l!

(a): PN-.7, A=30.25, x3(0)-30.0

It*

(b): PN-.6, A-32.0, x3(0)-30.0

Figure 7.1. Example of first-stage recoverable trajectory.
Using combination of PN and A, a stalling tra-
jectory (a) is recovered without entering stall (b).

Tire (SCO
(a): PN-.7, A=29.5, x3(0)=29.3

I SCI
PN=.7, A=32, x3(0)=29.3

Figure 7.2. Example of second-stage recoverable trajectory.
No combination of PN and A exists which can keep
trajectory from entering stall before recovery.
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7.3 Domains of Attraction

Intuitively an attracting set A for a point x is that which 'attracts'

the trajectory $t(x,uo) baaed at x as tine increases.
9 Accordingly, the

domain of attraction of A is made up of all those xs which will eventually

end up (under the action of the systea) at A. A little more notation makes

this more precise. A closed invariant set A C R is called an attracting set
if there is some neighborhood V of A such that $t(x) > A as t-*», for all

xeV. The set D:- 0 4C(V) is said to be the domain of attraction of A.
t<0

(The set A may be Just one (equilibrium) point.)

These simple ideas can be used to advantage for the analysis of stall

and recovery. Let a normal operating condition of the compressor be

denoted by xg, corresponding to the nominal parameter UQ* The elements of

UQ may be some design parameters (such aa the downstream volume 73), and

some adjustable parameters (such as the throttle area or the rotor speed).

Let Dy0 denote the corresponding domain of attraction. Figure 7.3

Illustrates this.

Figure 7.3 Domain* of attraction Dy_ and Dy.. By changing the parameter
UQ to m, an otherwise stalling trajectory based at y settles
at

It is observed from Figure 7.3 that trajectories based at points outside

will stall. (For the sake of argument, assume that all those points

A

'Assume that the parameter u is fixed at UQ<
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not converging to XQ will end up in rotating stall.) However, by manipu-

lating the parameter u, say resetting it to yj, the shape of DUQ will

change to that of DU.. It is observed that in this case an otherwise

stalling trajectory such as one based at y will now approach the unstalled

stationary operating point y. In this way be varying the parameter u over

the entire feasible parameter space U one obtains the overall recoverabi-

lity domain 2> as "

& :- U Dy (7.1)
u yeu

In this way 2>u represents the set of all trajectories that can be

recovered, using the feasible parameter set u.

The set S> can be computed and stored off-line, once for a given dyna-

mic system. Now if we can pinpoint the location of the state x, the

question of whether the trajectory based at x can be recovered reduces to a

table look up probelm: determine if the trajectory belongs to <3>; if so,

the trajectory is recoverable - otherwise it is not.

We can utilize the definition of recoverability types (e.g., 1st, 2nd,

and 3rd stage recoverability) to obtain three types of recoverability
1 2 3

domains: ®Ut ®0> and ®u.

7.4 Transient Analysis and Corrected Flow

(a) In this section we first note that in non-transient situations the

uncorrected flow rate through the unstalled compressor is a good proxy

for its state. In fact in steady state, the uncorrected flow rate X3

by itself determines the remaining state variables and the corrected

flow. This will in turn determine various pressure and temperature

ratios* This can be seen by solving the steady-state state vector in

(US)

0 - F(x,y) (US)

where F represents the RHS of Equations (U1)-(U5) in Chapter 4.
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The particular form of functional relationship is somewhat complicated

a& it involves a series of substitutions involving nonlinear

relationships. 10

On the other hand, as far as stability is concerned, we have seen that

there is no one-to-one (monotone) relationship between the value of

the corrected flow h} (or the flow area A) and the local stability of

equilibria. Thus even for local stability determinations the

corrected flow value does not contain the necessary information. The

reason is that the corrected flow variable h} is an output variable of

the system (US) the value of which is determined in a unique casual

fashion, by the state vector x.

The question of whether a trajectory is in-stall must therefore be

related to the location of the state vector x in the state space

rather than that of the output level(s) in the output space. It is

clear from Equation (4.10) that there are many state vectors x that

will give rise to the same h}. This is depicted in Figure 7.4.

10This was done in SSI's Progress Report (Jan. 1 through May 1, 1984) to
NASA Lewis.
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set of admissible x set of admissible hj

Figure 7.4 The corrected flow h} does not uniquely determine the
state x.

Therefore the output value hj does not give complete information about

the state x.

(b) It can be noted (for example, from the analysis of Section 7.6) that

the situation is even more complicated in case of off-design

(non-steady state) conditions. In particular, no one state variable

can be used to determine the remaining state variables; knowledge or

estimation of individual state variables is required. Furthermore,

the exclusive use of corrected flow rate (or A) for stability rating

in this transient case is even less acceptable.

7.5 Domain of Attraction aa Stability Set and Criterion for Stall

The definition of stall used in this work11 is that spelled out in

Section 4.6. In particular, for a given corrected speed PN there is a

threshold stall value, ts(PN) for the corrected flow. As the trajectory of

the system evolves over time so does the corrected flow h}. If at any

point in time hj falls below ts the unstalled compressor model (US) is

replaced by (PS), and whenever hi equals or exceeds the recovery threshold

11This definition is the same as that spelled out in the Statement of Work
(e.g. Wenzel, Bruton (1982)).
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tr(PN) the compressor becomes unstailed. Thus the models are switched

based on the scalar output variable b>i - even though, as we have seen, this

variable does not contain the entire stability information. In this way

this choice of stall criterion may for example lead to stalling of some

trajectories that would otherwise recover, or in some cases may provide a

'late' signal of oncoming stall.

Based on the earlier discussions, it appears that a more general and

reliable criterion of stall would be provided by the domain of attraction

of some 'normal1 operating point (or operating region.)

Let xg denote some nominal steady state vector corresponding to the

corrected spped PN0, and flow area AQ. Let D(PN0, AQ) denote the

corresponding domain of attraction for XQ. Then one way to decide how to

switch the models is as follows:

(1) If x(t) e D(PNn, AQ), the trajectory will recover, approaching XQ
as time increases.

(ii) If x(t) i D(PN0, AQ), then replace (US) by (PS) provided ĥ O.

(ill) If while using (PS) at any time hi<0, switch to (RS) until the
flow becomes nonnegative again at which time switch to (PS).

(iv) If while using (PS) the trajectory enters D(PN0, An), then switch
to (US).

Figure 7.5 illustrates the procedure.
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hr > 0 * e D(PNo'V

hr < 0 x i D(PN0,A0)

Figure 7.5 Switching of Models Baaed on Domain of Attraction.

The previous rule nay be viewed aa being applicable to paaaive

stall/recovery. That is, in this case no control action la taken when the

trajectory goes outside D(PHg, AQ). As we Illustrated previously, one aay

manipulate the control parameters to obtain Dy so as to attempt to recover

a particular trajectory. Then the switching rule may be based on this new

set or some variation of it. We will not elaborate on this point here.

Furthermore, we have not made any distinctions about different stages of

recovery here although this can be easily incorporated.

In closing we note that the set D(PN0, AQ) is contained in Rn. This

is in contrast to the scalar output ts(PN) rule of Wenzel, Bruton (1980).

It appears that the use of the set D(PN) in place of the scalar threshold

value t8(PN) represents a natural generalization of the latter approach.

7.6 Some Experimental Results for Stall/Recovery and Sensitivity Analysis

Some partial computations of the domain of attraction were carried out

to illustrate the usefulness of the approach. The five dimensional space

was projected on the (23, 25) plane. The state variables X}, X2, *4 were

fixed at values 1.8, 940, and 0.2, respectively. These values are dif-

ferent from their corresponding equilibrium values; they correspond to some

arbitrarily chosen 'off-design* condition. This may represent some per-

turbed values of some normal operating condition. The nominal area A was

fixed at 30.25.
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The computations were carried out for two sets of parameters: (i)

nominal, and (ii) perturbed (increased from nominal value by 10Z in most

cases). The particular parameter nominal values chosen and their perturbed

values are:

A - 30.25
R - 639.6
L - 9.64 x 10~4 f nominal parameter values
no • 0.1

A - 27.5, and 27.3j
R - 703.56 '
L - 1.0604 x 10~3 \ perturbed parameter values
no • 0.05

(For definition of parameters see Appendix A and Wenzel, Bruton (1982).)

Figure 7.6 shows the domains of attraction for the unstalled system

equilibrium (USE) and stalled system equilibrium (SB)12. In each diagram

USE1 and SE1 refer to the two equilibrium values for the nominal case

(shown in solid lines), while USE2 and SE2 refer to the perturbed case

(shown in dotted lines.) The arrows on the figures point to the stall

region. It is seen from Figure 7.6 that the domains of attraction of the

two equilibria split the (13, 15) plane into several regions. For example

Figure 7.6(b) shows the stall and recovery regions for the zero flow effi-

ciency values no • 0.1 and no " 0.05. Focusing on the nominal case

no " 0.1 (solid separatrlx lines), let's fix attention on the 'horizontal'

line: £5 » 60.0 and X3 free. We see that for the flow rate £3 between

about 5 and 25 the resulting trajectories will all end up in stall. Both

higher and lower values of 13 with respect to this range will result in

recovering trajectories. We can also see that by fixing X3 * 30.0 and

allowing X5 to vary, five different regions can be very complicated. We

may have various 'pockets' of stall scattered around the recovery regions -

a situation which may not be discernable from equilibrium or local stabi-

lity analysis.

i2Here we make no distinction between various types of stall and recovery
discussed in the previous section; only the final point of convergence is
considered.

- 72 -



ScientfficSystems

Now by varying the parameters, the shapes and sizes of various regions

change - providing information on which a set of trajectories may be reco-

vered by changing the parameters in their feasible sets. For example by

changing the zero flow efficiency variable HQ from its value of 0.1 to that

of 0.05 we obtain the new separatrix shown by the dotted lines. In this

case we note that the parameter change increases the stall region, but

slightly. This provides a method of sensitivity analysis for the impact of

various parameters on the stall/recovery regions. Due to the fact that, in

general, as a result of parameter changes we obtain a complicated pattern

of change in the various regions, sensitivity ranking of the parameters is

at best an ambiguous notion. Wenzel and Bruton (1982) provides a sen-

sitivity analysis of some parameters but their method of analysis uses the

turbine area A as the stability ranking mechanism. However, aa can be seen

from Figure 7.6(d), the value of the area A does not seem to provide a

clear cut measure of recoverabillty - especially in some critical ranges.

Figures 7.6(a), and (c) provide the sensitivity of the stall/recovery

regions to the changes in the parameters \ and R. They have both been com-

puted based on a 10Z increase in the nominal parameter values. Of the two,

it appears that increases in R have a greater impact on Increasing the

stall region.

In closing we note that the above analysis is not intended to provide

specific recommendations for stall and recovery; rather, our goal has been

to highlight the potential usefulness of the techniques for providing spe-

cific strategies for stall avoidance and recovery.
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8. CONCLUDING REMARKS AND SUGGESTIONS FOR FURTHER RESEARCH

This investigation illustrates that analytical methods employed in

nonlinear control theory are quite appropriate for the analysis of

compressor stall phenomena. In particular the methods of bifurcation and

catastrophe theory when combined with a state variable formulation can help

formulate a general purpose methodology which provides insight into the

stall problem. The approach can provide an across-the-board understanding

of various models - all within the same analytical framework.

Though we have presented some sample computations of domains of

attraction of equilibria, this objective was beyond the scope of this

investigation and therefore remained incomplete* As the discussion of

Chapter 7 Indicates, the accomplishment of this objective will provide

valuable insight into questions of: parameter sensitivity analysis,

regions of stall and recoverabllity from stall, types and availability of

feasible control action, just to mention a few.

Switching of the models in this report was based on the threshold

stall values ts(PN) of the corrected flow rates. As we argued in Chapters

6 and 7 this criterion may lead to incorrect conclusions. As a result in

Chapter 7 we proposed a new procedure for switching of the models -

involving the use of domains of attractions. Further investigation into

this approach should be carried out. In particular, a careful matching of

the domains of attraction of the stalled and (installed models oust be made.

Otherwise a constant back and forth switching of the models in some regions

may result. On the other hand if the models are treated as given, then

these potential collisions of the attraction domains may result in a new

type of 'surge* phenomena.

The development of state space models invariably brings about the

question: are the state variables directly measurable quantities?

Typically state variables represent important 'internal' variables, not all

of which are measurable. Other related variables (e.g. output variables),

usually smaller in number than the state variables, may be directly and

accurately measurable. In our case, various temperature and pressure
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ratios and/or absolute quantities may be good candidates for measurement.

Thus observer-estimator type approaches must be adopted to provide closed

loop estimation of the state vector. (It would be desirable to construct a

special type of observer for this problem: that which would be 'sensitive'

to the boundary of the stall region. )

The last but by no means the least recommendation is that modern

control theoretic identification techniques should be brought to bear on

(i) identification of in-stall characteristics, and (ii) identification of

model parameters in the face of noisy data.
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APPENDIX A
(Provided by NASA Lewis)

14.8 (Al)

519 (A2)

Pl-?2
-R7— (A3)

W2 - / ( * ! - V2)dt + W2 , (A4)

(A5)

R(WT)2 4

- ^ " T "T3(1 - ) (A6)

(WT)2
- (A7)

8 2 - " - (A8)

(A9)

N//82
PN • T6042 (A10)

A-l
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- 7.972 x 10-
w2/e2/62

PN
(All)

* -Wv iKNf
(A12)

UNSTALLED STALLED

P* » P2

W2/82 P2

1837^
+ .7746 * PN2) (A13)

,PNj T* - T2 (A14)

WST » F3(PN)

n - no +• (A15)

(A16)

W2/92
STALL IP 5 WST

W2/92
RECOVER IF g > 1.1 WST

(W2 - (A17)

W2 -i / (P* - P3)dt + W 2 f l (A18)

A-2
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(WT)3 ,i (A19)

P3
W3 » A -=—

'T3

(A20)

R(WT)3
(A21)

(WT)3
W3

(A22)

for t t} and t
- a(t - tj) for t} < t < t2
- a(t - ti) + 2a(t - £2) for t2 < t! < t3

(A23)

STALL THRESHHOLD VALUES tg(PN)

PN

0.6
0.7
0.8
0.85
0.90
0.95
1.00

t8(PN)

24.8
31.2
42.3
47.1
51.2
55.3
59.5

tr(PN) - 1.1 tg(PN)
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APPENDIX A
SYMBOLS

A area in2 m2

dc time increment sec sec
f^ performance function (1-1,4)
KN constant describing in-stall compressor

performance at negative flow
KP constant describing in-stall compressor

performance at positive flow
L fluid inertance, length/(area g) sec2/in2 sec2/m2

N rotational speed rev/mln rev/min
p static pressure lbf/in2 N/m2

P total pressure lbf/in2 N/m2

PN fractional corrected compressor
speed

R flow resistance, A (pressure drop)/
A (flow) Ibf sec/lbm in2 N sec/KG m2

T temperature °R K
t time sec sec
V volume in^ m^
W weight Ibm kg

W weight flow 1mb/sec kg/sec
a constant
Y ratio of specific heats
6 rati of total pressure to standard

atmospheric pressure
A incremental change
n efficiency
6 ratio of total temperature to

standard atmospheric temperature
4> flow parameter
^ pressure parameter

Subscripts:

0 ambient
1 fan inlet
2 compressor
3 compressor discharge
i initial
* denotes quasi-steady parameter at compression component discharge

The terms within braces { } in the equations are switched when flow reverses as
follows: If flow is positive, in the normal sense, the upper term within the
braces are used.
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APPENDIX B

STATE SPACE REPRESENTATION FOR STALLED MODEL (PS)

The state vector x that we have chosen is

• w2
(WT)2

-(WT)3_

We have from Appendix A

(A3)

W2 - W2>1 (A4)

Upon differentiation and substitution, equations (A3) - (A4) yield

<«>* -

or

(Bl)

Given

<w>2 - (A5)

we obtain

B-l



and

yields

Now

with

R(WT)3

PS--^—

(WT)3
T3--W~

yield

* *

- A
/X5/X4

or

B-2
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But

(vrp^o X?
-~ (82)

j *2 (B3)

t
W3 - J (u>2 - (is) dt "»- W3>i (A17)

P3i3 - A —^ (A20)
/Tj

(B3')



ScientificSystems

AR ,
yj /X4*5 • (B5)

Equation

t
»2 - £ / <P$ - ?3> dT -t- u>2,i (A18)

upon differentiation and substitution obtains

. R
(B6)

At this point we shall concentrate on the stalled dynamics in the
positive flow direction. Thus

P3 " 057 <l + '7746 * PN2> (A13)

where

* - KP $2 + 0.33 (A12)

7.972 x 10-3

Using (A-ll), (B2), (B3), and

T2
92 " -519 (A8)

««2 - 7477 (A9)

we obtain

B-3
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PN /519 XJX2
(B7)

where

A 7.972 x 1Q-3 x 14.7
(B8)

Substituting (B7) in (A-12) yields

KP
/£1\2 *32

\PN/ 519 xix2
0.33

Thus

(B9)

P* » g2x2 + g38l KP — (BIO)

Q.837 0.305 (Bl l )

o.925 V2

Finally (B6) becomes

f 82*2 + 8381 KP ^7 - |r

Equations (A-20), (B2)1 , (B3) ' , and

(B12)

(B13)

(VTT)3 » Y / (w2 T5 - (S3 T3) dT + (WT)3 i
o J '

yield

*5

Now

*5 - YU3T3 - |j x5 /x5/x4J .

(A19)

(B14)
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(A14)

together with Equations (A13) and (A22) obtain

(gixi)2 \-j.286

T
 1'19 * °-925 " "

13

r / (gixi) \ - j .

* a* ( ! , I1'19 * °-925 (" 5"9*i*2 + °-33 PN2;J - 1 \
3 "«i \ * * n /'

(A28)

Furthermore

n - no -i- F4(Pn,no)'t1 • (A15)

Using (B7), (A15), and (A28),

r i (gixi) \- i .
xz / | [1.19 + 0.925 (KP 5^x;;2 + 0.33 PN2]] - 1 \

^ xi I 81 X3 /
> no * F4(PN,n0)̂

 /

Upon substitution for T$ in (B14)

x-jxi / |l-19 + 0.925 |KP sfix?x7 + °-33 pN2) I ~ 1 \ny«» T I I I »* A x A i v^y i i •^5 . Y -±_i ( i +<. 1 i-£ LJ I
1 \ 8l *3 /

no
"" /519

(B16)

deriving the last state equation. Specializing Equation (B4) to the
positive flow case we collect the equations for easy reference.
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Sunmary of State Space Systems for Positive Flow Stalled Dynamics (PS)

R (PS1)

x2 - (PS2)

-1*38? »| +£ (PS3)

*£- (PSA)

x5 -

["1.19 + 0.925 / KP

0.286

+ 0.33 PN^Vl - 1
519

no £L
PN

*3

/519

V3 "' V *4
(PS5)

where
• •

xl
*2

«3

X4

X5

-

W2

(WT)2

w2

W3

(WT)3
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APPENDIX C

STATE SPACE REPRESENTATION FOR THE (INSTALLED MODEL (US)

Equations defined in Appendix A will be referred to aa Al , A2 , ...

etc. Any new notation introduced shall be defined accordingly.

We have from Appendix A

P1~P2
(A3)

t .
/ (wi - u>2> dT + W2fi (A4)

(A3)-(A4) yield

pl Rxl " T~ " R-vT *2 * X3 (Cl)

Equation (B4), specialized to the positive flow region yields:

(C2)

Equation (A18) obtains the third dynamic relation in the form

c5) (C3)

Here ?3 is obtained from the unstalled case of Equation (A13):

*
P3 "-P2
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Let

denote the corrected flow.

We have, from Appendix A and definition of x:

*2
62 * 519 (C5)

62 * 14?7 y2 *2 (C6)

yielding

X3hi - g4

where
A 14.7 V2

g4 - TTffT (C8)

(the constants gj, g2 and g3 were defined in previous appendixes.

Equation (C3) thus becomes

\ xe \
(C9)

The fourth dynamic relation is the same as in Appendix E.

AO ^^___
(CIO)

Finally,, the fifth relation is derived from (A19) and
t . *

(WT)3 - Y / (u>2 T3 - 03 T3)dT -I- (WT)3 f l (ClD
o

* / "2̂ 2 \
T3 - T2 F2 I -j - , PN I (C12)



ScientfticSystems

Substituting for the corrected flow and temperature T2 in terms of the

state variables yields:

• PN> (C13)

Thus

x5 - Y(x3 T3 - u3 T3) (C14)

XI XI AR X5
- F2(84 -J - , PN) - M x5 -i (C15)

where

. AR (C16)
v3

 3 XA
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Summary of State Space System for (Installed Dynamics (US)

pi a

X2 - Y -j- - -rirr X2

R X2X3 T hrr '

AR

) TI ~X3 X2/X1J

where the state vector is x

X3

>2
(wr)2

(Ul)

(U2)

(U3)

(U4)

(U5)
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APPENDIX D

STALLED DYNAMICS (REVERSE FLOW)

Since Che procedure is Che same as ChaC of Che uns tailed case or

Che stalled (positive flow) model, we will derive Che five sCaCe

equations without much explanation.

As before,

*1 -i£-fej'*-«3 (Bl).(Cl)

but

T2 - TS " Tro? <D3)

(D4)

- 7'972 ̂ °" (D5)

In-stall — ; - calculation:

X3
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(D7)

(D8)

fj x5 (D9)

T3 - (D10)
*4

Equations (D6)-(D10) yield

(DO ? XI
hr - •£ - ± - g6 (DID

°

where *

P1V3

: « • ̂  . CD12)

Substitution from (DID Into (D5) yields

li-lf (l - f -3=)X4 \ ^N /X4X5 /

where

gy - 7.972 • 10-3 gfi (D14)

Thus (D3) yields

(013)

^•Subscripts 6,7,... in g's are the continuations of those used in
previous appendixes.
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g8 xsl ~ ™ (D16)

(D17)

e° 0.7972

Hence,

As before,

1 AR

Now
i t *

u? « — / (?3 - ?3> dt + u»2 H
L o '

(1 + °*7746 * PN) (D19)

4) is different in reverse flow,

i|» - KN <fr2 + 0.33 (D20)

From (D13), (D19), and (D20)

P3 = Olhj X2 (l + 0.2556 PN2 + 0.7746 KN ! (D21)

From (D9), (D18), and (D21)

f

where

g9 - 1 + 0.2556 PN2 (D23)

g10 - 0.7746 g2 (D24)

Now from
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(WT)3 « y («2 T3

and Equation (B14),

AR ,n_-,- X5 (D25)

This concludes Che derivation of the fifth order reverse flow stalled
system Equations.

Summary of Reverse Flow Stalled Dynamics (RS)

Xl ' ' X2 ' X3 (RS1)

,n o o N<u«

R I X2 / X3 \ X5
L 03T1/ W + » 810 - -

X3 ~ ~ ^XAX5 (RS4)

where
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Figure E(a) Sarge oscillations for PN-1 occnr at A-26.96.
(They also occur at A-27.18j they are not included here.)
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Figure E(b) Surge oscillations for PN-.9 occur at A=28.873
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Figure E(c) Surge oscillations for PN-.8 occur at A-30.309
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Figure E(d) Surge oscillations for PN-.7 occur at A-29.072
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