PREFACE

This study was conducted for the Lyndon B. Johnson Space Center under NASA Contract NAS9-17066 by the Grumman Aerospace Corporation. Mr. Lyle M. Jenkins was NASA's Technical Monitor and Mr. Darrell R. Matula was the Contract Specialist for the study. Mr. Roy E. Olsen was the Grumman Study Manager.

The nine-month study was started on 27 February 1984. Phase 1 was completed on 27 May 1984 and Phase 2 was completed on 27 November 1984. A wide range of potential applications for space-based servicing, using remotely operated systems, have been identified and system concepts have been defined. A technology development program compatible with Space Station planning is also defined.

The major Grumman contributors to this study were:

- Erik Eriksen Deputy Study Manager & Program Planning Task Leader
- Raymond Pratt Mission Requirements Task Leader
- Stanis Coryell Design Concepts Task Leader
- Chauncey Knapp Design Concepts
- Christopher Horan Design Concepts
- Vahe Jordan System Costs

The Final Report for the study is presented in two volumes:
Volume 1 Executive Summary
Volume 2 Study Results

Requests for information on this study should be addressed to:
Mr. Lyle M. Jenkins Mr. Roy E. Olsen
NASA/JSC Technical Monitor or Grumman Study Manager
(713) 483-3083 (516) 575-4229
CONTENTS

Section Page
1 INTRODUCTION 1-1
2 STUDY OBJECTIVES 2-1
 2.1 Objectives 2-1
 2.2 Ground Rules 2-1
3 STUDY APPROACH 3-1
 3.1 Study Logic 3-1
 3.2 Schedule 3-1
4 REQUIREMENTS DEVELOPMENT 4-1
 4.1 Mission Scenarios 4-1
 4.2 Service Requirements 4-2
 4.3 Design Criteria 4-5
5 CONCEPTS DEVELOPMENT 5-1
 5.1 Development Overview 5-2
 5.2 Design Issues 5-5
 5.3 Candidate Approaches 5-6
 5.4 Remote Work System Tapes 5-8
 5.4.1 General Characteristics 5-10
 5.4.2 Relative Capabilities 5-10
 5.4.3 Mission Applications 5-11
 5.5 Remote Operating System Concepts 5-12
 5.6 Remote Work System Concepts 5-16
 5.7 Space Station Interfaces 5-19
 5.8 System Development Program 5-25
 5.8.1 Technology Readiness Assessment 5-25
 5.8.2 Technology Development Program 5-27
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.8.3 Flight Test Concepts</td>
<td>5-28</td>
</tr>
<tr>
<td>5.8.4 Program Cost Estimates</td>
<td>5-29</td>
</tr>
<tr>
<td>6 REFERENCES</td>
<td>6-1</td>
</tr>
</tbody>
</table>
ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-1</td>
<td>Study Logic & Major Outputs</td>
</tr>
<tr>
<td>3-2</td>
<td>Study Schedule</td>
</tr>
<tr>
<td>4-1</td>
<td>Requirements Development Service Tasks</td>
</tr>
<tr>
<td>4-2</td>
<td>Candidate Missions</td>
</tr>
<tr>
<td>4-3</td>
<td>Service Functions Identification - Fluid & Gas Replenishment</td>
</tr>
<tr>
<td>4-4</td>
<td>Service Functions Identification - Equipment/Module Replacement</td>
</tr>
<tr>
<td>4-5</td>
<td>Service Functions Identification - Maintenance/Repair Tasks</td>
</tr>
<tr>
<td>4-6</td>
<td>Service Functions Identification - Assembly & Construction</td>
</tr>
<tr>
<td>4-7</td>
<td>Service Tasks</td>
</tr>
<tr>
<td>4-8</td>
<td>Selected Servicing Missions</td>
</tr>
<tr>
<td>4-9</td>
<td>Design Criteria Development Factors</td>
</tr>
<tr>
<td>4-10</td>
<td>Remote System Drivers</td>
</tr>
<tr>
<td>4-11</td>
<td>Requirements Development - Design Factors</td>
</tr>
<tr>
<td>5-1</td>
<td>Remote Operating System Elements</td>
</tr>
<tr>
<td>5-2</td>
<td>Concepts Development Methodology</td>
</tr>
<tr>
<td>5-3</td>
<td>Concepts Matrix</td>
</tr>
<tr>
<td>5-4</td>
<td>Space Station Mission Scenario - AXAF Tank Replacement</td>
</tr>
<tr>
<td>5-5</td>
<td>Design Issues</td>
</tr>
<tr>
<td>5-6</td>
<td>Concepts Development</td>
</tr>
<tr>
<td>5-7</td>
<td>Free Flyer Service - Berthing/Positioning Options</td>
</tr>
<tr>
<td>5-8</td>
<td>Concepts Development - Remote Work Systems Assessment</td>
</tr>
<tr>
<td>5-9</td>
<td>Concepts Development - Selected Remote Work System Applications</td>
</tr>
<tr>
<td>5-10</td>
<td>Space Station Transport Vehicle Requirements</td>
</tr>
<tr>
<td>5-11</td>
<td>Free Flyer Servicing</td>
</tr>
<tr>
<td>Fig.</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td>5-12</td>
<td>System Concept - Service on Space Station</td>
</tr>
<tr>
<td>5-13</td>
<td>System Concept - Free Flyer Service</td>
</tr>
<tr>
<td>5-14</td>
<td>Iterative Concept Design Procedure (Example)</td>
</tr>
<tr>
<td>5-15</td>
<td>Robotic Work System Concept</td>
</tr>
<tr>
<td>5-16</td>
<td>Telesoperator Work System Concept</td>
</tr>
<tr>
<td>5-17</td>
<td>Telepresence Work System Concept</td>
</tr>
<tr>
<td>5-18</td>
<td>Work System Weight Estimates</td>
</tr>
<tr>
<td>5-19</td>
<td>Remote Work Systems - Requirements Summary</td>
</tr>
<tr>
<td>5-20</td>
<td>Space Station Interface Options</td>
</tr>
<tr>
<td>5-21</td>
<td>Space Station Remote Operating System - Block Diagram</td>
</tr>
<tr>
<td>5-22</td>
<td>Control Station Concepts</td>
</tr>
<tr>
<td>5-23</td>
<td>Technology Risk Assessment</td>
</tr>
<tr>
<td>5-24</td>
<td>Remote Work System Technology</td>
</tr>
<tr>
<td>5-25</td>
<td>Remote Work System Development</td>
</tr>
<tr>
<td>5-26</td>
<td>Flight Demonstration Concept</td>
</tr>
<tr>
<td>5-27</td>
<td>Flight Test Bed Concept</td>
</tr>
<tr>
<td>5-28</td>
<td>Remote Work System - Relative Costs</td>
</tr>
<tr>
<td>5-29</td>
<td>Remote Work Systems/Elements Comparative Cost</td>
</tr>
</tbody>
</table>
1 - INTRODUCTION

This volume presents the results of the study entitled "Analysis of Remote Operating Systems for Space-Based Servicing Operations." An overview of the study is presented in Volume 1, Executive Summary. The development of remotely operated systems for space station and free flyer servicing is addressed. Included are the identification of system requirements and the allocation of tasks to different types of remote systems. The goal of these systems is not to replace the human but to augment and extend the human's capabilities in order to increase productivity and safety without sacrificing the human's unique decision-making skills.
2 - STUDY OBJECTIVES

2.1 OBJECTIVES

The purpose of this study was to analyze and develop the requirements for remote operating systems as applied to space-based operations for the servicing, maintenance and repair of satellites. The study defines remote operating system options, develops preliminary space station interface and support requirements, and scopes options for technology development and demonstration. Remote operating systems are defined as the equipment which provides the ability to perform useful work in space at distances ranging from close proximity to thousands of miles from a human operator.

2.2 GROUND RULES

The major ground rules established for the study were as follows:

- Servicing operations on and in conjunction with the space station will be considered; servicing functions on the space station include the maintenance of subsystems of a satellite which has been retrieved for service; servicing in conjunction with the space station includes in situ operations such as module replacement on a space platform vehicle controlled from the space station
- Activities involving hazards, repetition, or intermittent tasks will be included
- Remote operating systems of three basic types (teleoperation, telepresence and robotic) will be considered
- Systems development will emphasize early flight systems.
3 - STUDY APPROACH

3.1 STUDY LOGIC

The study was conducted in two distinct phases as shown in Fig. 3-1. Phase 1, Requirements Analysis, consisted of the development of servicing requirements to establish design criteria for remote operating systems. Key inputs to this analysis were the mission models from related studies.

Phase 2, Concepts Development, defined preferred system concepts and development plans which met the requirements established in Phase 1. In Task 2, remote operating system concepts were developed and analyzed to identify desirable operational and conceptual approaches for the selected mission scenarios. The potential impact of such systems incorporated into the design of the space station were identified in Task 3. Remote operating systems design issues, such as mobility, which are effected by the space station configuration, were addressed. Baseline space station configurations were a key input to this task. Programmatic approaches for technology development, testing, simulation, and flight demonstration in support of remote operating systems development were defined in Task 4. This task included program plans, schedules, and estimated costs for 1) a supporting development program to establish technology readiness, and 2) a production program to support early space station operations.

3.2 SCHEDULE

The schedule for the study, shown in Fig. 3-2, includes milestones for briefings, documentation and task/subtask performance periods.
Fig. 3-2. Study Schedule
4 - REQUIREMENTS DEVELOPMENT

The development of requirements has considered the full range of in-orbit servicing tasks which may be required. Figure 4-1 presents the range of general functions extending from relatively simple resupply to the upgrading of a satellite by incorporating new equipment. These functions may be required as a result of anticipated events, such as mechanical wear, or from unforeseen, uncontrollable factors such as a design flaw.

4.1 MISSION SCENARIOS

Three service sites were considered in this study:

- On board service at a space station, performing external service on the station and on spacecraft temporarily attached to the station
- Remote operations in low earth orbit (LEO) on satellites or space platforms
- Remote operations in geosynchronous orbit (GEO) on satellites or space platforms.

The NASA Space Systems Technology Model, January 1984 issue, and the NASA/LaRC Space Station Mission Model Data Base, and related studies (Ref. 1, 2, and 3) were used as sources of candidate mission scenarios. Commercial, science, applications and technology development missions planned or proposed during the 1990s were considered.

<table>
<thead>
<tr>
<th>SERVICING FUNCTION</th>
<th>REASONS FOR SERVICING</th>
<th>BASIC SERVICE REQUIREMENT</th>
</tr>
</thead>
</table>
| RESUPPLY | UNPLANNED LOSS OF EXPENDABLE
 • FAILURE
 • OTHER
 PLANNED USE OF EXPENDABLE
 • LOWER INITIAL LAUNCH WEIGHT | REFILL TANKS OR ADD TANKS |
| REPLACE/REPAIR | UNPLANNED FAILURE
 • DESIGN FLAW
 • RANDOM FAILURE
 • WEAROUT
 • DELIVERY SYSTEM FAILURE/ANOMALY | REMOVE AND/OR REPLACE FAILED EQUIPMENT
 • CORRECT CAUSE OF FAILURE |
| RECONFIGURE | PLANNED OR UNPLANNED NEW OR ADDED MISSIONS | ADD NEW EQUIPMENT AND/OR MODIFY ARRANGEMENT OF OLD EQUIPMENT |
| UPGRADE | PLANNED OR UNPLANNED NEW TECHNOLOGY | ADD AND/OR MODIFY EQUIPMENT |

SELECTED

- FLUID TRANSFER
- TANK REPLACEMENT
- ELECTRONICS REPLACEMENT
- "REPAIR"
- CONSTRUCTION

Fig. 4-1 Requirements Development Service Tasks
An initial selection of fourteen candidate missions (Fig. 4-2) was made covering the three service sites described above. Servicing on-board the space station includes a mission for external subsystems of the station, in addition to attached spacecraft and payloads. Low earth orbit missions include those requiring equipment servicing and assembly operations. Specific missions were selected based on the generic nature of the service to be performed, the mission time frame, the frequency of servicing, and the relationship to other similar service missions.

![MISSIONS GENERIC SITES](Fig. 4-2 Candidate Missions)

4.2 SERVICE REQUIREMENTS

The service operations for each of the candidate missions were functionally analyzed to identify service tasks. Service operations considered included repair equipment, maintain equipment, replenish consumables, and replace equipment and assemble major elements. Three levels of functions were identified for each mission: first, the type of service to be provided, e.g., replace instruments; second, the specific item requiring service, e.g., subsystem component; and third, the specific functions to implement the service.

The results of the functional analysis were assembled into five groups: fluid transfer, task replacement, equipment/module replacement, maintenance/repair tasks, and assembly/construction. The missions and associated functions for each group are presented in Fig. 4-3 through 4-6. Representative cases were selected in each group as indicated for subsequent detailed analysis.

In the case of fluid transfer (Fig. 4-3), the Orbital Maneuvering Vehicle (OMV) mission was selected because of requirements for refueling up to seventeen times per
year. *In situ* Science and Applications Space Platform (SASP) servicing operations are typical of spacecraft that have instruments requiring replenishment of gases. Tank replacement for cryogenic systems is represented by the Advanced X-ray Astrophysics Facility (AXAF) mission which uses several instruments requiring cooling gases.

Spacecraft servicing operations generally require the replacement of electrical equipment or modules (Fig. 4-4). The Gamma Ray Observatory (GRO) mission was selected to represent the replacement of externally-mounted modules of the Multi-mission Modular Spacecraft (MMS) type, which are a proven concept. The SASP mission was chosen to cover the majority of equipment replacement functions which require gaining access to internally mounted equipment.

Maintenance and repair tasks (Fig. 4-5) on the space station are expected to occur frequently because of the high activity level, periodic visits by the Orbiter and continuous manned presence. Contingency retrieval and deployment operations for the GRO mission at the space station was selected to represent these functions.
Fig. 4-4 Service Functions Identification — Equipment/Module Replacement

<table>
<thead>
<tr>
<th>MISSION</th>
<th>FUNCTION</th>
<th>SS</th>
<th>HRS</th>
<th>SRIF</th>
<th>GRO</th>
<th>OMV</th>
<th>OTV</th>
<th>AXAF</th>
<th>ST</th>
<th>UARS</th>
<th>SASP</th>
<th>TAT</th>
<th>COSMIC</th>
<th>LD</th>
<th>GEO COMM PLAT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>EQUIP./MODULE REPLACEMENT</td>
<td>MMS MODULES</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>APPENDAGE DRIVE (ANT, S/A, DOOR & RADAR DRIVE)</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>REACTION WHEEL</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>MAGNETIC TORQUER</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>INSTRUMENT ELECTRONICS MODULE</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>INSTRUMENTS</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>RATE GYRO ASSY</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>SENSORS</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>BATTERIES</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>BATTERY CONTROL & REG</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>ELECTRONIC EQUIP.</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>SOLAR ARRAYS</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>FUEL CELLS</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>ANTENNA</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>THRUSTER</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>Manufactured Products</td>
<td>•</td>
</tr>
</tbody>
</table>

Fig. 4-5 Service Functions Identification — Maintenance/Repair Tasks

<table>
<thead>
<tr>
<th>MISSION</th>
<th>FUNCTION</th>
<th>SS</th>
<th>HRS</th>
<th>SRIF</th>
<th>GRO</th>
<th>OMV</th>
<th>OTV</th>
<th>AXAF</th>
<th>ST</th>
<th>UARS</th>
<th>SASP</th>
<th>TAT</th>
<th>COSMIC</th>
<th>LD</th>
<th>GEO COMM PLAT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAINTENANCE/REPAIR TASKS</td>
<td>STOW/DEPLOY APPENDAGES</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>CONNECT/DISCONNECT UMBILICAL</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>JETTISON APPENDAGES</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>THERMAL BLANKETS</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>RADIATOR</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>SOLAR ARRAY</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>CAMERA — REPLACE</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>EXTERIOR LIGHT — REPLACE</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>EXTERNAL INSPECTION</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>CLEAN WINDOWS/OPTICS</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>HATCH SEAL REPLACEMENT</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>REPAIR EXTERNAL SURFACE</td>
<td>•</td>
</tr>
</tbody>
</table>

R85-0308-008D

4-4
Initial assembly of the space station and replacement of logistics modules was chosen (Fig. 4-6) to include maneuvering, alignment and attachment of large modules. The mating of large payloads to an upper stage was chosen using the GEO Communications Platform in the stowed configuration as the payload to be mated.

The Large Deployable Reflector (LDR) mission was selected as the source of representative mission requirements for in-orbit construction of a complex, large structure.

The selected servicing missions were refined further, as indicated in Fig. 4-7, to provide a baseline set of service tasks to be used for establishing remote system design criteria. Functionally redundant operations or less complex operations required by more than one mission or as part of one mission were eliminated.

The resulting group of seven missions are indicated by the shaded pictures in Fig. 4-8 with the applicable service functions included.

4.3 DESIGN CRITERIA

Design criteria for the development of remote operating systems have been established by evaluating the design factors for these systems relative to the mission factors for the representative tasks selected above. These factors are expanded in Fig. 4-9. The significant design issues and the corresponding mission factors which impact them are presented in Fig. 4-10. Physical constraints and special task functions have the broadest effect on design issues, but all mission factors are important.
Fig. 4-7 Service Tasks

<table>
<thead>
<tr>
<th>MISSION</th>
<th>FUNCTION</th>
<th>SPECIFIC OPERATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPACE STATION</td>
<td>MAINTENANCE & REPAIR</td>
<td>THERMAL BLANKETS, RADIATOR,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SOLAR ARRAY, CAMERA-REPLACE</td>
</tr>
<tr>
<td></td>
<td>ASSEMBLY & CONSTRUCTION</td>
<td>ASSEMBLE PRESS/STRUC. MODULE</td>
</tr>
<tr>
<td>OMV</td>
<td>FLUID TRANSFER</td>
<td>N$_2$H$_4$ PROPELLANT TRANSFER, GN$_2$ PROPELLANT TRANSFER</td>
</tr>
<tr>
<td>AXAF</td>
<td>TANK REPLACEMENT</td>
<td>XENON/METHANE, AMMONIA/Cryo METHANE, ARGON/CO$_2$/XENON</td>
</tr>
<tr>
<td>GRO</td>
<td>MAINTENANCE & REPAIR</td>
<td>STOW/DEPLOY APPENDAGES, CONNECT/DISCONNECT UMBILICAL, JETTISON APPENDAGES</td>
</tr>
<tr>
<td>LDR</td>
<td>ASSEMBLY & CONSTRUCTION</td>
<td>ASSEMBLE CONSTRUCTION JIG, ASSEMBLE STRUCTURE, ATTACH PANELS</td>
</tr>
<tr>
<td>COMM PLATFORM</td>
<td>ASSEMBLY & CONSTRUCTION</td>
<td>ASSEMBLE SOLAR ARRAYS, DEPLOY BLANKET</td>
</tr>
<tr>
<td>SASP</td>
<td>EQUIPMENT/MODULE REPLACEMENT</td>
<td>MMS MODULES, APPENDAGE DRIVES, REACTION WHEEL, MAGNETIC TORQUER, INSTRUMENT ELEC. MODULE</td>
</tr>
<tr>
<td></td>
<td>FLUID TRANSFER</td>
<td>HE/XE/CH$_4$</td>
</tr>
</tbody>
</table>

SELECTED: 1

Fig. 4-8 Selected Servicing Missions

LEGEND:
- FT - FLUID TRANSFER
- TR - TANK REPLACEMENT
- ER - EQUIPMENT REPLACEMENT
- MR - MAINTENANCE/REPAIR
- AC - ASSEMBLY/CONSTRUCTION
Each representative mission was examined in detail to arrive at general design criteria. Tank replacement for the AXAF mission is illustrated in Fig. 4-11a as an example of a specific servicing task.
Many of the AXAF instruments require gaseous cooling. The replenishment approach we selected is to replace the gas tanks. First, doors must be opened for access to the instruments, then a manipulator can reach into the instrument carousel to grasp the tank. Isolation valves must have previously been closed and the tank electrically isolated. Plumbing lines must be disconnected and the tank must be structurally released.

A manipulator requires support close to the work area and must reach 2-1/2 ft into the carousel through an opening 30 in. wide x 72 in. high.

The resulting general design criteria based on such analysis is presented in Fig. 4-11b. The minimum and maximum values for the parameters shown were selected based on analysis of the specific servicing tasks. The maximum values indicated for reach and attach point separation were chosen as realistic design values although exceptions might be encountered for certain missions. These cases would be treated as mission-unique requirements with additional, special equipment needed.

The carrier vehicle or device, such as a railed crane, which positions the remote system and the device which holds and positions a spacecraft being serviced, have a significant effect on design requirements of the remote system. The selected values are considered to be reasonable design criteria.
The wide variations in complexity level and servicing frequency have been considered in the concepts development effort for comparing the candidate concepts. For example, an infrequently performed, complex service operation will generally have a major impact on the design of a robotic servicing system. These evaluations have been made during the Task 2 portion of the study.
This section develops concepts for remote operating systems which meet the requirements of the reference missions established in the preceding section. Remote operating systems, whether for servicing of the space station or of free flyers, are, in general, comprised of a complement of equipment, both remotely located and at the location of the operator. This complement of equipment includes the remote equipment which actually performs the desired task, the associated equipment which moves to and from the worksite, and the control stations which provide for direction of the remote operations.

The interrelationships between the various elements which comprise such a system are shown schematically by Fig. 5-1. The work system is defined as the element which performs the direct contact operations associated with the task, such as removing an electrical module. The work system may be held by a positioning arm and the work object; e.g., the satellite being repaired, may be held by handling equipment. Storage racks may be required to temporarily hold equipment, such as replacement units or special tools. This equipment may be mounted on a transport vehicle. The handling equipment may be attached to the transport vehicle.
or separately mounted at the worksite. A storage depot is indicated which provides for long term holding of replacement units and the transported remote equipment. The control station provides the operator's interface with all other elements and is, in general, remote from all of them.

A major area of interest for this study has been the work system and the technical and programmatic issues associated with its design. The effect of the other elements on the work system concept and the overall implications of different space station configurations on the design had to be considered to develop practical, useful concepts.

The following paragraphs present, first, an explanation of the development methodology followed by discussions of the major outputs resulting from its application to the concepts development process.

5.1 DEVELOPMENT OVERVIEW

The basic methodology used to define preferred system concepts for remote servicing and to establish associated space station interface requirements is described by Fig. 5-2. The approach involves the parallel development of the concepts for free flyer servicing and space station servicing with space station interfaces identified at appropriate points.

The space station base configuration will not be selected until completion of the space station Phase B studies. Therefore, the space station servicing development activity included early consideration of the potential effects of different space station configurations on the design of servicing systems.

The complete matrix of candidate approaches versus selected mission requirements is illustrated in Fig. 5-3. The four major space station configurations were considered: the CDG Planar, the Delta, the Big T and the Power Tower, which is the NASA reference concept for the Phase B studies. The study has concluded that generic worksites for the three types of servicing operations on the space station (OMV service, satellite service and assembly) can be defined for any space station configuration without significantly effecting the remote system requirements. Servicing of the space station does result in different requirements depending on the configuration. For example, servicing of body-mounted solar arrays on a Delta configuration is significantly different than servicing a rotating array on another.
configuration. The Power Tower reference configuration was selected for more detailed analysis for the development of remote system concepts.

The free flyer servicing concepts are, of course, not effected by the space station approach as indicated.

Design issues were identified independently for the free flyer and space station servicing approaches followed by the definition of carrier concepts and specific service tasks. At this point, the applicability of candidate work system approaches,
i.e., telepresence, teleoperator and robotic, were addressed in general terms for the full range of identified servicing tasks. These approaches are defined in Section 5.4.

Candidate work system concepts were then developed for the reference servicing missions using the appropriate design approaches. The candidate concepts were evaluated relative to mission requirements and compared to each other leading to preferred concepts for free flyer and space station servicing. The selected concepts were then developed in more detail including definition of related space station requirements.
5.2 DESIGN ISSUES

The procedures required to perform the selected servicing operations were developed to provide definition of specific remote equipment needs. Figure 5-4 illustrates the procedure for one of the servicing missions on the space station, replacement of a tank on the AXAF. Figure 5-5 illustrates a similar procedure for a free flyer servicing mission, solar array drive replacement on the SASP.

Analysis of such operational requirements were used to develop major issues associated with developing servicing concepts which are presented in Fig. 5-5. The support equipment category is generally concerned with the number and types of systems needed to bring the work system and worksite together. The work system issues, which receive major emphasis in the study, address the definition of the equipment to perform the actual servicing task.

- POSITION AXAF TO DESIRED LOCATION
- FETCH NEW TANK FROM STORAGE DEPOT
- STOW NEW TANK
- POSITION WORK SYSTEM TO DESIRED LOCATION
- REMOVE OLD TANK
- STOW OLD TANK
- OBTAIN NEW TANK
- INSTALL NEW TANK
- MOVE TO STORAGE DEPOT AND STOW OLD TANK

Fig. 5-4 Space Station Mission Scenario – AXAF Tank Replacement
General issues are overall system concerns such as the feasibility of common designs, logistics considerations and the ability to perform different mission functions in the same timeframe. The attachment system issue for free flyer service is analogous to the handling equipment issue for space station service. Control station issues are strongly dependent on the other issues which establish functional requirements for the controls and displays and determine the operator workload.

5.3 CANDIDATE APPROACHES

The development of system concepts has considered the overall service operations on the space station. The complex nature of these operations is illustrated by the flow chart presented in Fig. 5-6 which identifies the primary activity areas on the space station. The reference mission spacecraft (AXAF, GRO, LDR and Comm Platform) are shown in the figure. Space station equipment servicing, which applies throughout the station, is not shown.

When an Orbiter arrives at the berthing area, new equipment and consumables are unloaded and failed units/debris are loaded for earth return. The cargo of Or-
Fig. 5-6. Concepts Development — Space Station Operations Flow
bit Replacement Units (ORUs) and other materials are transferred to the storage depot and the fuel is transferred directly to the OTV and OMV launch areas. The ORUs and other materials must be subsequently brought to operational locations as required. Transport vehicles with appropriate support arms are used to reposition satellites and combinations of satellites with OTVs or OMVs between launch, service, assembly and storage areas.

Analysis of such operations has identified the need for three transport vehicles to support combined operations on the space station. As indicated in the figure, transport vehicle No. 1 carries support arm No. 1 and is used for OMV and OTV handling operations. Transport vehicle No. 2, with another positioning arm, is used for the handling and installation of ORUs and materials. For space station servicing functions, a large positioning arm on transport vehicle No. 3 is required.

The transport vehicle design can be common to all three cases as indicated in Figure 5-6, with the specific uses requiring different support and positioning arms.

In the case of free flyer servicing, the OMV provides the transport function. However, an attachment system issue was identified which is analogous to the handling equipment issue for space station servicing. The attachment system must provide a means of berthing the service vehicle to the free flyer and positioning the work system to perform servicing functions. The four basic options considered during the study to provide this capability are illustrated in Fig. 5-7. They consist of a berthing interface, with and without positioning capability, and another positioning arm for the work system. The concept's basic premise is that the OMV must be able to attach to the free flyer being serviced at a point which is in general different than the service location. The selected approach, separate arms for the berthing and work system interface, provides maximum reach and operational flexibility. The arms can be viewed as kits which may not be carried for every mission.

5.4 REMOTE WORK SYSTEM TYPES

Remote operating systems, as defined in this study, provide the ability to perform useful work in space at distances ranging from close proximity to thousands of miles from a human operator. The remote work system element of such systems has
been considered in terms of three general implementation approaches defined as follows:

- **Teleoperation** - This approach is the technique of human operator control of remotely located equipment which provides a basic level of real-time interaction

- **Telepresence** - This approach describes an advanced teleoperator which transfers the human's sensory perception to the remote site thereby increasing the operator's ability to interface with the task

- **Robotic** - This approach describes programmable systems which perform desired operations without direct, continuous human involvement.

A fourth approach, **Supervisory Control**, which combines the autonomous concepts of robotics with advanced teleoperator capability, offers some distinct advantages for space-based servicing operations. For the purposes of this study, we have assumed the telepresence system includes supervisory control features.
5.4.1 General Characteristics

The applicability of these approaches to particular servicing missions is a function of the characteristics of the mission tasks. The robotic approach is, in general, most suitable for missions which are described by all or most of the following characteristics:

- Lengthy procedures
- Relatively simple operations
- Repetitive operations
- Very well defined tasks
- Fully preplanned activities.

The teleoperator approach is most suitable for servicing missions which are described by:

- Relatively simple operations
- Moderately well defined tasks
- Desirability of real-time decision making.

The telepresence approach is especially suitable for:

- Complex operations
- Infrequently required tasks
- Tasks with poorly defined portions
- Tasks which require some real-time decisions.

5.4.2 Relative Capabilities

Baseline approaches for each type of remote work system, robot, teleoperator and telepresence, were established (Fig. 5-8) to assess their applicability to the variety of servicing tasks that may be encountered. The general definitions of the elements for each system are shown in the left column of the figure. In all cases it has been assumed that the system is held to the worksite by an attachment device.

The study has emphasized missions which provide maximum design features to aid remote servicing. The estimated relative difficulty experienced by each design approach is shown in the figure. Both the robotic and telepresence approach can easily perform the task. For comparison purposes, the figure also shows the estimated level of difficulty when the task has not been designed for service.
The two key performance measures assessed are operational speed and the sensitivity to off-nominal, unplanned conditions. The robotic system has the advantage of speed but is highly sensitive to contingency situations which require unplanned operations. The telepresence approach is comparatively insensitive to such off-nominal conditions but is generally slower than the robot. The teleoperation approach generally exhibits performance that is slow but with some capability to handle contingency operations.

5.4.3 Mission Applications

Such considerations of the characteristics/limitations of each approach combined with the functional analysis of each service task were used to select the appropriate approaches for each mission presented in Fig. 5-9. The goal was to select the simplest acceptable approach for each application where the robotic approach is considered the simplest and telepresence is the most complex.

In some cases, e.g., battery replacement on SASP, a single approach (robotic) was considered most applicable but, in general, the choice was not clear cut and two were selected. The two-arm telepresence approach can perform all tasks but is too sophisticated in some cases even when contingency operations are considered. In
Table: Robotics System Applications

<table>
<thead>
<tr>
<th>Service on Space Station</th>
<th>Robot</th>
<th>Teleoperator</th>
<th>Telepresence</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Radiator Panel Repair</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>• Logistics Module Installation</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>• OMV Propellant Transfer</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>• AXAF Tank Replacement</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>• LDR Assembly</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>• Comm Platforms/Stage Assembly</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>• Gro Subsystem Module Replacement</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>In-Situ Servicing (SASP)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Drive Mechanism Replacement</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>• Battery Replacement</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Instruments/Manufactured Products Replacement</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

Fig. 5-9 Concepts Development — Selected Remote Work System Applications

In the case of a highly variable mission, such as replacement of instruments and manufactured products in a wide range of payload equipment, telepresence is the preferred approach.

5.5 Remote Operating System Concepts

Each servicing mission was analyzed using computer graphics (Fig. 5-10) to establish the minimum manipulator arm lengths and degrees of freedom (DOF) required to perform the specific operations. A four foot manipulator length requirement resulted with five to seven DOF required, depending on the task. The analysis also showed that an eight foot, 6 DOF stabilizer (attachment system) is required for the work system.

In addition to the definition of the work system manipulators, the analysis also established requirements for other remote operating system elements. A 26 foot positioning arm with 7 DOF is required to orient the work system properly relative to the worksite and move it to obtain replacement units and other materials. In addition, a need was identified (Fig. 5-11) for a similar positioning arm for servicing of a free flyer by a remote work system carried by an OMV. Such an arm would provide the necessary reach for positioning the work system when the OMV is attached to a free flyer. In some cases, a second such arm may be required for servicing a large free flyer, such as a platform, for berthing the OMV and for providing the necessary reach to particular locations on the spacecraft. This second positioning arm could be a permanent part of the platform.

5-12
The selected Remote Operating System concept for servicing on the space station is illustrated in Fig. 5-12 which shows an AXAF-type spacecraft being serviced by a telepresence-type work system. Replacement units are shown in an enclosed storage rack on the carrier vehicle. Operation of the remote system is under the control of an operator in a habitation module located elsewhere on the space station.
(a) REMOTE OPERATING SYSTEM ON OMV

(b) FREE FLYER SERVICING SCENARIO

Fig. 5-11 Free Flyer Servicing
The concept for free flyer servicing is illustrated in Fig. 5-13. The telepresence work system is mounted to a positioning arm with two replacement units mounted to a storage rack on the carrier vehicle.
5.6 REMOTE WORK SYSTEM CONCEPTS

The remote work system concepts were developed using an iterative computer-aided design procedure which is illustrated in Fig. 5-14. Candidate manipulator physical configurations were established based on general mission requirements.

Integrated concepts, including lights, TV cameras and attachment systems, were then developed around these manipulator systems. The integrated concepts were then applied to the mission scenarios to determine feasibility and relative performance.

The resulting selected work system design concepts are illustrated in Fig. 5-15 through 17. The robotic concept (Fig. 5-15) consists of a single programmable 5 DOF manipulator and a robot vision system mounted to a base structure which contains the control electronics. A CCTV camera (not shown) is provided as a means of monitoring task performance. The attachment system which is mounted to the bottom of the structure is the same for each work system concept. Alternate general purpose and mission-unique end effectors are stowed in compartments on either side of the base structure. Power, commands and data interfaces are provided through the attachment fitting on the positioning arm.

The teleoperator work system (Fig. 5-16) consists of a single 6 DOF manipulator in an anthropomorphic configuration mounted to a shoulder assembly. Two CCTV cameras are shown, one located above and in front of the primary work zone. Another CCTV camera is mounted on an outrigger arm providing a line of sight about 45 deg from the centerline at the primary work zone. A rack of alternate end effectors is mounted to the front of the control electronics assembly which forms the main structure.

The telepresence work system (Fig. 5-17) is composed of two 7 DOF dexterous manipulators in an anthropomorphic configuration combined with a stereo vision system mounted to a pivoting shoulder assembly. In addition, there are right and left cameras mounted on positioning arms and a central belly camera. The main structure contains the control electronics with alternate end effectors stored in compartments in front.
Fig. 5-14 Iterative Concept Design Procedure (Example)
The estimated weights of the three work system concepts are presented in Fig. 5-18.

The design requirements for each subsystem of the telepresence remote work system are presented in Fig. 5-19. The check-out subsystem requirements are not specified because they are concept and mission dependent. The requirements specified for the other subsystems collectively describe an overall performance capability which meets a wide range of mission applications.

5.7 SPACE STATION INTERFACES

The major interfaces of the space station-based remote operating systems with the space station are established from the functional requirements including:

- Mobility to and from worksites
- Secure attachment
- Accessibility for servicing
• Crew accommodations to support operations
• Subsystem support (power, comm, etc)
• Outfitting and storage provisions.

The interface requirements for the major remote operating system elements are as follows:

Transport Vehicle
• Provide guides for vehicle support and mobility
• Provide mechanical locomotion
• Provide electrical power, communications, and data handling.

Remote Work System
• Provide storage provisions
• Provide utilities support.

<table>
<thead>
<tr>
<th>WORK SYSTEM ELEMENT</th>
<th>ROBOTIC SYSTEM</th>
<th>TELEOPERATOR SYSTEM</th>
<th>TELEPRESENCE SYSTEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTACHMENT SYSTEM (STABILIZER)</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>MANIPULATOR(S)</td>
<td>175</td>
<td>115</td>
<td>215</td>
</tr>
<tr>
<td>VISION SYSTEM</td>
<td>26</td>
<td>35</td>
<td>22</td>
</tr>
<tr>
<td>LIGHTING SYSTEM</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>CHECKOUT SYSTEM</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>CONTROL ELECTRONICS STRUCTURE</td>
<td>100</td>
<td>60</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>57</td>
<td>44</td>
<td>60</td>
</tr>
<tr>
<td>TOTAL (LB)</td>
<td>438</td>
<td>334</td>
<td>457</td>
</tr>
</tbody>
</table>

Fig. 5-18 Work System Weight Estimates
<table>
<thead>
<tr>
<th>SUBSYSTEM</th>
<th>REQUIREMENTS (PER SYSTEM)</th>
<th>REQUIREMENT VALUE</th>
</tr>
</thead>
</table>
| ATTACHMENT SUBSYSTEM (MECHANICAL DEVICES FOR POSITIONING & STABILIZING THE REMOTE WORK SYSTEM WITH RESPECT TO THE WORK SITE) | - QUANTITY
- SIZE
- NUMBER OF SEGMENTS
- DOF
- MAX TIP SPEED
- MAX TIP FORCE
- MAX TIP TORQUE
- OPERATING VOLUME
- END EFFECTOR TYPE(S)
- END EFFECTORS, QUANTITY
- END EFFECTOR DOF | 1
8 FT
5
6
6 IN/SEC
100 LBF
40 IN-LB
2000 FT³
TONG & MINI-GRAPPLE
2
1 |
| MANIPULATOR SUBSYSTEM ELEMENT (ELECTRO-MECHANICAL DEVICES FOR HOLDING & MOVING TOOLS, EQUIPMENT & MATERIALS) | - QUANTITY
- SIZE
- DOF
- MAX TIP SPEED
- MAX FORCE
- MAX TORQUE
- OPERATING VOLUME
- END EFFECTOR TYPES (INCLUDING TOOLS)
- END EFFECTORS, QUANTITY
- END EFFECTORS, DOF | 2
4 FT
7
24 IN/SEC
20 LBF
10 IN-LB
275 FT³
VARIOUS MISSION DEPENDENT
3
1 |
| VISION SUBSYSTEM ELEMENT (ELECTRO-OPTICAL DEVICES TO PROVIDE VISUAL INFORMATION ABOUT THE WORKSITE) | - QUANTITY
- INSTANTANEOUS COVERAGE ANGLE
- TOTAL COVERAGE
- SENSOR TYPE
- DIMENSION
- RESOLUTION
- SENSITIVITY
- PAN RATE
- TILT RATE
- ZOOM TIME
- ZOOM RANGE (MAX) | 5 (2 IN STEREO CONFIGURATION)
45 DEG
SPHERICAL
CCD
30 IN³
180 K PICTELS
5. FT-LAMBERTS
0 TO 10 DEG/SEC (VARIABLE)
0 TO 5 DEG/SEC (VARIABLE)
10 SEC SEL.
10:1 |
| LIGHTING SUBSYSTEM (EQUIPMENT TO ILLUMINATE THE WORKSITE) | - COVERAGE ANGLE
- INTENSITY RANGE
- CONTROL MODE | 90 DEG
VARIABLE
AUTOMATIC |
| CHECKOUT SUBSYSTEM (EQUIPMENT TO TEST THE OPERATION OF SERVICED UNITS) | - FUNCTIONS
- MECHANICAL INTERFACES
- ELECTRICAL INTERFACES | VARIABLE PROGRAM
STND & SPECIAL PURPOSE
STND & SPECIAL PURPOSE |
| CONTROL ELECTRONICS SUBSYSTEM (ELECTRONIC UNIT TO MONITOR AND CONTROL THE OTHER ELEMENTS) | - MISSION FUNCTIONS
- HOUSEKEEPING FUNCTIONS
- ELECTRICAL INTERFACES | N/A
N/A
N/A |
| STRUCTURE/STORAGE SUBSYSTEM (PROVIDE STRUCTURAL SUPPORT FOR OTHER ELEMENTS, STORAGE FOR END EFFECTORS & MOUNTING INTERFACE) | - SIZE
- ATTACHMENTS, QUANTITY
- ATTACHMENTS, SIZE RANGE
- MOUNTING INTERFACE | CONCEPT DEPENDENT
CONCEPT DEPENDENT
CONCEPT DEPENDENT
STANDARD RMS GRAPPLE FITTING |

Fig. 5-19 Remote Work Systems – Requirements Summary
Handling Equipment
- Provide mechanical mounting
- Provide power, communications, and data handling.

Storage Facility (Depot)
- Provide mechanical mounting
- Provide thermal control
- Provide instrumentation.

Control Station
- Provide controls and displays for operating other elements
- Monitor performance of other elements.

A number of major interface issues were identified. Figure 5-20 lists these issues and provides a selected design option for each based on consideration of advantages and disadvantages.

A mobile remote operating system controlled either from the space station or the ground is selected as the most flexible operational concept. More than two different remote operating systems are chosen to provide maximum servicing capability. The ability to position both the work system and the payload being worked on (when possible) is selected for optimum access. A distributed power source is chosen to provide servicing operations without time limitations or restrictions. A simple wired communications system is chosen as a secure, unrestricted link. A storage depot is recommended for logistics support to provide maximum operational capability.

Figure 5-21 is a general block diagram for a remote operating system on the space station. The signal and power flow between all major elements of the system is shown. For the selected concept, all interfaces with the space station are via the transport vehicle of the remote operating system.

Space station control station concepts for remote systems operations were developed via computer aided design for one and two operator concepts as illustrated in Fig. 5-22.
TRANSPORT VEHICLE

VEHICLE RATE & POSITION SENSORS

VEHICLE MOTOR

SIGNAL TRANSMISSION SYSTEM

POWER TRANSMISSION SYSTEM

SPACE STATION INTERFACE

STRUCTURE

POWER

COMM

ATTACHMENT MECHANISM

ELECTRONICS

LIGHTING SYSTEM

POSITION CONTROL

VIDEO SYSTEM

POSITION CONTROL

ARM POSITION SENSORS

ARM POSITION MOTORS

CONTROL ELECTRONICS

ATTACHMENT MECHANISM

ATTACHMENT MECHANISM

POWERTRANSMISSION SYSTEM

HEATERS*

CLAMPS*

LIGHTS*

VISION SYS*

STORAGE RACK

POSITIONING ARM

WORK SYSTEM

LIGHTING SYSTEM

POWERTRANSMISSION SYSTEM

VIDEO SYSTEM

POWERTRANSMISSION SYSTEM

ARM POSITION SENSORS

END EFFECTORS

STORAGE

CHECKOUT EQUIPMENT

CONTROL ELECTRONICS

* = OPTIONAL COMPONENT

Fig. 5-21 Space Station Remote Operating System — Block Diagram
<table>
<thead>
<tr>
<th>INTERFACE ISSUE</th>
<th>DESIGN OPTIONS</th>
<th>SELECTED OPTION</th>
<th>ADVANTAGES</th>
<th>DISADVANTAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>REMOTE OPERATING SYSTEM LOCATION</td>
<td>FIXED-DIRECT VIEW</td>
<td>NATURAL VIEWING</td>
<td>UNIQUE VIEWING CONDITIONS REQD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FIXED-INDIRECT VIEW</td>
<td>OPTIMUM SYSTEM CONFIG POSSIBLE</td>
<td>PAYLOADS TRANSPORT TO WORKSITE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MOBILE</td>
<td>√</td>
<td>REPAIR IN PLACE, MULTIPLE SYSTEMS POSS</td>
<td>TRANSPORT SYSTEMS REQD PLUS SUPPORT</td>
</tr>
<tr>
<td>CONTROL STATION LOCATION</td>
<td>SPACE STATION</td>
<td>NO TIME DELAY; CREW UTILIZATION</td>
<td>CREW AVAILABILITY & TRAINING</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GROUND</td>
<td>EXPERTS UTILIZATION</td>
<td>TIME DELAY ENVIRONMENT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SPACE STATION/GROUND COMB.</td>
<td>√</td>
<td>AVOID TIME DELAY WHERE SIGNIFICANT: REDUNDANCY</td>
<td>DUPLICATION, PROTOCOL ISSUES</td>
</tr>
<tr>
<td>REMOTE OPERATING SYSTEMS QUANTITY</td>
<td>ONE</td>
<td>LOWER TOTAL COST</td>
<td>MORE GENERAL REQUIREMENTS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TWO (SAME)</td>
<td>MULTIPLE MISSIONS CAPABILITY: SPARES</td>
<td>HIGHER COSTS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TWO (DIFFERENT)</td>
<td>MULTIPLE MISSIONS: EFFICIENT OPS</td>
<td>HIGHER COSTS, INCREASED SYSTEM COMPLEXITY</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MORE THAN TWO (SAME)</td>
<td>HIGHER UTILIZATION</td>
<td>HIGHER COST & COMPLEXITY</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MORE THAN TWO (DIFFERENT)</td>
<td>√</td>
<td>HIGHER UTILIZATION, MORE EFFICIENT</td>
<td>HIGHER COST & COMPLEXITY</td>
</tr>
<tr>
<td>ACCESS PROVISIONS</td>
<td>POSITION WORK SYSTEM OR POSITION PAYLOAD</td>
<td>FEWER POSITIONING SYSTEMS REQD</td>
<td>LARGER, MORE COMPLEX POSITIONING SYSTEM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>POSITION WORK SYSTEM & POSITION PAYLOAD</td>
<td>√</td>
<td>OPTIMUM POSITIONING POSSIBLE</td>
<td>MULTIPLE POSITIONING SYSTEMS REQD</td>
</tr>
<tr>
<td>POWER SOURCE</td>
<td>STORED</td>
<td>SELF CONTAINED, RELATIVELY SIMPLE</td>
<td>HEAVY, RECHARGE TIME LIMITATIONS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DISTRIBUTED</td>
<td>√</td>
<td>NOT TIME LIMITED, LOWER SYSTEM WEIGHT</td>
<td>MORE COMPLEX IMPACTS SPACE STATION SYSTEMS</td>
</tr>
<tr>
<td>COMMUNICATIONS APPROACH</td>
<td>RF</td>
<td>MINIMUM MECH IMPACT, HIGH BANDWIDTH</td>
<td>LINE-OF-SIGHT RESTRICTIONS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>WIRED</td>
<td>√</td>
<td>DIRECT, SECURE LINK</td>
<td>ADDED COMPLEXITY, POSE NOISE SUSCEPT.</td>
</tr>
<tr>
<td>STORAGE PROVISIONS (SYSTEMS & PARTS)</td>
<td>DEPOT</td>
<td>√</td>
<td>AVAL OF POTENTIAL REPLACEMENT UNITS</td>
<td>ADDED REQMT & CONFIG EFFECTS</td>
</tr>
<tr>
<td></td>
<td>NONE</td>
<td>REDUCED IMPACT ON SPACE STATION CONFIGURATION</td>
<td>ORBITER SUPPLY, REQD & INVENTORY CONTROL</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 5-20 Space Station Interface Options
Fig. 5-22 Control Station Concepts
5.8 SYSTEM DEVELOPMENT PROGRAM

Programmatic concepts for the development of remote operating systems technology and operational capability have been defined. The primary study products consist of an assessment of technology readiness, a development plan and an estimate of program costs for the remote work system.

5.8.1 Technology Readiness Assessment

Review of the current (July 1984) program schedules for the space station and the OMV identified a need for operational remote operating systems capability by early 1991.

The five major elements necessary to implement such remote operations were evaluated (Fig. 5-23) in terms of their current levels of technology development. The transport vehicle and the work system were identified for development emphasis because of their moderate to high levels of schedule and technical risk.

The work system, which was the highest technology risk item, was evaluated (Fig. 5-24) to establish subsystem elements which require development priority. The eight numerical levels of technology readiness define major steps in the development of an operational system. Five key technology development areas were identified for the moderate and high risk subsystems:

<table>
<thead>
<tr>
<th>ELEMENT</th>
<th>CURRENT TECHNOLOGY STATUS</th>
<th>SCHEDULE RISK</th>
<th>TECHNICAL RISK</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRANSPORT VEHICLE</td>
<td>EARLY CONCEPTS FORMULATED</td>
<td>HIGH</td>
<td>MODERATE*</td>
</tr>
<tr>
<td>POSITIONING ARM/HANDLING DEVICE</td>
<td>• LARGE ARM (RMS) OPERATIONAL-MODS REQD • SMALL ARM DEVEL TEST ARTICLE-MODS REQD</td>
<td>LOW</td>
<td>LOW</td>
</tr>
<tr>
<td>WORK SYSTEM</td>
<td>• CONCEPTS FORMULATED • CRITICAL HARDWARE UNDER DEVELOPMENT</td>
<td>MODERATE</td>
<td>HIGH*</td>
</tr>
<tr>
<td>STORAGE RACK</td>
<td>EARLY CONCEPTS FORMULATED</td>
<td>MODERATE</td>
<td>LOW</td>
</tr>
<tr>
<td>CONTROL STATION</td>
<td>LIMITED TESTING OF CONCEPTUAL DESIGNS</td>
<td>LOW</td>
<td>MODERATE</td>
</tr>
</tbody>
</table>

*ELEMENTS CALLING FOR DEVELOPMENT EMPHASIS

Fig. 5-23 Technology Risk Assessment
<table>
<thead>
<tr>
<th>SUBSYSTEM</th>
<th>CRITICAL TECHNOLOGY ITEMS</th>
<th>CURRENT READINESS LEVEL</th>
<th>DEVELOPMENT RISK</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTACHMENT SYSTEM</td>
<td>• MECHANICAL ARMS 3</td>
<td>3</td>
<td>LOW</td>
</tr>
<tr>
<td></td>
<td>• END EFFECTORS 2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• CONTROL SYSTEM* 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MANIPULATORS</td>
<td>• MECHANICAL ARMS 2</td>
<td>2</td>
<td>HIGH</td>
</tr>
<tr>
<td></td>
<td>• END EFFECTORS/TOOLS 3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• INSTRUMENTATION 3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• CONTROL SYSTEM* 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VISION SYSTEM</td>
<td>• SENSORS 7</td>
<td>3</td>
<td>MODERATE</td>
</tr>
<tr>
<td></td>
<td>• POINTING SYSTEM 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• CONTROL SYSTEM* 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIGHTING SYSTEM</td>
<td>• LIGHT SOURCES 7</td>
<td>3</td>
<td>LOW</td>
</tr>
<tr>
<td></td>
<td>• POINTING SYSTEM 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• CONTROL SYSTEM* 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHECKOUT SYSTEM</td>
<td>• AUTOMATED TEST 1</td>
<td>1</td>
<td>MODERATE</td>
</tr>
<tr>
<td></td>
<td>• SERVICE FUNCTIONS 3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• SUBSYSTEM INTERFACES 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTROL ELECTRONICS</td>
<td>• CONTROL SYSTEM 3</td>
<td>3</td>
<td>HIGH</td>
</tr>
<tr>
<td></td>
<td>• SIGNAL PROCESSING 3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• MODE CONTROL 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STORAGE SYSTEM/ MOUNTING STRUCTURE</td>
<td>• STRUCTURE 2</td>
<td>2</td>
<td>LOW</td>
</tr>
<tr>
<td></td>
<td>• THERMAL CONTROL 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• CONTROL SYSTEM* 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTROL STATION,</td>
<td>• MANIPULATOR CONTROLS 3</td>
<td>3</td>
<td>HIGH</td>
</tr>
<tr>
<td></td>
<td>• VISION SYSTEM DISPLAY 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• SYSTEM MONITOR 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*FUNCTION CENTRALIZED IN CONTROL ELECTRONICS

Legend: Technology Rediness Levels:

LEVEL 1: BASIC PRINCIPLES OBSERVED AND REPORTED
LEVEL 2: CONCEPTUAL DESIGN FORMULATED
LEVEL 3: CONCEPTUAL DESIGN TESTED ANALYTICALLY OR EXPERIMENTALLY
LEVEL 4: CRITICAL FUNCTION/CHARACTERISTIC DEMONSTRATED
LEVEL 5: COMPONENT/BRASSBOARD TESTED IN RELEVANT ENVIRONMENT
LEVEL 6: PROTOTYPE/ENGINEERING MODEL TESTED IN RELEVANT ENVIRONMENT
LEVEL 7: ENGINEERING MODEL TESTED IN SPACE
LEVEL 8: BASELINED INTO PRODUCTION DESIGN

Fig. 5-24 Remote Work System Technology
- Space-qualified dexterous manipulators with interchangeable end effectors
- Effective vision systems for remotely operated and automated systems
- Flexible checkout system design for a wide range of mission applications
- Control systems for complex electromechanical systems including time delay effects
- Operator-machine interface for optimum system performance.

The overall technology readiness level is estimated to be between the two and three level.

5.8.2 Technology Development Program

A development program schedule for the remote work systems was defined (Fig. 5-25) which is keyed to the major milestones of the space station program in addition to providing OMV servicing capability in 1991. The program projects progressive increases in the technology readiness level with some of the major elements already
under development as shown. A three year flight development program leads to proof-of-concept test flights to support the space station Preliminary Design Review (PDR). Full production approval could be made by space station Configuration Design Review (CDR). This schedule is the basis for the program cost estimates presented below.

5.8.3 Flight Test Concepts

The variety of subsystems and components needed as a technology base for the development of space-based remote servicing capability requires extensive testing and simulation. Flight tests and demonstrations of component and system performance are considered a necessary step in this development process.

The need for such flight demonstrations and tests can be combined with the concept of a Telepresence Work Station (TWS) to use the Space Transportation System as a flight test bed. The TWS is based on the open cherrypicker concept which involves an astronaut carried on the end of the Shuttle's Remote Manipulator System (RMS). The TWS concept (Fig. 5-26) involves manipulators, TV cameras, etc. carried by the RMS in place of the astronaut. Control of the system is provided by
an astronaut inside the Shuttle cabin to perform useful servicing operations. By configuring the TWS to accommodate different manipulators end effectors, sensors and control/communication links, a flight test bed results which provides a means of testing technology in the actual space environment. Such a concept is illustrated in Fig. 5-27.

5.8.4 Program Cost Estimates

Development and production costs for the remote work system were derived on the basis of system parameters including size, design factors, functional characteristics, and the program schedule presented earlier. The Parametric Review of Information for Costing and Evaluation (PRICE) model was used for all hardware components and PRICE-S was used to estimate the cost of software. The overall program consists of one prototype and three production flight units. Control station costs were not included.

The resulting cost estimates are presented in Fig. 5-28 which shows total cost as the sum of engineering and manufacturing costs for the development and production phases. The robotic system cost is almost 25% higher than the teleoperator.
approach, with the telepresence system in between. Development costs dominate the total costs in all cases.

The subsystem cost components are compared in Fig. 5-29 which shows that electronics contribute more than half of the total costs in all cases. The higher robotic system cost is primarily due to the more complex electronics at the remote site required for autonomous sensing and control. The telepresence system cost is high because it includes some of these features and because it has two, more-complex manipulators.
Fig. 5-29 Remote Work Systems/Elements Comparative Cost

1—ATTACHMENT SYSTEM
2—MANIPULATORS
3—VISION SYSTEM
4—LIGHTING SYSTEM
5—C/O ELECTRONICS
6—CONTROL ELECTRONICS
7—STORAGE/STRUCTURE
8—SOFTWARE
9—SYSTEM INTEGRATION

ROBOTIC $26.7M
TELEOPERATOR $21.0M
TELEPRESENCE $23.9M
6 - REFERENCES

