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ABSTRACT

A development of the in-plane open-loop rotational equations of
motion for the proposed SCOLE in-orbit configuration is presented based
on an Eulerian formulation. The mast is considered to be a flexible
beam connected to the (xigid) Shuttle and the refleector. Frequencies
and mode shapes are obtained for the mast vibrational appendage modes
(assumed to be decoupled) for different boundary conditions based on
continuum approaches and also preliminary results are obtained using
a finite element representation of the mast-reflector sytem. The
linearized rotational in-plane equation 1is characterized by periodic
coefficients and open-~loop system stabllity can be examined with an
application of the Floquet theorsm. Numerical results are presented
to illustrate the potential instability associated with actuator time
delays even for delays whilih tepresent only a small fraction of the
natural pericd of oscillation of the modes contained in the open-loop
model of the system. When plant and measurement noise effects are
added to the previously designed deterministic model of the Hoop/Column
system, it 18 geen that both the system transient and steady state
performance are degraded, Mission requirements can be satisfied by
appropriate assipnment of cost function weighting elements and changes

in the ratio of plant noilse ;0 measurement noise.
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I. INTRODUCTION

The present grant extends the research effort initiated in previous
grant years (May 1977 - Feb. 1984) and reported in Refs. 1-10". Techni-
ques for controlling both the attitude and shape of very large inherently
flexible proposed future spacecraft systems are being studied. Suggested
applications of such large systems in orbit include: large scale multi-
beam antenna systems; earth observation énd resource sensing systems;
orbitally based electronic mail transmission; and as in-orbit test models
designed to compare the performance of flexible systems with that predicted
based on computer simulations and/or on scale model Earth~based laboratory
experiments.

This report is subdivided into five chapters., Chapter II begins with
a preliminary developmenﬁ of a two diménsional model of the rotational
equations of motion for the proposed Spacecraft Control Laboratory Experi-
ment - SCDLEll, correcting some Inconsistencles contained in a similar
development appearing in last year's final grant reportlo. This development
1s based on the expansion of the Eulerian moment equations assuming that
the Shuttle and the reflector are rigid bodies, and modelling the mast
as a connecting flexible beam. Calculations are then performed to obtain
the frequencies of the fundamental and subsequent bending and torsional
modes as well ac examples of the corresponding modal shape funcations.
Bending modal frequencies are calculated based on different assumed boundary
conditions: (1) where the flexible mast is modelled as a cantilever
attached to the Shuttle end such that the displacement and slope at the
Shuttle attachment point are zerc; (2) where the mast is considered as a

flexible beam accounting for the rotational iInertia of both the Shuttle

*References cited in this report are listed separately at the end of each
chapter.
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and the reflector as end bodies. The cases of in—plane and out=of-~
plane bending are treated as Beéaraté decoupled motions, Frequencies
are also approximated through a preliminary application of the STRUDL
finite element algor}thm where tﬁe reflector as well as the mast are
assumed to be constructed of the same material. A comparison can then
be made with the previous NASA résultsll and preliminevy results pre-
sented by the Harris Corp.. in the SCOLE I;TorkshOpl2 held at Langley
during December 1984, Finally, Chapter II commences with a preliminary
stability analysis of the opeﬁ-loop in-plane SCOLE dynamics based on an
application of Floquet's theorem. Analytical results can be obtained
for two aspecial cases: (1) where the offset of the mast attachment
point on the reflector is set to zero; and (2) where the gravity-gradient
torques are not included, but the reflector attachment offset can be
non-zero.

In the following chapter the preliminary review of stability techni-
ques that can be appfied when time delays are present in the implementation
of control inputs, presented in last year's report, is now extended to
include representative numgrical riesults, Examples considered include
a second order controlled harmonic oscillator system and a f£ifth order
gystem based on the dynamic model qf the F~-100 turbofan engine, These
examples illustrate the potential instability which could result even
for delays which represent only a small Sraction of the period of natural
oscillation of the various modes in the uncontrolled system.

Chapter IV is based on a paper to be presented at the Fifth VPI &
SU/AIAA Symposium on Dynamics and Control of Large Structures and extends
work previously initiated during the 1982-1983 grant year and partially

supported during the Summer of 1983 on this grant. The evaluation of the
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expected performance of the Hoop/Column antenna system subjected to
stochastic inputs is now extended to include simulation of the steady
state RMS errors in addition to the transient dynamics previously
reported (Chapter VI of Ref. 10), The Kalman filter algorithm of the
ORACL513 package is used to develop contro; laws and simulate the estimate
of the state in an optimal LQG fashion. The results of Ref. 10 are also
extended here to include the effects of non co-~location of actuators and/or
sensors. As a specific example the actuator (or the sensor) assumed to
be mounted on the hoop assembly is then removed to examine the projected
effects on the transient, steady state (RMS) errors, and the estimator
performance.

Chapter V describes the main general conclusions together with future
recummendations; The effort described in Chapters II and III is being
continued during the 1985-86 grant period in accordance with our proposall4

and subsequent discussions.
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II. MODELLING TECHNIQUES FOR THE SPACECRAFT CONTROL LABORATORY EXPERIMENT

The transfer of large, massive payloads into Earth orbit is cur-
raently accomplished with considerable propulsive and control effort.
As a result, spacecraft designers must strive to minimize & large struec-
ture's mass, Consequently, many of the future spacecraft will be very
flexible and will require that their shape and orientation be controlled.l
The problem of controlling large, £lexible space systems has been the
subject of considerable research. Many approaches to conkrol system
synthesis have been evaluated using computer simulations including a pre-~
liminary synthesis of control laws for the proposed Hoop/Column Syscem.2’3
Ground experiments have alsc been uﬁed to validate system performance
under more realistic conditions but based on simple structures such

4 In a recent paper, SCOLE (Spacecraft Control Labora-

as beams and plates.
tory Experiment), Lawrence W. Tuylor Jr. and A.V. Balakrishnan described
a propased laboratvry experiment based on a model of the Shuttle connected
to & flexible beam with a reflecting grillage mounted at the end of the
beam5 (Fig. 2.1). The authors stressed the need to directly compare
competing control design techniques, and discussed the feasibility of
such direct comparison. Concern would be given to modelling ovder re-
duction, fault management, stability, and dynamic system perfornance.

With this paper5 as a background, the purpose of the study proposed
here 18 to model the system in different phases where each successive

phase would represent a mathematical model successivelv closer to that

of the actual laboratory system.



It is nﬁticipated that this (multi-year) study would consist of
five perts, the firast of which would consist of a literature survey
during which the investigators would familiarize themselves with dif-
ferent mathematical modelling techniques.

During the second part, the system would be successively modelled
as follows:

a) The Space Shuttle as a rigid body; the reflector mast as a flexible
beam type appendage; and the reflector as a rigid plate. The mast shape
functions are actually solved from the fourth order non-linear flexural
beam equation with different boundary conditions imposed on both the
Shuttle and grillage ends. b) Here the Space Shuttle would be treated
as a rigid body body; the composite appendage consisting of the flexible
reflector mast and also the continucus rigid reflector (grillage) could
be mpndelled using finite element techniques, Then the composite syskteit
d¥ngmics can be modelled using the hybrid coordinate technique6 which
involves sets of matrix equations describing the motion of the main vehi-
cle as well as that of any attached appendages. It is anticlpated that
within the second part of this study these different mathematical models
would be developed in a form sultable for numerical simulation.

During the third part, each of these models could be directly com-
pared with the model proposed in the SCOLE papers, baginning with the
simulation of the open-loop system dynamics, The fourth part of the
effort would congist of the control law synthesis when the model can
be described by linear system dynamies -~ l.e., in reéponse to small per-~
turbations induced on the system about the nominal laboratory configura-

tion aud orientation, or after a major slewing maneuver, to remove the



remelning transients which exist in a nelghborhood of the new equilibrium
orientation. Such a construction of control laws will probably be based
on the ORACLS software package.7 Strategies would be developed to con~
trol the shape and orientation of the beam/grillage.

First the controllability of the system could be examined based
on the graph theoretic techniques already employed for a similar analysis

of the Hoop/Column system3

, for different combinations of numbers and
locations of the actuators. Next, control laws can be constructed based
on the techniques of optimal control theory, and studies can be performed
comparing transient and control effort characteristics for a variety
of system parameters and welghting matrix elements,

Finally, the fifth part would focus on the slewing maneuvers to
accurately polnt the reflector at a specific target-in a minimum lapse
of time, For simple maneuvers (single axis) attempts would be made

to analytically determine the slewing centrol law; for more general maneu-

vers, numerical techniques would be implemented,
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II. A Development of the Two Dimensional Model ~ (Eulerian Moment
Equations)
The SCOLE system is assumed to be comprised of three main parts
(Fig. 2.1):

1) the Space Shuttle Orbiter with its center of mass located at
point 01;

i1) the mast, treated as a 130 ft long beam, connected to the
Shuttle at O, and to the reflector at 03;

111) the reflector, considered to be a flat plate with its center
of mass at 0.

The preliminary analysis presented here started before it was specl-
fied® that the interface puint between the mast and the Shuttle is at
01.8 Therefore, in what follows, a position vector El appears which de-
fines 0{52, where 02 is the assumed interface point.

In the following analysis, the angular yumentum‘of the entire system
1s evaluated at point 01 and the dynamies include the lateral displacements

of the beam.

II. A.]l Angular Momentunm of the Shuttle with Respect to Polnt

|

an
YA -

0 am

|
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Consider a point, P, of maas, dm, at an arbitrary position in the

Shuttle such that 6;P o ¥. The elemental angular momentum of the mass,

dm, 1is given by:

d¥Wo, = Px a%a_al&olm = ¥ x %(ﬁnﬁ)'g dm
= Pxlkh 4 Rt « (we- B)§xT{dm (2.1)

The total angular momentum for the Shuttle is obtained by integrating

Eq. (2.1) over the entire mass of Shuttle as:

oy o b ( Pdm - Rw Ux (V¥ P -3 xT)dm (R-2
Hs"‘ =-R.ftfo:dm nguxSl\:"ami-S;:{ 3 (2-2)

The first and second integrals appearing in the right side of Bq. (2.2)
vanish becaugse the center of mass of the Shuttle i3 at point 01.

' Since T °* j = 0, Eq. (2.2) takes the form:

R A | iy .
H3/0| = (we-8)] Sﬁradm = 1. Wryg, ) (2.3)

where II. is the Inertia tensor of the Shuttle at point 0, and w. =
8 1 R; /R
(w, = 9) 3.

II. A.2 Angular Momentum of the Mast with Respect to Point 0,

deformed

2.5



Congider here an element of the mast located at point, Pl’ with

mass, dm. The elemental angular momentum of such an element is given
~y
S —y
by:  dH =/0P x 4 P/ fa’w (2.4)

— ey )
if one notes that Q /- Yo +? {2.5)
— o d

-
0F = /B""F':'f?

then, Eq. (2 4) may be expanded according to:

b’%, z ___./& x/(rai +92y)dm +/(r£ +7(,d,.f(rf +9i)dln (2.6)

// ig expressed using the relationship between
;{t’teo
the rate of change of a vector, w, in an inertial (R ) and rotating

(R4) frames, 1.e.

o2 7 = o 0 D @

After substitution of Eq. (2.7) into Eq. (2.6) and integration term by

f/M/a, = /Vn/ué e[mﬁ+@§ ,L/h;‘(dfsy/%/_f
- g ool o) (il -Gemfil +C Jonih Bl 4D eoh3E 48 __9-;/}2.8)
+ & L wom(otri)] £(A jom 3-8 co @l pcomh flrdeathil)
+ gy (Ao + 80 - cok -2/t -A+ijf@-p-qy]j
Z Q) sr mrmined = Acofins Bpufr +Comhfil + Donige

2.6



II. A.3 Angular Momentum of the Rigid Reflector with Respect to
Point 01 .

O,

Let 04 be the center of mass of the reflector, and 03 the inter-
face point between the reflector and the mast. The distance, X, between
03 and O4 is constant since the reflector is assumed to be rigid, at least
for this analysis.

Let us now consider an element of mass, dm, of the reflector lo-
cated at an arbitrary point, Pz. The elemental angular momentum of that

element of mass can be expressed as:
- vy —'y
dH = OPX.‘.".(OP) dm <, 9)
/o, ks dt 4 Lﬂu (

> o+

Ole and 0O,F

0,

can be expressed as:

q
v Rz“i’xﬁ;-l- 2.1.3

R+ OF (2. 10)

2!
1
i

!

o
oo
[
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. (2.9) may be expanded according to

df/ﬁ = (R, +(Gcta) o_;)x (84- R.v,f(x-m) bg/ﬂ: (2.11)
ce more, 6( 8
:nxpresse.d using ﬁ((_f;e;*_ix#z}:{]_éeo ~D .i -
d._&w'/’eo =d7" W/&-ﬁ Q&/eoxw

After substitution of Eq. (2.7) into Eq. (2.11) and integration term by

term over the entire mass of the reflector, one arrives at

-
7‘/%’,/ = /M—E‘,’anc oo (0+8) p MICR W x

fou 018) 4 (= 6-8) [T + Mo (X9 R0)] ]

(2.12)

where 12 - is the moment of inerria of the reflector about the j axis

taken at point 04.
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II. B.1 Moment Equation

The angular momentum of the entire system about 01 1ls obtalned

by summing the angular momentum of each part about 01, il.e.

/-/ . § He (2.13)
e = “/o
The moment equation ! ._Jv

iy, = -

where N 15 the sum of all the external torques, acting on the entire
system, about an axis through point 01.

At this stage of the analysis, it is assumed that the center of
mass of the Shuttle moves in a circular orbit, i.e.

a / 4%-3:0
Mﬁ% le

Taking into consideration the coincidence between points 0l and 02,

(2.15)

Eq. (2.14) is expanded using once more Eq. (2.7) and the following

result is obtained:

d ,
% e d
- 9(.’;; o Mm§z+ /- M,—(_,E‘zﬂe;'))

% (T4 M(XHRE)) 4 (498) £ M 0 R

. (640) / Mo fe2, R (8+0) L 4 of{’ - L emfwttd)y

=/‘\'/'?J: /Va't:‘-

{4
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|
(At Beopl + ikt co il +8-D))

— My (RR, we.(am/)UCch)f

4 M e/(wa) 9 ok (1) (A

- B enfl + ¢ jomh BC +D cor fF + 5~ D)j

4 Mo e ot 4§ )] L (A mps it - Banht
-I'Dwz#/%)-f/gé? (A cot + Bl _ ookt
- ~ A +C f

[t
x= L & (wtr) Yt
=- i (wi-+8) Y(8)
& = 2.“’ e (wt+@) Yit)

(2.16)
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II. B.2 Expression for q

In the moment equation, Eq. (2.16), one notices integrals involving
-
q, the transverse displacement vector, and its first and and second deriva=-
tives with respect to time. It is, therefore, necessary to develop an ex-

pression for E.

II.B.2.4 Relation between q(x,t) and y(x,t)

1' baam
\ .\'.\ \\l’*) N
3 y 0
: ,a-‘-l-"ll'llllllllllllli vas™™ .
0a, ado ™

Consider the beam in its deflected configuration,y(%,t) is the
deflection of the reflector-end of the mast at an arbitrary time, t;
y(x,t), the deflection of an arbiltrary point on the mast at the same
time.

From Fig. (2.1), ﬂl . EZ = gos o (2.17)

Assuming o small, tan o can be expressed as

tome = %7(?__,1:) .o = ’&(x,t);th;t) 16
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From Eq. (2.,18) one derives

qlx,t) = E-_‘é'(_eﬁ) - Y(xt) (2.19)

or
glx,t) = ¥x= Y(x,t) (2.20)
11.8.,2.,11 Evaluation of y(x,t)

Assuming separability of the varilables, the beam equation,
+EL QLD FRine) o
Ty 2ttt

is solved to yield solutions of the form:

4(z)t) = f&) bx) (2.2

(2.21)

where '
£(t) = E sinwt + F coswt with w = frequency of the vibration

and $(x) = A cosfx + B sinBx + C coshpfx + D sinhfx _ (2.23)
When the following boundary conditions are assumed:
a) y(0,t) =0; b) y'(0,t) =0

¢) EL y''' (2,£) = -Mr y(2,t); d) EI y''(2,£) = 0 (2.24)
where lﬁ’ - 23- Qnd a - ? B.-
0%

these can be expressed in the form:

o A+ B :O@ o Sl A O (2269
x A+ 0B =0 ¥ Tl |8 ¢

(2.25)
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where Mr

¢ = sinBt ~ sinhff = ;&.B (cogft - coshfl)

§ = ~cosBl ~ coshBl -~ ;},B (singt = sinhfl) (2.26)
Y = cosffl + coshfi '

o = sinfd -+ sinhfl

2
A (2.28)
YYET

For the SCOLE system, the following patrameters have been suppliedB:

™
[ |

o&/ = 0,09556 slugs/ft
EI = 4.0x107 1b~ft?

M. = (400/32.2) slugs

% =130 ft.

For non-trivial solutions for A and B, det C must vanish. The
values of P for which det C = 0 are computed and substituted back into
Eq. (2.28) to obtain the frequencies of the different vibrational modes
{Table 2.1).

The same values of f are substituted into ¢{x), (Eq. 2.23),which is
normallized with respect to its maximum wvalue and the normalized mode
shapes plotted (see Table 2.] and Figs, 2.2 - 2.6). Note that the ranges
of frequencies obtained in Table 2.1 are higher then those prevously pre-

sented in the April 13, 1984 oral presentation due to previous inconsis-

tencies in dimensional analysis of some physical units.
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TABLE 2.1

Values of B and Natural Frequenciee (HZ)
for the First 8 In-Plane (Pitch) Bending Modes

8 u(liz)
1.874599 ,677828
4,6929 4.245
7.8519 11.884

10,997 23,3128

14,1309 38,4933

17.276 57.5283

20,4229 80,4045

23,555 106,958
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I1.C Frequencles of the Lateral Vibrational Modes when the SCOLE
System is Modelled as a Free~Frae Beam with End Bodies having
Inertia

The golution to the beam equation (2.21) is again considered
and the following éoundary conditions assumed:
1. The shear force at either end is equal to the mass located at
that end multiplied by the acceleration of the Interface point at that
end.

This boundary condition combined with the equilibriun conditions

_ET PP o oz Vgne)
pzi YA

ylelds

at the Shuttle end,

EIr D)) o M PUEE) L ieeo® ufe
23 fzze T ” ”23; Lo“ it f’{[d) JA” (2.297)

at the reflector end

FT 24tzt) - Mr @2;(:&,#7 = - M w? }‘(z"fy (2.30)
=/30 f 4

%7 [x=130 ot =/30
where W02 = 4 __Ej

SA
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2. Next, expressing the equality between the moment at zn end point
and the product of the inertia of the mass at that end by the angular

acceleration of the interface point results in:

T 6{z,) = ET Qf&j’)

whow Bl t) = @/yc:c, w
GQ,

At the Shuttle end: x = {, this is expressed as:

/ Y, / = F (wy
Qxt /xz 0

| W'G L) o Er VHk) (e)
Pz [v=0 Rx: /z=p

the same boundary condition at the reflector end transglates as:

- Ty PHmE) = - £ PHRL) .32
’ 0x / /-/.sa ; )

Z /30 Prs

After performing the required differentiation of the assumed
solution of the beam =quation (Ec. 2.23), one arrives at the following

system of four equations with 4 unknowns, A,B,C, and D,

Eq. (2. 29)9__/4 A, B+ MBc _Dzo . 33
v 727y (222)

Eq. (2.30) =»

[LeB ety ] A+ [_ﬁ/am - ca9l]8

b e B ol 1/t 1 /-ﬁ)éﬁmé/%,tmﬁ/ﬁ’(_/ﬂ o (234)
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Eq. (2.31) = —A-f-.-?_.é B +C+.Z_,é D=0 (4.35)
ﬁ)

and Eq. (2.32) =

[1.8° gt copt ] A - [ enpi 1 i 6

+[m/i/4£’ _f’A' 3Mﬁf]6‘ %/:Fm}zﬁﬁ’ _é3wfﬂfj 0 (-36)

Equations (2.33) -~ (2.36) can be recast in the matrix format as

| A 0
/M(/g)]/f/ —/f/ 4. 57)
D ¢

For non~trivial solution of ¢ (x) (Eq. 2.23) the determinant' of M(B)
must be zero. A computer program was written, and the values of B,
solutions of the nonlinear equation det [M(R)] = 0, obtained.

These values of B were substituted into

w.—..-/a"’%’%_{:ﬁ

to derdve the frequencles of the inplane and out-of-plame lateral

vibrational nodes. The results are glven in Tables (2.2) and (2.3).
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Table 2.2 Values of 8 and Natural

Frequencles (Hz) for the first 9

In-plane (Pitch) Bending Modes

B
0.0097

0.0310
0.0549
0.0789
0.1030
0.1271
0.1512
0.1754
0.1995

2.22

m(Hz)

0.3065
3.1308
9.81922
20.2809
34.562
52.6288
74.4794
100.229
129.664




B

0.0103
0.0310
0.0549
0.0789
0.1030
0.1271
0.1512
0.1754
0.1995

Table 2,3 Values of B and Natural

Frequencies (Hz) for the First 9

Out~Plane (Roll) Bending Modes

2.23

m(Hz)

0.3456
3.1308
9.81922
20.2809
34.562
52.6288
74,4794
100.229

129.664



IT. D. Derivation of the Frequencles of the Torsional Vibration,
) SCOLE Configuration.

Assuming the mast to be a circular shaft, the torque at any point

on the shaft is given by
7. @I P4t
oz

where G is the modulus of rigidity and I the polar moment of inertia

of the cross sectional area of the beam. This torque 1s opposed by the

inertial torque .TJO Q@ ( #CZ ,E) )
L2

where p is the density of the beam. For equilibrilum,

GI 2= Tp Vet =0 (238)
Pz U

Assuming the gseparabllity of the varilables, Equation (2.38) 1s solved to

vield, solutions of the form
dlz,t) = () Plz)

where f(t) = a cos (wt) + B sin (wt)

(2-34)
$(x) = A sin mmg x + B cos mfp/G/x



Boundary Condiltions

Writing that the torque, T,et either and of the beam equals the
woment of inertias times the angular acceleration of the interface

point yields:
I ¢nt) - 7, Vhlze) (2 40)
?x erp

Equation (2.40) along with the equilibrium of the shaft gives:

for the Shuttle end: x = 0

Gr 241 S w‘g(z, t)/ @.41)
a2 X=0 X=0o

for the reflector end: x = % = 130

- GI ’EM/ = - T Ylne)) (2e42)
lxz/30

x 2z /30
After substitution of equation (2.39) into equations (2.41) and

(2.42), one arrives at:

Eq. (2.41) = AGT Vf/a + BZ; ¢= 0 (‘2'43)

Eq. (2.42) = 3
[CEI;/? camé;'/g - Jre pu wé&’/_g A

..[GI/@EMmé/é/+ _Z?-cdcwcae%— B =0 (24¢)
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Equations (2.43) and (2.44) can be recast in matrix format

o [rollfof] s

For non~trivial solution of equation (2.39) one must insure that the
determinant [P(w)] is equal to zaro.

The values of w for which det [P{w)] = 0 correspond to the
frequencieg of the torsional vibration. A computer program was written
to solve this determirental equation and the frequencies for the tor-

sional modes are listed in Table 2.4.
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Table 2.4 Values of Natural
Frequencies (H,) for the First 9
Torslonal Vibration Modes

m(Hz)

0.0305

39.99

79.98
119.97
157.97
199.96
239.55
279.94
319.939

2.27



II.E Preliminary Calculation of the SCOLE Appendage Frequencies
based on Finite Element Technlques
For this application both the reflector and the mast are assumed
to be a single flexible body. This body is considered to be comprised
of two types of elements: (1) beam elements; and (2) triangular plate
elements. The actual finite element wodel (FEM) s described as follows:

Mass distribucion

Space Shuttle 6,366,46 slug
Mast 12.42 slug
Reflector 12,42 slug

The masses of the ref%ector and the mast being so small (.39%) as compared
with the mass of the orbiter, which in this analysis is assumed rigld,
the system could be modelled as a cantilever beam (mast) with a mass with
inertia (reflector) at its end. Also, the reflector in this section is
going to be assumed f£lat with a constant thickness small as compared with
its characteristic dimensions.

The' dynamics analyéis of the STRUDL software package, which uses a
physical anmalysis to éolve the equations of dynamic equilibrium, is used

to generate the eigenvalues, the frequencies, and the perlodsof the system.

2.28



System Geometry (Model)

- ooy
kel 275
o e
;?:.O.lfb G 2 ?
==
4
&l
o
HEE
43.33,9-&
' _y

Ve’) ] : ~~—
////Qé L
JT s Sy S

The beam (mast) will be divided into 3 beam elements (each of
43.33ft length) having a mass of 4,14 slug to be lumped at the

ends of the elements,
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3

Coordinates of nodes for the System

Node No. X Y Z
L, 0.0 0.0 0.0
2, 0.0 0.0 ~130.0
3. 0.0 0.0 - 43,32
4, 0.0 0.0 ~ 86,66
S. 37.50 0.0 -1.30,00
6. 56,25 -32.50 -130.00
7. 37.50 -65,00 ~130.00
8. 00.00 -65.00 ~1%0.00
9, -18.75 ~32.50 ~130,00
10, 18.75 -32,50 ~130.00

2.30

in ft,



Resultas - Conclusions

The following results have been obtained (Table 2.5), They show

that the system is less stiff in this model as compared with previocusly

developed NASAB and Howard University continuum medels and also that re-

cently described by the Harris Corporat:ion.9

Table 2.5 -~ Modal Frequencies (Hz)
Obtained by Implementing a FEM

of the Preliminary Model of SCOLE
(Polsson's ratio = 0.3 assumed)

0.157
0.275
0.782
1.083
1.232
_1.386
80,09
107.24
107.24
65,99
421.50



II.F Linearization of the Equation of Motion-Floquet Analysis

s , 4 d_ .
Let T the dimensionaless timn he equael to R T " Y 9T
G
¢
dr? d’rz

Dividing each term of Eq. (2.16) by M L ylelds

B{LVM i+ 1/3 + I"-"/M ¢t Mf XJH- Mrelj
H - M &) ge) - uﬁ& qa,LQ)!(Bm(_wb'*d’)"gw/";*(w“‘b))
- Mr X Red, § i (wob+d) 4 whom bt d»){(r..,-/ ol X by X )qce)

Hm-f,

" _ W) + ___.. ‘h(e)] W frin (10t+4) o (b +9) [ ce)]{ %;‘“’C

- Mﬁr %'_lwa.}- W pw (Wb +) Qz(f;) x E We = O (2.4¢)
"
Let now C; {""""/qu'? % + I:/r/M‘e .*./u}x + M Re }
M1:' X
where u:-M—; A= T

- (§- A YO R w®
where ¢ (&) = Amﬁt-r'l%/h:wﬁﬁ +Cmﬂﬁ€+bﬁ1ﬂ1{%€
Py (8) = Aﬁ“‘"f‘{ ?Bwﬂo +°MM +Dwa-ﬁ€+8-b

C;g = (I"T/Mmel -r/h 1‘/“» Az) l{'(‘a) e \h,('e)//}e -+ L}’s(e)/szez ‘
where Y,(2) = A-/&v:sﬂf -Bmﬁﬂ + cm&hﬁ{ + Du-,ﬂﬁ{

Yy(0) = A w;fac + Bm'u.fae— Cme\ﬂp@—b/}ulhﬁc—&-i'c
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and Gg = LHQ)/IA.) R
Eq. (2 4¢) can be written as
~C 04 wne, d (9m@f+d>)) - Cg B 4 wle, to(wtd)

e 00 W Cyq PMU-GVW)C&?(W&*‘P)- el G pir(wh+d) - 3uwé (I-Ty)8 =0 ;
€2.47) |

Introducing the dimensionaless time T = w,t and dividing Eq. (2.47) é

b m2 one arrives at
y O

- e 9+ we, a_l. (@-w(uat-rd?))_ Wl Cg é. 8
+ W' Cy emfobtd) - wcw% pwwcwhd?)W(wH(P) Wede ¢y ok +) = 0
¢248)

Introducing now the new parameter Q = E- yields
c

-C¥+ ﬂ LB e (Qr+d)] - Cs dp
dt at
+ 00 xm(QTd) - Q¢4 M[%(Q'C*CP)J
2

- -Q-CB N(ﬂ‘c +¢) - 3 (Iu— Iﬂa) 9) = 0 (2.49)




Parametric Study of the System

Let us assume that the interface point between the reflector
and the mast is at the center of mass of the reflector
+ X=0 4+ A=0 = Cs=06

Under this assumption, the equation becomes

-~ & l-%" :T'i: [9 m(at+¢)_]-.- Q‘_g_p e (QT+d)
|
- ‘%& Qpw (2(02249)] - %'(I..- Th)®'=0 (2.50)

which ylelds the following first integral

20 ca. [Bem(QT+d)] + QS &) QT )
o Q:! e [z(fz.'c-tda)] _LI.‘—I;;)G' 'K (21.51)

This equation can be pleotted in the phase plane (B{,B) for different

values of ¢ and Q.
Floquet Analysis

The angular motien about an axis perpendicular to the orbit plane

is deseribed by:

E}"== - SE? é;? . Qc ‘), ) SEEUSI A .IIJ: + jL-(Jr ‘:ru E}
[ c o ] [C. AT G )} )
(2.52
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This equation can be recast into the following matrix format

) (A P )[p

= (2.53)
g 3 P | LY
where
) y
Cs . C Ce G v 3(T, -
-% .8 mar -[2amiag)+2 @5
[P('C)] -
1 0 )

Since P(t) is a matrix with periodic coefficients, the stability of the

motilon will be analyzed in what follows using the Floquet theorem.

Case 1. No gravity gradient, No offset

' i
Ctum QT - & O fm CL
P =| & e e

L 1 e J
[Z(r)] = [P(t)] [z(x)]
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211 Py1%11 + PrgZo1 1)

e

12 = p)%p + Pro%y @)
Zog1 ™ Pg1Zqp t Pgalyy (3) which becomes Z,, = Z,, since py; =
1l and Ppp = 0
Zog ™ Pg1Zyp t+ Pyylos (4) which becomes Zog = %1y
from (3) 25, = éll substituted into 1 yields
%91 ™ PriZgy t+ P1a%s1
Similarily from (4) Z,, = Z;, which substituted into (2) yields
Zo2 ™ P13%gp *+ P1%3p
- g
If one notices that p12‘ ar P11
3
”» - - - - i_
then  Zpy = Pyylyy + PypZy; = g (PuaZpn)

. v d
and  Zyp % PpyZpp * P11%22 7 gr (P1aZp))
These two last equations are integrated and the following result
for 221 and ZZZ obtained

0
Z

21 = P1129y * K

1

€

2og = P112gy + K5

L]
but from (3)2221 = le(T) and
[ J
from (4% Zyy ™ 312(1)

L 4
therefore, 221(0) = le(O) als= P11(0)221(0) 4 Kl

., or for ¢ = 0 Cole=g "~ since Z,,(0) = 0

+ Kpm 1

Zyp(0) = 2,,(0) = 0 = p 1 (0) 2,,(0) + K,



C
2
or for ¢ =0 E; " o~ K2 since 222(0) a1

Zyy ™ P1y%y t 1

" C
Zng = P13 Zgg - c_z
1

Solution of the linear first order equation

4z c
22 5
Tt Pufa t - T (1)

1
dll

The presence of 22 and pl] 22 in the equation suggests a pro-
Tdt

duct of the tyne ¢(T)ZZZ(T)

but ((P.Z;,,,) -Za-a, + (P A_CG’ZL‘L (2)

Multiplying (1) by 4{t) yields

q) %%”’ - cb/ﬂl'zz.z. = "—?’CP

| (3)

which can becone

adf(d);z,_,_) =-2¢ @)

Cy
if one can find ¢(r) (the integrating factor) such that

fci—_? = - c’?fu

(5)
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Ci

= ,@u ¢ = g..;\:-“d'c :J-Q&Cﬂ:ﬂtdt
Mndir) = - Lo pi QT 4 K er

P(r) = exp [_c%. fwr QLT KJ

from _d_ Z = - g-l‘ CC- one arrives at
dt(‘P 22) = ¢ ()

@«’Zzz' = j-— .g_:- /_’P (©) dT
or Z C d'c
@(‘c S G 40

- expl{Llrpmmarek] )-& £ K o(t}
2@ = exp [mpmm:.k]g & (eqp[z% i z 4]
According to Taylor's series development of a function

ek exgp[_-_ mat] = e {n -a T4 (@) '_g"._( .@z)”_n"&)?.’«- 1 |

C, €y A C.‘ &

e m—— o

which is integrated term by tarm to give 1
' |

Tz -2 4 [Cz- at-k][T- %, z’_( g)La's\ T2k
2= Ap| 2L a3 T (@ alzat Y

since ZZ.’! (_0) - 1 ] K‘ - _@_l_

<]

Ty =~ & expf Lr pmflt'{[.... +T-

O
0"‘1«

Hd
+
&,
(o
Lar
4
t
t
[
[ I |
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. C
: 2
Solution of 221 = pl1221+l where P11 o) cos fit

o Al dda, 4+ 4z
= &-_-C(_q)‘zll) - a-_c¢)£| + ¢ d'c ¢

| ),
) = (2) D gib = - d?)ffu

) /CA.C[)CC)-—— 2 /éw»n'c-\- K> er

') - [ c;. [ QLT + K’]

from

q;)

According to Taylor's serles

1-9_’-'C-+§i-.'C

&) ex/’o[ /&mat)ek { :

2,39

adfcm) Zu) = ¢’ = CP)Z;\ = S@Jdl’,
Zus L(gde = exp[ey mac-©] (¢dr

G

(1)

(2)




which 48 integrated term by term to yield

Zu (D) = Q)OF /Mﬂ'C‘HE ezl 91- A K,’}

26 ¢ 6

Lal)z 03 K=o
Zy(T)= 7, (1) =

aZ.U:)_ exfr[. /MQ'C][CL‘C C-:)t’- J(.mﬂt-l)

L pw QT
It can easily be verified that ,Z” Lo) - Qﬂr{gﬁ_ M O} - d

Ci$t
and finally

C;.Zn = & (r)

Zia(2) = ~(2f exp (% Q] [r- e’ (%)’%i-mjx

\

- Ce . C C
Eoar -)r{omar-g) expigs, mat]
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With the use of a computer program, the eigenvalues of the [Z(t)]
matrix are computed for T = a perlod and their modulus compared with
1 to determine the values of the parameters for which the system 1s
stable. The results of such parametric study are shown in the
following stability diagram, Fig. 2.7. The large number of unstable
points in the parametric space {f, MU) are thought to be attributed
to the absence of the gravity-gradient torque in the model. Future
plans call for the extension of the Floquet analysis for the cases
where a non-zero reflector attachment offset is consildered und also
where both a non-zero.offset and the effects of gravity-gradient are

included,
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Fig, 2.7 TFloquet Stability Diagram ~ SCOLE Configuration-No Offset
No Gravity Gradient.
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IIT. STABILITY OF LARGE SPACE STRUCTURES WITH DELAYED CONTROL INPUT

The dynamics of a large space structure can be rapresented

X(t) = AX(t) + BU(E) (3.1)

where

S
|

2nxl state vector

%
n

2nxX2n system matrix

B = 2nxm control influence matrix

U = mxl control input vector

n = number of modes retained in the dynamic model
The matrix A for a freely vibrating large space structure has all imaginary
eigenvalues and, thus, the uncontrolled system 1s marginally stable.
The system given in (1) can be stabilized by a state variable feedback
control law of the form
u(t) = KX(t) (3.2)
and X(t) = (A + BK) X(t) (3.3)
such that the closec loop system matrix,(A+BK), has the required ecigenvalues.
In practice, due to the high dimensionality of the sta:e vector and
the use of digital computers for evaluating control signals, there may
arise a delay in the control input which can be mathematically modelled as:
U(t) = KX(t-T) (3.4)
The consequent need to verify that the system described by
X(t) = AX(t) + BRX(t~T) (3.5)
is stable if the system described by equation(3.3)1s stable is one of the

topics of investigation carried out during the 1984-85 grant peried.
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The system described by equation (5) is stable 31 4¢ and only if
-u(a) > ||ex|| | (3.6)
where
*
Y om
HCAY = A (A"A)

b *
[1BK]| = A2 ((BK)" (BK))

A*, (Blg* denote the conjugate transposs of A and (BK), respectively
and Amax(A) = maximum eigenvalue of racrix A.

Applying the result(3.6)to undamped large space siFirtures (maprix ¢
has all imaginary eigenvalues or some zero eigrutalues ¢orrazpanding to
the rigid body modes plus the imaginary gipewviiues corsesponding to tha
flexible modes), we have

k(a) = 0

ané |IBK|| >0
and, thus, the closed loop system becomes unstable.

In reference 3.2, the analysis of time lag systems for stability is
carried out with the assumption that the original system without these
delays is stable.

The large space structures pose a special problem in that the original
systen is marginally stable and the verification of the closed loop system
stability with delayed control input has to be carried out through numerical
simulation.

Two numerical simulation studies are conducted to determine the amount
of time lag the system can.tolerate without becoming unstable.

CASE 1:
The system under consideration is am Wgirmonic oscilllator representing

an isolated vibration of a large space structure at a specific natural mode

3.2



and is given by:

Xy I'.O 1 X, 0
= o + U (3.7)
L. =t 0 X, 1

»

The above system is stabilized with a control law of the form

U= (0, -~ 250] [x, (3.8)
2.,

The numerical simulation 1s carried out for a control with time lag given
by
uge) = [0, -2z | %, (e-1) | (3.9)

xz(t-T)

with the following numeriecal values:

W= 6,0 rad/sec

L = 0.5 ' (3.10)

x,(0) = 0.5

xz(O) = 0.0
The time response of xz(t) is plotted for T=0, T=0.085, T=0.l secs
(DT=0.05 secs is the numerical integration step tiwme) in Figs. 3.1, 3.2
3.3, respectively. The system became unstable for T=0.1 which is approxi-
mately one tenth of the natural frequency of oseillation of the uncontrolled
system,
CASE 2:

The second system considered for numerical simulation is the dynamic

model of the F-100 turbofan engine 3°3. The uncontreolled or open loop

dynamics are stable.
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The system dynamics are mathematically described as:
X(t) = AX(t) + BU(t) (3.11)
The controller is of the form
U(t) = Kx(t) (3.12)
The matrices A,B,K and the eigenvalues of the matrices A and (A+BK) are
given in Table 3.1.
The numerical simulation its carried out for the contxoller of the
form,
Uft) = KX(t-1) (3.13)
with the initial conditions
xl(O) = xz(O) = x3(0) = x4(0) t x5(0) = 0,1
for 1=0, 1=0.001 and t=0,0099, and given in Figs 3.4, 3,5, and 3.6, re~
spectively. The system became unstable for 1=0,0099 which is a very
small fracqion of the period of the highest damped frequency oif vibration
of the uncontrolled system.
Conc lusion
As the stability criteria for systems with delayed state variable
feedback (as reported in the literature) are found unsuitable to apply
to iarge space structures, which are marginally stable without control,
the numerical simulation is carried out to deternine the tolerable time
delay without the closed loop system becoming unstable. It is observed
that even very small delays can cause the closed loop system to be unstable,

thus demanding the necebsity of very robust controllers.
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IV. EVALUATION OF PERFORMANCE CHARACTERISTICS FOR A SPACE ANTENNA
SYSTEM SUBJECTED TO STOCHASTIC DISTURBANCES

Abstract

The problem of controlling a stochastic linear system representing
the Hoop/Column dynamics by minimization of a quadratic Gaussian per-
formance index, appropriately weighted in both the state varlables as
well as the control inputs, is considered. An optimal control law for
the finite element model of the Hoop/folumn structural system without
damping is realized by combination of the Kalman filter and linear
feedback. A parametric study shows that sultable combinations of plant
and sensor noilse characteristics, and state weighting matrices can be
selected to meet the mission RMS pointing requirements. The sffect
of removing the hoop-mounted actbator is to cause an increase in the
RME errors along with the increased control effort. An increase in
least damped modal time constant is also noted, when the hoop-mounted
actuator is removed. The effect of removing the hoop~mounted sensor
is to cause an increase in the RMS errors along with the degradation
ir the estimator performance. However, removing the hoop-mounted

ctuator causes a greater degradation in the system RMS performance
than removing the hoop~mounted sensor.

I. Introduction

Orbiting large flexible space structures have been considered for
vse in future large scale communications and other fields., As the size
o the spacecraft system increases and the ratlo of weight to area de~
creases, flexibility considerations become very important., This is
in contrast to small space structures which are assumed to be rigid.
{ne such large flexible space structure which has been proposed for
future space missions is the Hoop/Column Antenna System which is de-
picted in Fig. 1 in its deployed configuration.

The Hoop/Column systeml, contains s deployable (telescoping) mast
system connected to the hoop by support cables under tension. The hoop
contains 48 rigid sectlons to be diployed by motor drive units.

ll' ll
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The desired shape of the RF reflective mesh is produced by a secondary
drawing surface using control cables. The reflectlve mesh is connected
to the hoop by quartz or graphite stringers. At one end of the mast
the electronic feed assemblies are positioned, whereas at the other end
are the principal solar arrays connected to the main bus based control.
In order to achieve the required RF performance a pointing accuracy of
+(0,03~0.10) degrees RMS and a surface accuracy of 12mm RMS will be re=
quired. A finite element model of the Hoop/Column structural system
without damping, is taken as the basis for the controls analysis. In
order to reduce the dimensdonality of the system, for computational ease,
a modal transformation is carried out, In this case the truncated sys-
temt contains thirteen modes, comprising the six rigid translational

and rotational modes and the first seven flexible modes.

The controls analysis of the Hoop/Column antenna system requires
specification of the types of actuators and their locations and orienta-~
tions in the structure. For this study point thrusters and torquers
are agsumed to generate the required control forces and torques. Since
we are considering thirteen modes, it is convenient here to choose a
maximum of thirteen actuators in this analysis. Controllability and
observabiliiy considerations of the Hoop/Column system based on the
proposed location of actuators ag shown in Fig, 2 have been established
using graph theoretic techniqes.

An optimal control law is realized by combination of the Kalman
filter and linear feed-back techniques (Fig. 3). The controls analysis
is carried out assuming collocated and noncollocated sensors and actua-
tors. The plant and sensor noises axe assumed to be uncorrelated, zero -
mean white Gaussisn processes.

II. Mathematical Formulation of the Problem

The dynnmic model of the Hoop/Column structural system in the ab-
sence of damping can be represented as?,

MZ + KZ = F, (1)

where
6n x 6n mass/inertiz matrisx

=
1

jd 6n x 6n stiffness matrix

Z - 6 x 1 matrix consisting of the displace~-
ments and rotatlons at the nodal points

6n x 1 control vector.

*x]
1

F, = BCU (2)

4.2
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where
B, - coutrol influence matrix of order 6n % p

for
p = number of actuators

U = p % 1 natrix associated with the control vector.

In the present model represented by Eq. (1) the number of nodes
is equal to 112 (i.e. n = 11l2), corresponding to the number of nodal
(grid) points in the FEM output and the number of actuators is equal
to 13 (or 12).

To decrease the dimensionality of the gystem a modal transfor-
mation 1s carrled out defining

Z = 9q (3)

where ¢ is the matrix containing the eigenvectors of Eq. (1) and
is of order (6n % m), for m number of modes aad q is a modal vector of
order {(m x 1). In this case, m = 13. '

After using the transformation, Eq. (3), in Eq. (1) there results

¢TME q + ¢TROg = ¢TF. (4)
The left hand side of Eq. (4) can be vewritten, using the prnperties

of the elgenvalues and associated elgenvectors as

[“mi.. ] q + [t Ki-. J q = q; Fc "'.._,."‘ A (5)

where
Jm-dMg[u*]=[~%~Li=lﬁun

Tre @ atag [ ¥, Y= [k I, &= 1,0..13

Eq. (5) can be rewritter in the fomrm

¢

X = AX + BU (6)

where

4.3
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and -
0

-1 . T
[ my 1" ¢78,

The plant noise, w, may be inceirporated into Eq.(6) to model the
stochastic linenr dynamic system of tthe form:

X = AX + BU + Gw (7)

The measurements, 7, are assumed to be related to the state through
the observation matrix, H, and the memsurement noise, v, by

Y= HL+v : (8)
Eqs. (7), (8), along with the cost function
t -
3= Un {E [KP(e Q)] + £ (xfox + vTRV)aLD) (9)
Ef o+ » o N

completely define the stochastie problem.4 The minimization of the
cost function yields the optimal control vector, U, obtained from

U= -C ﬁ (10)

where X is the state estimate, and

c = &8k, (11)

where Kl 1s the steady state solution of the matrix Riccati differential
equation,

. T, _ =1.T
Ky KlA + ARy <K;BR "B K1 + Q (12)

The state estimate %, is obtained, from 2

X = AX + BU + F (Y=HX) (13)
with the filter gain, F, expressed as
~L

F = PHIV (14)

where, P 13 the steady state solution of the filter matrix Riccati
equation:

P = AP + PAT - PHTVTMHP + GWGT

(15)
with

W& (e-T) w E[w(t)wi(T)] (16)

4o
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and
V6 (t=1) = E[v(t)vi(T)] : (17)

Substitution of Eq. (10} into Eq. (7) and Eqs., (8) and (10) into
Eq. (13) will yield the following differential equations which could 6
be used for simulation of stochastic optimal control systems(Fig. 3).

X = AX -BCX + Gw (18)
X = (A - FH - BC)X + FHX + Fv (19)

IIA Simulation of the Steady State RMS State Components

After subtracting Eq., (18) from Eq. (19) a differential eguation
for the error resultz as follows:

‘e (A~TFH) e+ Fv - (w | (20)

Furthermore, Eq. (19) can be rewritteg as

X= (A - BC) X~ FHe + Fv (21)

The covariance of the reconstruction exror, P = 2leeT], and the co-
variance of the state estimate, ;= ELXXT], can be obtsined from Eqs.(20)
and (21) as,

T,-1

P = AP + PAT - PHYV LHp + GWGT (15)

»
»~

X, = (4~ BOX, + X; (4 - BC)T + FVFT (22)
The covariance of X is givin by

ELXK"] = E[(X - e) (X=e)']=X +P (23)
For the case when P + 0 and § -+ 0, the steady state varilances of
e and X and, hence,of X can be found.

III. Possible Arrangement of Actuators for the Hoop/Column System

Qut of the maximum of thirteen actuators selected twelve actuators
consisting of point actuators and a torquer are assumed to be located
at selected grid positions in the feed assembly as well as on the column,
while the remaining actuator is assumed to be a point actuator mountied
on one of the rigid links of the hoop assembly with thrust direction
tangential to the hoop circle.

4.5
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Table 1 indicates the relationship between the actustors and the modes
they directly influence, the frequency of each mode, the generalized
mass and the generalized stiffness,

*

Table 1 = Relation between Actuators and Modes Directly Influenced

Actuator No.
(circled in

Fig. 2)
1’2’3, & 4

8(Torquer)

10

11

12

13

Mude Affected
()

Feed Mast
Torsion (12)

First Bending
{about ¥ axis)
(8)

First Bending
{about X axis)
(9)

Surface Tor-
sion (10)

Yaw (rot.
about Z axis)
and First
Torsion (7)

Transl. along
X axis &
Second Mast
Bending (1l1)

Transl. along

Y axis &

Besond

Yast Bending
(13}

Transl. along
Z axis

Pitch (rot.
about Y axis)

Roll (I‘Dt-
about X axis)

Frequency

Hz

0.88976

0.214246

0.270956

0.506323

0,0 and
0.118835

0.0 anc
0.728873

0.0 and
0.919231

0.0

46

Generalized

mass
mi
(lb-BEszin)
723,522

5.233

3.073

0.305

8.419 &
153,157

16.444 &
1,993

B.925 &
0.658

7.349
2.941

9.704

Generalized

stiffness
Ky,

(1b/in)

22612.9

9,483

8,907

3.08%

0.0 ¢
85.385

0.0 &
40,887

0.0 &
21.854

0.0
0.0

0.0
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NOYE: 1If theve is more than one numerilezl wvalue in any golumn, the

first one corresponds toa rigid mode while tht woeoint csuirvesponds to
the flexible mode, respectively.

IV, Numerical Simulation and Synthesis of Culitrol Law

it
Ad

For the proposed arrangement of actuators in the structure, a
parametric study was performed showing the effect of varyirg the
state penalty matrix Q (£roml100I to 10000I) and ¢lis sontrol penalty
matrix, R(frem I to L00I) on the least damped MLlﬂ € the system
(Fig. 4) It has been concluded that Q = 1000I, #% iy a suitable
design point from the stand point of minimizing the least damped modal
time constant and maintaining a reasonable control effort.d Further,
the stability of the closed-loop system, consisting of thy plant
and the estimator, has been established for all cuvmbinations of
parameters considered in this study.7

Plant noise covariances ranging from 0.00001 I(26 x 26) to
0.0000001 1{26x26) and sensor noise covariances ranging from
0.0000025 I(13 x13) to 0.00025 I(1l3 x 13) are assumed in the analy-
sls. Selection of the range of plant noise covariances in the modal
coordinates is based upon plant noise intensity ranging from 1 x 10~
to 1 x 10-8 (1b—m) Selection of the range of sensor noise covarilances
in the modal coordinates is based upen sensor noise intensities in
the range of 1 x 105 to 1 x 10~7 [(rad)2 or (rad/sec) etc].8 Based
on the accompanying analysis, it is seen that the estimated modal
coordinates closely follow_the actual modal coordinates, thus ensuring
a good estimation process.,

In this study, initial displacements of 0,01 are asgumed in all
the modal coordinates, .which correspond to the expected maximum allow=-
able perturbations in the linear range from the nominal operating re-~
quired RMS displaiements; these amplitudes for the modazl displace-
ments are obtained through calculation of Eq. (3).

Numerical studies show that when noilse is included in the model
that increasing the elements of the state weighting matrdx by an owder
of magnitude increases the control effort required by an order of
magnliude, hut does not cause a significant imprcvement in the system
response.7 (But, it was found in the deterministic case that in=~
creasing the elements of the state weighting matrixz causes a significant
improvement in the system responge.d)

A further parametric study was conducted to determine the range
of system parameters which meet the mission RMS pointing accuracy
requirements. Fig., 5 shows the relationship between the steady
state RMS pointing errors (in some of the modal coordinates) and
the state weighting matrices, for initially assumed noise covariances
of w = 0,00001 I(26 x 26) and V = 0.0000025 T (13 % 13).

4.7
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Fig. 5 shows a eimilar relaticnship for plant and sensor noise co-
variances of W = 0.0000001 I(26 x 26) and V = 0,00025I(13 x 13),
respentively. A comparison of Fig. 5 with Fig. 6 reveals that there
15 a decrease in the magnitude of the RMS errors in the latter case,
for all values considered for the steady state welghting matrix ele-
ments. In addition, the steady statm RMS ewrors, for almost all nu-
merical combinationr of the elements of the state wveighting matrix
and of the noilse covariance matrix considered in Fig. 6, are within
he allowable maximum as specified by the mission requirements; es

a contrast some of the RMS errors shown in Fig. 5 would actually
exceed the mission specifilcations. [It is also important to note
that the range of Waximum actuator force amplitudes is about the same
in both the casas,’]

In a recent related studys, it was found that the hoop-mounted
actuatcr plays an imporiant role in controlling ths system. In this
analysis, the effect of removing the hoop~mounted actuator (whose
thrust direction is assumed to be tangentilal to.tHe hoop circle) is
ko cause a detericration in the least damped modal time constants,

The range of tha maximum force ampllitudes required, in response to
initial displacements of 0.0l in all the modes, is also Increased

{Table 2). Further, amplitudesof the RMS pcinting errors are increased
substantially in all the coordinates as compared to the case where all

13 actuators are present, as can be sean by comparing Fig. 7 with Fig. 5.

The effect of removing the hoop-mounted sensor is to cause a
deterioration in the least damped time constant associated with the
estimator poles, thus degrading the estimator dynamics. There appears
to be a redistribution and a small increase in the RMS errors as is
evildent by comparing Fig. 8 witl Fig, 5.

In another recent related studyg, only torque actuators located on
the mast are considered for controlling the antenna attitude and flexi-
ble motions (using 1QG theory as well as other techniques). However,
it was suggested that hoop-mounted control devices might be effective
in controlling certain torsional modes, whichk is made clear in our study,
It should be kept in mind that the problems related to the design of con-
trol hardware remain yet to be answered.

V. Conclusicns

Control system synthesis is considered here for a large space an-
tenna system and is based on stochastic linear optimal contrel techni-~
ques, From this preliminary analysis, it appears that the performance
requirements can be met by using linear quadrztic Gaussilan techniques.
Parametric studies show that suitable cowbinations of plant and sensor
noise characteristics, and state weighting matwices can be selected to
meet the mission RMS pointing requirement:s; here a definite trade-off
exists betwzen the increased complexity, cost, weight, and reliability
of the system, and the possible gain in the system performance.

e 8
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Table 2

Comparison of Maxim m Actuator Force Amplitudes
Q = 1020I, E=I, qi(0)=0.01, i=1,2...,13

13 Modeas
W= 0.0000L, V= 0,0000025

Maximum actuator force 13 Actuators *T Actuators
amplitudes (pounds) 13 Sensors 13 Sensors

£, 0.3330 2.3548

£q 0.0570 0.0453

£q 0.2681 ' 2.2954

£, ' 0.0570 0,0453

£e 1.3028 11,3024

£e 0.2865 0.5520

£, 1.2310 e

fa (in=-1b) 0.0L40 0.0644

f9 0.2859 0.5328

£10 0.1574 0.1694

£11 0.4086 0.38%3

£19 0.3521 0.3521

£14 0.0660 0.0993

4.9
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The effect of removing the hoop-mounted actuator is to cause an
increase in the RMS errors along with the inecressed contyrol effort.
An Increase in the least damped modal time constant is also noted,
vhen the hoop-mounted actuator is removed. [It is interesting to
note that removing the hoop~mounted actuator resulted in an increased
control effort and also increased the least damped modal time constant,
in the deterministic study also.3] The effect of removing the hoop
mounted sensor 1s to cause an increase in the RM3 errors along with
the degradation in the estimator performance.

In order to arrive at more complete conclusions, factors such as
time delay, and nonlinearities in the plant and sensors should be con-
sidered. Since many of the current (and proposed) sensor systems pro-
vide data in a discontinous (discretized) format, another suggestion
1s to reformulate the current analysis in a discretized time basis,
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PERFORMARCE OF A SPACT AUTENNA SUDJECT TO STOCHASTIC DISTURBANCES
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V. CONCLUSIONS AND RECOMMENDATIONS

A two dimensional model of the SCOLE configuration open-loop
dynamics has been developed and will provide the basis for the modelling
of the three dimensional dynamics wich has already been initiated.
Calculation of open~loop appendage frequencies is seen to be dependent
on the boundary conditions assumed at both the Shuttle and the reflector
ends of the mast, and also somewhat dependent on whether a {decoupled)
continuum or (coupled) finite elzment model is used to model the append-
age modes. The Floquet stability analysis, initiated during this report-
ing period, should provide considerable insight into possible parametri-
cally induced open-loop instabilities which should be understood prior
to the design of the control system.

Numerical examples illustrate the potential instabilities that could
result for large ordered systems (typical of LSST) even with input delays
that are only a small fraction of the system's frundamental open-loop
period. Such delays could be associated with actuators or other system
hardware. This work should be extended to analyze the effects of input
delays which could be associated with the SCOLE in-orbit or laboratory
test scale model configurations.

A parametric study of a stochastic closed-loop linear system dynamie
model of the Hoop/Column system shows that suitable combinations of plant

and sensor nolse characteristics and LQG state and control weighting

matrix elements can be selected to meet the mission RMS pointing and antenna

shape accuracy requirements.,




The important role of a hoop-mounted actuator in reducing RMS errors as
well as improving the transient response characterdistics, especilally

in the torsional type modes should be nqyed. Failure of the hoop-mounted
sensor could result in an increase in RMS errors and also a degradation

in the estimator performance.

5.2



	GeneralDisclaimer.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf
	0001B11.pdf
	0001B12.pdf
	0001B13.pdf
	0001B14.pdf
	0001C01.pdf
	0001C02.pdf
	0001C03.pdf
	0001C04.pdf
	0001C05.pdf
	0001C06.pdf
	0001C07.pdf
	0001C08.pdf
	0001C09.pdf
	0001C10.pdf
	0001C11.pdf
	0001C12.pdf
	0001C13.pdf
	0001C14.pdf
	0001D01.pdf
	0001D02.pdf
	0001D03.pdf
	0001D04.pdf
	0001D05.pdf
	0001D06.pdf
	0001D07.pdf
	0001D08.pdf
	0001D09.pdf
	0001D10.pdf
	0001D11.pdf
	0001D12.pdf
	0001D13.pdf
	0001D14.pdf
	0001E01.pdf
	0001E02.pdf
	0001E03.pdf
	0001E04.pdf
	0001E05.pdf
	0001E06.pdf
	0001E07.pdf
	0001E08.pdf
	0001E09.pdf
	0001E10.pdf
	0001E11.pdf
	0001E12.pdf
	0001E13.pdf
	0001E14.pdf
	0001F01.pdf
	0001F02.pdf
	0001F03.pdf
	0001F04.pdf
	0001F05.pdf
	0001F06.pdf
	0001F07.pdf
	0001F08.pdf
	0001F09.pdf
	0001F10.pdf
	0001F11.pdf
	0001F12.pdf
	0001F13.pdf
	0001F14.pdf
	0001G01.pdf
	0001G02.pdf
	0001G03.pdf
	0001G04.pdf
	0001G05.pdf
	0001G06.pdf
	0001G07.pdf
	0001G08.pdf
	0001G09.pdf
	0001G10.pdf
	0001G11.pdf
	0001G12.pdf
	0001G13.pdf
	0001G14.pdf
	0001H01.pdf
	0001H02.pdf
	0001H03.pdf
	0001H04.pdf
	0001H05.pdf
	0001H06.pdf
	0001H07.pdf
	0001H08.pdf
	0001H09.pdf
	0001H10.pdf
	0001H11.pdf

