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SUMMARY

A three phase experimental study of mixing downstream of swirling and

nonswirling confined coaxial jets has been conducted to obtain data for the eval-

uation and improvement of turbulent transport models currently employed in a

variety of computational procedures used throughout the propulsion community.

The present effort (Phase III) effort was directed toward (1) the acquisition of

length scale and dissipation rate data that provide more accurate inlet boundary

conditions for the computational procedures and a data base to evaluate the turb-

ulent transport models in the near jet region where recirculation does not occur,

and (2) the acquisition of mass and momentum turbulent transport data for a non-

swirling flow condition with a blunt inner-jet inlet configuration rather than

the tapered inner-jet inlet employed in Phase I. The total study has been com-

prised of mass and momentum turbulent transport experiments, flow visualization

studies, the documentation and checkout of a computer program, and the measure-

ment of dissipation rate and integral length scales. A nonswirling coaxial jet

study was conducted and reported under Phase I using a tapered wall inner jet

inlet configuration. A swirling coaxial flow study, using the same inner jet

configuration, was conducted and reported under Phase II. A TEACH code was also

acquired, checked out for several cases, and reported under Phase II of the con-

tract.

The measurement technique, generally used to obtain approximate integral

length and microscales of turbulence and dissipation rates, was recently com-

puterized at UTRC. This computerized data acquisiton and reduction procedure was

used to obtain length scale and dissipation rate data for three test configura-

tions. The most extensive set of data was obtained with the tapered inner jet

inlet configuration for the nonswirling flow condition. Results showed the dis-

sipation rate varied by 2 1/2 orders of magnitude at the inlet plane, by 2 orders

of magnitude 51 mm (2 in.) from the inlet plane, and by 1 order of magnitude at

102 mm (4 in.) from the inlet plane. The ratio of the integral scale length for

the streamwise velocity component to the microscale length varied from values of

2 to 6 between the inlet plane and the 102 mm location.

Mass and momentum turbulent transport data was obtained downstream of the

blunt inner-jet inlet configuration, using the laser velocimeter/laser induced

fluorescence measurement techniques employed in the previous experiments with

swirling and nonswirling flow conditions. The velocities, concentrations and

momentum turbulent transport results obtained downstream of the blunt inner-jet

inlet configuration for the nonswirling flow condition were not significantly

different from those obtained with the tapered inner-jet inlet. The results are

presented and compared with the Phase I results in the present interim summary

report.

Phase II and Phase III of this contract were funded at NASA Lewis Research

Center through the Turbine Engine Hot Section Technology (HOST) project.
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INTRODUCTION

Computational procedures to predict combustion processes are being developed

and refined by a number of researchers (e.g., see Ref. 1 and surveys in Refs. 2
through 5). These computational procedures predict the velocity, species concen-
tration, temperature and reaction rate distributions within the combustor and are
used to determine combustor liner heat load, engine performance (combustion

efficiency), pollution emissions (reactant products) and pattern factor (tempera-
ture distribution at turbine inlet). Because most combustors of practical inter-

est have turbulent flow, the calculation procedures include mathematical models
for the turbulent transport of mass (or species), momentum and heat. However,

the prediction of combustion processes with improper turbulent transport models

results in inaccurate predictions of combustor efficiency, linear heat load,

emissions and exit temperature pattern factor.

The recent prediction of recirculating combusting flows, typical of those

found in aircraft gas turbines, have produced qualitative results which "provide
insight in to the nature of the combustion process rather than quantitative

design information" (e.g., Ref. 1). Although the insight is helpful in diagnos-
ing problems, the long term goal of the combustion designers is to decrease com-

bustor development costs by using accurate combustor flow prediction procedures.
The deficiencies in the current computational procedures have been attributed to

weaknesses in both the mathematical models, including the turbulent transport
models, and in the numerical methods. The recommendation from workshops and

studies on combustion modeling are that the mathematical models used.in the cal-
culation procedures be validated using experiments specifically designed to pro-
vide the required initial conditions (e.g. Ref. 1). The first step in this pro-

cess is the validation of the mass and momentum turbulent transport models for

the less complicated constant density flow.

The data used to formulate and validate the turbulent transport models have
been obtained primarily from velocity and momentum transport measurements because
only a limited amount of concentration and mass transport data is available. The

mass (species) transport data presently available are not sufficient to determine

where inadequacies exist in the present models or to formulate improvements for

the models. One reason for this situation is that the methods for simultaneously
obtaining turbulent mass (species) and momentum transport data often have been

indirect, requiring compromising assumptions. To overcome these limitations a
technique was developed at UTRC to simultaneously measure concentration and

velocity, and therefore, obtain mass transport data which can be used to evaluate

and improve combustion oriented turbulent transport models for scalars such as
concentration of species and temperature. The combined laser velocimeter laser
induced fluorescence measurement technique was used to under Contract NAS3-22771
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to obtain mass and momentum turbulent transport data with nonswirling and swirl-
ing confined coaxial jets (Refs. 6 and 7). These data have been used to evaluate
computational procedures for predicting combustion processes at NASA Lewis (Ref.
5) and by the contractors in the 1982-83 NASA Lewis Hot Section Technology (HOST)
Aerothermal Modeling Program (e.g. Ref. 8).

Although extensive measurements of velocity, concentration and turbulent
transport rates were presented in Refs. 6 and 7, the length scales and dissipa-
tion rates were not measured. This deficiency in the measurement of all inlet
conditions required for the computational procedures, leaves an opening in the
comparison of predictions using various mathematical models and the experiments.
The importance of inlet boundary conditions has been noted by several authors
(e.g., Ref. 8) to be important in detemining the quantitative accuracy of the
calculation procedure. The length scale and dissipation rate measurements,
obtained in the present study, provide (a) the additional data required as inlet
boundary conditions for the computational fluid mechanics codes and (b) measure-
ments in the interior regions of the flowfields that can be compared directly
with results of numerical predictions or the details of current or proposed tur-
bulent transport models.

A problem was also encountered in comparing the experimental momentum trans-
port results of Ref. 6 with the previous experimental results of Ref. 9 in that
the center jet tube at the coaxial jet inlet used in Ref. 6 was tapered whereas
that of Ref. 9 was blunt. The blunt trailing edge geometry apparently produced a
different turbulent transport process which was more easily predicted by the
current turbulent transport models, Ref. 10. Turbulent transport measurements
were obtained in this phase of the present study to determine if differences
occured due to the inner jet inlet geometry. However, the results for the blunt
inlet presented in this report will show small differences compared to the
results for the tapered inlet configuration presented in Ref. 6.
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LENGTH SCALE AND DISSIPATION RATE MEASUREMENTS

A measurement technique was developed under UTC (UTRC and PWED) sponsorship
to obtain length scale and dissipation rate measurments using a computerized data
acquisition and reduction system. The measurement technique is applicable for
flows where Taylor's hypothesis applies. The dissipation rate is calculated
using an isotropic flow assumption. The small disturbance relationships will

also be used to determine approximate eddy dissipation rates and length scales in
regions where the approximation no longer applies in a strict sense. The
approximate dissipation rate determined with the small disturbance relationship
in regions with moderate turbulence intensity is likely to be reasonably good
because the largest contribution to the dissipation rate occurs in the small
eddies previously shown to be essentially isotropic. Additional effort will be
required to determine the influence of higher turbulence intensities on the
accuracy of the integral length scales.

Description of Measurement Technique

Mathematical Relationships

The relationships used to determine the eddy dissipation rate and the
integral length scales are developed from isotropic turbulence theory and are
regarded as "well established" by the fluid mechanics community. The form and
nomenclature of the relationship was taken directly from Hinze (Ref. 11).

The spatial velocity gradients required to determine the dissipation rate

are obtained by assuming that the temporal and spatial derivative at a point are
related by 3/9t( ) = -U3/3x( ). In the strict sense, the relationship is
good if the fluctuating velocity is much less than U, i.e. u'/U « 0.01. A well
defined mean velocity, U, is also required. This requirement is most often sat-
isfied when the turbulence intensity requirements is met. This approximation is
known as Taylor's hypothesis.

The autocorrelation for time delay, T, is defined

R(T) = u(t) u(t + T)/u'2

An integral scale of turbulence, an approximate microscale of turbulence and an
eddy dissipation rate are related to the autocorrelation of the streamwise veloc-
ity fluctuations. The integral scale of turbulence is defined:

00

LI = U / R(i)dT
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A second integral scale of turbulence is also obtained directly from the veloc-
ity fluctuation spectrum data and defined (Ref. 11):

L2 = (U/4) limf+0 [E(f)/u
l2]

The microscale length of turbulence, X, is defined as the intercept (at R(T)=O)
of the parabola that matches R(T) for small T, i.e.,

R(T) = 1 - (TU/X)2 = 0

where E(f) is the turbulent kinetic energy per frequency cycle of one velocity
component at frequency f. The dissipation rate, e, is related to the microscale

of turbulence, the rms velocity and the fluid kinematic viscosity:

e = 15 vu'
2/X2 = 30 vu'

2/X2f

where X- is a microscale length in the streamwise direction, X is a microscale
length in the crossstream direction. As noted earlier, this expression is a
result of the isotropic assumption.

Although the autocorrelation/microscale relations shown above will lead to a
dissipation rate, the determination of the curvature of R(t) at T=0 is often
difficult and sometimes ambiguous. Another relationship for the microscale is
obtained more easily from the one-dimensional velocity turbulent energy spectra

(Ref. 11):

00

1/X2 = (2TT)/(U2ul2) / dn n2E(n)

In the opinion of the authors, the approximate dissipation rate is more easily
and accurately obtained with the integral of an independent spectrum measurement
rather than the double differentiation of experimental autocorrelations at T =
0.

It should be noted that the definitions of the integral scale and microscale
from the correlator or from the spectrum are equivalent. An autocorrelation,
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R(T), is constructed from the Fourier transform of the energy spectral distribu-
tion using a computer routine which is part of the data reduction program. The

Fourier transform which produces the spatial correlation is

00

R(T) = / coŝ EO*)) du

since both R(T) and E(w) are real. This autocorrelation is equivalent to that
obtained using a correlator.

Velocity Measurement

Hot film/hot wire anemometry was used to measure the instantaneous stream-
wise velocity of the flow. A TSI model 1050 constant resistance anemometer was

used with TSI model 1220-20 and 1210-20W hot wire and hot film probes in air and
water, respectively, to produce an analog signal. The instantaneous heat trans-
fer from the probe wire/ film is obtained with conventional heat transfer rela-
tionships

(Tw -

where h » (k/d) (A+B(pud/U)0> 5) . A TSI model 1057 linearizer was used to produce
an instantaneous voltage proportional to the "instantaneous" stream wire velocity
at the probe. Thus

= E2 + e2 = C*U = C*(U + u) (1)

where "• and - denote instantaneous and time average values respectively. In all
these expressions, the contributions of velocity components parallel to the sen-
sor are assumed negligible.

A Spectral Dynamics Micro FFT Analyzer was used to obtain the spectrum of E£
using conventional techniques. The Spectral Dynamics Micro FFT Analyzer has six
frequency ranges with full range scales with maximum frequencies from 500 to
20,000 Hertz. Each frequency range is divided into 400 equally spaced incre-
ments. For the instrumentation development tests with air, the 0-20 KHz range
was used. However, for the length scale experiments in water, the 0-1 KHz, 0-2
KHz or 0-5 KHz scales were used. Table II contains a listing of the components
used in the length scale measurement technique.
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Data Acquisition and Reduction Program

Although the mathematical relationships for the turbulence micro and
integral length scales, the anemometer, and spectrum analyzer have been available
for sometime, the amount of effort required to produce a length scale measurement
is considerable. Limiting factors have been (a) the manual transfer of data from
a spectrum analyzer to the data reduction computer and (b) the mathematical con-
version of the spectral energy information to the autocorrelation function.
Therefore, only a limited number of length scales have been determined from
velocity spectra to date. The current availability (a) of electronic data trans-
fer links between measurement instruments like the SD FFT Spectrum Analyzer and a
microcomputer and (b) efficient fast Fourier transform algorithms for minicom-
puters makes the "production" measurement of length parameter feasible. The
technical staff at UTRC recognized the need for the length scale information, the
current availability of the electronic data transfer procedures and have
implemented the procedures. The information flow chart for the data acquisition
and reduction program is shown in Fig. 1. The first comprehensive set of data
obtained at UTRC with the technique is that described in this report.

Spec£rum_Aiialy_z_er_

The voltage spectrum, E-j(I), is calculated from

- ( V * 1 0 dB(I)/20)2/(1.5 Af)nns

for 1=1 to 400. Here, dB(l) is the analyzer output, V is the selected
reference voltage, and Af is the frequency step. All these data are entered

directly through the interface during data acquisition. Note that the quantity
(1.5 Af), represents the effective analyzer filter bandwidth provided in the

analyzer manual (Ref. 14). Data analysis is based on the assumption that the
spectrum is essentially constant in the range, f to f + Af.

An important part of the data acquisition and reduction program is the fast-
Fourier transform (FFT) program used to convert the input spectrum information to
an autocorrelation. The technique is commonly used in other scientific discip-
lines and is discussed in Ref. 12. The FFT program employed was originally
developed by Cooley and Tukey (Ref. 13). Basically, it involves a processing of
the input data such that the number of calculations requires is significantly
reduced (from N to N log N where N is the number of points in the input data).
One requirement of the FFT procedure used in the present application is that N be
representable by

N = 2M (2)

10
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where M is any integer. In its present form, the FFT program is used to calcu-

late the autocorrelation, using input spectrum data. The spectrum data is

obtained as digital output from the Spectral Dynamics Spectrum Analyzer. The

input data consists of voltage levels, E3(l), at 400 frequency intervals, Af. To

satisfy the requirement of Eq. (2), the spectrum input is assumed to be zero for
frequency steps 401 through 512. This extension had no effect on the resulting

maximum correlation time; it is still given by

Tmax

A side benefit, however, is that the resulting autocorrelation is defined with

512 timesteps rather than 400 and is thus better defined. Within the spectrum

thus defined, the next step in the analysis is the previously discussed FFT con-

version of the velocity spectrum to an autocorrelation. With the noted addition

of E(I)= 0 for 1=401 to 512, the output is a 512 step autocorrelation R(T) for
T=T-J- defined by

TJ. = (I-D/U024 Af)

I = 1 to 512.

Note two things: for T=0, R(t)=1.0 for the autocorrelation; and as mentioned

earlier, tmax = l/(2Af).

I)at_a_Ana Vys_is_ Program

The fluctuating voltage spectrum is converted to a fluctuating velocity

spectrum E(l) with the linearized output of (1); this simple transformation is

given by

E(I) = (I/O2 E3(I).

The final portion of the data analysis procedure involves calculation of

additional statistical properties. The mean-square turbulence intensity is cal-

culated from

» 400

u2 = / E(f)df = I E(f)Af

o 1=1

11



R84-915540-34

The microscale is calculated from

00 400
[ E(f)df I E(f)Af

f 2 » 2 40j
211 / f2E(f)df 211 I f2E(f)Af

o 1=1

where A£ is the microscale. The integral scale, L, is calculated in two
ways; first, from the autocorrelation function,

00 400
LI = U / R(t)dT = U I R(T)AT

o i=l

or, given the Fourier transform relationships, the integral scale can be calcu-
lated from

L2 = U/(4u2) Hm+ E(f);

Finally, the dissipation rate, e, is calculated from

e = 30 v u
2Af

2

12
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Discussion of Results

Nonswirling Flow with Tapered Inlet

The length scale and dissipation rate measurements were conducted in the
UTRC coaxial flow facility (Fig. 2) using water as the working fluid. The flow
conditions and geometries were identical to those employed in Ref. 6, i.e. U
(inner) = 0.52 m/s and U (annular) = 1.66 m/sec and with a Reynolds number of
35,000 based on the duct diameter and the average velocity. A sketch of the
inlet and measurement locations is shown in Fig. 3. The swirler was not
installed for the measurements discussed in this subsection. Mean, fluctuating
and spectral measurements of the axial velocity were obtained in the regions
without recirculation at z = -41, 5, 51 and 102 mm from the inlet plane. Mass
and momentum turbulent transport data were obtained at the last three locations
during Phase I (Ref. 6).

The mean and fluctuating axial velocity measurements obtained with the hot
film anemometer at the four axial locations, are presented in Figs. 4 and 5,
respectively, and compared with results from Ref. 6, obtained with a laser veloc-
imeter. The agreement between the two sets of measurements is excellent. The
conclusion from this comparison is that the hot film data acquisition and reduc-
tion procedure for obtaining mean and fluctuating velocities reproduces the pre-
vious results with acceptable accuracy.

The dissipation rate distributions for the four axial locations are pre-
sented in Fig. 6. Note the dissipation rates at the center of the inner jet and
the annular jets are approximately the same at z = -41 and 5 mm from the inlet
plane. At z = 5 mm, the dissipation rate across the inlet varies by 2 1/2 orders
of magnitude. This radial variation decreases to less than one order of magni-
tude (by increasing the lower dissipation rates and decreasing the higher dissi-
pation rates) at z = 102 mm from the inlet plane. Note however that there is a
two order of magnitude range in the dissipation rate at z = 51 mm (2 in). As
expected, the locally high and low dissipation rates are associated with high and
zero axial velocity shear rates, respectively. It should be noted that the sen-
sor length is slightly larger than the estimated Kolmorgorov scale, n. Since the
dissipation is centered around n, a smaller sensor or a suitable correction will
be required to obtain precise dissipation rates from the spectrum directly.

The integral length and micro scales of turbulence are presented in Fig. 7.
The integral scales LI and L2 were both determined as part of the computerized
data reduction procedure. Note that the integral scales determined by both meth-
ods are generally in good agreement. The largest difference between the two
scales is about 20 percent and occurred at z = 102 mm. This is a location with
long wave length eddies occurring over a moderate frequency range. The differ-
ences between the two integral length scales are generally less than ten percent

13
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with the integral scale determined from the integration of the auto correlation

always being greater. The integral scales of turbulence in the inner jet inlet
(z = -41 mm) were 9 to 12 mm, approximately half the tube diameter and compatible
with length scales reported in Ref. 11 for previous work by Laufer.

The micro scales of turbulence, Xf, were 15 to 40 percent of the integral

length scales. The ratio of micro scale to integral scale inside the inlet duct
(z = -41 mm) was somewhat greater than measured by Laufer for a two-dimensional
duct, i.e.: 15 percent of the UTRC circular duct diameter compared to 10 percent
of the Laufer 2-d slot height. Thus, the present results in the duct appear to

be reasonably compatable with previous studies. The micro scale of turbulence
does not vary much (KAf<3.8 mm) compared to the integral scale of turbulence.
For the two measurement locations downstream of the inlet, the ratio of the maxi-
mum to minimum microscales (2<Af<4 mm) is only half the ratio of the integral

length scales (4.2<L<19).

Swirling Flow with Tapered Inlet

The length scale and dissipation rates were also measured 5 mm (0.2 in)
downstream of the inlet plane with the swirler (used in Ref. 7) in the annular
duct as shown in Fig. 3. The hot film probe axis was in the plane perpendicular

to the probe traverse direction and parallel to the inlet plane. This caused the
hot film probe to be most sensitive to the axial and radial velocity components
and relatively insensitive to the tangential velocity components. This hot film
axis orientation was chosen to maintain a small probe volume cross section in the
radial direction where the peak velocity gradients occur. The consequences of
this probe orientation on the results are not fully understood at this time. For
those flow conditions with negligible radial velocities, the signal is primarily
due to the axial velocity. In swirling flow, the fact that the sensor is paral-
lel to the swirl reduces its influence on the signal. The approximations used to
acquire and reduce the data for the nonswirling flow condition were also used for
the swirling flow condition.

The mean axial velocity profiles measured at z = 5 mm (0.2 in) with the hot
film and laser velocimeter (Ref. 7) are shown in Fig. 8a. The axial velocity
measured with the hot film downstream of the inner jet was slightly less than
that measured with the laser velocimeter. However the axial velocity measured
with the hot film downstream of the annular jet almost coincides with the laser
velocimeter measurements.

The fluctuating axial velocities (Fig. 8b) measured with the hot film at the
centerline (r/Ro

 = 0) downstream of the inner jet and downstream of the central

region of the annular stream (r/R0 * 0.35) are approximately equal those

measured with the laser velocimeter. However, the fluctuating velocities
measured with the hot film in the shear layers were as much as a factor of two
greater than the laser velocimeter results. Some of these discrepancies are
probably caused by the high turbulence intensities, u'/U, and the accompanying

14
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velocity probability density distribution functions which include negative veloc-
ities and large crossflow velocities from the probe mounts into the sensor.

The dissipation rate distribution at z = 5 mm are presented in Fig. 9a. The
dissipation rate downstream of the inner jet is approximately the same as for the
nonswirling flow condition, as expected. However, the dissipation rate down-
stream of the central position of the annular duct with swirling flow is more
than one order of magnitude greater than for the nonswirling flow condition
(Fig. 6). The peak dissipation rates in the shear layers between the inner and
outer streams and between the outer stream and the recirculation cell are approx-

imately the same as for the nonswirling flow condition. The authors believe
these measurements should be repeated with additional probe orientations before
final conclusions regarding the differences between the swirling and nonswirling
inlet conditions are reached.

The integral and microscales measured are presented in Figs. 9b and 9c,

respectively. The microscale downstream of the inner jet inlet are approximately
the same as for the nonswirling flow condition. The microscales downstream of
the annular jets are about 50 percent of the values for the nonswirling flow
condition; this is comparable with the order of magnitude higher measured dissi-
pation rates and turbulence levels that are 10 to 50 percent higher than for the

nonswirling flow condition. The integral length scales downstream of the annular
jet are also less than those for the nonswirling flow conditions. The integral
scales downstream of the inner jet are about 30 percent greater than for the

nonswirling flow conditions. This may be associated with the low frequency
unsteadiness which occurred at the upstream end of the recirculation cell at z =

38 mm (1.5 in) (Ref. 6). These length measurements experiments with the swirling
flow condition have produced interesting results which most likely show general
cause/effect relationships. However, the experiments were exploratory and the
results need to be verified with additional measurements.

15
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TURBULENT TRANSPORT EXPERIMENTS WITH BLUNT INNER JET INLET
CONFIGURATION AND NONSWIRLING FLOW CONDITION

The mass and momentum turbulent transport experiment with nonswirling
confined coaxial jets, previously conducted with a tapered inner jet inlet con-
figuration (Ref. 6) was partially repeated using a blunt inner jet inlet config-
uration. This experiment was repeated in an attempt to resolve'the apparent
differences in the momentum turbulent transport process between the Johnson-
Bennett experiment (Ref. 6) and The Habib-Whitelaw experiment (Ref. 15). Both
experiments were conducted with coaxial jets discharging into an enlarged axisym-

metric duct. Both experiments had the outer (annular) jet velocity higher than
the inner (axisymmetric) jet velocity. In the Johnson-Bennett experiment, the
centerline velocity was approximately constant with increasing axial distance
from the inlet indicating the streamwise momentum of the inner jet was not
rapidly transported to the wake region between the flow from the inner jet and
the annular stream. In the Habib-Whitelaw experiment, the centerline velocity
decayed appreciably downstream of the inlet plane before being accelerated by the

annular jet. One identifiable difference between the two experiments was the
inner jet inlet configuration with a blunt inlet configuration used in the Habib-
Whitelaw experiment using a tapered inner jet inlet configuration used in the
Johnson-Bennett experiment.

The experiment with nonswirling confined coaxial jets and the inner jet
blunt inlet configuration will be discussed in the following subsections. Only
small differences in the velocity, concentration and momentum turbulent transport
results between the current and previous (Ref. 6) experiment were measured. The
results from the current experiment did not resolve the previously stated
dilemma. However, the previous results (Ref. 6) have been verified and data has
been obtained at an additional axial location near the inlet region where changes
in the transport process are more rapid.

Description of Test Apparatus

The facility and measurement techniques used in this experiment are
identical to those used in Refs. 6 and 7. The test section was modified after
the Ref. 7 experiment to facilitate cleaning and to be useable for the length
scale and dissipation rate measurements. Description of the apparatus from
Ref. 7 are presented in this section for completeness.

A schematic of the coaxial flow facility used in this experimental program
is presented in Fig. 2. The principal components of the facility are a water
storage tank, a water transfer and metering system, a dye injection system, and a
test section. For the laser velocimeter tests, the facility was run in a closed,
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recirculating loop. Water, which was at a temperature of approximately 20 C, was
circulated by a pump from the storage tank, through metering valves and flow
measuring devices to the inner jet and annular jet inlets of the inlet plenum.
The water in the annular duct and inner tube entered the test section, mixed and
discharged into the exhaust ducts, and was returned to the storage tank.

Whenever fluorescein dye was used as a tracer, such as for the flow visual-
ization tests and the LV/LIF tests, the facility was operated in a single pass
mode. The water from the exhaust ducts were discharged into the city sanitary
sewer and fresh water replenished the system. For the flow visualization tests,
dye was added to either the inner jet fluid or the annular jet fluid several feet
upstream of the entrance to the test section to ensure uniform flow of dye into
the test section. For the LV/LIF tests, uniform flow of the dye was ensured by

adding the dye to a mixing chamber located a short distance from the dye micro-
metering valve. The 20 to 40 psi pressure drop across the valve was large com-
pared to the other pressure drops in the system, thus ensuring a constant flow of
the dye injected into the inner jet flow. The mixing chamber was large enough to
ensure adequate mixing and a uniform dye concentration at the entrance of the
test section. A magnetic rotating mixer was used in the dye reservoir to keep
the dye well stirred and an inline filter was placed in the system to prevent
clogging of the dye micrometering valve.

A sketch of the test section is shown in Fig. 3. The test section was a 122
mm inside diameter by 1 m long, thin-wall glass tube. When flow visualization
and optical experiments are conducted in circular tubes, the water-glass-air

interfaces can produce optical distortion. As shown in Fig. 2, the circular duct
test section was enclosed in a rectangular, glass-walled optical box filled with
water to reduce beam direction distortion as the laser beams passed from air
through the glass wall of the duct and into the test section water. A ray trac-

ing program was used to determine that the radial displacement of the probe vol-
ume was less than 0.03 mm and the offset of the measurement direction from radial
was less than 0.05 deg for radii up to approximately 55 mm.

Water to the test section entered through an annular duct and a smaller
inner jet tube. The water then exhausted through the exit duct, up over a weir
and flowed to the drain. The top end of the exit duct containing the weir was

open to the atmosphere to prevent the test section from becoming overpressurized.
The inlet plenum for the annular duct contained three perforated plates to pro-
duce uniform flow and a honeycomb section to remove swirl from the flow. The
inner jet tube was fed with the same diameter hose for lengths of over 300 cm and
included a 60-cm length of straight, nonflexible tubing. A perforated plate was

also positioned immediately upstream of the 60-cm tubing.

With this test section, measurements were usually made at a fixed axial
location over a range of radial locations. The measured parameters discussed in
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this report are presented as functions of the radial position r, normalized by
the radius of the test section, Ro, i.e., r/RQ. For this representation, the
inner jet tube extends from r/Ro =0.0 to r/RQ = 0.20 and the annular region
containing the swirler extends from r/Ro = 0.25 to r/RQ = 0.48. The inner
and annular regions are separated by a thin wall which extends from r/Ro

 = 0.20
to r/R0 = 0.25. The region between r/RQ = 0.48 and r/RQ = 1.0 is a solid

wall which acts like a backward facing step in the flow field.

Description of Laser Velocimeter and Laser
Induced Fluorescence Measurement Techniques

The measurement techniques and equipment used for this experiment are
identical to those used in Ref. 7. Description of the measurement techniques
from Ref. 7 are presented in this section for completeness.

Overview

The laser velocimeter (LV) and laser induced fluorescence (LIP) measurements
were obtained using commercially available components. Some electronic compon-
ents, which were not commercially available when first required at UTRC, were
designed and fabricated by the UTRC instrumentation group. The equipment
utilized for each measurement will be described as the technique is
discussed.

The LV measurement system employed in these experiments is sketched in Fig.
10 and utilized the two-color LV optics system detailed in Fig. 11. The two-
color LV concept utilizes the two strong laser lines of an argon ion laser at
0.4880 urn (blue) and 0.5145 pm (green) wavelengths. These two colored beams are
separated in the optical system and subsequently emitted as three beams; a blue
beam, a green beam, and a 50-50 mixed blue/green (cyan) beam. The three beams
are passed through a lens to produce two sets of orthogonal interference fringe
patterns in one common focal volume each having a fringe spacing:

df= A/(2 sin (6/2)) (1)

where X is the wavelength of the incident light beam, and 6 is the intersection
angle between the cyan beam and either the blue or green beam. A particle pass-
ing through the probe volume will scatter light of both colors, blue and green.
The light intensity at the photomultiplier is modulated by a frequency, fj),
corresponding to the particular wavelength and fringe spacing and velocity com-
ponent. This frequency is related to a particle velocity component through
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fD = U . / d f (2)

where U^ is the velocity component perpendicular to the optical axis and in

the plane of one set of intersecting colored beams. More detailed descriptions
of the particular two color laser Doppler velocimetry system utilized in this
experiment including the frequency shift used to prevent flow direction ambiguity
may be found in Ref. 16.

Two Component LV Measurements

For the measurements described in this report, the optical system was
operated in a direct backscattering mode as shown in Fig. 10. The 0.4880 ym
wavelength beam was used to measure the streamwise or axial velocity component,
U. The 0.5145 ym wavelength beam was used to measure (a) the azimuthal velocity
component, W, when the probe volume was moved horizontally across the stream and
(b) the radial velocity component, V, when the probe volume was moved vertically.
A Bragg cell was used for both velocity components to eliminate the flow direc-
tion ambiguity. This optical subsystem provided signal-to-noise ratios greater
than 20 except near the test section walls. For the measurements made in this
study, the nominal value of the beam intersection angle, 6, was 9.52 deg. The
laser beam diameter was 1.25 mm and the beam separation at the 1.94:1 beam
expander output lens was 53.5 mm. A 310 mm focal length achromatic lens was used
to focus the beams. With these optical system parameters, the LV probe volume
was calculated to have dimensions of 0.08 mm diameter, 1.01 mm length and con-
tained 28 fringes.

Besides the sending and receiving optical subsystems, each LV system con-
tains other components or subsystems which perform specific functions in the flow
measurement. These include: (1) a scattering particle generator or seeder, (2) a
traverse system to position the probe volume, (3) signal processors, and (4) a
data handling subsystem. For the experiments performed for this study, the par-
ticles naturally occurring in the city water supply proved adequate as LV seeds.
As indicated in Fig. 10, the traverse system consisted of a milling machine base
having three directions of motion. The range of motion in the streamwise direc-
tion was approximately 240 mm while the ranges in the vertical and cross stream
directions were greater than the dimension of the test section. The relative
traverse position accuracy of this traverse system was approximately 0.1 mm.

Laser Doppler velocimeter (LDV) signal processors amplify and filter the
signals from the multiplier tubes, validate the Doppler frequency samples, and
finally compute the Doppler period which is the reciprocal of the Doppler
frequency. The SCIMETRICS Model 800A signal processors used in this study
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measured the elapsed time for 8 Doppler cycles and recorded the pulses from a 125
MHz crystal during the 8 cycle period. The processor also measured and recorded
pulses for 4 and 5 Doppler cycles, and compared them with the 8 cycle result to

ensure that the LDV signal was a valid one-particle signal. The integer number
transmitted to the data handling system is the period of the Doppler frequency

in nanoseconds. Two signal processors were used in this study (one for each
colored light signal).

Once the LDV signals were processed and accepted, a microcomputer handing
system was used to acquire, store and reduce the data. This system consisted of
(1) a data handling interface (constructed in-house), (2) a DEC PDF 10/11 mini-
computer with a dual disk operating system, (3) a DEC Laboratory Peripheral
System (LPS) with an analog to digital (A/D) signal converter, and (4) a DEC-
writer III teletype printer. The LDV Data Handling Interface was used to accept
only those data points for which the two velocity components were obtained within
a period of time of 1 msec. This time period was considered appropriate for the
probe volume length of approximately 1 mm which was used in this study and for
typical velocities of 1 m/sec. Data acqusition rate tests conducted under this
criteria indicated that almost all of the sets of two component velocity data
were obtained from a single particle moving through the probe volume. A detailed
listing of the equipment employed for the two velocity component LV measurements
is presented in Table III.

Combined LV/LIF Measurements

The tracer dye used for the LV/LIF measurmements was made from fluorescein

disodium salt (C2gH1005Na2). This dye is used extensively for water pollution
studies and is available from chemical supply houses in powder form. Absorption
and emission spectra data for fluorescein dye can be obtained from Ref. 17. A
liquid dye concentrate was produced by dissolving 2.5 gms of dye powder in 1
liter of water to which was added 1 tablespoon of alcohol in order to stabilize
the solution. A dilute solution of dye made by uniformly diluting 1 ml of con-

centrate with 3.5 liter of water was mixed "inline1 with the inner jet fluid in
the ratio of 1 part dilute solution to 760 parts water. Any variation in dye
concentrations at the inner jet inlet location can be attributed to this last
mixing process.

The 0.4880 ym wavelength beam of the argon ion laser was used in the LV/LIF
experiment both to induce fluorescence of the fluorescein dye for the LIF
measurement and to scatter light from particles for the LV measurements. Fluctu-
ations in the laser beam intensity were monitored in bench tests to determine
power fluctuations. The peak to peak power drift over a 20 minute period was
less than 0.5 percent. The signal from the photomultiplier was filtered with a 2
kHz low pass filter to remove the shot noise associated with photomultiplier
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tubes. The 2 kHz filtering was compatible with the typical velocity of 1 m/sec
and probe volume length of 1 mm. The current signal was converted to a voltage,
amplified and then processed through an A/D voltage converter each time an
acceptable LV signal was obtained. The LV and LIF data were stored as pairs
along with the data acquisition time by the Data Handling subsystem. A list of
additional equipment used for the LV/LIF measurements is also presented in Table
III.

Foreword To Presentation of Results

The use of computerized data acquisition, storage, reduction and analysis
techniques permitted numerous quantities to be determined from the data obtained
in this study in addition to the mean and fluctuating velocity components and
concentrations usually obtained. These included (1) parameters which can be used
to characterize the probability density functions of the velocity components, the
concentrations, and the momentum transport rates and (2) the correlation coeffic-

ients for the transport process.

The determination of all possible parameters and correlations obtainable
from the experimental data was beyond the scope of this study. However, the most
universally used quantities have been calculated and are included in this report.

The parameters presented include the mean value and three central moments of the
velocity and concentration probability density functions (i.e., rms variation
from the mean, skewness and kurtosis or flatness factor), the mean value and
three central moments of the momentum turbulent transport rate probability dens-
ity functions, and the correlation coefficients for the momentum turbulent trans-
port rates. These parameters are defined in Table I.

The data point sets which are presented in this report were obtained for
Flow Condition 1 of Ref. 6 and consist of single point measurements which were
usually made at a fixed axial location over a range of radial locations. A data

acquisition run number was assigned to each group of single point measurements.
A new run number was assigned to each data point set each time a change in axial
location or change in measured parameter was made; i.e., velocity component or
concentration. The number of velocity/velocity or velocity/concentration data
pairs which were acquired during each single point measurement was either 250,
500, or 1000 depending upon the number of particles traversing the probe volume.
During data acquisition, all data was stored on floppy disks. This data was
subsequently reduced to obtain the calculated parameters listed in the previous
paragraph. The number of data pairs actually used in the data reduction was
usually less than the 250, 500 or 1000 data pairs acquired because data pairs
were eliminated during data reduction whenver spurious data was encountered.
Spurious data was defined as data noncontiguous to and outside of the 3a region
of the probability density functions and was believed to occur when the laser
velocimeter signal processor passed "bad" data because multiple or very large
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particles passed through the probe volume or data was taken in regions of low
signal-to-noise ratio.

All the calculated parameters obtained for each data acquisition run are

presented in this report in tabular form. The mean and fluctuating velocity and

concentration results and the turbulent momentum transport rates and correlations

coefficient results are also presented in graphical form to aid in the discussion

of the results. A listing of the run numbers from which data was utilized for

the tables and figures presented in this report is presented in Table IV. The

tabulated parameters for each data point set are tabulated in Tables V-XX where

the term XX denotes the run number.

Discussion of Results

Velocity

The mean axial velocity profiles are presented in Fig. 12. The closest

axial location to the inlet for which both velocity and concentration profiles

could be obtained was 13 mm (0.5 in.). This location is approximately five inner

jet tube wall thicknesses downstream from the inlet plane. Note that the veloc-

ity deficit caused by the boundary layers on the ID and OD of the inner jet inlet

duct has been partially filled in at this axial location. The centerline

velocities at all axial locations are close to those measured in Ref. 6. Small

differences in the profiles occur at other radial locations. However, these

differences are less than the scatter band measured in Ref. 6 for each profile.

The mean radial profiles are presented in Fig. 13. The present results are also

within the scatter of the data presented in Ref. 6.

The fluctuating axial and radial velocity profiles are presented in Figs. 14

and 15, respectively. The results are very similar to those presented in Ref. 6.

Momentum Turbulent Transport

The momentum turbulent transport rate data and the correlation coefficients"

are presented in Figs. 16 and 17. In general, the results from Ref. 6 and the

present measurements data lie in the scatter band of the other set. The present

set of results has less asymmetry than the Ref. 6 results. Data was also

obtained closer to the outer test section wall in the present experiment than for

Ref. 6. The correlation coefficient, RUV, are also close to the Ref. 6 results.

Differences between the present and Ref. 6 experiments occurred (1) where the

turbulent transport rate is near zero and turbulent intensities are relatively
low and thus the uncertainty is RUV is high and (2) at z = 152 and 203 mm at the

edge of the recirculation zone where asymmetries are likely to occur.
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Inner Jet Fluid Concentrations

The mean and fluctuating inner jet concentrations are presented in Figs. 18
and 19. The mean concentration profiles are essentially the same as those pre-
viously measured (Ref. 6). The scatter bands for the two sets of data overlap
for all axial stations. The fluctuating concentration results are similar to
those previously measured with the major differences occurring at z = 13, 51, and

102 mm. At z = 13 mm, the present inner jet concentration fluctuations are lower
at r/Ro = 0 due to improved uniformity of the inner jet fluid concentration at
the inlet plane; f = 0 is desired at z = 0 mm and r/Ro = 0.0. A noticable
increase in f occured at z = 13 mm and r/Ro = 0.2 to 0.25 compared to Ref. 6.

Modest increases in f also occured at z = 102 and r/Ro < 0.1; however f is
essentially the same for 0.1 < r/Ro < 0.3 where the largest amount of mass turbu-
lent transport occurs. The conclusion from this comparison is that although the
concentration fluctuations are increased at several locations, the mean concen-
tration distribution is essentially the same for both the blunt and tapered inlet
configurations.
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SUMMARY OF RESULTS

Quantitative studies were conducted of the flow downstream of nonswirling
and swirling coaxial jets discharging into an expanded duct. The ratio of
annular jet diameter and duct diameter to the inner jet diameter were approxi-
mately 2 and 4, respectively. The inner jet peak axial velocity was approxi-
mately one-half the annular jet peak axial velocity. For the swirling flow con-
dition, the mean swirl angle in the annular stream was approximately 30
degrees.

A computerized length scale measurement technique was used to determine the
eddy dissipation rate and two integral length scales at selected locations in the
test section for the nonswirling and swirling flow condition. Following are the
principal results for the nonswirling flow conditions (for which the most exten-
sive measurements were obtained):

1. The mean and rms fluctuating velocities measured using the hot film
anemometer employed in the length scale measurement technique were
approximately the same as those previously obtained using laser veloc-
imeter measurement techniques.

2. The microscale and integral scales of turbulence measured in the inner
jet inlet tube upstream of the inlet plane were approximately the same
as those measured by other researchers.

3. Results showed that the eddy dissipation rates varied by 2 1/2 orders of
magnitude near the inlet plane, by 2 orders of magnitude 51 mm (2.0 in.)
from the inlet pl.ane, and by 1 order of magnitude 102 mm (4 in.) from

the inlet plane.

4. The ratio of the integral scale length to the microscale length varied
from 2 to 6 depending upon radial and axial location in the test sec-

tion.

5. The largest integral scale lengths (15-18 mm) occurred in the large eddy
shear region between the annular stream and the recirculation cell.
These wavelengths were compatable with those previously observed in flow
visualization studies.

Velocity, concentration and momentum turbulent transport rates were measured
downstream of a blunt inner jet inlet configuration for the nonswirling flow
condition. These measurements were obtained to compare with previous results
obtained downstream of a tapered inner jet inlet configuration.
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6. The mean and fluctuating velocity and concentration profiles and the
momentum turbulent transport rate profiles were essentially the same as
those previously measured for the blunt inner jet inlet configurations.
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TABLE I

DEFINITIONS OF SEKWNESS AND KDRTOSIS FOR
VELOCITY, CONCENTRATION, AND TRANSPORT

PROBABILITY DENSITY FUNCTIONS

Terms in this table for the velocity components and concentrations are
defined using the rotation of Ref. 18 and conventional statistical methods.

u Local instantaneous axial velocity component

B(u) Probability density function (p.d.f.) of u with properties B(u) j^O
and f-*, B(u) du = 1.0

U Mean value of axial velocity component defined: U = /t™ u B(u) du

u Local instantaneous axial velocity fluctuation from the mean, defined:
u = u - U

a,, or u' Second central moment of velocity u defined: a = u = / °° u^ B(u) duu U —oo
Will also be denoted as rms fluctuation.

u^ nth central moment of velocity u defined: un = 7°°̂  un B(u) du

—"? 3
Su Skewness of velocity component, u, p.d.f. defined: Su = u

j/ou

Ky Kurtojĵ s (or flatness factor) of velocity component, u, p.d.f. defined:

Ku = uVou
A

In like manner, the mean, rms fluctuation, skewness, and kurtosis for the radial

velocity, azimuthal velocity and concentration are defined.

The second moments, skewness and kurtosis for the momentum and mass transport

rates are defined in a similar manner.

uv Local instantaneous momentum turbulent transport rate: (u-U)(v-V)

B(uv) Probability density function (p.d.f.) of uv with properties B(uv) > 0

and /*°° B(uv) d(uv) = 1.0
OO

uv Mean value of turbulent momentum transport rate defined: uv = /_„, (u-U)
(v-V) b(uv) d(uv)

(uv)' Local instantaneous fluctuation of momentum transport rate from mean,

defined: (uv)1 = uv - uv
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a Second central moment of momentum transport rate:
a,,., - f°° (uv)'2 B(uv; d(uv)
U V ~ OO

(uv)n nth central moment of momentum transport rate:
(uv)n = /!!«, (uv)'n B(uv) d(uv)

S Skewness of momentum transport rate: S = (uv) /°

Kuv Kurtosis of momentum transport rate: K^ = (uvUV . uv UV

In a like manner, the mean, second central moment, skewness and kurtosis for the
momentum transport in the r-z plane and the mass transport in three directions are
defined.
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TABLE II

COMPONENTS USED IN LENGTH SCALE MEASUREMENT TECHNIQUE

Hotwire Equipment

TSI Constant Resistance Anemometer

. 1210 - 20w Hot film sensor
1050 Constant Temperature Anemometer

. 1052 Signal Linearizer

. 1051 - 20 Monitor and Power Supply

Spectrum and Correlator

Spectral Dynamics Model SD340
Micro FFT Analyser

. IEE 488 (talk only) modification

SAICOR Model 42
Correlator and Probability Analyser

Computer

DEC PDF 11/23S
IEE 488 interface board

. Parallel interface board
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TABLE III

COMPONENTS USED IN LV AND LV/LIF MEASUREMENT SYSTEM

!• Laser Light Source

Argon Ion Laser (Spectra Physics Model 164)
TEM mode
All lines, 1.0 watt power
0.4880 urn wavelength, 0.5 watts power

II. LV Optics

DISA Type 55x00 Two Color LDV System
Polarization rotator
Beamsplitter - Module I
Bragg Cell, 1 mHz effective frequency offset
Beamsplitter - Module II
Backscatter Section - 04880 um wavelength filter and
photomultiplier tube
Backscatter Section - 0.5145 um wavelength filter and
photomultiplier tube
Pinhole Section
Beam Translator
Beam Expander
Achromatic lens, 310 mm focal length

III. Electronics

LV Signal Processor (SCIMETRICS Model 800A)
2 units
0.4 to 2.0 mHz range
3% data window
4/8 and 5/8 comparison for "good signals"

Oscilloscope (Tektronics Model 465B)
2 units .

LV Data Handling Interface (UTRC design)
Clock
Coincidence check

Minicomputer (DEC POP 11/10)
Floppy disk
DECwriter III (1200 baud rate)

IV. LIF Electronics

Low Pass Filter (Kronhite Model 3202)
2KHz

Voltage Amplifier (Preston 8300 XWB Amplifier - Model A)
1-1000X Amplification

A/D Converter (DEC LPS11)
Computer controlled

Digital Voltmeter (Hewlett Packard Model 3465A)
High Voltage Power Supply (Fluke Model 415B)

0-2500 volts
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TABLE IV

TABLE OF RUN NUMBERS FROM WHICH DATA WAS UTILIZED FOR TABLES AND FIGURES

Measured

Parameters

U, V, uv

U, C

V, C

Axial Location,

12.7(0.5) 25.4(1.0) 50.8(2.0)

6,7 9 10

18

24,30 25

z - mm (in.

101.6(4.0)

11

19

26

)

152.4(6.0)

12

20

27

203 ,2(

13

21

28

8.0)
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FIG. 1

INFORMATION FLOW CHART FOR COMPUTERIZED
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R84-915540-34 FIG. 2

SKETCH OF COAXIAL FLOW FACILITY

SKETCH OF LENGTH SCALE MEASUREMENT ARRANGEMENT

FIG. 3
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R84-915540-34 FIG. 4

MEAN AXIAL VELOCITY PROFILES FOR NONSWIRLING FLOW
WITH TAPERED INNER JET INLET
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R84-915540-34 FIG. 5

FLUCTUATING AXIAL VELOCITY PROFILES FOR NONSWIRLING FLOW
WITH TAPERED INNER JET INLET
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R84-915540-34 FIG. 6

DISSIPATION RATE FOR NONSWIRLING FLOW WITH TAPERED INNER JET INLET
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R84-915540-34 FIG. 7

LENGTH SCALE DISTRIBUTION FOR NONSWIRLING
FLOW WITH TAPERED INNER JET INLET
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R84-915540-34 FIG. 8

MEAN AND FLUCTUATING AXIAL VELOCITY PROFILES FOR SWIRLING FLOW WITH
TAPERED INNER JET INLET
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R84-915540-34 FIG. 9

DISSIPATION RATE AND LENGTH SCALES DISTRIBUTION FOR SWIRLING FLOW WITH
TAPERED INNER JET INLET
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R84-915540-34 FIG. 12

MEAN AXIAL VELOCITY PROFILES
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R84-915540-34 FIG. 12 (CONT.)

MEAN AXIAL VELOCITY PROFILES (CONT.)
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R84-915540-34 FIG. 13

MEAN RADIAL VELOCITY PROFILES

SYMBOL

LOCATION, 6

O
0 •180

z = 13rnm
1.5

1.0

0.5

RUN 7 z = 25mm

1.5

1.0

0.5

RUN 9

LU

5 1-5
DC

<
£ 1.0

0.5

= 5lrnm

-0.5

-0.5 I t I . I 1 I ,

O ° 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0

RADIUS RATIO, r/RQ

RUN 10 z = 102mm

1.5

1 I- I . _L I I L

1.0

0.5

0 0.2 0.4 0.6
-0.5

0.8 1.0 ' 0 " 0.2

RADIUS RATIO, r/RQ

RUN 11

0.6 0.8 1.0

84-5-29-3



R84-915540-34 FIG. 13(CONT)

MEAN RADIAL VELOCITY PROFILES (CONT.)

SYMBOL

LOCATION, 6
o
0 •180

2 = 152mm

1.5

8
LuO.5

Q

£ 0

01

-o.e
0 0.2 0.4 0.6

RUN 12 z = 203mm RUN 13
1.5

1.0

0.5

-0.5 I . I . I . I ,

0.8 1.0 0

RADIUS RATIO, r/R

0.2 0.4 0.6 0.8 1.0

84-5-29-4



R84-915540-34 FIG. 14
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R84-915540-34 FIG. 15

FLUCTUATING RADIAL VELOCITY PROFILES
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R84-915540-34 FIG. 16

MOMENTUM TRANSPORT RATE, uv, PROFILES
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R84-915540-34 FIG. 17

MOMENTUM TRANSPORT CORRELATION COEFFICIENT, RUV, PROFILES
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R84-915540-34 FIG. 18

MEAN INNER JET FLUID CONCENTRATION PROFILES
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