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B CONCATENATED CODING SCHEME
FOR ERROR CONTROL*
ABSTRACT

In this paper, a concatenated coding scheme for error control in data
comnunications is presented and analyzed., In this scheme, the inner code is
used for both errot correction and detection, however the outer code is used
only for error detection., A retransmission is requested if either the inner
code decoder fails to make a successful decoding or the outer code decoder
detects the presence of errors after the inner code decoding. Probability of
undetected error (or deceding error) of the proposed scheme is derived. An
efficient method for computing this probability is presented, Throughput
efficiency of the proposed error control scheme incorporated with a
selective-repeat ARQ retransmission strategy is also analyzed. fThree specific
examples are presented. One of the examples has been adopted for error

control in NASA telecommand system,

*Phis research is supported by NASA Grant No., NAG 5-407,



l. Introduction

consider a concatenated coding scheme [1] for error control for a binary
symmetric channel with bit-error-rate €<1/2 as shown in Figure 1. Two
linear block codes, cl and c2, are uged, The inner code c1 is an (nl,kl)
code with minimum distance dl' The inner code is designed to correct t or

fewer errors and simultaneously detect A{) >t) or fewer errors where t-+A+1%

d The outer code c2 is an (nz,kz) code with minimum distance d, and

1
n, = mk1
where m is a positive integer, The outer code is designed for error detection
only.
The encoding is done in two stages. A message of k2 bits is first en-
coded into a codeword of n, bits in the outer code cz. Then the nz—bit
word is divided into m kl-bit segments. EBach kl-bit segment is then en-

coded into an nl-bih codeword in the inner code C This nl-bit word is

1°
called a frame. Thus, corresponding to each kz—bit message at the input of
the outer code encoder, the output of the inner code encoder is a seguence of
m frames. This sequence of m frames is called a block. A two dimensional
block format is depicted in Figure 2,

The decoding consists of error correction in frames and error detection
in m decoded kl-bit segments. When a frame in a block is received, it is
decoded based on the inner code Cl' If the decoding is successful, the
nl--k1 parity bits are then removed from the decoded frame, and the
kl-bit decoded segment is stored in a buffer. If there are t or fewer
transmission errorw in a received frame, the errors will be corrected and the

decoded segment is error free. If t+1 or more transmission errors are de-

tected in a received frame, then the entire block which contains the



erroneousg frame is discarded, and the receiver requests a retransmission of
the block. If there are more than A errors in a received frame, the errors
may result in a syndrome which corresponds to & correctable error pattern with
t or fewer errors. 1In this case, the decoding will be successful, but the
decoded frame (or segment) contains undetected errors. If m frames of a
received block have been successfully decoded, the receiver buffer contains m
kl-bit decoded segments., Then error detection is performed on these m
decoded segments based on the outer code €., If no error is detected, the m

2

decoded segments are assumed to be error free and are accepted (with n2~k2
parity bits removed) by the receiver. If the presence of errors is detected,
then the m decoded segments are discarded and the receiver requests a retrans-
mission of the rejected block. Retransmission and decoding process continue
until the block is successfully received. Note that a successfully received
block may be either error free or contains undetectable errors,

The error control scheme described above is actually a combination of
forward-error~correction (FEC) and automatic-repeat-request (ARQ), called a

hybrid ARQ scheme [2]). The retransmission strategy determines the system

throughput, it may be one of the three basic modes namely, stop-and-wait,

go-back-N or selective-repeat. In this paper, we analyze the performance of

the proposed error control scheme in terms of the reliability and throughput
efficiency. The reliability is measured in terms of the probability of
undetected error after decoding. The probability of undetected error is

derived, and an efficient method for computing this probability is presented.

The throughput efficlency depends on the mode of retransmission. 1In this
paper, we analyze the throughput efficiency of the proposed error control

scheme incorporated with a selective-repeat ARQ with a finite receiver buffer.




Three specific example aschemes are considered. The first two example
schemes use the same inner code which 1s a distance-4 shortened Hamming code
with generator polynomial [2],

5{1’ (X) = ?51(2) ) = (x+1) (x%4x42) = x4xBxZa . (1)

In the first scheme, the outer code is a distance~4 shortened Hamming code

with generator polynomial,

- 3 .12 3,.2
gél)(x) = (x+1)(x15+x14+xl +x1 +x4+x +X7+%+1)

= x16+x12+x5+1 (2)

which is the X.25 standard for packet-switched data network [3). This example
scheme is proposed and adopted for error control on NASA telecommand links.
In the second example scheme, the outer code is a shortened Reed~Solomon (RS)
code [2,4,5] with éymbols from the Galois field GF(ZB) and generétor
polynomial,
gt = w1 xra) (3)
where 0 is a primitive element in GF(ZB). In the third example scheme, the
inner code is a shortened version of the extended double-error-correcting
(63,51) BCH code with generator polynomial [2],
gf’(x) = x124x 0B axtenden (4)
The outer code is the same as that of the first example scheme.
The probabilities of a decoding error and throughput efficiencies for the
three example schemes are computed., We show that they all provide very high

reliability even for a very high bit-error rate, All three example schemes

also provide high throughput efficiency.

2. Probabilities of Incorrect Decoding and Retransmission

Let V, denote the set of all binary vectors of length L. Let n be a

positive integer defined as follows:



n = mn, (5)
where n1 is the length of the inner code and m is the number of frames per
block. Let

E = (u1'u2' ...,Un) (6)

be a vector in Vn. The nl~tuPle

= Yheyn a1 % (-1)ng427 00 i, (7)
is called the h-th frame of u for 1<h<m. Hence, we can represent the vector u
by its frames as follows:

E = ('L-!l,.az,..-,am) . (8)

The first kl components of the h-th frame of u are said to form the h-th
segment of u. The mkl—tuple obtained by concatenating the m segments of 1
in order is called the projection of U, denoted p(u).

Let ¢ deﬁote the overall code obtained by concatenating the inner code
c1 and the outer code C2. Then C is a binary (n,kz) linear code where
n=mn,. A binary vector u in v, is a codeword in C if and only if

(1) each frame of U is a codeword in the inner code cl, and
(2) the projection p(u) of U is a codeword in the outer code C,e

Let Pc be the probability of a correct decoding using the concatenated

coding scheme described in Section 1. For a binary symmetric channel with

bit-error~-rate e£<1/2, Pc is equal to the probability that there are t or

fewer errors in each frame of the received block, and is given by
& m
- n ) n ~i
= 1, 4 1
P, = _)j_ () e (1-e) . (9)
i=0

Let Pd be the probability of a successful decoding (either correct or
incorrect) of a received block. Then Pd is the probability that, for a
channel-error pattern e, there is a codeword v in the overall code € such

that, for 1<h<m, the Hamming distance between the h~th frame of e and the h-th



frame of v is t or less., If Pd can be computed, then the probability of an

incorrect decoding {(or a decoding error), Pe' is given by

P, = Py~ Por (10)

and the probability of a decoding failure, Pr’ is given by

P, = l- Py - (11)

Note that Pr is also the probability of a retransmission.

In the following we will derive an expression for Pd' Let wgt)

.denote the number of binary vectors of weight 3 in an which are at a
(Hamming) distance s from a given binary vector of weight i in an. Let

a = (al,az,...,anl) and b = (bl'bz"°"bnl) be two binary vectors in an with
weights i and j respectively. Let g be the number of suffices 2's such that

a£=0 and b£=l. Then b is at a distance s from a if and only if

g = {j+s=-1)/2 . (12)
Therefore we have that
n -1 . n, i i
ai = (UG5 = (it /2 (saimsy s2) - (a3)
3,5 N g 7y)-q (3+s-1) /2/ N\ (j+i~s) /2
The generating function for w;l; is
r
np 0y (1) n,-i .
I I wil ®v° = (L4xy) (x+) (14)
j=0 s=0 3’

which was derived by MacWilliams in 1963 [6].
Let € = (61,52,...,Em) be a channel error pattern, and let jh be the

weight of the h-th frame e, for 1<h<m. The occurrence probability of e is

h
m 3 n,=j
- h 1
P(E) = e (1-) - B (15)

h....
Suppose that there is a codeword Vv = (51,52,...,§m) in € such that Eh is at a
distance shgp from ;h for l<h<m. Since ;h is a codeword in the inner code
¢, for 1<h<m and the minimum distance of Cy is assumed to be greater than

2t, such a codeword Vv in C is uniquely determined, Conversely, for a codeword



V= (31,32,...,Gm) in ¢ whose weight in the h«th frame is ih for 15n5ﬁ,

there are
m {i,)
1w h
h=1 In'%h (16)

— — - ' - -
error patterns {el,ez,...,em) s such that the weight of e, is jh and ey

is at a distance s <t from 5# for 1<h$m. Let A denote the

h il'iz'.."im
number of codewords in C whose weight in the h~th frame is 1, for lghgm,

Then, the probability of a successful decoding is given below:

n n n n
3 r 1 mp'1 t (i) 3 n, -3
Pd = .XO -z_ '.‘iz Ai I‘i In-l'i H LZ 2 Wj }:S e htl-s) 1 h
i= 12_0 m—O 172 m { h=1 h=0 sh=0 h'"h
(17)
Hence, if we know the detail weight distribution {a : 0<i <n
11’12""'1111 __h'-l

for lghgm} of C, we can compute the probability Pd of a successful decoding
from (17). Then, from (9) and (10) we can compute error probability P,» From
(11), we can compute the retransmission probability Pr’ from which we can
determine the system throughput for a given retransmission strategy (ARQ
scheme).

The dimension ¢f C is k.. In general, k2 is large and it is not

2

feasible to compute the detail weight distribution, ; directly

A
11'12'.'.’1111

. from C by generating all the codewords of C. In the next section, we will

express Pd in terms of the detail weight distribution of the dual code of C

by using the generalized MacwWilliams's identity [7, p. 147].

3. Evaluation of the Probability of Decoding

In this section, we will derive a number of results which will facilitate

L
the computation of the probabllity P, of a successful decoding, Let ¢

4

denote the dual code of the overall code C. Let B be the number

il'iz’.l.'in,l



L
of codewords in C for which the weight of h-th frame is ih for,Ogjhgpl

and 1sh€m, Then

{8 0<i, <n. with 1<h<m} (18)

il’iz'."’im= —h_'l
i
represents the detail weight distribution of ¢ . In the following, the

first lemma gives the decoding probability Pd in terms of the detall weight

£
structure of C .

Lemma 1: Let PS(-,-) be a Krawtchouk polynomial [7, p. 129). Then

Il n
n 1 m

j "
o VB, ol [ufee) P (i.,n ﬂf.
=0 1,20 4 =0 Lpedgreserip §h=1 gm0 5 B 1
m (19)

p, = 27 (7))
d i
1

Proof: See Appendix A, AA
It follows from (19) that, for the worst channel condition €=1/2,

= o—{n-k3) m
Py=2 (n,+1}" . (20)

Let r, and £, denote the numbers of parity check bits of the inner

1
and outer codes respectively. Then L, = nl-kl and r2==n2-k2.
In general mr1+r2 is also large, and it is

i1 i by generating all the codewords
R YARRL)

of ¢!, However, the computing time can be reduced considerably by using Lemma

The dimen-

L
sion of ¢ 1is thus mr1+r2.

still not feasible to compute B

2 given below.

For a vector v = (vl,vz,...,vmkl) in mG , the kl-tuple (v

1 (h-1)kp+1’

b -(0)
v(h-l)k1+2'°"'vhkl) is called Ege h-~th segment of v for 1l<h<m. Let v
- ~(2 “= L
{all-zero vector), v(‘“,...,v(2 1) denote all the codewords of Cyy
x e
the dual code of the outer code C,. For 0<i<z2 % ang i<h<m, let véj)

- L
the h-th segment of v(j). Let Cl be the dual code of the inner code

Let u = (ul,uz,...,ukl) be a binary vector in Vkl. Let

denote

Cl.

GO = (ul'uzguocfukJ-'OpOp-..'0)



be a vector obtained by appending nl-k1 zeros to u, Hence GO is a

vector in an. For Ogi<ny, let Bil)(ﬁ) denote the number of vectors of

. N ' .
weight 1 in the coset of €, which contains the vector ug» Lemma 2 gives
(1}

311,12,...,g“ in terms of Bi (u).
Lemma 2: r
2 2—1 m
- (1) = (3) %
. = ¥ 108w, (21)
11' 12" L 'im j=0 §h=1 ih h
Proof: See Appendix B. AA

L oL
Since the dimensions rl and L, of cl and c? are much smaller than the

L
dimension meqte, of C , it is much easier to compute from (21)

B
ilfizpnoo'im
£
than from ¢ directly by generating all the codewords of C*. This will be
shown in the next section.

It follows from Lemmas 1 and 2 that we have Theorem 1.

Theorem 1:
I
T R LY R S - (5) i &
Py =2 2' 7y m| B,W (v ) (1-2e)" | p_(i,m)]. (22)
i=0 h=1|i=0 5=0

Proof: (See Appendix C}.
It follows from (9), (10), and {22) that we can obtain the probability Py

of a decoding error for the concatenated coding scheme propogsed in Section 1.

4. Time Complexity for Computing the Probability of Decoding

In this section, we will evaluate the time complexity for computing the

decoding probability Pd given by (22}, The number of different Géj)'s

r
2 r
with 1<h$m and 0<3<2 ° is at most m2 2. Hence the computing time for finding
(1) =(3) . .T2
{7 (v, 7'): 0gign,, 0<§<2 © and 1<hgm}
. rytra
is roughly proportional.tonmlz « Furthermore we need multiplications and

r
additions of order (ny+m)2 2 for computing Py The dominant order of

ry+rs
computation for Py is mnlz .



Next we assume that the outer code <, iz a shortened {or the full) code
of a quasi-cyclic code cz'f of length ng [5) which is invariant under ‘
every cyclic shift by s places, where s divides k; (note that, if s=l, cg'f is
a cyclic code), Then the dual code of Cz,f denoted c;’f, is also

quasi-cyclic for every s-place shift. The codewords in C can be parti-

2,£
tioned into equivalent classes, each equivalent class ¢onsists of a codeword v
and the codewords obtained by cyclically shifting v s places at a time. We
may choose a codewerd in each equivalent class as its representative. A
vector {ul,uz,...,unz) in Vn2 is a codeword in C§ i1f and only if there iz a
representative codeword (vl,vz,...,vnf) for an equivalent class of C;'f, for

which there exists a positive integer j such that uj=Vijg4i for 15j5p2 where

js+i is taken modulo Nge
and 0<3<2 iz at most 2 . Since nl<2 , the dominate order of computation

Henc% the number of different Véj)'s with 1<h<m

for P, is
a- raFr r
max{nl 172 m272} .

However, if we compute

s 0<i, < <h<
{Bilfizf---:im 0<4, <n, and 1<h<m}
directly from ¢, the computation time is proportional to mnlzm:':l*'r2 which is

much greater than n12 and m2 “, Hence, using expression (22) for
computing Pd reduces the computing time considerably.

L, L
Suppose that c1 contains the all-one vector, {(1,l,...,1). Let C

1,0
L
denote the (nl,rl-l) linear subcode of Cl which does not contain the all-ocne
- 1 0.—
vector, For a vector u==(u1,u2,...,ukl) in vkl' let Bi Vs {u) be the number

of vectors of weight i in the coset of Ci 0 which contains the vector 30 e
[
(ul'uzpolopuk1,0'0[ooo'0) in vnlo Then

(1).,0
nq-i

The above relation reduces the comy“*ing time for Bil)(ﬁ).

Bl @ =M 0@ 4+ 510G . (23)

~10-



L i
If c2 is generated by an (nz,rz—l) linear subcode C2 0 and the all-one
) [

vector (1,1,.44.1) in vnz, the computing time for Bil)(ﬁ) can be further

reduced by using the following relation:

) + 0y, (24)

i
(1) = ) (1),0
Bi (u'i"(l;l"o'll)) Z [B j'rl-i+j

j=0 kl"jli"j

where B{};'O(ﬁ) denote the number of vectors with weight i in the first kl

bit positions and weight 4 in the last £ bit positions, which are in the

L -
coset of C containing the vector (u,0,0,...,0) in v, .
1,0 n

5, Example Schemes

In this section we consider three examples of the concatenated coding
scheme described in Section 1. For each of the example schemes, the probabi-
lity of a decoding error, Pe’ and the probabllity of a retransmission, Pr’

are computed for various bit-error rates.

Example Scheme I

In this example scheme, the inner code C, is a shortened distance~4

1
Hamming code with generator polynomial,

6

(X) = (x+1)(x6+x+1) = x7+x +x2+1 {25)

ail)
vhere x6+x+1 is a primitive polynomial of degree 6. The full length code gen-
erated by El(x) of (25) is a (63,56) cyclic Hamming code. The 56 informakion
bits form 7 8-bit information bytes. If & information bits are deleted from

the full length code, then the inner code C_ becomes a (63-%,56-%) shortened

1
cyclic code {2,4,5]. 1In practical applications, % is generally chosen to make
k1=56-£ as a multiple of 8-bit byte. ihe inner code c1 is used for single
error correction (i.e., t=1). It is also capable of detecting all the error
patterns of double and odd number errors [2,4,5,7].

The outer code is also a shortened distance~4 Harming code with generator

polynomial,

-11-



551’(x) w (%410 (x154x144x234x 2244534 x24%41) (26)

= x+0x12x%4

vwhere x15+x14+xl3+x12+x4+x3+x2+x+1 is a primitive polynomial of degree 15.
This code is the X.25 standard for packet-switched data networks {3]. The

15

natural length of this code is 277-1 = 32,767, But the maximum length of

C., being considered is 3,584 bits. We assume that the number m of frames in

2
a block varies from 3 to a maximum 64, We also assume that the number of

information bytes contained in a frame varies 1 to 7, i.e. kl= 8~ 56 bits.
Hence the length n, of the outer code varies from 3 to 448 bytes or from 24 to
3,584 bits. The 16 parity bits of the outer code is used for error detection
only. The error detection performance of this outer code for various lengths
has been investigated recently by Fujiwara, et al., [8].

Example scheme 1 has been adopted by NASA for error control on télecom—
mand links, The probability of a decoding error, Pgr for this scheme is shown
i yigures 3, 5, 7 and 9 for various ki, m and bit-error-rate £, We see from
Pigure 9 that, as the bit-error~rate g increases, Pe increases to a peak
value and then decreases to the value P;::l—Pa where g; is given by (20), We
gee that the scheme provides very high reliability even for very high bit-
error-rate, The probability of a decoding fallure (or retransmission), P, is

shown in Figures 4, 6, 8 and 10 for various k , m and bit-error-rate g.

Example Scheme II

In this example scheme, the inner code cy is the same as that of example
scheme I. The outer code is a shortened Reed-~Solomon (RS) code with symbols
from the Galois field GF(28) and generator polynomial

=(2)
g (X)) = (X+1)(X+q) , {27)
where o is a primitive element of Gf(ZB) and a root of x8+x4+x3+x2+1. This

code is used as a binary code with each code symbol represented by a 8-bit

—12.. o



byte., This binary RS is quasi-cyclic and has a minimum distance 4. The
natural length of the code is 255 bytes or 204U bits.
The probability P, of a decoding error is shown in Figures 3, 5, 7

and 9. The performance of this example scheme is inferior to example scheme
1, however still provides very high reliability. The probability P, of a
decoding failure is shown in Pigures 4, 6, 8 and 10. Since Pe is very
small, it follows from (10) and (11) that PrsulnPc. Hence example schemes 1
.and 2 have almost the same Pr'

Example Scheme III

In this example scheme, the outer code ('::Z is the same as that of the
example scheme I, the X.25 standard code. However, the inner ¢ode is a short-
ened version of the extended (with an overall parity bit appended) double-
error-correcting (63,51) BCH onde with generator polynomial [2],

5;3)(x) = x124x10:x8sx54x %4341 (28)

The inner code c1 generated by gia)(x) has minimum distance 6 and is used

for correcting all the double and single errors (t=2). The code is capable of

detecting all the triple ertors and many other errors.

The probability of a decoding error, P, is shown in Figures 3, 5, 7, and
9. Since the inner code is designed for double error correction, the perfor-
mance of this example scheme is superior to the example schemes 1 z7.d 2. The
probability of a decoding failure is shown in Figures 4, 6, 8 and 10.

Now we consider the agccuracy of computation for probabilities Po: Pg, and
P, of the above example schemes. If the wordlength of the computer under
consideration is at least r1==nl—k1, then the exact value of Bil){ﬁéjj) can be
computed. Let w be the number of bits in the mantissa of the floating point
number of the computer. Then the number of‘significant bits of the result

computed for Pc by using {9) is no less than



lw - 1092(t+1)mn11 .
The number of significant bits of the result computed for Py by using (22)
is no less than
A= |lw=- 1o (2r2mn2)]

b 174

If the computational result for P, by using (10) is greater than
5~ (A=)

for a positive integer.§, then the number of significant bits of the results
is greater than 6. In our computation, we used FORTRAN 77 on AC0S-1000 whose
number of bits in the mantissa of the gquadruple precision floating point
number is 124. For m=4 and n1=31, if the computational result for P, is

24 or for m=64 and n =63, if the computational result for Po

2

greater than 10~
is greater than 10'"2 ¢ then the number of significant (decimal) digits is

greater than 3.

6. Througbput Efficiency

The error control scheme presented in this paper is actually a hybrid ARQ
scheme [2], which is a combination of forward-error-correction (PFEC) and
automatic~repeat~request (ARQ). The throughput efficiency of the scheme
depends on the mode of retransmission, There are three basic modes of
retransmission: namely stop-and-wait ARQ, go-back-N ARQ and selective-repeat
ARQ [2]. 1In a stop-and-wait ARQ system, the transmitter sends a block to the
recelver and waits for an acknowledgment. A positive acknowledgement (ACK)
from the receiver signals that the block has been successfully decoded and
accgpted, and the transmitter then sends Lhe next block. A negative acknow-
ledgment (NAK) (or no acknowledgment) from the recejver indicates that the-
received block has been detected in error; the transmitter resends the block,

Stop-and-wait ARQ is very simple to implement, however it is inherently inef-

ficient because of the idle time spent walting for an acknowledgment.

-14- .



In a go-back-N ARQ, the transmitter continuously transmits blocks in
order and then stores them pending receipt of an ACK/NAK for cach. The
acknowledgment of a block arrives after a round-trip (propagation) delay,
defined as the time interval between the transmission of a block and the
receipt of an acknowledgment for the block. During this interval, N-1 other
blocks are also sent. Whenever the transmitter receives a NAK for a parti-
cular block, say block i, it stops transmitting new blocks. Then it goes back
to block i and proceeds to retransmit block 1 and the N~1 succeeding blocks
which were transmitted during one round-trip delay. At the receiving end, the
receiver discards the erroneously received block i and all N-1 subgequently
received blocks whether they are error-free or not. Retranmiss;on continues
until block 1 is successfully decoded. 1In each retransmission for block i,
the transmitter resends the same sequence of blocks. As soon as block i is
positively acknﬁwledged, the transmitter proceeds to send new blocﬁs.

Clearly, go-back-N ARQ is more efficient than the stop-and-wailt ARQ. However
it stil) has a severe drawback. When the receiver fails to decode a block, it
also rejects the next N-1 received blocks, even though many of them may be
error free,

In a selective-repeat ARQ system, blocks are also transmitted continu-
ously. However, the transmitter only resends those blocks that are negatively
acknowledged (NAK'ed). After resending a NAK'ed block, the transmitter con-
tinues sending new blocks. Clearly, selective-repeat ARD is superior to the
other two ARQ schemes. However, with selective-repeat ARQ, a buffer must be
provided at the receiver to store the successfully decoded blocks following a
decoding failure, because ordinarily, blocks must be delivered to the destina-
tion in correct order, e.g. in point-to-point communications. Sufficient
buffer (theoretically infinite buffer) must be provided at the receiver,

otherwise, buffer overflow may occur and blocks may be lost,

- ~15- )



Stop-and-walt and go~back-N ARQ's provide satisfactory throughput effi-
clency for data communication systems with low or moderate data rate and short
round-trip delay, FPor systems with hich data rate and long round-trip delay,
e.g. satellite links, the throughput efficiency of stop-and-wait and go-back-N
ARQ's becomes unacceptable, and uselective-~repeat ARQ must be used.

The throughput efficiency n of a data communication system is defined as
the ratio of average number of message {(or information) bits successfully
accepted by the receiver per unit of time to the total number of bits that
could be transmitted per unit of time. Suppese that an ideal selective-repeat
ARQ (with infinite receiver buffer) is incorporated in the error control

scheme proposed in this paper. Then the throughput efficiency of the scheme is

Ky
= (?T)“"Pr’ {29)

]

Nsr

where kz/n is the rate of the overall concatenated code C and Pr is the
rekransmission probabillty given by (11). Using the value of Pr given in
Pigure 4, 6§, 8 and 10, we can compute nsR for various bit-error-rate and m.

In practice, only finite huffer can be provided at the receiver. In this
case, buffer overflow may occur in a selective-repeat ARQ scheme, this reduces
the throughput efficiency. However, if a sufficiently long buffer is used and
if buffer overflow is properly handled, even with a reduction in throughput,
selective-repeat ARQ stil}l significantly outperforms the other two ARD
schemes. Practical schemes have been devised for handling buffer overflow
[9~12). One such scheme iz the selective-repeat plus go-back-N (SR+GBN) ARQ
devised by Miller and Lin [11l]). With SR+GBN ARQ scheme, retransmission of aﬁ

erroneous block, say block i, is first carried out in selective-~repeat mode.

If block i fails to be successfully decoded at the v-th retransmission (v>1),

-16- B



the transmitter switches to the go-back-N mode. That is, it sends no more new
blocks but backs up to block i and resends that block and the N-1 succeeding
blocks that were transmitted after the v-th retransmission of block i,
Retransmission in go-back~N mode continues until block i is successfully
decoded, the transmitter is then switched back to sele;tive-repeat mode. With
SR+GBN mode, buffer overflow is prevented if the receiver buffer is capable of
storing (N-1)v+l decoded blocks. If the SR+GBN ARQ is incorporated in the

proposed error control scheme, the throughput efficiency is then

- k
SR+GBN 1+(N-1)P¥+1 n

We see from (30} that, for large v, the throughput performance of the SR+GBN
ARQ approaches the throughput performance of an ideal selective~repeat ARQ.
For many data communication systems where bit-error-rate € is not very high,
SR+GBN ARQ with v=1l or 2 would provide very good throughput efficiency. Con-
sider a satellite communications system with a data rate 1.54 Mbps and a
round~trip delay of 700 ms. Throughput efficiencies of the three example
schemes with SP:GBN ARQ are shown in Figqures 11, 12 and 13 for various m,

kl' € and V, We see that all three example schemes with SR+GBN ARQ provide

good throughput efficiency.

7. Conclusion

In this paper, a concatenated coding scheme for error control is
presented, The probability of a decoding error for this scheme is derived for
a binary symmetric channel. An efficient méthod for computing this error
probability is presented. Three specific examples are analyzed,‘and their
probabilities of a decoding error for various bit-error-rates are computed.

All the example schemes provide very high reliability even for very high

~17- o



bit-error-rate £. Por hit-error-rate 5-10'4, a probability of decoding

16 is achieved. The first example scheme is

error in the order less than 10~
proposed and has been adopted by NASA for error control in NASA Telecommand
system. The proposed error control scheme also provides high throughput per-

formance if a proper retransmission scheme is used.

-18-



APPENDIX A .

Proof of Lemma 1

It follow from {(14) that

npon %y m| ™ o) 4. s
D Y fa oooomp ) ywt oxPyl
1,0 4,20 i =0 1'72'"""'*m h=1] 3 =0 s =0 Th!®n
E? 3? ?% m n -i
= ' s A. N H (1+ Y ) ( +Y ) (A-l)
1,20 1,0 i =0 yrdgreseidy pm 'h n

By generalized MacWilliams' Theorem [7, p. 147] we obtain the following identity,

n n n
1 1 1 m n
I o) Ta lnxhlhih
il=0 i2=0 1=0"1'"2""""""mh
m
n n n
1 M 1 i
-{n-k.) h h
2 2’ ¥ eee ) B, : 1 (X, +Y ) (X ~¥. ) (a-2)
i1=0 i2=0 im=0 ilplzf PR 'lm h—- }51 xh h

The right-hand side of {A-1) can be rewritten as

1 ™ 1
2-(n~k2) X cas Z 5 . .
1,20 i,= i =0 Tartareeciiy
m
m n,— 1
. (1+xh) (1-xh) (1+y 1 ih(l—Yh) h (a-3)
h=1
nl-i i
Let PS(-,-) be the Krawtchouk polynomial (7, p. 129]. Since (14¥) (1-¥)" =
ny
PRACEN )¥° [7, p. 130], it follows from (A-1) and (A-3) that
=0 °
ny, n mft B 5y 3y sy
I nl ¥ ) wPB X ¥
Z z Z A i :L h=1{ 3. =0 s.=0 n'%h h
1,20 i,20 i =0 Lordgreees In™" Fn
17 2
: Lo
-{n-k,)
D E By is.ind
i.=0 i =0 4i=0T1'2"" """
. 1 2 ™
i "1 Sh
. - h . 1. (a-4)
hg [(1+xh) L x,) SZ=0 Pg, neny Yy,
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Taking the terms on both sides of (A-4) for which the degree of Y, is t or less '

for 1<h<m and substituting one for Y, with 1<h<m, we have that

h
np m ng m %1 j
L L B BT, E o
11—0 i2-0 1m=0 1772 m h=l Jh 0 sh=0 h
n n n
2 = - ...'z Bi fi ,--o;i
1,20 i,=0 i =0 *1'%2 m
m ng-i ht .
 TL(14K ) (1-xh) ): Ps (4,001 . (A-5)
h=1 h h

Substituting e/(1-g} for xh on both sides of (A-5) for 1<h<m, we obtain

n.  n n m| B ot (i) 3 n -3
1 M 1A nl|y ):wjhsehtl-t-:)lh
v a ] ] - 1 = = !
il=0 iz=° imfo 11,12,...1m h=1 Iy 0 s, 0 “h’'"h
nj nq nj
2“(n“k2) z . Z B, N g I [(l~28;h Z P (ih:n )i
£9%0 ,=0 4 =0 F1772/** r¥m h=y s=0

(A-6)
It follows from (17) and (A-6) that we obtain (19).
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APPENDIX B

Proof of Lemma 2

Consider a parity~-check matrix H of the overall concatenated code C. H

has the following form

I + Kk, o+ |+ r, o+ |+ ky +|+ r1+| |+ kl -+|-¢- r, +|
[ AP | o | | H T I
o, | "o { 0,2, Yo | "y Fom ) o |r
SIS U AU SR B WUPNPE RPN
; I : 4
Hl : 01 = SR 01 rl
| | ! ¥
——————————————— b Il e e it —
o ! . ! | +
1 ; 1 i . s : 01 rl
) ! )
_ | ]
———————— | -—ob-—-—--—-—-—'-o——-——l——vl—-—-—-—'—-—- —
H = I I |
. 1 . | i .
I | I
L) : L) : . » L) ’ .
L) | . I -
———————— '-—-—-—’--—-—--——-llc-'——-——-!-—-—-—--—-———— ey
f ! | +
|
: 0 : o I ' 3 1
n t ] I i A
| + n v
where (1) [H H s« H_ 1 is a parity-check matrix of the outer code
0,1 0,2 O,m
C2:
{2) Hl is a parity-check matrix of the inner code Cl;
{3) 00 is a r,xr, zero matrix;
(4) 01 is a r, xn, zero matrix.
4
Let 02 ex be the code generated by the first r, rows of the matrix H. For a
’
- iR - L
codeword v in C2 ox’ its projection p(v) is a codeword in cz, and the components
L}
- - L L L
in v but not in p{v) are zeros. C is the direct sum of c2 éx and clzcclzc... X
[
4 s
Cl' the m-th direct-product of Cl. Then, (21} follows directly from the defini-

tion of Bil)(ﬁ).
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APPENDIX C

Proof of Theorem 1

It follows from {19) and (21) that

{n=%.) )‘ nzl nzl m ih E
P, =2 "% ¥ - B I [(1-2¢) P (i ,n)]
d 1,50 1,70 4 =0 dyedgreeerdp po gmo & b1

r
n, n Ry 272

—lre 1 -l m _ m i &
= 270"k} D NPT N N Bil)(véj)) M [1-2e) "} P (i, ,n,)]
i,=0 i,=0 i =0 §=0 h=1 “h h=1 5=0
r
22-1 N1 m N1 m . i, t
= 2~ (k) 7y ;] Y ..y I [Bil)(;éj))(l-ZE) Y (i,n)]
j=0 -'1-1:0 5-2:0 im‘=0 h=1 h =0
~(n-k )2r2-1 m njy (1) = (3) i t
= 2 21 m I ya-2e” § e (i m)
§=0 h=1 |i=1 s=0
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