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ABSTRACT

This document is the final report on NASA grant NGL-22-009-124 to the Laboratory

for Information and Decision Systems, LIDS, (formerly the Electronic Systems

Laboratory) of the Massachusetts Institute of Technology.

This grant was initiated in 1966 under the initial auspices of the now defunct

NASA Electronic Systems Center, and continued later on under the auspices of the

NASA Ames Research Center. During the last three years of the grant, support was

also provided by the NASA Langley Research Center. The grant terminated on 31 May

1984. During it's 18 year tenure a total of $1,306.732 were spent, including some

MIT cost-sharing.

In this final report we overview the research carried out in the areas of

optimal control and estimation theory and its applications under this grant. We

also provide a listing of the 257 publications that document the research results.

Finally, we present the list of the 80 MIT faculty, post-doctoral staff, and graduate

students that participated in this research.
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FOREWORD

This document is the final report on NASA grant NGL-22-009-124 to the Laboratory

for Information and Decision Systems, LIDS, (formerly the Electronic Systems

Laboratory) of the Massachusetts Institute of Technology.

This grant was initiated in 1966 under the initial auspices of the now defunct

NASA Electronic Systems Center, and continued later on under the auspices of the

NASA Ames Research Center. During the last three years of the grant, support was

also provided by the NASA Langley Research Center. The grant terminated on 31 May

1984. During it's 18 year tenure a total of $1,306.732 were spent, including some

MIT cost-sharing.

NASA regulations, in their infinite wisdom, offer significant flexibility to the

Principal Investigator on the style of the final report. With the encouragement and

support of my grant monitors I have decided to adopt a historical, and sometimes

philosophical, perspective on the research carried out at MIT/LIDS during the 18 year

life of this grant.

The story of this grant is both remarkable and wonderful. Its contributions to

Modern Control Theory and Engineering strongly parallel those of the international

developments in this still very exciting field. This became possible because of the

close interactions between the several NASA grant monitors and the members of the

MIT/LIDS control group. We were allowed wide latitude in pursuing promising theoretical

directions and feasibility studies. On the other hand, there was a very conscious

effort to be aware in detail of the changing control system design environment and

types of applications faced by the NASA centers in general, and our sponsors divisions

in particular. This two-way exchange lasted for 18 years and has resulted in solid

achievements. Perhaps this grant can be a model for successful research cooperation

between research sponsors and universities.
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Of course, the primary objective of federally funded research is to carry basic

research so as to advance the state of knowledge in selected areas: in our case, control

theory and its applications. The 257 reports, theses, conference papers, and journal

articles, listed in the Publications section, document the broad technical achievements

of our research. It is a fact that this NASA grant has been the primary reason for the

leadership position that the MIT/LIDS control group enjoys among the several inter-

national centers of excellence in control theory. The rolling three-year step-funded

nature of this grant guaranteed some longevity so that risky ideas could be examined

and developed. In addition, by carrying out feasibility studies for different ap-

plications of direct interest to NASA, and by bouncing-off our findings to our NASA

colleagues, we always had a pretty good idea of the strengths and weaknesses for our

theory when applied to realistic settings. This helped us to channel our energies to

basic research directions that would have an obvious relevance in the long run, and

to avoid pursuing mathematically elegant theories whose assumptions violated common

engineering considerations.

There is a different, but in the long run probably more important, dimension in

research funding at universities, namely the support of graduate students. This grant

has supported the research of dozens of M.S. and Ph.D. students. Perhaps the most

remarkable by-product of this grant is the full or partial support that it provided to

51MIT Ph.D. students (see People section), most of whom already have distinguished

careers in academia and industry. The research and development accomplishments of

these alumni, after they left MIT, is a remarkable achievement in itself.

Finally, although NASA grant NGL-22-009-124 terminated on 31 May 1984 (so as not

to drive the auditors crazy), a new NASA grant NAG 2-297, became effective on 1 June

1984. The author sincerely hopes that several years from now a similar story can be

told.
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i. RESEARCH OVERVIEW

i.i Introduction

In this section we attempt to provide a brief summary of the diverse research

topics that received attention during the lifetime of this grant. Clearly, we can

only scratch the surface. Even to summarize each one of the 257 publications would

represent an immense effort. For these reasons, the author has decided to divide

the research carned out into twelve subareas, and to assign each publication to one

of the twelve research areas. This is somewhat misleading, because the vast majority

of the publications cannot fit neatly into a well-defined theoretical or practical

pigeon-hole.

Within each specific research topic we sha!l list the relevant publications.

We shal! not discuss the specific contributions contained in each publication.

Rather, we shall overview their collective impact upon the field. Whenever appropriate

we shall "flag" a particular publication as representing, in the author's opinion,

a significant turning point in our research directions. Since the alumni of this

grant (see People section) represent a very select subset of respected researchers,

the author sincerely hopes that the absence of a "flag" for a particular publication

does not mean that the results contained therein were not noteworthy, novel,exciting,

or advancing the state-of-the-art.

The twelve research topics are as follows:

i. Stability Theory

2. Optimal Estimation and Control Theory

3. Distributed Parameter Systems Theory

4. Adaptive Control Systems
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5. LargeScaleSystems

6. Failure-Detectionand Fault-TolerantControl

7. MultivariableLinear FeedbackControlSystems

8. Air TrafficControlStudies

9. Space SystemsStudies

10. Aircraft SystemsControlStudies

ii. DigitalImplementationIssues

12. NumericalMethods for Estimationand Control.

The reader will notice that topics (1)-(3)containthe word "theory",while

topics (4)-(7)do not. This does not mean that the publicationsin topics (4)-(7)

are not theoreticalin nature;on the contrarymost of them are. However, in the

classificationscheme selected (forbetter or for worse) by the author the theoretical

resultsof topics (1)-(3)were focusedin particularclassesof problems. Indeed

severalpublicationsin topics (4)-(7)illustratethe theory containedthereinby

numericalsimulationsusing both academicand quasi-realisticexamples. Also, the

readerwill note a change in the presentationstyle. Theory is theory. Theory

appliedto a class of problemsis somethingelse.

Topics (8)-(10)containthe word "studies". The pertinentpublicationslisted

in topics (8)-(10)were even more focusedinto the types of specificsystemsthat

were of interestto the particularinterestsof the NASA grant monitors,and their

NASA colleagues,at a particulartime period. The author has chosen the word "studies"

rather than "applications"althoughmany of the publicationsuse realisticnumerical

models of specificphysicalsystems. It is more appropriateto view these publications

as "feasibilitystudies,"rather than "applications." This reflectsthe strong
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bias of the author that universities (at least the LIDS group at MIT) cannot and

should not do real applications; industry does applications. Fortunately, all the

NASA grant monitors over this 18 year period shared the philosophy of the author.

These "studies" greatly influenced the selection of theoretical research topics

by examining the strengths and limitations of new theories in a more pragmatic

setting. Some of these "studies" did have a direct influence upon the work of our

NASA colleagues, and upon subsequent industrial applications.

Finally, topics (Ii) and (12) reflect the importance of reliable number-

crunching at both the computer-aided analysis and design phase, and the real-time

microprocessor-based digital control system design.

1.2 Background

In order to place the research at a proper prespective, it is important to

present a brief overview of the status of the field in the few years before the grant

initiation date (1966).

Servomechanism control system deaign, for Single-Input-Single-Output (SISO) for

Linear Time Invariant (LTI) feedback control systems had reached a certain degree of

maturity by the late fifties. Several dozen books were written on the subject, and

it was routinely taught as an undergraduate elective in several engineering depart-

ments. Practical control systems were designed using Root Locus techniques, Bode

diagrams, and Nichols charts. Designs were tested using analog computers. For nonlinear

SISO control systems the describing function method was used to predict the onset of

possible oscillations. Some phase plane methods were used to study nonlinear second-

order systems, and relay servomechanisms.
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During the time period 1958-1966 the action was in modern control and estimation

theory. The celebrated maximum principle of Pontryagin et al and the dynamic

programming methodology of Bellman provided a solid theoretical foundation for the

study of nonlinear Multi-Input-Multi-Output (MIMO) control systems.

For linear SISO and MIMO systems, the pioneering work of Kalman et al on state

variable representations, structural properties, (controllability, observability),

state-variable feedback via the Linear-Quadratic regulator (LQR) and linear optimal

state estimation (the Kalman filter) provided a wealth of new results and approaches

that would keep theoreticians and practitioners busy for many years to come. The

underlying theory for minimum-time, minimum-fuel, and minimum-energy problems was

worked out. In 1961 the so-called Linear-Quadratic-Gaussian (LQG) approach to MIMO

control system design was developed, independently and simultaneously, by Gunkell

and Franklin and by Joseph and Tou (it took another decade to prove all the results

rigourously).

The stabilitytheoryof nonlinear systemswas also booming. Lyapunovmethods

became very popular. The input-output approach to stability (Zames, Sandberg), was

published in 1966. Frequency-domain criteria (Popov criterion, circle criteria)

were just developed.

The development of computer-aided design software on maxi-computers for cal-

culating the numerical solutions to'optima! estimation and control problems was

at its infancy; after all FORTRAN was only a few years old.

A few "preliminary feasibility" studies, primarily related to navigation and

optimal guidance trajectories, were carried out with mixed results; they pointed
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out that the new powerfultheoreticalresultshad to be used with care in practical

settingsand pointed out the need for ad-hoc adjustmentsto the theoreticalresults

(i.e. how to pick the processnoise covariancematrix so that Kalman filters

would not diverge).

Severalnotable researchmonographsappeared in the early sixties;Bellman

(1957),Chang (1961),Pontryaginet al (1962),Leitman (1962),Tou (1962),Balakrishnan

and Neustadt (1963). Textbookswere laggingsomewhat;Zadeh and Desoer (1964),

Athans and Falb (1966),Lee and Marcus (1967),Brysonand Ho (1969). Regulargraduate

level subjectson modern controltheory began to be taught in the major research

universitiesfrom 1965 on.

The research in the early sixtiesprovided a much needed stimulusto control

theory. Coupledwith the increasingemphasisupon space systemsand other defense

applications,as well as the rapid changesin digitalcomputertechnology,there was

a lot of excitementand promise in the air.

NASA establishedwithin the ElectronicsResearchCenter,in Cambridge,Mass.,

the Office of ControlTheory and Applications(OCTA). The present grant to MIT was

originallyfunded throughNASA/ERC and the first grant monitorswere Dr. George

Kovatch,Dr. George Zames, and Dr. WilliamA. Wolovich. At the grant inception,

Prof. Roger W. Brockettwas principalco-investigator.

1.3 Stability Theory

The following publications fall (more or less) in this topic; [7],[8],[9],[13],

[_4],[2_],[29],[3_],[36],[38],[45],[54],[63],[73],[78],[92],[__8],[_57],[_69],[_89],

[208].
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During the late sixties the theoretical research on nonlinear system theory

was spearheaded by Professor Roger W. Brockett and his students. The effort was

significantly strengthened when Jan C. Willems joined the MIT faculty after

receiving his Ph.D. under the supervision of Professor Brockett. The main research

emphasis during these early years was upon improving upon the earlier results

related to the stability of nonlinear systems using both time-domain and frequency-

domain ideas.

Notable contributions are: the paper by Brockett and Lee [9] that developed

frequency domain criteria for the instability of nonlinear and time varying dynamic

systems; the paper by Willems and Brockett [36] on stability theory; and the "classic"

paper by Willems [54] on the relations between causality, stability, and invertibility.

With the departure of both Professors Brockett and Willems from MIT the

research on stability theory was reduced. The emphasis shifted more to questions

related to stochastic stability as can by evidenced by the Ph.D. theses of

Blankenship [78] and Martin [!18].

Our brief overview of the stability research concludes with the conic sector

stability results obtained by Safonov in his Ph.D. thesis [169], also documented in

his research monograph [201],and [208]. These results generalize the 1966 results

of Zames. Interestingly, the conic sector stability results were obtained by

Safonov in his attempt to streamline the proofs associated with the guaranteed robust-

ness properties of LQG regulators (see also Section 1.9).

1.4 Optimal Estimationand Contro!Theorz

In this sectionwe overviewthe basic researchon optimalcontroland estimation

theory. We shouldremark that in this sectionwe do not includeresultsthat pertain
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to LQG-type of problems; these will be overviewed in Section 1.9. Similarly,

results that pertain to optimization issues for distributed parameter systems, large

scale systems, and reliable systems will be overviewed separately.

Even with this division, the number of publications is very large, and the

following publications fall in this research category: [2],[i0],[ii],[12],[17],[18],

[19],[20],[23],[24],[25],[32],[33],[35],[37],[40],[46],[48],[56],[S7],[61],[62],[65],

[71], [72], [74], [75], [77], [82], [8S], [87], [96], [99], [i00], [i06], [i07], [i08],[i15], [i17],

[120], [121], [127], [128], [129], [130], [134], [141], [142], [145], [151], [164], [165], [166],

[_7_],[_74],[_77]_[_8_],[_82]_[_83],[_92],[_97],[2_2],[2__],[2__],[2_8]_[22_]_[229],

[236],[238], and [253].

The research on nonlinear optimal control theory during the later 60's

naturally involved extentions and specialization of the available theoretical results

(maximum principle and Hamilton-Jacobi-Bellman theory). In particular, our early

research involved the full understanding of minimum-fuel optimal control (obviously

motivated by satellite applications); the Ph.D. thesis by Gray [i0] is an example of

this line of research.

Another significant development was the derivation of the matrix-version of

Pontryagin's maximum principle; see Athans [17]. The so-called "matrix minimum

principle" made it very easy to examine a wide-variety of optimal control problems

for which the control variables and state dynamics were most naturally expressed

in matrix form, as is the case with several estimation problem; see Athans and

Tse [19].

With the addition of ProfessorsSanjoy K. Mitter and lan B. Rhodes to the faculty,

the system theoretic manpower increased. The contribution by Mitter [37],[72], showed

the generic interelationship between controllability and pole-assignment.
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With respectto nonlinearestimation,the derivationof the extendedKalman

filter and the second-orderGaussianfilterby Athans et al [33]provided the

algorithmicframeworkfor more appliednonlinearstate and parameterestimation

studiesin the years to follow.

Also in the late 60's a significanteffortwas mounted in _understandinghow

to directlydesign nonlinearfeedbackcontrollers[57],[61];this effort did not

lead to any constructiveanswers, exceptthat it taught us how hard is to design

directlynonlinearfeedbacksystems. In retrospect,these effortswere premature.

In the early seventies,the field was preoccupiedby stochasticoptimal control

considerations. Part of these will he discussedin the AdaptiveSystemsand Large

Scale Systemssections. However, some nice theoreticalresultswere obtainedby non-

probabilisticapproachesto uncertaintyby Bertsekasand Rhodes [62],[74],[77]that

pointedout, at least at an algorithmiclevel, the similaritiesand differences

betweenprobabilisticand set-theoreticmodels of uncertainty. A consciousdecision

was made not to get involvedin the "fuzzy-set"approachto uncertaintyadvocatedby

Prof. Lotfi A. Zadeh.

The matrix minimumprinciplewas used effectivelyto solve a class of stochastic

optimizationproblems that simultaneouslyoptimized,in a dynamicsense, controland

measurementstrategies;see Kramer and Athans [85],[87],[96],[i08].The class of

problemswere motivatedby genericinterceptionand rendezvousproblems in which the

on-boardradar could switch waveformsto optimizethe predictionaccuracyassociated

with the targetmotion.

Mu!tivaluedperformancecriteriaare generica!lyimportantbecause is engineering

designsone is commonly faced with conflictingobjectives. The "InfimumPrinciple"by

Geeringand Athans [82],[99],[120]provideda theoreticaltool for understandingthe
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class of optimization problems with several performance criteria that yield

identical optimal solutions.

When Professor Alan S. Willsky joined the MIT faculty, and also became prin-

cipal co-investigator of this grant, he spearheaded a research effort directed to

estimation problems in classes of nonlinear systems; see Willsky and Marcus [i06],

[121],[127],[128],[129],[130],[134],[141]. Problems in satellite state estimation

and phase-lock loops provided the motivation for this class of theoretical results.

In the mid 70's the emphasis was shifted into stochastic optimization problems

with non-classical information patterns. Such problems are crucial in our fundamental

understanding of decentralized control and large-scale system theory. Our NASA Ames

grant monitor, Brian F. Doolin, provided encouragement to seek theoretical foundations

for this class of problems. It was becoming obvious during that time-period that a

microprocessor revolution was coming (did it ever!). From NASA's viewpoint one

could see the need for decentralized and distributed control for large space structures

and aircraft that became increasingly unstable and flexible. In addition to the

research reported in the Large Scale Systems section, a significant effort was launched

to understand these unconventional stochastic optimization problems. Key results can

be found in the publications by Sandell and Athans [iii],[139],[142],[145], in which

a "finite state finite memory" maximum principle was developed; these results were

valuable because they pointed out the tremendous increase in complexity that accom-

panies the decentralization of information. Along a different vein, the research of

Chong and Athans [iSl] developed some periodic coordination mechanisms necessary to

insure smooth operation of a decentralized control process.
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By the late 70's the research under this grant on deterministic and stochastic

control theory in the absence of a specific direction Ci.e. large scale systems,

adaptive control, geometric theory etc.) was slowly phased out. To a certain extent

the general theoretical questions were well understood; also the computational

shortcomings and difficulties were becoming apparent. Much of the grant emphasis

shifted to failure detection, fault-tolerant control, robust linear control system

design, and adaptive control.

Before we close-out this research area we would like to discuss some recent

results on the robustness of nonlinear optimal full-state variable designs; see

Tsitsiklis and Athans [253]. It was well-known since the early 60's that under

suitable assumptions that the optimal feedback controller for nonlinear time-

invariant systems, over an infinite time-horizon, led to a nominally stable design.

From a technical point of view, the optimal cost-to-go, which satisfied a Hamilton-

Jacobi-Bellman equation, could be used as a Lyapunov equation. What was not known,

and that is the message of [253], that the resultant optimal control system is also

very robust, in the sense that it has excellent multivariable gain and phase margins.

Our on-going research under grant NASA/NAG 2-297 is actively exploiting this key

consequence of optimality so as to develop a direct nonlinear control synthesis

methodology.

1.5 Distributed Parameter SystemsTheory

The research overviewed in the preceeding section dealt with optimal control

and estimation theory for finite dimensional dynamical systems. Distributed para-

meter systems, i.e. systems that involve a time-delay and/or described by partial
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differential equations, are of course very important. Our research on systems

described by time-delays was motivated by remote interplanetary operations in which

transmission delays are truly significant. Clearly, flexible aircraft and large

space structures are inevitably described by certain types of partial differential

equations.

Only a very limited portion of the grant resources was devoted to issues

related to distributed parameter systems. This research was initiated when Prof.

Mitter joined the faculty in the late 60's. The following publications fall in

this category: [66],[94],[I09],[131],[132],[133],[137],[143],[162].

The most significant developments in this area can be found in the Ph.D. thesis

of T.L. Johnson [94], in the comprehensive monograph by Prof. S.K. Mitter [131],[132],

[133], and in the Ph.D. thesis by Kwong [137]. For certain classes of distributed

parameter systems we have a comprehensive understanding of the necessary theory for

optimal estimation and control. However, we never had sufficient programming and

computer resources to develop the necessary algorithms so as to carry out the neces-

sary "feasibility studies" to test the advantages and limitations, if any, of the

theoretical results. It is the author's hope that the availability of "free super-

computer time" to university researchers in the next few years will spark a renewed

interest in this very important class of optimal estimation and control problems.

1.6 Adaptive Control Systems

The term "adaptive control" has been around at least since 1955 when Honeywell,

Inc. designed the X-15 autopilot. In the ensuing 30 years adaptive control has

captured the fancy of hundreds of control engineers and mathematicians, and at least

one thousand papers and a dozen books have been devoted to the subject. One would
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think that after so many years something solid, scientific, and practical would

emerge. Unfortunately, in the author's opinion, the field of adaptive control

remains confused, fragmented, and highly controversial. In spite of several noble

efforts, a realistic generally-accepted definition, relevant formulation, and

practical solution of the adaptive control problem is not available today.

For better or for worse, the research on adaptive control carried out under

the auspices of this grant has had its own varied history. The author, in his role

of principal investigator, was wary of mounting any concentrated attack on the

adaptive control problem. However, every one of the several grant monitors inevitably

(directly or in a subtle manner) posed the challenge "why don't you guys do something

about adaptive control?" and their feelings were duplicated by respected colleagues

and inquisitive graduate students. What happened is briefly described below.

The first phase of our adaptive control research started in the late 60's.

During that time-period theoreticians viewed the then-popular adaptive schemes with

disdain_ We decided to approach the adaptive control problem as a stochastic

optimal control problem, in which the coefficients of the linear system were modeled

as random variables, which could be estimated using an extended Kalman filter or

second-order filter [33]. The Ph.D. thesis of Edison Tse [58] and subsequent papers

by Tse and Athans [68],[69],[93], provided the initial framework. After Dr. Tse

left MIT he collaborated at Systems Control Inc. with Dr. Yaakov Bar-Shalom and the

original theoretical results in [58] were extended to a full blown theory of dual-

adaptive control in a series of papers by Tse and Bar-Shalom in the mid 70's.

See also [i04].

There were several problems that existed with a pure stochastic control

approach to the adaptive control problem. One major difficulty was that at each

* There were "adaptive algorithms" marketed by some companies that promised
solutions to all control problems; they did nothing of the sortl
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instant of time one had to propagate forward in time a matrix covariance equation

and then solve, backward in time, a control Riccati matrix equation; so these

schemes had extraordinaryreal-time computational requirements. Second, in the dual

control problem one had to make several (clever) approximations to the solution of

the nonlinear estimation and stochastic control problem, so there were no guarantees

about optimality. Third, since one used a finite sliding horizon for the optimal

control problem, it was next to impossible to make any precise statements about the

global stability of the resultant control system. Finally, simulation results for

"academic" problems showed that the adaptive control signal was highly oscillatory

at the beginning of theadaptation period; such large chattering appeared bothersome

(unfortunately, with the fixation of the field with state space models one never thought

what these high frequency controls would do to excite unmodeled high-frequency

dynamics in a practical setting).

Next, we decided to !ook for good signals for quick identification [i16],[122],

[144]. The theory told us that rapidly changing signals were good for identification,

and that one could attribute the hunting behavior of the adaptive system as an

attempt to identify the plant "quickly." Nonetheless, the equations looked too

"messy" and we decided to abandon this line of research.

In the mid 70's we embarked upon the second phase of our adaptive control research;

it stillhad a stochasticflavorto it and it was basedupon somenew theoretical

results on open-loop stochastic dynamic hypothesis-testing , coupled with an ad-hoc

way of computing the adaptive control.

* These were called "partitioned algorithms" by D.G. Lainiotis. The author coined
the term "Multiple-Mode! Adaptive Estimation (MMAE)" since it was more descriptive.
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Dieter Willner'sPh.D. thesis [i02] showed that the so-calledMultiple-

Model-Adaptive-Control(M_C) was not optimal; however, simulationsinvolving

simple academicresults showedpromise. We then embarkedupon an "applications-
w

oriented"effortto try the MMAC on the NASA F-SC DFBW aircraft [136].

From the F-SC study we found that the MMAC algorithmcould do severalstrange

things that we could not explain. Subsequentto the F-SC projectwe investedin

two Ph.D. theses,one supportedby this grant [179],to understandit; the MMAC

algorithmdefiedunderstanding. So, furtherresearch along these lines was discontin-

ued.

Meanwhile,the field of adaptivecontrolwas receivingincreasingattention.

In the mid 70's Prof. Astrom (Lund)proposedthe self-tuningregulator (STURE),

based on a simpleminimum-variancescheme. The so-calledModel ReferenceAdaptive

Control (MRAC)schemewas shown to be globallyasymptoticallystable (undercertain

mathematicalassumptions)by Prof. Narendraand his students (Yale)and Prof. Landau

and his students (Grenoble). These adaptiveschemesrequiredmuch less computation

than the stochasticdual controlalgorithmsand the MMAC method. Furthermore,as

we remarkedabove, the MRAC algorithmwas proved to be stable,under certainassump-

tions. Using similarassumptions,Egardt (Lund)proved that the STURE algorithmwas

also globally stable.

In 1977 Dr. Gunter Stein of Honeywelljoined the MIT EECS facultyas a part-time

adjunctprofessor,and he became a most valuablecontributorto the researchcarried

out by this grant (seealso Section1.9). In addition,in 1979 Dr. Lena Valavani

joined the MIT/LIDSresearch staff. Dr. Valavani'sPh.D. thesis at Yale, carriedout

*This effortwas fundedunder a separategrant from the NASA LangleyResearchCenter;
Mr. Jarrell R. Elliottwas the grant monitor. Ours was one of many parallel efforts,
and labeledas the "most risky" by Mr. Elliott (howcorrectwas his prediction!).The
Honeywelldesign,headed by Dr. GunterStein, was labeledthe most "conservative";
of course,it was the only one that, eventua!ly,was successfullyflight-testedat
Dryden.
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under the direction of Prof. Narendra, dealt with the theory and stability of

MRAC algorithms. Her arrival was instrumental to the initiation of the third

phase of our involvement in adaptive control.

This third phase of research on adaptive control under this grant is not over.

Publications [217],[222],[224],[234],[237],[239],[241],[244], and [246] document

the progress to date. Our research has shown, using a combination of theoretical

analyses and simulation results, that the assumptions necessary to prove the global

stability of the MRAC and STURE algorithms are always violated in practice due to

the inevitable presence of high-frequency unmodeled dynamics (far-away stable poles,

far-away non-minimum phase zeroes, small time-delays etc.). The combined effect of

unmeasurable persistent disturbances and high-frequency unmodeled dynamics can

result in instability of the closed-loop adaptive control system.

At present, we are studzing the so-called Robust Adaptive Control Problem in

which the presence of unmodeled dynamics and unmeasurable persistent disturbances is

an integral part of the problem formulation. Since unmodeled dynamics can only be

quantified by frequency-dependent bounds, the synthesis of robust adaptive algorithms

appears to require real-time spectral calculations, e.g. Fast Fourier Transforms,

in addition tO the real-time solution of nonlinear differential equations. The

problem formulation is realistic from a pragmatic viewpoint; however, it leads to

several fundamenta! questions, in both robust adaptive estimation and control, that

havenot been consideredin the literature.

1.7 Large Scale Systems

Research in large scale systems is directed primarily upon issues of decentral-

ized and distributed control. Each controller is suppQSed to gather only a subset

of the available sensor measurements and command only a subset of the available
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controls. Some sort of a coordination mechanism may be necessary to ensure that

this decentralized approach to control will "work well." Such coordination

mechanisms require real-time communications. Hence, one cannot separate the

decentralized system performance from the intra-controller communications require-

ments. Therefore, architectural issues are an integral part of large scale system

theory and practice.

The powerful theoretical optimal estimation and control tools (maximum

principle, dynamic programming, Kalman filtering, etc.) are centralized theories.

Unfortunately, over the 18 years spanned by this grant we have not been able to

generate new powerful theories that reduce the decentralized control problem to a

routine status; to the best of our knowledge no other research group has had much

success either.

It is not too difficult to figure out that the major difficulty in decentralized

control theory revolves around the fact that each controller has different information.

This is called "a non-classical information pattern" or "non-nested" information.

Even in a cooperative team or cooperative multi-person formulation, the existence of

"private" information leads to several unresolved issues that contribute to immense

theoretical difficulties.

When we started our research on large scale systems around 1969, with the

advise and consent of our NASA Ames grant monitor Brian F. Doolin, the only "storm

warnings" about the difficulty associated with non-classical information patterns

was due to the famous Witsenhausen counterexample [1968] which demonstrated that a

simple discrete-time LQG problem, whose solution is trivial in the centralized case,

became an almost impossible problem when the information structure was non-classical.
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One line of inquiry, led by Professor Ian B. Rhodes, was directed toward the

use of game-theoretic concepts extended to the dynamic case (differential games)

to capture the multi-controller nature of decentralized control systems [43],[51],

[52],[53],[149]. This line of research demonstrated the complexity issues introduced

by the presence of multiple decision-makers in the decentralized control problem.

However, it did not directly address the issues associated with non-classical

information pattern.

Along a more pragmatic vein, one can suspect that there are two classes of

problems in which the decomposition of a centralized design into a decentralized

design should be "easy".

(i) Weakly coupled systems, in which the dynamic interactions between

individual subsystems are "small". Ordinary perturbation techniques

can be used to study dynamic systems that reflect such weak-coupling

phenomena.

(2) Systems with significant time-scale separation, i.e. with different

bandwidths. For such systems one can take advantage of the bandwidth

separation to decompose the centralized controller. Singular perturbation

theory can be used to study dynamic systems that exhibit the time-scale

separation property.

In the early 70's Chong, Kwong, Athans, and Sandell studied the case of

weakly coupled systems [88],[95],[i03],[124],[139],[151] using the LQG framework.

This line of research developed the necessary methodology for designing decentralized

LQG systems, whose performance approached that of the centralized design as the degree

of dynamic coupling among the subsystems became smaller and smaller.
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In the mid 70's Sandell and Teneketzis developed the theoretical framework

and design methodology for exploiting time-scale separation so as to suitably

decompose LQG-based centralized designs [148],[158],[159],[168]. Once more the

performance of this type of decentralized design would approach that of the central-

ized one as the bandwidth separation became larger and larger.

These two lines of inquiry pretty much completed the "easy" cases of decentral-

ized control. In both cases, the impact of a non-classical information pattern is

minimal, since each subsystem had "enough" information to result in to superior

performance, and the requirements of intra-system communication were minimal.

The "hard" problems of decentralized control theory remained [iii],[124],[139],

[142],[170]. A notable achievement is contained in the Ph.D. thesis by Sandell

[iii] in which the complexities of non-classical information structure upon decentral-

ized control were confronted. Although one could derive a maximum-principle type

of theorem for this class of problems, the computational difficulties are immense.

Decentralized control theory research continued as an active research area

although it was not supported by this NASA grant. However, significant contributions

are few and rare. It is unlikely that we are going to see one or two new theorems

that will bring a revolutionary change in the way engineers design decentralized

control syatems (in an ad-hoc manner). The relevant theoretical questions change

drastically with the type of physical application that one has in mind. This might

suggest that a purely abstract normative theory, based on stochastic optimization,

for decentralized decision problems may be an almost impossible goal. Indeed recent

results by Prof. John N. Tsitsiklis suggest that such optimal distributed decision

problems belong to the class of NP-complete problems, which are notorious for their
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combinatorial complexity. Therefore, one must be satisfied with more ad-hoc

approaches to decentralized control; such ad-hoc approaches must necessarily be

guided by the specific application at hand.

1.8 Failure-Detection and Fault-Tolerant Control

Advances in microprocessor technology during the early 70's provided the

control engineer with the ability to monitor in real-time several signals in the

control loop so as to quickly and reliably carry out the function of Failure

Detection and Identification (FDI). From an aerospace perspective, as aircraft

became increasingly statically unstable and more flexible, the flight control system

designer had to worry about flight critical sensors and actuators, and their level

of redundancy.

Our NASA Ames Research Center grant monitor, Mr. Brian F. Doolin suggested that

we devote part of the grant resources to study important issues in reliability and

dynamic systems which included sensor FDI, actuator FDI, and fault-tolerant control

theory in general.

The major prime-mover of the research on FDI was Professor Alan S. Willsky who

joined the MIT faculty in 1974 and became co-principal investigator of this grant.

Professor Willsky and his students have obtained a great variety of results in the

FDI area; see publications [135],[155],[156],[203],[204],[209],[220],[223],[230],[233

[240],[247],[248],[251], and [252]. Indeed many of the theoretical results and

algorithms for FDI have been used quickly by industry and have been flight tested;

the Generalized Likelihood Ratio (GLR) test is the prime example.

*Also, starting in 1976, NASA Langley ResearchCenter funded us to study the underlying
theory of sensor FDI. Eventually, in 1981, the financial support of both Ames and
Langley Research Centers were consolidated within this grant.
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The early results on designing FDI systems are summarized in the classic

survey paper by Willsky [156] which was published in 1976. Subsequent research

efforts in this area can be best characterized by robust FDI which attempts to

quantify dynamic system model errors and their impact upon FDI algorithms. Key

results can be found in the Ph.D. thesis of Chow [203] and subsequent publications

by Chow and Willsky [204],[209],[223],[230]. Another set of important results,

relying on the projection method and parity tests, were obtained by Lou in his

thesis [220]; these have led to a variety of extentions and modifications for robust

FDI [223],[240],[247],[251],[252]. The recent paper by Willsky [248] contains a

summary of the more recent results.

The vast majority of the FDI theory and algorithms apply in an "open-loop"

monitoring context. They are a necessary, but by no means sufficient, ingredient

of any fault-tolerant design. Clearly, following the identification and isolation

of any failure it may be necessary to reconfigure or restructure the feedback control

system. Our research on fault-tolerant control was the first attempt to apply

stochastic optimal control theory Csee Section 1.4) to address fault-tolerant control.

Publications [172],[187],[188],[199], and [228] document our research findings in

the fault-tolerant control area.

The Ph.D theses of Birdwell [172] and of Chizeck [228] contain the bulk of the

available results. We modeled failures as probabilistic transitions of appropriate

parameters from one set of values to another; these were modeled as discrete Markov

chains. These discrete transitions then impacted the dynamic evolution of stochastic

state and measurement equations. This model yielded a "hybrid" state-space; some

states were discrete, while others were continuous. An optimal stochastic LQG

framework was adopted for the fault-tolerant design. Indeed, from a mathematical
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point of view, the formulation was similar to that of a stochastic adaptive control

problem (see Section 1.6). There were three sources of uncertainty

(I) The probabilistic transitions of the discrete-valued states, modeling failures

(2) The process noise, modeling system disturbances

(3) The measurement noise, modeling sensor errors.

In general, one cannot derive the solution of the stochastic optimal control

problem when all three uncertainties are present simultaneously. The publications

by Birdwell et al [172],[187] concentrate upon full state measurements (with no

errors) and zero-process noise. The onset of "failures" is infered (with some delay)

by the measurement of the state variables. In this case, one can solve the stochas-

tic optimal control problem with or without reconfiguring the control system.

However, the solution is characterized by an extremely complex set of coupled Riccati

difference equations. It was next to impossible to deduce any guaranteed stability

results.

In the publications by Chizeck et al [188],[199],[228] it was assumed that

the failure induced transitions could be sensed separately and instanteneously, by a

"super" FDI system, and their impact upon the stochastic optimal control problem

analyzed. Once more the equations are very complex, and only limited insight into

the stability of the fault-tolerant control system can be obtained.

The design of fault-tolerant control systems, and restructurable flight control

systems in particular, remains an active research area of interest to NASA. Given the

complexities, discussed above, associated with an optimal control approach to the

problem, more pragmatic applications-dependent approaches must be tried out and

evaluated.
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1.9 Multivariable Linear Feedback Control Systems

Throughout the long history of this grant the development of unified design

methodologies for linear multivariable feedback control systems has been an un-

interupted and persistent research objective. With very few exceptions, we focused

our approach to several variants of the Linear-Quadratic (LQ) and Linear-Quadratic-

Gaussian (LQG) design methodology. Indeed the MIT/LIDS control group has been

closely identified with LQG-based designs. Happily, LQG-based designs have led to

a systematic design methodology for multivariable servomechanisms, using an intergrated

state-space and frequency-domain framework; the so-called LQG/LTR approach.

Our long-term commitment to LQ and LQG based designs can be evidenced by the

large number (52) of publications that fall in this category. These are: [51,[16],

[22], [26], [271, [31], [34], [41], [42], [59], [64], [67], [81], [83], [86], [891, [91], [97], [98],

[___]_[___]_[__2]_[___]_[_2_]_[_2_]_[_4_]_[_46]_[_47]_[___]_[__4]_[_6_]_[_6_],[1691,

[_73],[_76],[_78],[_8_],[_9_],[_93],[_94],[2__],[2_6],[2_7],[2__],[2_4_,[2_6],[242],

[243],[249],[256], and [257]. These publications exclude "feasibility studies," as

well as the adaptation of the LQG methodology for adaptive systems, large-scale systems,

fault-tolerant control, and numerical algorithms.

During the late 60's most of the attention was focused upon certain variants

of the time-varying LQ problem. The development of techniques by Kleinman et al for

approximating the time-varying control gains by piecewise constant oneswas reported

in [51,[16],[26],[31]. The correct formulation and solution of the LQ sampled data

problem, in which the sampling function imposed piecewise constant constraints on

the control, was developed by Levis [27]. A series of publications by Levine and

Athans [34],[41],[42],[59],[89] solved the so-called "output feedback" or "limited
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state feedback" problem, in the absence of dynamic compensation; these ideas

were, and still are, used extensively in the aerospace applications literature.

The ideas behind output feedback were also used by Johnson and Athans for the design

of limited-order dynamic compensators [67],[89]. A summary of the LQG methodology

and its potential for multivariable feedback design was given in [86] in 1971.

During the early 70's the limitations of LQ/LQG regulators in the context of

command-following and disturbance-rejection servomechanisms problems was becoming

apparent. Athans and Sandell showed how to properly formulate LQ problems so that

integrators are introduced in the control loop resulting in zero steady-state errors

for step command inputs and constant disturbances [81],[83],[91],[98]. A series of

papers by Platzman et al and Blanvillain et al attempted to overcome some of the

dimensionality problems of LQG compensators [97],[i01],[ii0],[123],[153],[154],[173],

[178],[190]. The introduction of the first 4-bit and 8-bit microprocessors

influenced this line of research.

A significant (in retrospect) turn of events occured during the mid 70's which

eventually led to the integrated time-domain and frequency-domain methodology of

the LQG/LTR method, and the introduction of stability-robustness considerations in

MIMO servomechanism design. The author, in 1973, participated in a consulting

capacity in an LQ-based design for the control of the Trident submarine (the report is

classified). In this design, disturbances of large magnitude would saturate one of

the control surfaces; while the control surface remained saturated the submarine

exhibited short-term oscillatory behavior. Since control saturation can be interpreted
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as a downward gain margin, it became apparent that nothing was known about the

MIMO gain and phase margin properties of LQ and LQG designs. A decision was

made to initiate research to understand multivariable gain and phase margins.

This change in research directions was encouraged by Mr. Brian F. Doolin, our NASA/

Ames grant monitor during that time period; indeed it was within the theme of

reliable and robust control system design (see also Section 1.8) that dominated our

research during that time period.

The first set of MIMO robustness results were obtained by P.K. Wong in his

S.B. and S.M. thesis; he proved that multivariable LQ regulator designs have a

guaranteed infinite upward gain margin and 50% (6 db) downward gain-reduction margin

in each control channel independently and simultaneously; see [i12],[140],[161].

The gain margin results were quickly generalized by Safonov in his Ph.D. thesis.

to include the guaranteed +60° phase margin properties. Indeed, from a chronological

point of view, Safonov developed the conic-sector stability theory (see Section 1.3)

motivated by the need for more elegant and general proofs for his multivariable gain

and phase-margin results; see [146],[163],[169],[180],[201].

Adopting a historical perspective, the results on multivariable robustness

obtained by Safonov represent a truly significant turning point in multivariable

control system theory and engineering. At about the same time, the addition in the

mid 70's of Dr. Gunter Stein of Honeywell Systems Research (SRC) to the MIT faculty

as an Adjunct Professor of Electrical Engineering (part-time)was also a notable

event. Stein's commitment "to make modern control theory practical" had far reaching

implications for the research and educational activities of the author, the MIT/LIDS

*In the SISO case the 1963 classic paper of R.E. Kalman, "When is a Linear System
Optimal" pinpointed the guaranteed robustness properties of LQ regulators.
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control group, and the field of modern control engineering. I must also point out

the instanteneous cooperation of Brian F. Doolin who gave me at once the green light

to support the MIT portion of Dr. Stein's research under this grant, and did the

necessary administrative paperwork so that our research could proceed smoothly.

The years 1977-1979 were truly exciting ones at MIT. Professors Stein, Sandell,

Laub and the author, together with a fine crew of students concentrated upon the key

robustness issues. There was also improved lines of communication between MIT/LIDS

and the fine research group at Honeywell SRC. And many good things happened rapidly.

The use of singular values for MIMO control systems (generally credited to

Doyle) was adapted to place Safonov's general stability-robustness results in a more

concrete setting; under this grant relevant research on stability-robustness and its

use in LQ-base designs can be found in [176],[185],[193],[194],[207],[214],[249],

culminating in the doctoral thesis of N.A. Lehtomaki [210].

At a more general vein, G. Stein was the driving force behind the integration

of frequency-domain and state-space concepts for multivariable servomechanism synthesis,

and the development of the so-called LQG/LTR design methodology; see [206],[207],[210],

[216],[243],[256],[257]. The theory behind the LQG/LTR design methodology for MIMO

servos, and the accumulated pragmatic understanding of its advantages and limitations

(see Section 1.12), have resulted in a valuable body of knowledge that will undoubtedly

impact the engineering design of complex multivariable feedback control systems in

the decades to come.

The general understanding of how LQG/LTR control systems work, coupled with the

nonlinear robustness results of Tsitsiklis and Athans [253], have provided, for the

*One of the students was John C. Doyle who completed an S.B. thesis under the direction
of Prof. Sandell and an S.M. thesis under the direction of Prof. Mitter. J.C. Doyle
left MIT (to get away from all this LQG stuff) and became a consultant to Honeywell
SRC and a graduate student at U.C. at Berkeley. He did not quite forget LQG; see
[206].
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most part,motivation for our direct nonlinear system synthesis studies carried

out under the follow-on grant, NAG 2-297.

i.I0 Space Systems Studies

Our feasibility studies related to attitude control and similar satellite

related problems were instigated during the late 60's at the suggestion of our

NASA/ERC grant monitor, Dr. George Kovatch. The following publications are

classified in this category: [3],[4],[i0],[15],[39],[i06],[160].

Most of these quasi=applied studies were carried out in parallel with our

theoretical refinements related to minimum-fuel optimal control systems as reported

in Section 1.4. These feasibility studies provided us with a better understanding

of pragmatic issues related to minim_n-fuel attitude control and minimum-fuel

orbital transfer.

When the grant was transfered from NASA/ERC to NASA/Ames these studies were

deemphasized in favor of feasibility studies involving air traffic control and

aircraft systems.

At any rate, what we found is that most interesting fuel-optimal problems for

nonlinear systems, and in particular for orbit-transfer types of optimization problems,

required reliable numerical techniques for solving the so-called singular optimal

control problem. Other researchers have proposed in the mean-time several approaches

for solving optimal control problems involving singular arcs; our experience [32]

has been that these methods can be extremely ill-conditioned from a numerical point

of view. It is the author's opinion that the reliable computation of optimal control

problems with singular arcs is still an open research problem.
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i.ii Air Traffic Control Studies

Our interest in air traffic control spans the time period from 1969-1975.

When this grant was transfered to the NASA Ames Research Center, our limited

involvement with air traffic control studies was motivated by the pioneering work

of Dr. Heinz Erzberger and his colleagues at NASA/Ames on the application of optimal

control theory to air traffic control problems. The following publications represent

a summary of our efforts in the air traffic control area; [50],[60],[70],[79],[84],

[90],[119],[138].

The research was carried out primarily by three S.M. students: L.W. Porter,

A.H. Sarris, and F.M. Lax. The work progressed from 2-D, to 3-D, to 4-D versions

of the air traffic control problem. It represented some challenging applications of

deterministic optimal control theory coupled with heuristics.

We had a lot of interesting discussions with Dr. Erzberger and his colleagues

at NASA/Ames about air traffic control. Perhaps our very limited research had some

impact on their thinking; I tend to doubt it. Dr. Erzberger and his colleagues

certainly knew the state-of-the-art in optimal control theory, and were most competent

to apply it to several aspects of the air traffic control problem and to aircraft

trajectory optimization as their present results have clearly demonstrated.

1.12 Aircraft Systems Studies

With the transition of the grant from NASA/ERC to NASA/Ames, and later on with

the consolidation of both Ames and Langley funding under the same grant, our

"feasibility studies" shifted from space-oriented problems to aircraft oriented

problems, including esgines. Apart from our adaptive control studies on the F-8C
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aircraft (see Section 1.6) andair traffic control studies (see Section i.II),

the following publications represent our research contributions in the aircraft

systems area: [47],[80],[126],[195],[198],_15],[219],[221],[227],[231],[235],

[245],[254],[255].

These feasibility studies were primarily carried out by S.M. students. The

idea was to evaluate the advantages and limitations of existing control systems

design methodologies, and of the LQ and LQG methodologies in particular, in a more

pragmatic and realistic setting. In this manner, we gained additional insight into

the proper use of the theory, and based upon the conclusions pose other theoretical

directions to overcome the limitations, or boundaries, of existing theory. All of

the specific problems were selected jointly with our NASA Ames (Brian F. Doolin,

Luigi Cicolani, George Meyer) and Langley (Jarrell K. Elliott) grant monitors in

support of on-going NASA research projects.

The first class of aircraft related studies were carried out by T.L. Johnson

et al, and were the outgrowth of a cooperative program with Honeywell. The problems

were motivated by large aircraft (such as the B-52 and C-SA) where flexure motion of

the wings was a significant problem; see [47],[80],[227]. This provided us with

valuable insight into pragmatic issues of controlling an essentially distributed

parameter system (a bending wing), including sensor and actuator locations, and

motivated some of the basic research on distributed parameter systems (see Section 1.5).

In the late 70's NASA/Ames initiated a program in support of the U.S. Navy

efforts to land V/STOL aircraft on small platforms such as the DD-963 class

destroyer. The research by McMuldroch, Bodson et al was directed upon this problem;
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see [195],[198],[215],[219],[221],[231]. In this case, we not only had to study

the dynamics of the VTOL aircraft but we had to develop detailed models of the

pitch, heave, roll, and sway motions of the DD-963 at high sea states. We developed

both "chase-the-deck" and "landing-on-a-peak" control strategies.

During the past few years our feasibility studies were driven by the growing

interest in integrated aerodynamic and propulsion control; this requires truly

multivariable coordinated control of the aircraft control surfaces and modern

turbofan engine fuel and geometry variables. In addition to their obvious importance

from an applications standpoint, these feasibility studies have been serving a very

useful purpose in understanding the power of the LQG/LTR design methodology (see

Section 1.9). Studies include the longitudinal control of the Harrier AV-8A aircraft

[235],[244] using the elevator, thrust, and nozzle angle as control variables; also

the multivariable control of the F-100 engine [245],[255].

1.13 Digital Implementation Issues

As digital fly-by-wire systems progressed from a dream to reality, and as the

microprocessor revolution has changed the rules of practical design, increasing

attention was paid to the specific new design issues associated with digital com-

pensators.

One line of investigation was pursued by Prof. T. Johnson and his students;

[167],[175],[184]. These related to explicit incorporation of the finite-state

nature of digital arithmetic in the design of digital compensators for estimation

and control.
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A different line of investigation was pursued by Moroney et al; [196],[200],

[212],[213] in which roundoff noise, finite-wordlength, scaling, and architectural

issues related to microprocessor-based compensators were analyzed.

A third line of inquiry was developed by Thompson et al [226],[242]. In

this research the conic sector results of Safonov [169] were used to study performance

and robustness issues in sampled-data systems which consist of a continuous-time

plant controlled by a digital computer. Since the digital sampling process results

in a time-varying system (from a continuous-time point of view), the conic sector

"center" was used to define a time invariant operator, while the conic sector radius

bounded the impact of time-variations by a time invariant bound.

1.14 Numerical Methods

From the very inception of this grant, as can be evidenced by the first publica-

tion [i], a portion of the grant resources were directed toward the development of

numerical algorithms and research software which provided the MIT/LIDS control group

the capability to carry out number crunching in support of our feasibility studies, and

contributing to the generation of new algorithms that could be used by the control

science and engineering community at large. The research along these lines is reported

in publications [i],[5],[i0],[28],[44],[49],[55],[76],[i05],[i14],[150],[152],[185],

[191],[194].

Non-differentiable static and dynamic optimization problems arise naturally in

a vast and wide variety of applications. Along these lines we single out the key

contributions by Mitter and Bertsekas [76],[i05] and by Hager and Mitter [152]; these

had significant impact on subsequent algorithmic design.
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The numerical solution of the two-point-boundary value (TPBV) problem received

quite a bit of attention during the early phases of this grant. Such two-point-

boundary-value problems arise inevitably when one derives the necessary conditions

implied by Pontryagin's maximum principle. Publications [i0],[28] deal with the

adaptation of Newton's method to compute fuel-optimal controls. In a more general

setting, the numerical solution of TPBV problems is addressed in [49].

For LQ, LQG, and Kalman filter designs one needs, of course, to solve the so-

called algebraic Riccati equation (ARE). In [i] this was obtained by brute-force

numerical integration of the associated matrix differential equation. In [5]

Kleinman developed the so-called "Kleinman method" which used Newton's method to

calculate the solution to the ARE; see also [i14]_

When the singular value decomposition method was developed in the late 70's,

critical issues regarding their computations were addressed by Alan J. Laub [185],

[194]. His results represent essential features of all reliable present-day com-

mercial and propitiatory software packages for MIMO control system analysis and design.

1.15 Concluding Remarks

The author has attempted to provide a guided tour of the nature of the research

conducted at MIT/LIDS with financial support derived under this NASA grant. One

really cannot do justice to the immense volume of results obtained over the past

18 years. This does require reading of the cited publications.

*"Kleinmans method" was, and still is, used extensively in many software packages; it
does not work very well when the eigenvalues are far spread. Its main competitor was
"Potter's method" which does not work very well when the eigenvalues are close together
Only during the late 70's,when Alan J. Laub produced more reliable means for solving
the ARE, these methods became technologically obsolete.
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At the very least, it is the author's hope that he illustrated the nature of

the interactions that have taken place between the MIT/LIDS group and the NASA

Electronics, Ames and Langley Research Centers. It has been a mutually rewarding

experience and due credit must be given to the various NASA leaders that served as

grant monitors over the years: George Kovatch, Brian Doolin, Luigi Cicolani, Jerry

Elliott, and George Meyer. Their encouragement, suggestions, criticisms, and support

were in the long run much more valuable than the dollars that NASA provided to MIT.

How they managed to fight the inevitable "budget battles" and continue uninterrupted

support for 18 years is beyond my comprehension!
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2. PUBLICATIONS

In this section we present the list of publications that document the research

conducted under NASA grant NGL-22-009-124 from 1966 to 1984. A total of 257

reports, theses, conference and journal articles are included. The listing is in

roughly chronological order.

A remark about the list of publications is in order. Every effort has been made

to eliminate duplication of similar material. This is particularly true of papers

that are published in refereed journals. These start as preprints, revised preprints,

often appear in conference proceeding volumes, and eventually (after 2-3 years) they

are published in archival journals. The contract monitors have received all these

versions of the paper. However, for this final report, we have eliminated all prior

versions of a particular journal article. Thus, the publications list is not "padded".

Also we have not included the semi-annual status reports submitted to satisfy the

contractual requirements.

Each one of the publications listed below acknowledges this NASA grant. Several

publications also acknowledge other sources of support. We have not made any attempt

to "flag" these joint=support publications in the list that follows.

i. M. Athans and W.S. Levine, "On the Numerical Solution of the Matrix Riccati Dif-

ferential Equation Using a Runge-Kutta Scheme," Electronic Systems Laboratory
Report 276, M.I.T., 1966.

2. M. Athans, "On the Uniqueness of the Extremal Controls for a Class of Minimum
Fuel Problems," IEEE Transactions on Automatic Control, Vol. AC-II, No. 4,
October 1966, pp. 660-668.

3. S. Greenberg, "Minimum Time and Fuel Trajectories for Orbital Transfer," Electronic
Systems Laboratory Report No. 290, M.I.T., December 1966.
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Over the years 16 MIT faculty and post-doctoral fellows have received partial

support from this grant and have contributed to the research as documented in the

publications section. The names appear in roughly chronological order as reflected
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and industry; the list of names appears to be like "who-is-who" in control science

and engineering.

M. ATHANS is a faculty member at MIT in the EECS department. He has been the

Principle Investigator of this grant since its inception.

R.W. BROCKETT was a faculty member at MIT. He then joined the faculty at Harvard

University.

W.S. LEVINE, after receiving his Ph.D. from MIT, joined the EE faculty at the

University of Maryland.

S. G. GREENBERG, after receiving his Ph.D. from MIT, joined IBM, then TASC, and he

is now a manager with Digital Equipment Corp.



-53-

F.C. SCHWEPPE is a faculty member at MIT in the EECS department.

D.L. KLEINMAN, after receiving his Ph.D. from MIT, joined Bolt, Beranek,

and Newman Inc., and then Systems Control Inc. He is now a faculty member in the

EECS department at the Univ. of Connecticut.

J.C. WILLEMS, after receiving his Ph.D. from MIT, joined the MIT faculty and

then went to the University of Groningen, Holland.

M. GRUBER, after receiving his Ph.D. from MIT, joined the staff of the MIT

Lincoln Laboratory.

D.L. GRAY, after receiving his Ph.D. from MIT, joined the NASA Electronic Research

Center. Later he went to Aerojet Corp.

E. TSE, after receiving his Ph.D. from MIT, joined Systems Control Inc. He is

now a faculty member at Stanford University in the Engineering-Economics department.

A. DEBS, after receiving his Ph.D. from MIT, joined Systems Control Inc. He is

now a faculty member_at Georgia Institute of Technology in the EE department.

T. FORTMANN, after receiving his Ph.D. from MIT, joined the faculty of Newcastle

University in Australia. He is now at Bolt Beranek and Newman, Inc.
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