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A CONCATENATED CODING SCHEME
FOR ERROR CONTROL*

ABSTRACT

In this paper, a concatenated coding scheme for error control in data

communications is presented and analyzed. In this scheme, the inner code is

used for both error correction and detection, however the outer code is used

only for error detection. A retransmission is requested if either the inner

code decoder fails to make a successful decoding or the outer code decoder
i

detects the presence of errors after the inner code decoding. Probability of 	

o
undetected error (or decoding error) of the proposed scheme is derived. An

i.
efficient method for computing this probability is presented. Throughput 	 t

efficiency of the proposed error control scheme incorporated with a

selective-repeat ARQ retransmission strategy is also analyzed. Three specific

examples are presented. One of the examples has been adopted for error 	 j

control in NASA WJ command system.	 ' fl
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1. Introduction

Consider a concatenated coding scheme [1) for error control for a binary

symmetric channel with bit-error-rate e < 1/2 as shown in Figure 1. Two

linear block codes, C1 and C2 , are used. The inner code C 1 is an (nl,kl)

code with minimum distance d l . The inner code is designed to correct t or

fewer errors and simultaneously detect a(X > t) or fewer errors where t+ a + 1 <

dl . The outer code C 2 is an (n2 ,k 2 ) code with minimum distance d2 and

n2 - mkI

where m is a positive integer. The outer code is designed for error detection

only.

The encoding is done in two stages. A message of k2 bits is first en-

coded into a codeword of n2 bits in the outer code C 2 . Then the n2-bit

word is divided into m k-bit segments. Each k 1 bit segment is then en- 	 i

G,
coded into an n-bit codeword in the inner code C l . This nl bit word is	 !,

called a frame. Thus, corresponding to each k 2-bit message at the input of
14'

the outer code encoder, the output of the inner code encoder is a sequence of

m frames. This sequence of m frames is called a block. A two dimensional

block format is depicted in Figure 2.

The decoding consists of error correction in frames and error detection

in m decoded kl bit segments. When a frame in a block is received, it is

decoded based on the inner code C l . If the decoding is successful, the

ni k l parity bits are then removed from the decoded frame, and the 	 I•

k l-bit decoded segment is stored in a buffer. If there are t or fewer

transmission erroro in a received frame, the errors will be corrected and the 	 r'1

decoded segment is error free. If t+1 or more transmission errors are de-
{

tected in a received frame, then the entire block which contains the 	 F'
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erroneous frame is discarded, and the receiver requests a retransmission of

the block. If there are more than .1 errors in a received frame, the errors

may result in a syndrome which corresponds to a correctable error pattern with

t or fewer errors. In this case, the decoding will be successful, but the

decoded frame ( or segment) contains undetected errors. If m frames of a

received block have been successfully decoded, the receiver buffer contains m

kl -bit decoded segments. Then error detection is performed on these m

decoded segments based on the outer code C 2 . If no error is detected, the m

decoded segments are assumed to be error free and are accepted (with n2-k2

parity bits removed) by the receiver. If the presence of errors is detected, 	 s
1

then the m decoded segments are discarded and the receiver requests a retrans-

mission of the rejected block. Retransmission and decoding process continue

until the block is successfully received. Note that a successfully received	

(S
block may be either error free or contains undetectable errors. 	 f

The error control scheme described above is actually a combination of 	 ^(

forward-error-correction (FEC) and automatic-repeat-request (ARQ), called a 	
1

f

hybrid ARQ scheme [2]. The retransmission strategy determines the system	 f

throughput, it may be one of the three basic modes namely, stop-and-wait,

go-back-N or selective-repeat. In this paper, we analyze the performance of

the proposed error control scheme in terms of the reliability and throughput

efficiency. The reliability is measured in terms of the probability of 	 r

undetected error after decoding. The probability of undetected error is 	 w

derived, and an efficient method for computing this probability is presented.

The throughput efficiency depends on the mode of retransmission. In this

paper, we analyze the throughput efficiency of the proposed error control

scheme incorporated with a selective-repeat ARQ with a finite receiver buffer.

-3-



Three specific example schemes are considered. The first two example

schemes use the same inner code which is a distance-4 shortened Hamming code

with generator polynomial (2), 	 a

9 (1) (X) = 9 (2) (X) = (X+1) (X6+X+1) - X 7+X6+X2+1 	 (1)

In the first scheme, the outer code is a distance-4 shortened Hamming code

with generator polynomial,

g
(
2
1) (X) = (X+1)(X15+X14+X13+X12+X4+X3+X2+X+1)

= x16+X12
+X5+1	 (2)

which is the X.25 standard for packet-switched data network (3). This example

scheme is proposed and adopted for error control on NASA telecommand links.

In the second example scheme, the outer code is a shortened Reed-Solomon (RS)

code [2,4,5) with symbols from the Galois field GF(2 8 ) and generator

polynomial,

g22) (X) = ( X+1)(x+a)	 (3)

where a is a primitive element in GF(2 8 ). In the third example scheme, the ,f

inner code is a shortened version of the extended double-error-correcting

(63,51) BCH code with generator polynomial [2),

9(3)(X) = X12+X 10 +X 8+X 5+X4+X 3+1 ,	 (4)

r
The outer code is the same as that of the first example scheme. 	 i

The probabilities of a decoding error and throughput efficiencies for the	 ii '

three example schemes are computed. We show that they all provide very high

reliability even for a very high bit-error rate. All three example schemes

also provide high throughput efficiency.

2. Probabilities of Incorrect Decoding and Retransmission 	 tj

Let VR denote the set of all binary vectors of length R. Let n be a

positive integer defined as follows:

-4-
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n - mn1	(5)

where n  is the length of the inner code and m is the number of frames per

block. Let

	

u = (u l ,u2 , ...,un )
	

(6)

be a vector in V n . The ni tuple

uh = 
(u (h-1)n1

+1' u (h-1)n1+2'
... ' uhn1
	(7)

is called the h-th frame of u for 1<h<m. Hence, we can represent the vector u

by its frames as follows:

	

u = (LI1"2,...,um) .	 (6)

The first kl components of the h-th frame of u are said to form the h-th

segment of u. The mk l-tuple obtained by concatenating the m segments of u

in order is called the projection of u, denoted p(a).

Let C denote the overall code obtained by concatenating the inner code

C1 and the outer code C2 . Then C is a binary (n,k 2 ) linear code where

n-mnl . A binary vector u in V  is a codeword in C if and only if

(1) each frame of u is a codeword in the inner code C l , and

(2) the projection p(u) of u is a codeword in the outer code C2.

Let Pc be the probability of a correct decoding using the concatenated

coding scheme described in Section 1. For a binary symmetric channel with

bit-error-rate g<1/2, Pc is equal to the probability that there are t or

fewer errors in each frame of the received block, and is given by

Po =	 (l) el(1-E)nl	

m

i=0 i

t	 _

1 (9)

Let Pd be the probability of a successful decoding (either correct or

incorrect) of a received block. Then Pd is the probability that, for a

channel-error pattern e, there is a codeword v in the overall code C such

that, for 1<h<m, the Hamming distance between the h-th frame of a and the h-th

-5=
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frame of v is t or less. If Pd can be computed,then the probability of an

incorrect decoding (or a decoding error), P e , is given by

Pe = pd - pc i	 (10)

and the probability of a decoding failure, P r , is given by

pr = 1 - Pd	(11)

Note that P r is also the probability of a retransmission.

In the following we will derive an expression for Pd. Let Wile
r

denote the number of binary vectors of weight j in 
Vni 

which are at a

(Hamming) distance s from a given binary vector of weight i in V. ,	Let

a = (al,a21 .... an 1 ) and b - (bl,b2, ... ,bn 1 ) be two binary vectors in Vn 
1 
with

weights i and j respectively. Let q be the number of suffices 2's such that

aQ=0 and bee. Then b is at a distance s from a if and only if

q = (j+s-i)/2 (12)

Therefore we have that

n	 i
l( 11

r	 n -i	 \
l1r
	 i

Wi ' s q / \j-iq/ - \(j+s-i)/2/\(j+i-s)/2)
(13)

The generating function for Wile is

ni 11
W U) xjYs = (1+XY) n1 1 (X+Y) 1 (14)L L r

j =0 s=0
7.s

which was derived by MacWilliams in 1963 [6].

Let e - (e 1,g2,...,em) be a channel error pattern, and let j  be the

weight of the h-th frame eh for 1<h<m. The occurrence probability of a is

P(e) = II e]h (1-e)
n1-3h
	(15)

h=1

Suppose that there is a codeword v = (v1,v2,...,vm) in C such that eh is at a

distance sh<t from vh for 1<h<m. Since vh is a codeword in the inner code

C1 for 1<h<m and the minimum distance of C1 is assumed to be greater than

2t, such a codeword v in C is uniquely determined. Conversely, for a codeword

-6-



v - (vl ,D2 , ... ,vm ) in C whose weight in the h-th frame is i h for 1<h<m,

there are

m	 (ih)
I[ W

h=1 jh'sh

error patterns ( el,e2,...,e-m)Is such that the weight of eh is j  and eh

is at a distance sh<— t from v
h
 for 1< h<m. Let Ail,i2, ... ,'in denote the

number of codewords in C whose weight in the h-th frame is i h for 1<h<m.

Then, the probability of a successful decoding is given below:

nC
l nl	 n 	 m nCpl	

c
tp	 ( i	 n -j

Pd = E	 E ... £ Ai 1 2.i ,....i m h=1
II ^L

	
G	

Wjh 

h ) js h
C
h(1-E)

i	

1 h

z 0 i =0 i2 m 0	 'h 0 sh 0 

Hence, if we know the detail weight distribution 
{Ai i ,...,i : 0<i

i^ 2	 m —h—
<n 

1

for 1<h<m} of C, we can compute the probability P d of a successful decoding

from ( 17). Then, from ( 9) and ( 10) we can compute error probability Pe . From

(11), we can compute the retransmission probability P r , from which we can

determine the system throughput for a given retransmission ntrategy (ARQ

scheme).

The dimension of C is k 2 . In general, k 2 is large and it is not

feasible to compute the detail weight distribution, Ail,i2,...,im, directly

from C by generating all the codewords of C. In the next section, we will

express Pd in terms of the detail weight distribution of the dual code of C

by using the generalized MacWilliams's identity [7, p. 147).

3. Evaluation of the Probability of Decoding

In this section, we will derive a number of results which will facilitate

I
the computation of the probability Pd of a successful decoding. Let C

denote the dual code of the overall code C. Let B i i 	 be the number

(16)

(17)
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1

of codewords in C1 for which the weight of h-th frame is i for, 0<i <n
h	 — h— 1

and 1<h<m. Then

{II0<i <n with 1<h<m}
i1"2,...,im°	 — h— 1	 —	 (18)

1
represents the detail weight distribution of C 	 In the following, the

first lemma gives the decoding probability P d in terms of the detail weight

1
structure of C .

Lemma 1: Let Ps ( • , • ) be a Krawtchouk polynomial (7, p. 129). Then

n1	n1	n 	 m	 ih t	
fftt

P= 2-(n-k2)	 E	 E ... 1 B	 R [(1-2e)	 P (i ,n )]I
d	 i1 0 i

2=0
'**

	

U im 0 il' 12' j1m Ih=1	
s=0 s h l

(19)

Proof: See Appendix A.	 pp

It follows from (19) that, for the worst channel condition E=1/2,

	

Pd = 2-(n-k2)(n1+1)m . 	 (20)

Let r  and r 2 denote the numbers of parity check bits of the inner

and outer codes respectively. Then r l = nl k  and r2 = n2 -k2 . The dimen-

sion of C1 is thus mr1+r2 . In general mr1 +r2 is also large, and it is

still not feasible to compute Bi 1 l i 2 l...lim by generating all the codewords

of CL . However, the computing time can be reduced considerably by using Lemma

2 given below.

For a vector v = (vl,v2, .... Vmk1 ) in Vmk1 , the kl tuple (v(h-1)kl+l'

v (h-1)k +2' * " Iv
hk ) is called the h-th segment of v for 1<h<m. Let 00)

r 1
(all-zero vector),iv(1),...,v(2 2- 1) denote all the codewords of C2,

the dual code of the outer code C2 . For 0<j<2r2 and le h<m, let vhf) denote
the h-th segment of v (i) . Let C1 be the dual code of the inner code

Cl . Let u = (ul,u2, ... , uk1 ) be a binary vector in Vkl . Let

u0 = (u 1,u2,...,uk1,0,0,...,0)

It
I(

i

4 
t

t,

-8-
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t

be a vector obtained by appending n l-kl zeros to u. Hence u 0 is a

vector in vn 
1

. For 0 < i<nl , let BM 0) denote the number of vectors of

1
weight i in the coset of C1 which contains the vector u 0 . Lemma 2 gives

Bil,i2,.. .
in in terms of Bi l) (u).

Lemma 2 •	 r

2 C2p 1 11 m
Bi 	 -	 L	 1	 IT Bi 1) (vh

]) ) 1	 (21)

^	 t

,i	 ,...,i
l	 2	 m	 i=0	 h=1	 h	 O

Proof:	 See Appendix B.	 pp

Since the dimensions r1 and r2 of C1 and C
2
 are much smaller than the

dimension mr1+r 2 of C1 , it is much easier to compute B11,i2, ... 
,
im from (21)

than from Cl directly by generating all the codewords of C .L .	 This will be ^{	 i

shown in the next section.
i	 ?

It follows from Lemmas 1 and 2 that we have Theorem 1. {

Theorem 1: II{t ji`
r2

(n-k2)	 2	 -1	 n
n
C B(l) (^h]))(1-2e)1	 Ps (ir nl l (22)

ft

(f(

t

{(	 ifsPd =2C E .
j=0	 11=1 i=0	 s=0 4 '

Proof:	 ( See Appendix C).

^,

1f

f

It follows from ( 9),	 (10), and	 ( 22)	 that we can obtain the probability pi

e

.	 y(

of a decoding error for the concatenated coding scheme proposed in Section 1.
I

i	 I

4.	 Time Complexity for Computing the Probability of Decodin g

In this section, we will evaluate the time complexity for computing the

decoding probability Pd given by ( 22).	 The number of different O )'s I

with 1<h<m and 0<j<2r2 is at most m2 	Hence the computing time for finding
2.

r
{B11)(vh])).	 0<i<n1 .	 0<j<2 

2	
and	 1<h<m}

rl+r2
is roughly proportional to mn 12	 Furthermore we need multiplications and

r
additions of order ( nl+m)2 

2 
for computing Pd .	 The dominant order of i(

+r2•
^t

computation for Pd is mn12r1

-9-



Next we assume that the outer code C2 is a shortened (or the full) code

of a quasi-cyclic code C 2 f of length o f (5) which to invariant under
r

every cyclic shift by s places, where s divides k i (note that, if s n1, C2,f is

1
a cyclic code). Then the dual code of C2,f denoted C21f , is also

quasi-cyclic for every s-place shift. The codewords in C 2,f can be parti-

tioned into equivalent classes, each equivalent class consists of a codeword v

and the codewords obtained by cyclically shifting v s places at a time. We

may choose a codewerd in each equivalent class as its representative. A

vector { ul,u2,... , un2) in 
Vn2 

is a codeword in C1 if and only if there is a

1
representative codeword (vl,v2, .... vnf) for an equivalent class of C2,f , for

which there exists a positive integer j such that ui = vjs+ifor 1<i<n2 where	 j

js+i is taken modulo n f . Hencrn tho number of different h3) I s with 1<h<m

and 0<j<2 r2 is at most 2 r2 . Since n1<2r1 , the dominate order of computation

for Pd is

Max {nirITr2, m2 r2}	 I'^

However, if we compute

	

{B t 	<n and 1<h<m}

	

il,i2,...,im 	 — h— 1	 — —
ti

directly from C l, the computation time is proportional to mn 12'
1+r2

 which is
I1

much greater than n 12 ri+r2 and m2r2 . Hence, using expression ( 22) for	 ^.

computing Pd reduces the computing time considerably.

1	 1
Suppose that C 1 contains the all-one vector, (1,1, ... ,1). Let C1 0

1
denote the (n i , rl 1) linear subcode of C 1 which does not contain the all-one

vector. For a vector u - ( u1,u2,...,uk 1 ) in Vki , let 
Bil),0(u) 

be the number

of vectors of weight i in the coset of Cl 0 which contains the vector u
0 =

i

(u l ,u2 I ... l uk ,0,0,... , 0) in Vn . Then

1	 (1) - 1_ (1),0 -	 (1) ,0 -Bi (u) = Bi	 (u) + Bn -i (u)	 (23)

The above relation reduces the comj  ing time for B!l)(u).
1

-10-
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1

i

j
If C2 is generated by an (n 2 ,r 2-1) linear subcode CZ	 and the all-one

, 0

vector (1,1, ... ,1) in Vn2 , the computing time for Bi l) (u) can be further

reduced by using the following relation:

Bil)(5+(1,1,...,1))	 =	 G	
(Bkl).Oi (u)	 + 

Bj 1r
 
0i(24)

J=O	

-j	
+jc5)]

1 j '	 i

where Bi 1j 00 (u) denote the number of vectors with weight i in the first kl

bit positions and weight j in the last r l bit positions, which are in the

i
coset of C1,0 containing the vector (5,0,0, ... ,0) 	 in Vn .

1

S.	 Example Schemes 1

In this section we consider three examples of the concatenated coding

scheme described in section 1.	 For	 theeach of	 example schemes, the probabi-

lity of a decoding error, Pe , and the probability of a retransmission, Pr,
i

are computed for various bit-error rates.

Example Scheme I $ J

In this example scheme, the inner code C l is a shortened distance-4

Hamming code with generator polynomial, +

91 1) (X) - (X+1)(X6+X+1)	 X7 +X6+X2 +1	 (25) 4#	 ,'

where X 6+X+1 is a primitive polynomial of degree 6.	 The full length code gen-

erated by gi (X) of	 (25) is a (63,56) cyclic Hamming code.	 The 56 information

bits form 7 8-bit information bytes. 	 If R information bits are deleted from

the full length code, then the inner code C 1 becomes a (63-R,,56-£) shortened

cyclic code [2,4,5]. In practical applications, R is generally chosen to make

k1 =56-R as a multiple of 8-bit byte. The inner code C 1 is used for single
i

error correction (i.e., t=1). It is also capable of detecting all the error

patterns of double and odd number errors [2,4,5,7].

The outer code is also a shortened distance-4 Hamming code with generator 	 (i

polynomial,

-11-



9(21)(X) n (X+1)(X15+X14+X13+X12+X 4+X 3+X 2+X+1)	 (26)

. X16
+X12+X5+1 .

where X15+X14+X13+X12+X4+X3+X2+X+1 is a primitive polynomial of degree 15.

This code is the X.25 standard for packet-switched data networks [3]. The

natural length of this code is 2 15-1 - 32,767. But the maximum length of

C2 being considered is 3,584 bits. We assume that the number m of frames in

a block varies from 3 to a maximum 64. We also assume that the number of

information bytes contained in a frame varies 1 to 7, i.e, k 1= 8- 56 bits.

Hence the length n 2 of the outer code varies from 3 to 448 bytes or from 24 to

3,584 bits. The 16 parity bits of the outer code is used for error detection

only. The error detection performance of this outer code for various lengths

has been investigated recently by Fujiwara, et al. [8]9

Example scheme 1 has been adopted by NASA for error control on telecom-

mand Unks. The probability of a decoding error, Pe , for this scheme is shown

In M ures 3, 5, 7 and 9 for various kl , m and bit-error-rate e, We see from

Figure 9 that, as the bit-error-rate a increases, P e increases to a peak

value and then decreases to the value Pe* = 1-Pd* where Pd* is given by (20). We

see that the scheme provides very high reliability even for very high bit-

error-rate. The probability of a decoding failure (or retransmission), P r is

shown in Figures 4, 6 1 8 and 10 for various k , m and bit-error-rate e.

Example Scheme II

In this example scheme, the inner code C 1 is the same as that of example

scheme I. The outer code is a shortened Reed-Solomon (RS) code with symbols

from the Galois field GF(2 8 ) and generator polynomial

9(2)(X) 
m (X+1)(X+a) ,	 (27)

where a is a primitive element of Gf(2 8 ) and a root of X8+X4+X3+X+2+1. This

code is used as a binary code with each code symbol represented by a 8-bit

i
i

^i

i

t

i

r

i
I

i

i

t

-12-
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byte. This binary RS is quasi-cyclic and has a minimum distance 4. The

natural length of the code is 255 bytes or 2046 bits.

The probability P e of a decoding error is shown in Figures 3 1 5 1 7

and 9. The performance of this example scheme is inferior to example scheme

1, however still provides very high reliability. The probability P r of a

decoding failure is shown in Figures 4, 6, 8 and 10. Since P e is very

small, it follows from (10) and (11) that Pr a 1-Pc . Hence example schemes 1

-and 2 have almost the same Pr.
J

Example Scheme III

In this example scheme, the outer code C^ is the same as that of the 	 j
i

example scheme I, the x.25 standard code. However, the inner code is a short- 	 {

ened version of the extended (with an overall parity bit appended) double-

error-correcting (63,51) BCH code with generator polynomial (2),

9 (3) (X) = X12+X 10+X 8+X 5+X 4+X 3+1	 (28)
1

The inner code C 1 generated by g (3) (X) has minimum distance 6 and is used

for correcting all the double and single errors (t=2). The code is capable of

detecting all tte triple errors and many other errors.

The probability of a decoding error, Pe is shown in Figures 3, 5, 7, and

9. Since the inner code is designed for double error correction, the perfor-

mance of this example scheme is superior to the example schemes 1 ^;,d 2. The

probability of a decoding failure is shown in Figures 4, 6, 8 and 10.

Now we consider the accuracy of computation for probabilities P c , Pd , and

Pe of the above example schemes. If the wordlength of the computer under

consideration is at least r 1
 =n 1 -  k

1 , then the exact value of Bi 1) (v (D ) can be

computed. Let w be the number of bits in the mantissa of the floating point

number of the computer. Then the number of significant bits of the result

computed for P c by using (9) is no less than

-13-



(w - log 2 (t+l)mn1 J .

The number of significant bits of the result computed for P d by using (22)

is no less than

7 = (w - 109
2 (2r2mn2 H

 
H.

If the computational result for Pe by using (10) is greater than

2-(1-d)

for a positive integer,d, then the number of significant bits of the results

is greater than d. In our computation, we used FORTRAN 77 on ACOS-1000 whose

number of bits in the mantissa of the quadruple precision floating point

number is 124. For m-4 and n1 =31, if the computational result for Pe is

greeter than 10 -24 or for m=64 and n =63, if the computational result for Pe

is greater than 10 -22 , then the number of significant (decimal) digits is

greater than 3.

6. Throughput Efficiency

The error control scheme presented in this paper is actually a hybrid ARQ

scheme (2), which is a combination of forward-error-correction (FEC) and

automatic.-repeat-request (ARQ). The throughput efficiency of the scheme

depends on the mode of retransmission. There are three basic modes of

retransmission: namely stop-and-wait ARQ, go-back-N ARQ and selective-repeat

ARQ (2). In a stop-and-wait ARQ system, the transmitter sends a block to the

receiver and waits for an acknowledgment. A positive acknowledgement (ACK)

from the receiver signals that the block has been successfully decoded and

accepted, and the transmitter then sends the next block. A negative acknow-

ledgment (NAK) (or no acknowledgment) from the receiver indicates that the

received block has been detected in error; the transmitter resends the block.

Stop-and-wait ARQ is very simple to implement, however it is inherently inef-

ficient because of the idle time spent waiting for an acknowledgment.

-14-
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In a go-back-N ARQ, the transmitter continuously transmits blocks in
I

order and then stores them pending receipt of an ACK/NAK for each.	 The

acknowledgment of a block arrives after a round-trip (propagation) delay,

defined as the time interval between the transmission of a block and the

receipt of an acknowledgment for the block.	 During this interval, N-1 other

blocks are also sent.	 Whenever the transmitter receives a NAK for a parti-

cular block, say block i, it stops transmitting new blocks.	 Then it goes back

to block i and proceeds to retransmit block i and the N-1 succeeding blocks

which were transmitted during one round-trip delay. 	 At the receiving end, the

receiver discards the erroneously received block i and all N-1 subsequently

received blocks whether they are error-free or not. 	 Retranmission continues

until block i is successfully decoded. 	 In each retransmission for block i,

the transmitter reaends the same sequence of blocks. 	 As soon as block i is

positively acknowledged, the transmitter proceeds to send new blocks. !'

Clearly, go-back-N ARQ is more efficient than the stop-and-wait ARQ.	 However (^(	 {1
i^

it still has a severe drawback. 	 When the receiver fails to decode a block, it

kalso rejects the next N-1 received blocks, even though many of them may be ;.

error free. =	 ,"

In a selective-repeat ARQ system, blocks are also transmitted continu- , (i°n^

ously.	 However, the transmitter only resends those blocks that are negatively

acknowledged (NAK'ed).	 After resending a NAK'ed block, the transmitter con- ;4

tinues sending new blocks.	 Clearly, selective-repeat ARQ is superior to the
4d

other two ARQ schemes.	 However, with selective-repeat ARQ, a buffer must be I

provided at the receiver to store the successfully decoded blocks following a ^t
decoding failure, because ordinarily, blocks must be delivered to the destina-

tion in correct order, e.g. in point-to-point communications. 	 Sufficient
i

buffer (theoretical)	 infinite buffer) must bey	 provided at the receiver,

otherwise, buffer overflow may occur and blocks may be lost.
a

f	 ,'

-15



Stop-and-wait and go-back-N ARQ's provide satisfactory throughput effi-

ciency for data communication systems with low or moderate data rate and short

round-trip delay. For systems with hiCh data rate and long round-trip delay,

e.g. satellite links, the throughput efficiency of stop-and-wait and go-back-N

ARQ's becomes unacceptable, and selective-repeat ARQ must be used.

The throughput efficiency n of a data communication system is defined as

the ratio of average number of message (or information) bits successfully

accepted by the receiver per unit of time to the total number of bits that

could be transmitted per unit of time. Suppose that an ideal selective-repeat

ARQ (with infinite receiver buffer.) is incorporated in the error control

r
scheme proposed in this paper.	 Then Lhe throughput efficiency of the scheme is

,i

k 0
{	 i

TISR =	 (	
) 
(1 _P 
	 (29)r i

where k2/n is the rate of the overall concatenated code C and P	 is the
r i

retransmission probability given by (11). 	 using the value of P r given in
11

Figure 4, 6, S and 10, we can compute nSR for various bit-error-rate and m.
{	 j

In practice, only finite buffer can be provided at the receiver. 	 In this
^+	

C

case, buffer overflow may occur in a selective-repeat ARQ scheme, this reduces t

the throughput efficiency.	 However, if a sufficiently long buffer is used and 4	 t

if buffer overflow is properly handled, even with a reduction in throughput,
tt

selective-repeat ARQ still significantly outperforms the other two ARQ

schemes.	 Practical schemes have been devised for handling buffer overflow

[9-121.	 one such scheme is the selective-repeat plus go-back-N (SR+GBN) ARQ
i

devised by Miller and Lin [111. 	 with SR+GBN ARQ scheme, retransmission of an

erroneous block, say block i, is first carried out in selective-repeat mode. f	 ';
j

If block i fails to be successfully decoded at the v-th retransmission (v>1), '{II

-16-



the transmitter switches to the go-back-N mode. That is, it sends no more new

blocks but backs up to block i and resends that block and the N-1 succeeding

blocks that were transmitted after the V-th retransmission of block i,

Retransmission in go-back -N mode continues until block i is successfully

decoded, the transmitter is then switched back to selective -repeat mode. With

SR+GBN mode, buffer overflow is prevented if the receiver buffer is capable of
i

storing ( N-1)V+1 decoded blocks. If the SR +GBN ARQ is incorporated in the

proposed error control scheme, the throughput efficiency is then

1 - pr	 k2

nSR+GBN	
1+ (N-1)pV+1 ( n )	 (30)	 i

r	 )i
We see from (30) that, for large V, the throughput performance of the SR+GBN

t

ARQ approaches the throughput performance of an ideal selective -repeat ARQ.
f

For many data communication systems where bit-error - rate a is not very high,	 )

SR+GBN ARQ with V=1 or 2 would provide very good throughput efficiency. Con-

sider a satellite communications system with a data rate 1.54 Mbps and a

round-trip delay of 700 ms. Throughput efficiencies of the three example

schemes with SP.+GBN ARQ are shown in Figures 11, 12 and 13 for various m, 	

(

'	 f

kit a and V. We see that all three example schemes with SR+GBN ARQ provide 	 ^(

good throughput efficiency.

7. Conclusion.

In this paper, a concatenated coding scheme for error control is

presented. The probability of a decoding error for this scheme is derived for

a binary symmetric channel. An efficient method for computing this error

probability is presented. Three specific examples are analyzed, and their

probabilities of a decoding error for various bit-error - rates -are computed. 	 j4

All the example schemes provide very high reliability even for very high

-17-



bit-error-rate e .	 Por bit-error-rate a-10 -4 , a probability of decoding

error in the order less than 10 -16 is achieved. The first example scheme is

proposed and has been adopted by NASA for error control in NASA Telecommand

System. The proposed error control scheme also provides high throughput per-

formance if a proper retransmission scheme is used.

i

i

j

k

f

ry_l,I

Iy 1
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APPENDIX A

Proof of Lemma 1

It follow from (14) that

n  n 	 n
m	

nl
n
p1	

j	 sW(.

i I01 2.0
...i ^ 0...i I0Ai1,i2,...,im h^1	 j 

10
 h s 10Wjh'sh Xhh Yhhhm

m n1-i.h	 ih
= L	 I	 ...	 I

0 i2 Ai 	 ,i	 ,...,i
R .(1+XhYh )	 (Xh+Yh)	 (A-1)

ih	 =0 im 0	 1	 2 m h=1

By generalized MacWilliams' Theorem [7, p. 1471 we obtain the following identity,

	

n 	 n 	
n1	

m n

	

c	 C	 1-i h 'h
L	 E ... X Ai 	Yh

i.h O iZ 0 im 0 1V 2""'l 
R

m h-1

n1 n1 	 nl	 m	 n -i	 i
	= 2-(n-k2I 

E	 E ... E B	 R (Xh+Yh ) 1 h (Xh-Yh) h (A-2)
i1 0 i2 0 im 0 i1,i.2....,im h=1

The right-hand side of (h-1) can be rewritten as

	

-(n-k)2 
nCl nCl	 ni

2	 i L O 
iL-0

.. . 1 C 

OBI ' i2 , ... , im
1	 2	 m

m	 n1-ih	 a'h	 n1-'h 	 lh
• R (1+Xh )	 (1-Xh) (1+Yh )	 (1-Yh)
h=1

(A-3)

nLet Ps ( • , • ) be the Krawtchouk polynomial [7, p. 129]. Since (I+Y) i 1 (1-Y) 1 =
nl
I Ps (i,n1)Ys [7, p. 1301, it follows from (A-1) and (A-3) that

s=0
nl nl 	nl	 m nl n1	

(i	 jhh)	 . sh1

i£
C

	

	 C	 cc	 R r 1	 W	 Y

0 i L 0 "i =0Ai. 1 ,i.2 , ...,im h=1 jh 0 sh 0 3h'shXh h
1	 2	 m

n, n
1	 nl

= 2-(n-k2) L
	 L ... I B.

Y
O=0 i =0 i =0 11"12"""m1	 2	 m

n

R [(1+Xh)nl lh(1-Xh)lh L	
P (i.h,n1)Yhh]	 (A-4)

h=1	 shL 0 sh
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Taking the terms on both sides of (A-4) for which the degree of Yh is t or less

for 1<h<m and substituting one for Yh with 1<h<m, we have that

	

nl nC,
	

nl	 mIlrni	 ttp (ih) Xjh

i
1 	 2

E 0 1 G 0...1 m OAil , i21 ... , 
im hn1Lj h

= 	h0 
s L
=0 Jh, 

sh n

= 2-(n-k2) c	 X ... I H
i =0 i =0	 i 

m
0 il'i2,...,im

	

1	 2

	m 	 nl-ih	 ih t

	

II I(1+Xh )	 (1-Xh)	 E	 Ps (ih nl ))	 (A-5)

	

h=1	 sh 0 h

Substituting a/(1 -e) forXh on both sides of (A-5) for 1<h<m, we obtain	 r

n	
npp
	 n	 m rnCl	 Ch) jh	 nl-Jh

	

G ...	 Ai	 II	 G	 G WJ

(i 

' s E (1^E)	 1	 ^j
Y

2
 i2 0 im 0 l'12 .... im h=1 jh=0 s 

t

h 0 	 J	 i,
1

(n-k
2

	n1 nl	 n1	 m	 ih t
= 2	 2	 ...	 H.	 II ((1-2E)	 P (i,nl))

ih 0 iZ 0 im-0 i'l ,i2' .... im h=1	 s=0 s
h

(A-6)	
rri l'

	It follows from (17) and (A-6) that we obtain (19). 	 fj

I

I

f!.
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APPENDIX B

Proof of Lemma 2

Consider a parity-check matrix H of the overall concatenated code C. H

has the following form

	

+ k1 + I+ rl +I+ ki + I + rl+I	 I+ k  +I+ rl +I

	

i	 I	 I	 I	 I
H	

0	 H

	

Orl I	
0	 0^2	 0	 r

i	 0 I	 I	 HO,m I	 00 I	 i+
I	 I	 1	 ?

	

Hl	 i	 O1	
I	

O1	

1I	 1	 i
-- — — — — — — — — — — — — — — I — ----r — — — — — — — —

_

I	 t
	0 1	I	 Hl	 I	 i	 01	 r 

1	 I	 I	 y

H =	 I	 I	 I

	

..	 1	 I	 I	 ,

I	 1	 I

I	 I	 I

I	 I	 I	 fi

	

O1	

i	
Ol	

i	

i	 H1	

1

I {-----	 n	 .-J

where (1) [HO,l H0,2	 HO,m) 
is a parity-check matrix of the outer code 	

11C2;.I
(2)H1 is a parity-check matrix of the inner code Ci; 	 "^I

(3)00 is a r2 x rl zero matrix;

(4)O1 is a ri x ni zero matrix.

L
Let 

C2,ex 
be the code generated by the first r2 rows of the matrix H. For a

1	 1
codeword v in C2,ex, 

its projection p(v) is a codeword in C2 , and the components

L	 L	 L	 J.

in v but not in p(v) are zeros. C is the direct sum of C2 ex 
and C1 x C1 x ... x

r1	 L
Cl , the m-th direct-product of Cl . Then, (21) follows directly from the defini-

tion of Bit) (u).	 j
I.
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APPENDIX C

Proof of Theorem 1

It follows from (19) and (21) that

	

(n-k) nl n1
	 n1	 m	 ih t

Pd - 2	 2 
it 

0 
i2
O...i E 0 Bi1,i2....,im hII1 [(1-2e) a 0Ps(ih,n1)]

21

r
= 2-(n-k2)	 ...	 n B (1) (v (I) ) 

11 I1-2e) ih L P (i ,n ))
i1 0 iZ 0 im 0 j=0 h=1 ih h h=1	 s=0 s h l

	

-(n-k )2rr2-1 nl 	 n	
l)

l	 n1 m	 i t
= 2	

2 
E	 E	 E ... I	 11 [Bi(vhj))(1-2E) h I Ps(ih.nl)l
J=O i 0 i2=0 im-0 h=1 h	 s=0

	

r2n	 1= 2 -(n-k2) 2 C 1 n	 C B(1)( (j))(1-2e)1 	 Ps(ih,n1J 	 14:^

J=O h=1 i=1	 s=0

t
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