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ABSTRACT

A development of the in-plane open-loop rotational equations of

motion for the proposed SCOLE in-orbit configuration is presented based
ff

on an Eulerian formulation. The mast is considered to be a flexible

beam connected to the (rigid) Shuttle and the reflector. Frequencies
i

'	 and mode shapes are obtained for the mast vibrational appendage modes

(assumed to be decoupled) for different boundary conditions based on

^I	 continuum approaches and also preliminary results are obtained using
ii	 t

a finite element representation of the mast -reflector sytem. The 	 I

1
linearized rotational in-plane equation is characterized by periodic

coefficients and open-loop system stability can be examined with an 	 {s

application of the Floquet theorem. Numerical results are presented

to illustrate the potential instability associated with actuator time 	 it

delays even for delays which represent only a small fraction of the

natural period of oscillation of the modes contained in the open-loop

model of the system. When plant and measurement noise effects are

added to the previously designed deterministic model of the Hoop/Column

system, it is seen that both the system transient and steady state

performance are degraded. Mission requirements can be satisfied by

appropriate assignment of cost fur..ction weighting elements and changes

in the ratio of plant noise to measurement noise.
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I. INTRODUCTION

1 The present grant extends the research effort inif:iated in previous

grant years (May 1977 - Feb. 1984) and reported in Refs. 1-10 * . Techni-

ques for controlling both the attitude and shape of very large inherently

flexible proposed future spacecraft systems are being studied. Suggested

(	
applications of such large systems in orbit include: large scale multi-

beam antenna systems; earth observation and resource sensing systems;
f

orbitally based electronic mail transmission; and as in-orbit test models

designed to compare the performance of flexible systems with that predicted

based on computer simulations and/or on scale model Earth-based laboratory

experiments.
f

This report is subdivided into 'five chapters. Chapter 1I begins with

f
j	 a preliminary development of a two dimensional model of the rotational

equations of motion for the proposed Spacecraft Control Laboratory Experi-

ment - SCOLE11 , correcting some inconsistencies contained in a similar

development appearing in last year's final grant report 10 . This development

is based on the expansion of the Eulerian moment equations assuming that

the Shuttle and the reflector are rigid bodies, and modelling the mast

as a connecting flexible beam. Calculations are then performed to obtain

the frequencies of the fundamental and subsequent bending and torsional

modes as well as examples of the corresponding modal shape functions.

Bending modal frequencies-are calculated based on different assumed boundary

conditions: (1) where the flexible mast is modelled as a cantilever

attached to the Shuttle end such that the displacement and slope at the

Shuttle attachment point are zero; (2) where the mast is zonsidered as a

flexible beam accounting for the rotational inertia of both the Shuttle

*References cited in this report are listed separately at the end of each
chapter.
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and the reflector as end bodies. The cases of in-plane and out-of-

plane bending are treated as separate decoupled motions. Frequencies

are also approximated through a preliminary application of the STRUDL

finite element algorithm where the reflector as well as the roast are

assumed to be constructed of the same material. A comparison can then

j	 be made with the previous NASA results 	 preliminary results pre-
nj

sented by the Harris Corp.. in the SCOLE Workshop 12 held at Langley

during December 1984. Finally, Chapter. II commences with a preliminary

stability analysis of the open-loop in-plane SCOLF. dynamics based on an

r	 '
application of Floquet's theorem. Analytical resuits can be obtained

for two special cases: (1) where the offset of the mast attachment 	
1

point on the reflector is set to zero; and (2) where the gravity-gradient 	 ^^	 J

torques are not included, but the reflector attachment offset can be 	 l

non-zero.

In the following chapter the preliminary review of stability techni-

ques that can be applied when time delays are present in the implementation

of control inputs, presented in last year's report, is now extended to

include representative numerical results. Examples considered include

a second order controlled harmonic oscillator system and a fifth order

system based on the dynamic model of the F-100 turbofan engine. These

examples illustrate the potential instability which could result even

for delays which represent only a small :traction of the period of natural

oscillation of the various modes in the uncontrolled system.

Chapter IV is based on a paper to be presented at the Fifth VFI &

SU/AIAA Symposium on Dynamics and Control of Large Structures and extends 	 Ii

work previously initiated during the 1982-1983 grant year and partially

supported during the Summer of 1983 on this grant. The evaluation of the

1.2



expected performance of the Hoop /Column antenna system subjected to

stochastic inputs is now extended to include simulation of the steady

state RMS errors in addition to the transient dynamics previously

reported (Chapter VI of Ref. 10). The Kalman filter algorithm of the

ORACLS13 package is used to develop control laws and simulate the estimate

of the state in an optimal LQG fashion. The results of Ref. 10 are also	 {
i

extended here to include the effects of non co-location of actuators and/or

sensors. As a specific example the actuator (or the sensor) assumed to

be mounted on the hoop assembly is then removed to examine the projected
^^	 f

effects on the transient, steady state (RMS) errors, and the estimator	 (	 i

performance.

Chapter V describes the main general conclusions together with future 	 t
a	 1

recommendations. The effort described in Chapters II and III is being

continued during the 1985 -86 grant period in accordance with our proposa114

and subsequent discussions.
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II. MODELLING TECHNIQUES FOR THE SPACECRAFT CONTROL LABORATORY EXPERIMENT

The transfer of large, massive payloads into Earth orbit is our-

rently accomplished with considerable propulsive and control effort.

As a result, spacecraft designers must strive to minimize a large struc-

ture's mass. Consequently, many of the future spacecraft will be very

flexible and will require that their shape and orientation be coutrolled.l

The problem of controlling large, flexible space systems has been the

subject of considerable research. Many approaches to control system

synthesis have been evaluated using computer simulations including it pre-

liminary synthesis of control laws for the proposed Hoop/Column System. 2t3

Ground experiments have also been used to validate system performance

under more realistic conditions but based on simple structures such

as beams and plates. 4 In a recent paper, SCOLE (Spacecraft Control Labora-

tory Experiment), Lawrence W. Taylor Jr. and A.V. Balakrishnan described

a proposed laboratory experiment based on a model of the Shuttle connected

to a flexible beam with a reflecting grillage mounted at the end of the

beams (Pig. 2.1). The authors stressed the need to directly compare

competing control design techniques, and discussed the feasibility of

such direct comparison. Concern would be given to modelling order ret-

duction, fault management, stability, and dynamic system performance.

With this papers as a background, the purpose of the study proposed

here is to model the system in different phases where each successive

phase would represent a mathematical model successively closer to that

of the actual laboratory system.

2.1



It is anticipated that this (multi-year) study would consist of

five ports, the first of which would consist of a literature survey

during which the investigators would familiarize themselves with dif-

ferent mathematical modelling techniques.
t

During the second part, the system would be successively modelled

as follows:

w
a) The Space Shuttle as a rigid body; the reflector mast as a flexible

beam type appendage; and the reflector as a ri.@id plate. The mast shape

functions are actually solved from the fourth order non-linear flexural
t'

beam equation with different boundary conditions imposed on both the

Shuttle and grillage ends. b) Here the Space Shuttle would be treated

as a rigid body body; the composite appendage consisting of the flexible

reflector mast and also the continuous rigid reflector (grillage) could

i
be modelled using finite element techniques. Then the composite system

d l,i,nrimics can be modelled using the hybrid coordinate technique6 which

involves sets of matrix equations describing the motion of the main vehi-

cle as well as that of any attached appendages. It is anticipated that

within the second part of this study these different mathematical models

would be developed in a form suitable for numerical simulation.

During the third part, each of these models could be directly com-

pared with the model proposed in the SCOLE paper s , beginning with the

I	 simulation of the open-loop system dynamics. The fourth part of the

effort would consist of the control law synthesis when the model can

be described by linear system dynamics - i.e., in response to small per-

turbations induced on the system about the nominal laboratory configure-

tion and orientation, or after a major slewing maneuver, to remove the

2.2
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e

remaining transients which exist

orientation. Such a construction

on the ORACLS software package.7

trol the shape and orientation of

First the controllability of

on the graph theoretic techniques

Ln a neighborhood of the new equilibrium

of control laws will probably be based

Strategies would be developed to con-

the beam/grillage.

the system could be examined based

already employed for a similar analysis

of the Hoop/Column system 3 , for different combinations of numbers and

locations of the actuators. Next, control laws can be constructed based

on the techniques of optiffial control theory, and studies can be performed

comparing transient and control effort characteristics for a variety

of system parameters and weighting matrix elements.

Finally, the fifth part would focus on the slewing maneuvers to

accurately point the .reflector at a specific target-in a minimum lapse

of time, For simple maneuvers (single axis) attempts would be made

to analytically determine the dewing control law; for more general maneu-

vers, numerical techniques would be implementod.

I

jj
Ij
i1	 r

}^	 f
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II. A Development of the Two Dimensional Model - (Euleria q Moment

Equations)

The SCOLE system is assumed to be comprised of three main parts

(Fig. 2.1):

i) the Space Shuttle Orbiter with its center of mass located at
point 01;

11) the mast, treated as a 130 ft long beam, connected to the
Shuttle at 02 and to the reflector at 03;

iii) the reflector, considered to be a flat plate with its center
of mass at 04.

The preliminary analysis presented here started before it was speci-

fiedS that the interface point between the mast and the Shuttle is at

0 1 . 8 Therefore, in what follows, a position vector R1 appears which de-

fines 01 02 , where 02 is the assumed interface point.

In the following analysis, the angular momentum, of the entire system

is evaluated at point 0 1 and the dynamics include the lateral displacements

of the beam.

II. A.1 Angular Momentum of the Shuttle with Respect to Point 01

2.4
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Consider a point, P, of massp dm, at an arbitrary position in the

Shuttle such that OLP = r. The elemental angular momentum of the mass,

i,	 dm, is given by:

F	 dHo,, ^ r x 
d 

O p dm , r x c4 ( R+r)j dm
CTF

Ro
a	 = r x	 + R wc,'L	 r 3 dm	 (.^ . I )

f	 The total_ angular momentum for the Shuttle is obtained by integratingi
Eq. (2.1) over tha entire mass of Shuttle as:

H' = - Rfex 1 rim - Rw ('2x s rdm t ^rx{Cc^k- e)$xrJdm (^•^)
Ms	 Ms	 Ms

The first and second integrals appearing ir., the right side of £q. (2.2)

vanish because the center of mass of the Shuttle is at point 01.
f	

t +
Since r	 j	 0, Eq. (2.2) takes the form:

Ham ^^^- e)d MS 
a drn = IS WR,/R,	

('z.(	 /o,
4.

where It s is the Inertia tensor of the Shuttle at point 0 1 and mR
1
R
^ 0

(wc — e) .

II. A.2 Angular Momentum of the Mast with Respect to Point 01

.

2.5



Consider here an element of the mast located at point, P l , with

. ,

mass, dm. The elemental angular momentum of such an element is given

by '	 H^O/ ^^^ X	 QP/RoJ d 	 (2.4)

if one notes that ^P = ^o * 9	 (2.5)—.	 "^ a aoP=+ ro +9
then, Eq. (2.4) may be expanded according to:

-^ ^^ x^ (ro 44 ^9^,^d^ t f (rk,,fy2,^x(r , r yZ0
4

 (2.6)
doe / 	 M'"	 is expressed using the relationship between

the rate of change of a vector, w, in an inertial (R o) and rotating

(Ri ) frames, i.e.

-AP ` y. n /,^ X w^
	 (2.7)

After substitution of Eq. (2.7) into Eq. (2.6) and integration term by

term, one can develop:

13e	
9	 40 (

,{ GY 3 14 9/^►H ^ct7t-fl0)//f ^f /^ ►t^^- $ Go^Q f cl;,,h^f ^cos^i ^

(A co^^9e 13,om1de - C e^^ ^ h -^ eJ^ f 1(N -,^ -a^ '̂ ^

I
T 

9(x,^^ ,to 'O&JUW-ad = f} P.m^gzt SAWc' /9x 4 C Cal;( f .D/&u )"*

2.6
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II. A.3 Angular Momentum of the Rigid Reflector with Respect to
point 0.

01

y , f

{(	 Let 04 be the center of mass of the reflector ;, and 03 the inter-
face point between the reflector and the mast. The distance, X, between

i

03 and 04 is constant since the reflector is assumed to be rigid, at least
for this analysis.

^i

Let us now consider an element of mass, dm, of the reflector lo-

cated at an arbitrary point, P Z . The elemental angular momentum of that
element of mass can be expressed as:

d H = o P n C o P,) ^i rn 	 , q

O1P 2 and 02P2 can be expressed as:	 j

O 'P'	 + x 63
a

x̂P = R. + O i IN
II	 ,.

2.7



Eq. (2.9) may be expanded according to

dH ô̂  (R, ttx)G^^x ^R+Rtt(X^x^ u 	 (2.11)

isOnce more,

expressed using Eq. (2.7) : 	 —AP

After substitution of Eq. (2.7) into Eq. (2.11) and integration term by

term over the entire mass of the reflector, one arrives at

%—::p
//	 MrXRc^^ k

Hv,	
Mr R'9: UJG ,Cc^ (fit B) f

/itiw ^cYf 8) f (mac - 8 - ^i'^ ^?.z r t Mr ("X' 1I "LZ)P

(2,12)

where I 2 is the moment of inertia of the reflector about the j axis

taken at point 04.

2.8
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II. D.1 Moment Equation
a

The angular momentum of the entire system about 0 1 is obtained

by summing the angular momentum of each part about 01 , i.e.

S

(2.13)

A_I	
f

The moment equation 	

Ala/ V

r1T/̂^ /IQO	 (2.14)

i

where N is the sum of all the external torques, acting on the entire

system, about an axis through point 0l.

At this stage of the analysis, it is assumed that the center of

mass of the Shuttle moves in a circular orbit, i.e.

v1	 —1:^'	 %-h

dR1^e-RIR-o
(2.15)

Taking into consideration the coincidence between points 0 1 and 02,

Eq. (2.14) is expanded using once more Eq. (2.7) and the following

result is obtained:

dt '/01^i2o
8 (- ̂ S a Mm ^ Z ,^ .7,a„ f Mr (.^'C ^ R Ẑ  )

3

a	 Mr (X f Ri	 All tr9G

f (e^^r) M,„ fw^ glo	 + ^ _ ge^^^tt^J.r

2.9

^_ _ '^,	 .;.tom-	 .3 ,::7 _^'	 A .



R

E.

_ l^r ^R R2 u^^ (4 g ar) + SCR Y
Alm wr-

^. M c^j coy C^tt^)J Mljl; et

4 z)	 f^L^ l A cm^3^ f 8 j _ C cax^

4 c

.e

.e

^  (wt -00) W)

(2.16)
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II. B.2 Expression for q

In the moment equation, Eq. (2.16), one notices integrals involving

q , the transverse displacement vector, and its first and and second derive-
tives with respect to time. It is, therefore, necessary to develop an ex••

pression for q.

II.B.2.1 Relation between q(x,t) and y(x,t)

Consider the beam in its deflected configuration,y(R,t) is the

deflection of the reflector-end of the mast at an arbitrary time^t;

y(x,t), the deflection of an arbitrary point on the mast at the same

time.

From Fig. (2.1), k l	k2 = cos a	 (2.'17)

Assuming a small, tan a can be expressed as

era - ^^ e'^^ ti a

	

	
(2.18)

x

2.11



From Eq. (2.18) one derives

Ox

or

q 	 a x - ^.(x,^)

II.B.2.ii Evaluation of y(x,t)

a	 Assuming separability of the variables, the beam equation,

SK x4	 ^t _
is solved to yield solutions of theform:

I	 Q ^x ' t)	 T Ct) ^^x^
where

f(t) - B sinwt + P cosb:t with w - frequency of the -vibration

and	 ^(x) = A cosOx + B sinsx + C coshpx + D sinh$x

When the following boundary conditions are assumed:

a) y(O,t) - 0	 b) y'(O,t) - 0

C) EI Y ... (R,t) _ -Mr y(£,t); d) EI y I '(2,t) = 0

where	 ^)	 I
0% U'
	 a Rd	 '	 'a

^X i t
these can be expressed in the form:

A+	 6 : o	 C^A^	 ti

VA + rB =o*0 17 5^

C

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

2.12



where	 Mr
a - sinRR - sinhRR - pA,R (cosRR - coshRR)

6 - -cosRR - coshRR - 5A 0 WOE - sinhRR)	 (2.26)

Y - cosRR, + coshRB

o - sinOZ + sinhRR
2

R -	 AO	 (2.28)
w EI

For the SCOLE system, the following parameters have been supplied8:

PY - 0.09556 slugs/ft

EI - 4.0x10 7 lb-ft2

Mr - (400/32.2) slugs

R - 130 ft.

For non-trivial solutions for A and B, det C must vanish. The

values of P for which det C - 0 are computed and substituted back into
Eq. (2.28) to obtain the frequencies of the different vibrational modes

(Table 2.1).

The same values of R are substituted into ^(x), (Eq. 2.23))which is

normalized with respect to its maximum value and the normalized mode

shapes plotted (see Table 2.1 and Figs. 2.2 - 2.6). Note that the ranges

of frequencies obtained in Table 2.1 are higher then those prevously pre-

sented in the April 13, 1984 oral presentation due to previous inconsis-

tencies in dimensional analysis of some physical units.

I
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TABLE 2.1

Values of 8 and Natural Frequenciee (HZ)
for the First 8 In-Plane. (Pitch) Bending Modes

8 w (HZ)

1.874599 .677828

4.6929 4.245

7.8519 11.884

10.997 23.3128

14.1309 38.4933

17.276 57.5283

20.4229 80.4045

23.555 106.958

x^.
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[	 II.0 Frequencies of the Lateral Vibrational Modes when the SCOLE
System is Modelled as a Free-Free Beam with End Bodies having
Inertia

fThe solution to the beam equation (2.21) is again considered

and the following boundary conditions assumed:

1.	 The shear force at either end is equal to the mass located at
r

M	 that end multiplied by the acceleration of the interface point at that
i

end.

This boundary condition combined with the equilibrium conditions

j	 yields

"PZ3

at the Shuttle end, 

	 r^GL

EI ^f 
zC)/ 

= Ms 
^Iex'o ^- _ A4,r W2l(lzi 1`̂ ^=o (2..2 9

2xj z=0	 2^= z-o u 	d	 x

at the reflector end

91 2^ Cx,t^ 	 = ^1r `JZ^Lx. ^^ cv 1 (x,t^ 12.30)
2x^	 e2^yx.i3o 	 x_/.3a 	 x -/3o

where	
W' V44 yE'I

J-	 JA',

2.19
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2. Next, expressing the equality between the moment at an end point

and the product of the inertia of the mass at that end by the angular

acceleration of the interface point results in:

toZ^ B(z/ e) = EI 2Z ,x,
'az2

	

W&L 9(X. 	 "WoveX,t-)7
e7.Z.

 the Shuttle end: x to 0, this is expressed as:

i j^ ^x,rJ^ _ F'T`^z 
`x,&^-TS rre

2 x xso	 2zz xX o

_	 Z is 2....G .>/	 ` • x^ 	 (K..
t?z x -• o	 rJzz z=o

the same boundary condition at the reflector end translates as:

_ cv1.7r a z^ t/	 _ - El 
rat

	

2x z ^/j0	 2x^ z-l3o

After performing the required differentiation of the assumed

solution of the beam equation (Ec,. 2.23), one arrives at the following

system of four equations with 4 unknowns, A,B,C, and D,

Eq. (2.29 )0 Mg A , S f AL C _ .D = 0	 (,.3J
.Ph)

Eq. (2.30)

4 I ^ 6"^ ^^^^^^f j^^/^^^f CrmG^J,^ z o (9.39)
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Eq. (2.31)	 _ /^ f 
=' E=3 

B	 Ci J .7 i 	 0	 ^.^. 35^	 !I

and Eq. (2.32)

IT-r^3 3/a'"̂ 3E- ,42] A -[IY ju 4et19"hCjB

fR'	 ^A'

Equations (2.33) - (2.36) can be recast in the matrix format as

G	 .o
o

For non-trivial solution of ¢(x) (Eq. 2.23) the determinant ' of M(S)

must be zero. A computer program was written, and the values of a,

solutions of: the nonlinear equation det [M(S)] = 0, obtained.

These values of S were substituted into

Gc9 _ ^ z ^AI
to derive the frequencies of the inplane and out-of-plane lateral

vibrational modes. The results are given in Tables (2.2) and (2.3).
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Table 2.2 Values of B and Natural

Frequencies (HZ ) for the first 9

In-plane (Pitch) Bending Modes

8 w (HZ)

0.0097 0.3065

0.031.0 3.1308

0.0549 9.81922

0.0789 20.2809

0.1030 34.562

0.1271 52.6288

0.1512 74.4794

0.1754 100.229

0.1995 129.664
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1

Table 2.3 Values of 6 and Natural

Frequencies (HZ) for the First 9

Out-Plane (Roll) Bending Modes

8	 m (Hz)

0.0103 0.3456

0.0310 3.1308

0.0549 9.81922

0.0789 20.2809

0.1030 34.562

0.1271 52.6288

0.1512 74.4794

0.1754 100.229

0.1995 129.664

2.23
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II. D. Derivation of the Frequencies of the Torsional Vibration,
SCOLE Configuration.

Assuming the mast to be a circular shaft, the torque at any point

on the shaft is given by

T_ GI
2x

where G is the modulus of rigidity and I the polar moment of inertia

of the cross sectional area of the beam. This torque is opposed by the

inertial torque ^^ Q, (xje))
(D t2

where p is the density of the beam. For equilibrium,

2z	 2h

Assuming the separability of the variables, Equation (2.38) is solved to

yield, solutions of the form

Y(z-t) = ^eO O(Z)
where	

f(t) = a cos (wt) + S sin (wt)

¢ (x) = A sin w p /G x + B cos w p /G /x

2.24
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Boundary Conditions

Writing that the torque,T,at either and of the beam equals the

moment of inertia times the angular acceleration of the interface

point yields:

G .r 2, zx.,tJ
	
x t	 (2. 40)
Z

Equation (2.40) along with the equilibrium of the shaft gives:

for the Shuttle end: x = 0

	

C,?	 z cJz^(z,t)/	 4-40
^dx x=o 	x=o

for the reflector end: x = R = 130

az

	

1	 ^ (x,, 6)	 ^,Z'4t)	 l

After substitution of equation (2.39) into equations (2.41) and

	

(2.42), one arrives at:	 e

	

Eq. (2.41)	 A 61 .Pr .^. B .Zs c7 a G (4. ¢d)

Eq. (2.42) r^

[
6r	 cap cog 	^ ^r c^,^« we ^ J^4

 . ,/

	

r^r	t [gel ^r ,^. Tr W Cap cue rrl^B o 62.41)

2.25

y..



.

.y

g

1 1

	

	 Equations (2.43) and (2.44) can be recast in matrix format
i

ao	 r P(cv) f B 1 ro ^.2. 4 s)
L	 ^L J l

For non-trivial solution of equation (2.39) one must insure that the

determinant [P(w)] is equal to zero.
i

The values of w for which det [P (w)] = 0 correspond to the

frequencies of the torsional vibration. A computer program was written

t
to solve this determinental equation and the frequencies for the tor-

sional modes are listed in Table 2.4.

i
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Table 2.4 Values of Natural

Frequencies (Hy) for the First 9

Torsional Vibration Modes

W(Hz)

0.0305

39.99

79.98

119.97

.157.97

199.96

239.55

279.94

319.939
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II.E Preliminary Calculation of the SCOLE Appendage Frequencies
based on Finite Element Techniques

For this application both the reflector and the mast are assumed
I

to be a single flexible body. This body is considered to be comprised
41

of two types of elements: (1) beam elements; and (2) triangular plate

elements. The actual finite element model (FEM) is described as follows:

Mass distribution
I'

Space Shuttle	 6,366.46 slug
t,
I'

Mast	 12.42 slug	

y!
Reflector	 12.42 slug

H

The masses of the reflector and the mast being so small (.39%) as compared

n
with the mass of the orbiter, which in this analysis is assumed rigid,

the system could be modelled as a cantilever beam (mast) with a mass with

inertia (reflector) at its end. Also, the reflector in this section is

going to be assumed flat with a constant thickness small as compared with

its characteristic dimensions.

The dynamics analysis of the STRUDL software package, which uses a
I

physical analysis to solve the equations of dynamic equilibrium, is used

to generate the eigenvalues, the frequencies, and the periodsof the system.

2.29

,1,	 .-:v^ t+a Yi?^. ^^.	 	̂ may...



ii

^r

u,

^I
i	 ^

11.9S

G

# _l aw 1,

System. Geometry (Model)

4

1

r	

3

. R	 43.33

^	 1

Shuttle orbiter

The beam (mast) will be divided into 3 beam elements (each of
43.33ft length) having a mass of 4.14 slug to be lumped at the

b	 ends of the elements.
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X

E

2.5 r

T

Coordinates of nodes for the System

X

0.0

0.0

0.0

0.0

37.50

56.25

37.50

00.00

-18.75

18.75

Y Z

0.00.0

0.0 -130.0

0.0 - 43.33

0.0 - 86.66

0.0 -3130.00

-32.50 -130.00

-65.00 -130.00

-65.00 -1110.00

-32.50 -130.00

-32.50 -130.00

No

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

in £t.

i
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Results - Conclusions

The following results have been obtained (Table 2.5). They show

that the system is less stiff in this model as compared with previously

developed NASA  and Howard University continuum models and also that re-

cently described by the Harris Corporation.9

Table 2.5 - Modal Frequencies (H
Obtained by Implementing a FEM z

of the Preliminary Model of SCOLE
(Poisson's ratio - 0.3 assumed)

0.157
0.275
0.782
1.083
1.232
1.386

80.09
107.24
107,.24
265.99
421.50



II.F	 Linearization of the Equation of Motion-Floquet Analysis

Let T the dimensionaless time he equal to wct; dt
	 We dT

4	 d2	 2	 d2
. W

dT2	 c dT2

Dividing each term of Eq. (2.16) by M R yields

" E	 _ 6 L 7û Mw + ^^3 + Isr^MM^	
Mr X+ Mr a^
Nw G	 M,^

49 _ M.r Q 1 w^ y. (e) _ c^ $ 4', le)^ ^ ^ e,^ CLOt +cp) — 9 c^ (wE +^ )^
e	 Mw R, J	 ^3Qs

3	 .. Mr X Rw^ 9 w^Cw^ r¢) u^tc^(^tj c^)^St^ e r + h1r	 ^CZ^ yCe)
vw ,{	 Mn,	 M," MM QZ

^.	 4'^^e) 
+^^ei 

y^; ee) _ ^/,4 CLot+ CAM (Wt+^) ^^ZLQ)^{ 3 w^Q	 y	 s
i

M». PLs u9v ^ ^ W /riw Cwt+) (GCB) M .^ g LL7^ _ o	 ^ 2 .^-G)

Let now Cl ^1sSAM 7j + ^IMw Q 1 /il ^^[ +^ RL 
J

^	 where p= Mr	 a	
R

m

r	 C2 .	 _ ,^, g ^ ^p ^^) --	 ^^ Cepf^e	 n	 ,gyp
where $ (R)	 A CN t r3	 ' + C ev^i +^	 low

sf	 ^1(R) _ A jo;wf *B e,*^t + m;o-k oat t1? CXM ^bG -h8 _D

C,1 = CisrfM eZ 
t^ * ^Z^

 t(.CQ) .{. 4'
1
L(^^^ i ^'s

pp

(7182 a

where X2 (1) _ 4/JNA	 - g C0?	 + C/ n	 + 1)1/'dfl.

*3 (R) = ;A cn, C +Bm4(4 — C e=^ I;V— b /4^4/^C— A -FC
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C5 =	 R

and r,6 _	 (2) ^In a R

Eq. (1.46) can be written as

Ci +	 r-., d(t^cO(Ot+0 . Wo C5 9 f CA) =e3 CMCWt.

/y^^	 / L	 ^ .L	 T 
1\ .

... We-LO C4 I_ """ (Wt 4 c^Cwb +— COC4 CC A1N^!A/t . t(a^ ^ 304 C^^1 ^J531^— 0
C2.4i;

:Introducing the dimensionaless time T = w ct and dividing Eq. (2.47)

by w2 one arrives at

C^CtCI V + WZ CY	 (^cm(uaff^}^ _ Cl^LCg d a

	

dL	 d^

+ O C3 Can(Wt+O- WOO C4^WCUwt*O C40 (Wt -fV-WWC Cf. fd^( 4F+ _o
C: ^B

Introducing now the new parameter S1 = w yields
c

	

at 
CM	 C5

.Cl z C3 cm CQ z -t	 .2Ca / CZ(R^ -t

. xL er, A M̂ Cat +0 - 3 ( r,, - 133 ) a) _ o

2.'33	 1Jal



i
Parametric Study of the System

Let us assume that the interface point between the reflector

and the mast is at the center of mass of the reflector

S o 0	
+	

X 
a 0	 '	 U5 = C6

r
Under this assumption, the equation becomes

C,. d [9' eon ca-ct o)] t	 . coo
Gi	 dz c,
 T,-4)4^_ o	 (2•so)

Ac,	 c,
which yields the following first integral

.	 R _ g' t Ci ['6 vootS2 L t^)^ fi s2• C; p►;,(sLtt^^

"" c4

This equation can be plotted in the phase plane (8 j6) for different
"

values of p and n.

A

Floquet Analysis

The angular motion about an axis perpendicular to the orbit plane

is described by:

"= L 

CS t .L CM SLZ I @' _ I C=Mfm, nt t _' (T33-TI, tJ

G,	 G	 J	 IC,	 C,
( z.sz)
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r

„ Y

This equabion can be recast into the following matrix format

^L,	 PLY

where

	

C^ C,	 —

CPWI

1	 0
Since P(T) is a matrix with periodic coefficients, the stability of the

motion will be analyzed in what follows using the Floquet theorem.

Case 1. No gravity gradient, No offset

	

rL CMsiz	 cL n pw, s^z
Ct> - C°

CZ(T)a	 CP(T)] CZ(T)]
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Zll = P11Z11 + P12Z21
	 (1)

Z12	
P11Z12 + P12322
	 (2)

Z21 = P21Z11 + P22Z21
	 (3) which becomes Z21 Z11 since P21 =

1 and P22 = 0

Z22 = P21 Z12 + P22Z22
	 (4) which becomes Z22 a Z12

from (3)Z 	 Z11 substituted into 1 yields

Z21 P11 21 + P12Z21

Similarily from (4) Z22 a Z12 which substituted into (2) yields

Z22 ' P11Z22 + P12Z22

If one notices that P12 = dt P11

•	 _ dthen	
Z21 P11Z21 + P11Z21	 dt (P11Z21)

and	 Z22 P11Z22 + P11Z22 = dt (PllZ22)

These two last equations are integrated and the following result

for Z2 1 and Z22 obtained

Z21 Pi1Z21 + K1
m

Z22 P11Z22 + K2

but from (3)^ Z21 = Zll(t) and

from (4). 222 = Z12(T)

therefore, Z21(0)	 Z11 (0) 
= 
1 P11(0)Z21(0) j K1

or for 4 = 0	 1 = Ki	since Z21 (0)	 0

+ K1 1

-722 (0) = Z12(0) = 0 =•Pll (0) Z27 (0) + K2

2.36



±..

C2or for	 - 0	 C? .. - K2 since Z22 (0) d 1
1

Z21 a p11Z21 t 1

_ C
42 e pll Z22 C2

1

Solution of the linear first order equation

	

dT2T2 . 
p

11Z22 - Cl	 (1)

The presence of d2: 
22 and p

1I
Z22 in the equation suggests a pro-

aT
duct of the type O(T)Z22(T) 	

7
but	 a( 'e22) = ^ 'z21 +	 ^ZZ	 (2)

Multiplying (1) by O(T) yields

dt	 c,	 (3)

which can become

c2
dr	 c,	 (4)

if one can find p(T) (the integrating factor) such that

(5)
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e,

S-

+  K err

 
I 

^

	

- e2	 SLz -t K 1

	

CISL	 J

from 	 / 
	
` n — C i	 /^)	 one	 arrives at

1.	 J	 C	 1.

S — CL 
^ CC) dZ

al

or	

^CZ)	
GI ^ ^^^ d Z

Z, Cc) _ ex p lei lb►^► stz k' 
-LI.

 ^ ^.^' e cC7, ^"' S2z -t K^ d Z }

According to Taylor's series development of a function

f 

L 

C-2 
^ n ^ - QiK^ - Ct Z 4 rCL^ Z C	 tCI \ 3_ nZ 1. 6j42K ex	

..^^'	 /	 `	
(^

/J

	

Ca Sl	 C	 ^^ Z	 l	 C,

which is integrated term by tarm to give

0 22.- C2 ^ 

L

Cs 	 Z j ^IGz^3 S2
C-1	 c	

?'4+
—SZ	

v	
^^ z 6 c s	 `^^	 G^ 1¢ 4

since	 0 =	 K, _ — CI
Ct

Z2	 `;1 _ _1 I C2ci P%" 
a  J C.. 9L 

+ Z - ẑ LZ+ Cz.,

2.38
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•	
1	 C2

Solution of Z21 p11221+1 where pll	
1 

cos SIr

na

and ^^ 

d^^ =
(1' e `2'	 d t	 —	 ^'^^

.^+ (T. 	 sit -r K) or
si c,

L c, a
from	 ^ (0)z,.` = ))	 ^^)

^Z'L, M !^S^^dz =	
P lc s^, ^'"`^t - ►c'^ S^^dz

According to Taylor's series

^	 c L ^,,, ^ K - K I	 c: Z .^ î Z Lt ^ / cL^3+ (C,, ^,' I^ Z
nc,	 1 c,	 c, t	 l G <<^ J 6
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which is integrated term by term to yield

[

CL	 Ct
a C,	

ZCI	 C`1 6

z, (^)	 o	 K 0

°Zu Cz) = z^, Cz) =^

	

oZ„ Cz) = ^wr `_c z,',^Lz,[^^z— L)Z
t Z^ ...1(ca^ nz^ i)	 N

I.rz c, 	 c^	 I	 a	 n

ewe [c
sL /a,

'" nz ]

	

It can easily be verified that	 Zip ^0^	 n, y, ^Ct	 Q ]	 1
`^^r C a n	 7

and finally

azz = Z,, c^)

	

p	 .['C- CL'C z	 3

	

-11.)	 n c,	 cl z	 c, 6	 J
(Cm Sz Z - I> t ( ! - Cm S2 t -. Cz 1 EX GL / ^ SZ

	

C 1	 G,	 SL G,
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With the use of a computer program, the eigenvalues of the [Z(T)l

matrix are computed for T - a period and their modulus compared with

1 to determine the values of the parameters for which the system is

stable. The results of such parametric study are shown in the

following stability diagram, Fig. 2.7. The large number of unstable

points in the parametric space 4n, MU) are thought to be attributed

to the absence of the gravity-gradient torque in the model. Future

plans call for the extension of the Floquet analysis for the cases

where a non-zero reflector attachment offset is considered and also

where both a non-zero offset and the effects of gravity-gradient are

included.
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III.	 STABILITY OF LARGE SPACE STRUCTURES WITH DELAYED CONTROL INPUT

1
y.

^
( The dynamics of a large space structure can be represented

x

c by:

1
X(t)	 AX(t) + BU(t)	 (3.1) if

F
where

X ° 2nxl state vector
kY.

A ° 2nx2n system matrixr
I^.

B ° 2nxm control influence matrix
^• 4 ii

s U ° mx1 control input vector i

n ° number of modes retained in the dynamic model l

kv The matrix A for a freely vibrating large space structure has all imaginary

t

ts' eigenvalues and, thus, the uncontrolled system is marginally stable.

The system given in (1) can be stabilized by a state variable feedback

I

control law of the form

U(t)	 KX(t)	 (3.2)

44t and X(t) ° (A + BK) X(t)	 (3.3)
i
i

such that the closed loop system matrix,(A+BK),has the required cigenvalues.
}

t

In practice, due to the high dimensionality of the state vector and j{I

the use of digital computers for evaluating control signals, there may {

arise a delay in the control input which can be mathematica.ly modelled as:

U( t) ° KX(t-T)	 (3.4)
I

The consequent need to verify that the system described by 1

X(t) ° AX(t) + BKX(t-T)	 (3.5) iJ

is stable if the system described by equation(3.3)is stable is one of the

topics of investigation carried out during the 1964-85 grant period. i
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The system described by equation (5) is stable 3.1 if and only if

`u(A) > IIBKII	 (3.6)

where

P(A) ° a max (A**A)

IBKJ	 Jim ((BK)*(BK))

A* , (BK) * denote the conjugate transpose 9f A and (BK),respectively

and X
max (A) 

a maximum eigenvalue of vacrix A.

Applying the result(3.6)to undamped large space AYr,+,ctur,,es (natri): A

has all imaginary eigenvalues or some zero 	 corlraspolwing, to

the rigid body modes plus the imaginary 	 correspondio3 to ^ha

flexible modes), we have

µ(A) - 0

and JJBKJJ > 0

and, thus, the closed loop system becomes unstable.

In reference 3.2, the analysis of time lag systems for stability is

carried out with the assumption that the original system without these

delays is stable.

The large space structures pose a special problem in that the original

systen is marginally stable and the verification of the closed loop system

stability with delayed control input has to be carried out through numerical

simulation.

Two numerical simulation studies are conducted to determine the amount

of time lag the system can tolerate without becoming unstable.

CASE 1:

The system under consideration is an 7v.rmanic oscillator representing

an isolated vibration of a large space structure at a specific natural mode

3.2

.. tom- Y ...	 r	 r n.7)^r



1

t'f

't

I

i

s

s

k4
6

i

and is given by:

X1l

	
1r 0

2J	 = L-W2	
10 J [xl]

x 	 + C01 ] U	
(3.7)

2

The above system is stabilized with a control law of the form

U - CO, - 2;W3 1 x1

	

(3.8)

x2

The numerical simulation is carried out for a control with time lag given

by

U(t) - CO, -2wj	 xl(t-T)^	 (3.9)

x2(t-T)

with the following numerical values:

W = 6.0 rad/sec

= 0.5	 (3.10)

x1 (0) = 0.5

x2 (0) = 0.0

The time response of x 2 (t) is plotted for T=0, T =0.085, T=0.1 secs

(DT=0.05 secs is the numerical integration step time) in F'gs. 3.1, 3.2

3.3, respectively. The system became unstable for T=0.1 which is approxi-

mately one tenth of the natural frequency of oscillation of the uncontrolled

system.

CASE 2:

The second system considered for numerical simulation Is the dynamic

model of the F-100 turbofan e ggine 3 ' 3 . The uncontrolled or open loop

dynamics are stable.

3.3
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The system dynamics are mathematically described as:

X(t) - AX(t) + BU(t) 	 (3.11)

The controller is of the form

U(t) - KX(t) (3.12)

The matrices A,B,K and the eigenvalues of the matrices A and (A+BK) are

given in Table 3.1.

The numerical simulation is carried out for the controller of the

form,

U(t) = KX(t-T) (3.13)

with the initial conditions

xi (0)= x2 (0) = x3 (0) - x4 (0) - x5 (0) = 0"'

for T=O, T=0.001 and T=0,0099, and given in Figs 3.4,	 3.5, and 3.6,re-

spectively,	 The system became unstable for T=0.0099 which is a very

small fraction of the period of the highest damped frequency of vibration

of the uncontrolled system.

Conclusion

!t +.

	

As the stability criteria for systems with delayed state variable`

	

J

feedback (as reported in the literature) are found unsuitable to apply	 f
(i

to large space structures, which are marginally stable: without control,	 1

the numerical simulation is carried out to determine the tolerable time

delay without the closed loop system becoming unstable. It is observed

JJJ	
that even very small delays can cause the closed loop system to be unstable,

thus demanding the necessity of very robust controllers.	 ;1	 i
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IV. EVALUATION OF PERFORMANCE CHARACTERISTICS FOR A SPACE ANTENNA
SYSTEM SUBJECTED TO STOCHASTIC DISTURBANCES

s^

Abstract

The problem of controlling a stochastic linear system representing
the Hoop/Column dynamics by minimization of a quadratic Gaussian per-
formance index, appropriately weighted in both the state variables as
well as the control inputs, is considered. An optimal control law for
the,finite element model of the Hoop/Column structural system without
damping is realized by combination of the Kalman filter and linear
feedback. A parametric study shows that suitable combinations of plant
and sensor noise characteristics, and state weighting matrices can be
selected to meet the mission RMS pointing requirements. The effect
of removing the hoop-mounted actuator is to cause an increase in the
R14S errors along with the increased control effort. An increase in
least damped modal time constant is also noted, when the hoop-mounted
actuator is removed. The effect of removing the hoop-mounted sensor
is to cause an increase in the R14S errors along with the degradation
in the estimator performance. However, removing the hoop-mounted
actuator causes a greater degradation in the system RMS performance
than removing the hoop-mounted sensor.

1. Introduction

Orbiting large flexible space structures have been considered for
use in future large scale communications and other fields. As the size
Of the spacecraft system increases and the ratio of weight to area de-
creases, flexibility considerations become very important. This is
in contrast to small space structures which are assumed to be rigid.
One such large flexible space structure which has been proposed for
future space missions is the Hoop/Column Antenna System which is de-
picted in Fig. 1 in its deployed configuration.

The Hoop/Column system1 , contains a, deployable (telescoping) mast
system connected to the hoop by support cables under tension. The hoop
contains 48 rigid sections to be deployed by motor drive units.
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The desired shape of the RF reflective mesh is produced by a secondary
drawing surface using control cables. The reflective mesh is connected
to the hoop by quartz or graphite stringers. At one and of the mast
the electronic feed assemblies are positioned, whereas at the other end
are the principal solar arrays connected to the main bus based control.
In order to achieve the required RF performance a pointing accuracy of
±(0.03-0.10) degrees MIS and a surface accuracy of 12mm RMS will be re-
quired. A finite element model of the Hoop/Column structural system
without damping, is taken as the basis for the controls analysis. In
order to reduce the dimensionality of the system, for computational ease,
a modal transformation is carried out. In this case the truncated sys-
tem contains thirteen modes, comprising the six rigid translational
and rotational modes and the first seven flexible modes.

The controls analysis of the Hoop/Column antenna system requires
specification of the types of actuators and their locations and orienta-
tions in the stru.cture. For this study point thrusters and torquers
are assumed to generate the required control forces and torques. Since
we are considering thirteen modes, it is convenient here to choose a
maximum of thirteen actuators in this analysis. Controllability and
observability considerations of the Hoop/Column system based on the
proposed location of actuators aj shown in Fig. 2 have been established
using graph theoretic techniges.

An optimal control law is realized by combination of the Kalman
filter and linear feed-back techniques (Fig. 3). The controls analysis
is carried out assuming collocated and noncollocated sensors and actua-
tors. The plant and sensor noises are assumed to be uncorrelated, zero -
mean white Gaussian processes.

11. Mathematical Formulation of the Problem

The dynamic model of the Hoop/Column structural system in the ab-
sence of damping can be represented as3,

MZ t KZ - F 	 (1)

where
M - 6n x 6n mass/inertia matrix

K - 6n x 6n stiffness matrix

Z - 6a x 1 matrix consisting of the displace-
ments and rotations at the nodal points

Fc - 6n x 1 control vector.

Fc - BTU (2)

4.2
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where
Br - control influence matrix of order. 6n x p

for
p - number of actuators

U - p r. 1 matrix associated with the control vector.
a

In the present model represented by Eq. ( 1) the number of nodes
fis equal to 112 (i.e. n - 112), corresponding to the number of nodal

(grid) points in the FEM output and the number of actuators is equal
to 13 (or 12).

y	
To decrease the dimensionality of the system it modal transfor-

mation is carried out defining

Z = ^q	 (3)
9

where 4 is the matrix containing the eigenvectors of Eq. (1) and
is of order: (6n x m), for m number of modes mad q is a modal vector of
order (m x 1). in this case, m - 13.

After using the transformation, Eq. (3), in Eq. (1) there results
C

CTM4 q + 4-TK4q = PTFc 	(4)
c

The left hand side of Eq. (4) can be rewritten„ using the properties
of the eigeavalues and associated eigenvectors as

[' mi+ ] q + [' F4 „ ] q - OTFc 	(5)

where

4TM9 - diag [ ui ] = [ mi 	i = 1,2..13

0TK4 - diag [ K1 ] _ 	 Ki+	 i - 1,2..13

Eq. (5) can be rewritten. in the form

X= AX+BU	 (6)

where

ql	
f_ 

i,

---------------`I-----
A lX	

Lq:^	 - L C 
m ]-1 [, Ic`` 

2	 i. ] !	 OJ
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and

0

r mi ]-1 4TBc
j

The plant noise, w, may be inco: :porated into Eq.(6) to model the
stochastic linear, dynamic system of the form:

X - AX+BU+Gw	 (7)

The measurements, Y, are assumed to be related to the state through
the observation matrix, H, and the measurement noise, v, by

Y - HX + v	 (8)

Eqs. (7), (8), along with the cost function

J - 
f
lim
 

(E [XT (t f)QfX ( tf)] + It 	 (XTQX + U L RU)dt])	 (9)

completely del:ine the stochastic problem, 4 The minimization of the
cost function yields the optimal control vector, U, obtained from

U - -C X	 (10)

where X is the state estimate, and

C - R 
lBTK1	 (11)

where K1 is the steady state solution of the maatrix Riccati differential
equation,

-K1 - K I 
A + ATKI -K1BR 1BTK1 + Q	 (12)

The state estimate X, is obtained, from 5
a

X - AX + BU + ]? (Y-HX)	 (13)

with the filter gain, F, expressed as

F - PHTV 'L
	

(14)

where, P is the steady state solution of the filter matrix Riccati
equation:	

11^^
P - AP + PAT - PHTV -AP + GWGT 	(15)

with

W 6 (t-T) - E[w(t ) wT(T) ] (16)

4.4
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and

V 6 (t-T) - E[v(t)vT (T)l

Substitution of Eq. (10) into Eq. (7) and Eqs. (8) and (10) into
Eq. (13) will yield the following differential equations which could 6
be used for simulation of stochastic optimal control systems(Fig. 3).

X AX -BCX + Gw	 (18)

X - (A - FH - BOX + FHX + Fv 	 (19)

IIA. Simulation of the Steady State RMS :hate Components

After subtracting Eq. (18) from Eq. (19) a differential equation
for the error results as follows:

e - (A - FH) e + Fv - Gw 	 (20)

Furthermore, Eq. (19) can be rewritten as

X^ (A - BC) X- Me+Fv	 (21)

The covariance of the reconstruction error, P - E[eeTjl and the co-
variance of the state estimate, .i'1 EDU T 1 can bit obtained from Ega.(20)
and (21) as,

P - AP + PAT - PHTV iHP + GWG T	(1:)

Xl - (A - BC)Xl + Xl (A - BC) T + FVFT	(22)

The covariance of X is givRn by

E[XXT ] - E[(X - e) (X - e) T ] - Xl + P	 (23)

For the case when P + 0 and Xl + 0, the steady state variances of
e and X and,hence,of X can be found.

III. Possible Arrangement of Actuators for the Hoop/Column System

Out of the maximum of thirteen actuators selected twelve actuators
consisting of point actuators and a torquer are assumed to be located
at selected grid positions in the feed assembly as well as on the column
while the remaining actuator is assumed to be: a point actuator mounted
on one of the rigid links of the hoop assembly with thrust direction
tangential to the hoop circle.

4.5
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Table 1 indicates the relationship between the actuators and the modes
they directly influence, the frequency of each mode, the generalized
mass and the generalized stiffness.

Table 1 - Relation between Actuators and Modes Directly Influenced

Actuator No. Mode Affected Frequency Generalized Generalized
(circled in (	 ) Hz mass stiffness
Fig. 2) k

(lb/in)c-/in)(lb-sec-/in)
1,2,3,	 & 4 Feed Mast

Torsion (12) 0.88976 723.522 22612.9

5 First Bending
(about Y axis)
(8) 0.214246 5.233 9.483

6 First Bending
(about X axis)
(9) 0.270956 3.073 8.907

7 Surface Tor-
sion (10) 0.506323 0.305 3.083

8(Torquer) Yaw (rot.
about Z axis)
and First 0.0 and 8.419 & 0.0 d
Torsion (7) 0.118835 153.157 85.385

9 Transl. along
X axis &
Second Mast 0.0 and 16.444 & 0.0 &
Bending (11) 0.728873 1.993 40.887

10 Transl. along
Y axis &
Second 0.0 and 8.925 & 0.0 &
@?aut Bending 0.919231 0.658 21.954
(13)

11 Transl. along
Z axis 0.0 7.349 0.0

12 Pitch (rot.
about Y axis) 0.0 2.941 0.0

13 Roll (rot.
about X axis) 0.0 9.704 0.0

iI

la
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NOTE: If there is more than one numerical value 10 any ej lumn, the
first one corresponds to a rigid mode while tn£: emp: etk c>zreaponds to
the flexible mode, respectively.

IV. Numerical Simulation and Synthesis of Cus;trol Law

For the proposed arrangement of actuators in the structure, a
parametric study was performed showing the effect of varying the
state penalty matrix Q (from l00I to 100001) and Ocl, r,introl penalty
matrix, R(from I to 1002) on the least damped inc ;n u$ the system
(Fig. 4). It has been concluded that Q - 10001, 5,10 104 a suitable
design point from the stand point of minimizing the least damped modal
time constant and maintaining a reasonable control effor.t. 3 Further,
the stability of the closed-loop system, consisting of tn- plant
and the estimator, has been established for all combinations of
parameters considered in this study.?

Plant noise covariances ranging from 0.00001 I(26 x 26) to
0.0000001 I(26x26) and sensor noise covariances ranging from
0.0000025 I(13 x13) to 0.00025 I(13 x 13) are assumed in the analy-
sis. Selection of the range of plant noise covariances in the modal
coordinates is based upon plant noise intensity ranging from 1 x 10-6
to 1 x 10-5 (lb-m)z Selection of the range of sensor noise covariances
in the modal coordinates is based upon sensor noise intensities in
the range of 1 x 10-5 to 1 x 10-7 C(rad) 2 or (rad/sec) 2,etc]. 8 Based
an the accompanying analysis, it is seen that the estimated modal
coordinates closely follow the actual modal coordinates, thus ensuring
a good eati-oration process.7

In this study, initial displacements of 0.01 are assumed in all
the modal coordinates',.which correspond to the expected maximum allow-
able perturbations in the linear range from the nominal operating re-
quired RMS displacements; these amplitudes for the modal displace-
ments are obtained through calculation of Eq. (3).

Numerical studies show that when noise is included in the model
that increasing the element's of the state weighting matrix by an order
of magnitude increases the control effort required by an order, of
magnitude but does not cause a significant improvement in the system
response. ] (But, it was found in the deterministic case that in-
creasing the elements of the state weighting matrix causes a significant
improvement in the system response.3)

A further parametric study was conducted to determine the range
of system parameters which meet the mission RMS pointing accuracy
requirements. Fig, 5 shows the relationship between the steady
state RMS pointing errors (in some of the modal coordinates) and
the state weighting matrices, for initially assumed noise covariances
of w = 0.00001 1(26 x 26) and V = 0.0000025 1 (13 x 13).

4.7
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Fig. 5 shows a similar relationship for plant and sensor noise co-
variances of W - 0.0000001 1(26 x 26) and V - 0.00025I(13 x 13),
respectively. A comparison of Fig. 5 with Fig. 6 reveals that there
is a decrease in the magnitude of the RMS errors in the latter case,
for all values considered for the steady state weighting matrix ele-

i	 meats. In addition, the steady state RMS errors, for almost all nu-
merical combinations of the elements of the state x+eighting matrix

d	 and of the noise covariance matrix considered in Fig. 6, are within
%he allowable maximum as specified by the mission requirements; as

r	 a contrast some of the RM,S errors shown in Fig. 5 would actually
exceed the mission specifications. [It is also important to note
that the range of p^aximum actuator force amplitudes is about the same
in both the cases. ]

In a recent related study3 , it was found that the hoop-mounted
actuator plays an important role in controlling the system. In this
analysis, the effect of removing the hoop-mounted actuator (whose
thrust direction is assumed to be tangential to-the hoop circle) is
to cause a deterioration in the least damped modal time constants.
The range of the maximum force amplitudes required, in response to

k	 initial displacements of 0.01 in all the motes, is also increased
(Table 2). Further, amplitudesof the RMS pointing errors are increased
substantially in all the coordinates as compared to the case where all
13 actuators are present, as can be seen by comparing Fig. 7 with Fig. 5.

The effect of removing the hoop-mounted sensor is to cause a
deterioration in the least damped time constant associated with the
estimator poles, thus degrading the est:imato:c dynamics. There appears
to be a redistribution and a small increase is the RMS errors as is
evident by comparing Fig. 8 witt:i Fig. 5.

In another recent related study 9 , only torque actuators located on
the mast are considered for controlling the antenna attitude and flexi-
b1c motions (using LQG theory as well as other techniques). However,
it was suggested that hoop-mounted control devices might be effective
in controlling certain torsional modes, which, is made clear in our study.
It should be kept in mind that the problems related to the design of con-
trol hardware remain yet to be answered.

V. Conclusions

Control system synthesis is considered here for a large space an-
tenna system and is based on stochastic linear optimal control techni-
ques. From this preliminary analysis, it appears that the performance
requirements can be met by using linear quadratic Gaussian techniques.
Parametric studies show that suitable combinations of plant and sensor
noise characteristics, and state weighting matrices can be selected to
meet the mission RMS pointing requirements; here a definite trade-off
exists between the increased complexity, cost, weight, and reliability
of the system, and the possible gain in the system performance.

4. 8
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Table 2

^ Comparison of 0as1o/m Actuator Force Amplitudes

, D m 1030I * F=I,	 gl (0) m 0 ^ 81, 1-1»2^,^^13

' 13 I-lodes

! W	 O ^ OUO0l	 V a' 0.0000025

/
Maximum actuator force 13 Actuators ^~ Actuators

amplitudes (pounds) 13 Sensors 1.3 Sensors

^
^

f l ~0.3330 2 3548^

f 2 ^0.0570 ^O U453

f 3 ^0.2681 2 2954^

f4	 ,
^0.0570 U O453^

f^ ^1.3028 1.3024 ^

| f 6 0.2865^ O 553D^
^

f7 1.2310" ~~~~ ~~

`
| f	 [io~1b\8	 ' ^U O1^V O O644°

I 9 ^^
	 0.2859 8 5328^

f
1O ^0.1574 O lb94,

f11 0.4086^ U 3693,

fl2 ^0.3521 ,0 352l

f13 0.0660 0.0993
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The effect of removing the hoop-mounted actuator is to cause an
increase in the RMS errors along with the increased control effort.
An increase in the least damped modal time constant is also noted,
when the hoop-mounted actuator is removed. (It is interesting to
note that removing the hoop-mounted actuator resulted in an increased
control effort and also increased the least damped modal time constant,
in the deterministic study also. 3 7 The effect of removing the hoop
mounted sensor is to cause an increase in the RK3 errors along with

e	 the degradation in the estimator performance.

In order to arrive at more complete conclus:.ons, factors such as
time delay, and nonlinearities in the plant and sensors should be con-
sidered. Since many of the current (and proposed) sensor systems pro-
vide data in a discontinous (discretized) format, another suggestion
is to reformulate the current analysis in a discretized time basis.

t
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V. CONCLUSIONS AND RECOMMENDATIONS

A two dimensional model of the SCOLE configuration open-loop

dynamics has been developed and will provide the basis for the modelling

i
	

of the three dimensional dynamics wich has already been initiated.

Calculation of open-loop appendage frequencies is seen to be dependent

on the boundary conditions assumed at both the Shuttle and the reflector

ends of the mast, and also somewhat dependent on whether a (decoupled)

t

	
continuum or (coupled) finite el:ment model is used to model the append-

age modes. The Ploquet stability analysis, initiated during this report-

ing period, should provide considerable insight into possible parametri-

cally induced open-loop instabilities which should be understood prior

to the design of the control system.

Numerical examples illustrate the potential instabilities that could

result for large ordered systems (typical of LSST) even with input delays

that are only a small fraction of the system's frundamental open-loop

period. Such delays could be associated with actuators or other system

hardware. This work should be ex-ended to analyze the effects of input

delays which could be associated with the SCOLE in-orbit or laboratory

test scale model configurations.

A parametric study of a stochastic closed-loop linear system dynamic

model of the Hoop/Column system shows that suitable combinations of plant

and sensor noise characteristics and LQG state and control weighting

matrix elements can be selected to meet the mission RNS pointing and antenna

shape accuracy requirements.
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The important role of a hoop-mounted actuator in reducing UIS errors as

well as improving the transient response characteristics ) especially

in the torsional type modes should be noted. Failure of the hoop-mounted

sensor could result in an increase in RMS errors and also a degradation

in the estimator performance.
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