
NASA Contractor Report 166071

NASA-CR-166071
19850022393

DEVELOPMENT AND EVALUATION
OF A FAULT-TOLERANT
MULTIPROCESSOR (FTMP) COMPUTER
Volume I
FTMP Principles of Operation

T. Basil Smith, III and Jaynarayan H. Lala

THE CHARLES STARK DRAPER LABORATORY, INC.
555 Technology Square
Cambridge, Massachusetts 02139

CONTRACT NAS1-15336
MAY 1983

FG~EJ(IfI;Y"6'OMEsTIC'oisSEMiNA"rioN~

~qUtlllgnlflcant early commercial potential, this Info~~
which has''BlNtl\".developed under a U.S. Government~am, II
being dlslemlnat8lJ.w./thln the United States 1!!JldY8nce of general
publication. This Informatlo.n may be duplicated and used by the
reCipient with the exprels IIm1fatlQrttfial It not be published. Releale
of thllln'formatlon to oth.r1fomeliiC"padlQ.1 by the recipient Ihall be
made lublect~()Jht.eninltatlonl. Foreign retelsemay be made only
with prlpptiASA approval and appropriate export IIcensel. This
.P.'aahall be marked on any reproduction of thll Information In

rhOle or In part.

Review for general release May. 1985

Nl\SI\
National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665

111
NF02223

U\NGLEY RESEARCH CENTER
LIBRARY, N.lISA

H:"I~·.~?TOfl, VIRGINIA

FOREWORD

This report was authored by Dr. T. Basil Smith, III and Dr.
Jaynarayan H. Lala. Dr. Smith was the project manager. The NASA
technical monitor for the period from January 1982 to December
1982 was Mr. Charles Meissner and from August 1978 to December
1981 was Mr. Nicholas Murray. Some of the many people who
contributed to the success of this project are as follows.

Dr. Albert Hopkins
Mr. Jack Mckenna
Ms. Linda Alger
Mr. Kevin Koch
Mr. Robert Scott
Mr. Joseph Marino
Mr. David Hauger
Mr. Mario Santarelli

Mr. Ron Coffin
Mr. Charles Schulz

CSDL

COLLINS AVIONICS

i

This Page Intentionally left Blank

TABLE OF CONTENTS

1. Introduction ••••••••
2. Overall FTMP Architecture • • •

Page

1
2

2.1 Processor Region •• • • • • • • • • • • • • •• 2
2.2 Slave Region •••••••• • • • • • • •• 3
2.3 Clock Generation Region. • • • • • • • • • • •• 5
2.4 Bus Guardian Units • • • • • • • • • • • • • •• 6
2.5 System Bus Interface Circuits • • • • • • • • •• 7
2.6 Power System • • • • • • • • • • • • • • • • •• 7
2.7 Software Overview. • • • •• •• • ••• 8

3. System Bus . 9

3.1 System Bus Design and Operation. • • • • • • • • 10
3.2 LRU System Bus Interface Design • • • • • • • • • 18
3.3 Bus Guardian Unit Design • • • • • • • • • • •• 21

4. Processor Region Design and Operation • • • • • · . . 23

4.1 The Processor Region Transfer Bus • • • • • • • • 25
4.2 Cache RAM • 27
4.3 Cache PROM • • • • • • • • • • • • • • • • • • • 27
4.4 Memory Management Unit (Mapper) • • • • • • • • • 27
4.5 Interval Timer ••••••• • • • • • • • • •• 29
4.6 Control and Communication Registers • • • • • •• 30
4.7 System Bus Controller. • • • • • • • • • • • •• 33
4.8 The CAPS-6 Processor ••••••••• • • • •• 41

5. Slave Region Design and Operation • · . . · . . . · . 98

5.1 Bus Coupler/ Transfer Bus • • • • • • • • • • • • 98
5.2 System RAM . • • • • . · • · · • · · • • • • • • 102
5.3 Real Time Clock/Counter · • · · • · · · · · • · • 102
5.4 Control, Communication and Status Registers • · · 103
5.5 I/O Port . . • . • · • • • · • • · · • · · • • • 106

6. Clock Generation Region Design and Operation • •

7. Power System • • • • • • • • • • •

• • 110

116 • • • •

iii

CHAPTER 1. - Introduction

This report is Volume I of a multi-volume report on the Fault
Tolerant Multiprocessor (FTMP) project sponsored by the Langley
Research Center of the National Aeronautics and Space
Administration under contract NASl-l5336. The major topic covered
by this volume is the FTMP architecture and principles of
operation. Volume .11 describes the FTMP software, Volume III
describes the FTMP test and evaluation results and Volume IV is
an executive summary of the project.

This volume is intended to serve as a comprehensive guide to
the hardware organization and operation of the Fault-Tolerant
Multiprocessor engineering model. The FTMP engineering model was
constructed by the Collins Avionics Division of Rockwell
International Corporation to the architectural specifications
provided by the Charles Stark Draper Laboratory. The
architecture of this engineering model is similar to the machine
architecture developed under a predecessor contract (NASl-13782).
Certain architectural modifications were made to this original
baseline in order to facilitate the construction of this
engineering model by Collins in a form which is compatible with
current commercial avionics packaging and practice. It is
believed that most of these modifications, in addition to the
immediate goal of making the engineering model more practical,
were desirable enhancements of the architecture in and of
themselves. Chapter 2 summarizes the overall architecture of the
FTMP and is intended to provide the necessary. context for the
hardware details of the later chapters. Chapter 3 discusses the
System Bus design and operation. Chapter 4 discusses the
Processor Region design and operation. Chapter 5 discusses the
Slave Region design and operation. Chapter 6 discusses the Clock
Generation Region design and operation. Chapter 7 summarizes the
Power System design.

- 1 -

CHAPTER 2. - Overall FTMP Architecture

This chapter outlines the functional and design concepts of
the Fault-Tolerant Multiprocessor engineering model, FTMP. The
system is ~onstructed of ten identical line replaceable units
(LRU's). Each LRU contains a Processor region, a Slave region, a
Clock Generation region, two Bus Guardian Units, System Bus
Interface circuits, and a Power Subsystem~

2.1 Processor Region

The processor regions operate in groups of three called
processor triads. Processor triads are formed by assigning the
processor regions of any three LRU's to work together .in tight
synchronism. It is possible for up to three processor triads to
be in operation simultaneously, utilizing nine of the ten
available LRU's. The processor region of the tenth LRU serves as
a spare. A processor triad functions as if it were a single
processor executing a single instruction stream. With three
triads operating simultaneously, three instruction streams are in
parallel execution. The system is then functioning as a normal
three-processor multiprocessor. The failure of a single
processor region of a triad does not impact the correct execution
of that instruction stream, because voting is used to mask the
effects of the failure. Comparison techniques also enable the
failed region to be detected and identified. A spare processor
region can then be used to replace the failed element of the
triad. If no spares are available, the damaged triad is retired
from service with the surviving functional elements being used to
replenish the spares pool.

The processor triads write data to, or read data from,
locations within the system bus address space by means of the
System Bus. This bus is a quintuply redundant fully duplex eight
megabit per second serial bus. During a block transfer, data can
be written from a processor triad at a peak rate of one word
every 5 microseconds. Data can be read by a processor triad at a
peak rate,of one word every 3 microseconds. The error correction
and error detection relies upon voting and comparison of data and
addresses appearing on redundant elements of the System Bus.

At anyone time three of the fiv~ redundant bus lines are
active. These active lines are called a bus triad. Each element
of a processor triad transmits data and addresses on a different

- 2 -

,

one of the bus triad's lines. Since the elements of the
processor triad are all operating in tight synchronism, it is
possible for any unit receiving a processor triad read or write
request to compare the separate versions of that request by
examining the separate copy of that request arriving on each bus
of the bus triad. The receiving unit can correct any errors
caused by a single processor region failure or single bus failure
by using majority voting.

2.2 Slave Region

The Slave Region contains a number of subsystems all of which
are addressed, read and written, as locations in the System Bus
address space. These subsystems are the System Memory Module,
the I/O Port, LRU Control/Status and Communications Registers,
and a Real-Time Clock/Counter. Certain of these modules are
normally operated within triads of three like modules assigned to
the same function and location, others are operated as single
units.

System Memory Modules are normally operated within a triad.
The system memory modules of three tRU's are assigned to function
together servicing a 16k word block of the system bus address
space. Up to three memory triads can be formed from the system
memory modules of nine of the ten LRU's. The tenth LRU's system
memory module could then serve as a spare. Each memory triad is
assigned to serve a different 16K block of the system memory
address space. With three memory triads operating
simultaneously, 48K words of the system memory address space can
be served. The failure of a system memory module within a·triad
does not impact the integrity of data stored in that block, as
voting is used to mask the effects of the failed module.
Comparison techniques also enable the failed module to be
detected and identified. A spare memory module can then be user
to replace the failed element of the triad.

The real-time clock/counters of each LRU are also intended to
operate together as a triad. All real-time clocks are addressed
by the same system bus address. A processor triad write to that
location sets all real-time clocks to the same value. The real
time clocks of three LRU's can be armed to respond to read
requests. Only those three LRU's respond to any processor triad
read requests and as such they f~nction as the real-time clock
triad. A failure of any element of that triad is masked by
voting. Comparison techniques enable the faulty unit to be
identified. Anyone of the unarmed real-time clocks can be used
to replace the failed element of the real-time clock triad. Note
that even the unarmed real-time clocks respond to write commands
from a processor triad, thus they will always agree with the
elements of the real-time clock triad and can therefore be used
to replace an element of the triad without reinitialization.

- 3 -

Unlike the processor regions, the memory modules, and the
real-time clock/counters, the I/O ports operate independently of
one another. Each I/O port responds to its own unique set of
system bus addresses. Data and command words are transferred
from a processor triad to an I/O port over the System Bus~
appearing to the processor triad as routine system bus writes;
As with any processor triad writes, voting at the receiving end
serves to mask the failure of anyone of the processor triad
elements. The I/O port buffers any I/O transmissions, assembling
an entire message before initiating an I/O bus transaction. 'The
I/O port also buffers any incoming I/O transaction, assembling an
entire remote terminal message. The entire transaction is then"
transferred as a block to a processor triad in response to a read
request from that processor triad. The I/O port utilizes MIL
STD-1553A data bus protocols and signalling standards in its
communications with the exterior. Two twisted shielded pairs are
used, one for transmitting and one for reception, creating a
fully duplex data link. If these two pairs are tied together
they conform to all specifications of MIL-STD-1553A. A MI~
STD-l553A avionics data bus is a 1 MHZ serial data bus employing
Manchester encoding to send both clocking and data information on
a single shielded twisted pair bus line. Maximum I/O transaction
length can be 32 data words, one command word and a status word
requiring up to 700 microseconds for the transaction to be made.
During this period the I/O port can act independently, and the
processor triad may release the System Bus for regular bus
traffic. Since each I/O port can operate independently, it is
possible for the FTMP to be engaged in up to ten I/O bus trans~
actions simultaneously, one on each of the I/O buses dedicated to
each of the ten I/O ports.

The remaining elements of the Slave Region are System
Control/Status and Communications Registers. These elements are
used to control various parts of an LRU, to read the status of
the error detection circuitry of an LRU, and to provide direct
processor triad to processor triad communications.

The control registers are all write only. They are assigned
fixed locations within the system bus address space depending
upon LRU identification number. These LRU control registers
control which bus lines the LRU uses for voting, triad assignment
for the processor region, memory relocation factor for the system
memory, whether the real-time clock is armed or not and other LRU
assignments or functions.

The status registers, or error latches, can only be read by a
processor triad. They report any bus errors observed by the error
detection circuits of the LRU. Like the LRU control registers,
the status registers are assigned fixed system bus addresses
dependent upon their LRU identification number.

The communications registers are used to implement direct
processor triad to processor triad communications. Each
communications register can only be written using the system bus.

- 4 -

The communications register can be read by the processor region
of the LRU directly, appearing as a local memory locations on its
internal processor region data bus. The system bus address
assignment, of each communication register within the LRU, is
keyed to the processor region triad assignment of that LRU. This
assignment is contained in one of the control registers of the
LRU. The local processor region transfer b.us address of each
communications register is fixed and is the same for all LRU's.

Only one LRU responds to control register writes or status
register' reads, that LRU being determined by the system bus
address of the register being accessed. All LRU's with the
appropriate processor region triad assignment will respond to
communication register writes. When multiple. LRU's are
responding to a communication register write they act in tight
synchronism with one another.

Each LRU's Slave region is assigned to transmit on only one
element of the redundant system bus. These assignments are made
so that each element of a system memory triad or real-time
clock/counter triad is assigned to a different bus. Each element
of a processor triad therefore has simultaneous access to the
redundant replies from each element of a responding triad. Each
element of a processor triad can therefore mask a fault within a
responding triad by appropriate majority voting circuitry. When
reading from a simplex source, such as the I/O port or status
register, the processor triad does not receive redundant
information, but instead must accept the data from the single
system bus line on which it appears and verify its accuracy by
other means.

2.3 Clock Generation Region

All elements of the multiprocessor operate using a common time
reference. This time base is provided by the Cloek Generation
Regions of four LRU's which are phase locked to one another. The
Clock Generation Regions of the remaining LRU's are then phase
locked to any three of elements of the clock quad. Each clock
generator thus provides a timing source for its LRU which is in
synchronism with all other correctly functioning generators.
Such a system can tolerate the failure of anyone of the clock
generators. All correctly functioning clock generators remain
synchronized despite such a failure. A failure within the quad
is detected and identified and another clock generator can be
assigned to replace the failed unit. Of the ten clock
generators, four ate assigned to the quad clock and the remaining
six are either spare and in standby mode, or failed.

2.4 Bus Guardian Units

The overall integrity of the system relies upon the ability to
reliably control the access that any element of an LRU has to the

- 5 -

system bus. Each LRU of the system has two Bus Guardian Units,
BGU's, which function to protect the system bus from a failed" or
malperforming LRU or element within the LRU. Each BGU has bus
enabl ing . regi sters which control the LRU access to. each
individual line of the system bus. In order that the LRU .. be
enabled to transmit on any line of the system bus it is necessary
that the enabling bit from both BGU's within that LRU be set.
Either BGU can block the LRU's ability to transmit on a line.

When the configuration control program creates a proces~or
triad, for example, it must first assign the processor regio~s of
three LRU's to the same processor triad. It does this by writing
into the system control registers of the selected LRU's. It must
then assign each processor region to transmit on separate lines
of the system bus triad. It does this by writing to the enablin"9
registers of both BGU's of each selected LRU, assigning each LRU
to the appropriate processor transmit lines of the system bus.

The register loading mechanism of each BGU responds to a
unique system bus address keyed to that BGU's LRU and location
within the LRU. This register loading mechanism allows each" BGU
register to be written by a normal system bus write transaction.
Because it is important that a BGU act independently of the LRU
in which it is located, each BGU receives all the redundant
copies of all processor triad transmissions appearing on the
system bus. I t decodes the system bus address of each w'r i te
transaction, recognizin~ any writes addressed to itself. ' The
data word of a write 1S then examined and enabling register
contents are altered in response to a correctly formatted command
contained in the data word. Since this requires that the BGU be
aware of the current three of five bus I ines which are the ac'ti ve
triad, each BGU also has one internal register which is used to
store the select code which determines which System Busproc~ssor
lines are to be used in the voting process. This processor line
select register is also written by a processor triad using the
same mechanism as is used to write to the enabling registers.
All registers within the BGU are nonvolatile so that the bus
assignments and line select codes are remembered during a power
failure.

2.5 System Bus Interface Circuits

The actual connections to the system
System Bus Interface Circuits within an
perform several functions.

bus are made by the
LRU. These circuits

First, and most obviously, they provide the necessary drivers
and receivers for each individual bus line. Selection of these
drivers and receivers is dictated by electrical constraints such
as adequate power and noise immunity.

Secondly; the interface circuits provide the
controlling the fault environment of the system bus.

- 6

means for
The driver

circuit for each line performs the necessary gating of LRU
signals onto system bus lines depending upon the values obtained
from the BGU enabling registers. Thus it is this driver circuit
which actually functions to cut the connection between an LRU and
the system bus. The receiver circuits distribute independent
copies of the system bus data, as required to each BGU within the
LRU and to the other LRU circuitry. Each BGU and the input
processing circuitry of the slave region m~st receive independent
copies of the processor transmissions lines so that they each can
each perform an independent vote and act independently of one
another in response to processor triad commands. Partitioning
within the interface circuitry region is designed so that a
single fault can bring down no more than one element of the
system bus or pollute no more than one copy of the received data
from the system bus. As will be clearer later, .the partitioning
and fault containment aspects of these interface circuits are
critical to the overall fault tolerance of the FTMP.

2.6 Power System

Each LRU has its own power subsystem. This subsystem consists
of a power supply, which provides all the required voltages used
within the LRU, and a battery backup circuit, which provldes low
power battery power for maintaining the CMOS system memory and
the nonvolatile registers during primary power loss. This local
power subsystem is overvoltage and overcurrent protected.

The local power subsystem of each LRU draws power from four 28
VDC power buses. Each LRU is fused at its connection point to
this quad redundant power bus so that internal shorts within an
LRU can at most only momentarily disrupt power on the primary
power' buses. The local power supplies have adequate energy
storage to tolerate these interruptions while the fuses blow.
The local power supplies draw power evenly from all of the power
buses. Thus under most circumstances, each of the power buses is
fairly equally loaded. Anyone of the power buses is capable of
fully supplying all power to operate the entire FTMP.

The four primary power buses are driven from four independent
primary power supplies. In this particular implementation, each
of these power supplies is identical and converts three phase 208
VAC, 400 Hz input power to 28 VDC.

- 7 -

2.7 Software Overview

Figure 2.1 illustrates the functioning of this system from a
software or programmer's viewpoint. Three processor triads
function as the logical equivalent of three simple processors
with shared access to a single shared memory. Similarly, the
processor triads share access to the ten I/O ports, a real-tim'e
clock/counter, and control/status registers. Each processor
triad can directly write'to the communications registers of the
other processor triads using the system bus. A processor can
read its own communications registers' directly using its own
internal transfer bus. The entire system is synchronized by the
equivalent of a single system wide clock. The actual redundancy
underlying the buses, system memory triads, processor triads, the
clock quad and the I/O system is invisible to the programmer.

PROCESSOR
TRIAD

1

SYSTEM
MEMORY

c
o
m <-+
m

PROCESSOR
TRIAD

2

I

r
REAL-

c
o
m <-+
m

c
PROCESSOR 0

TRIAD m <-+
3 m

TIME
CLOCK/

COUNTER

SYSTEM I I
/
o

CONTROL/ ' / : 0 0 0
STATUS 0

Figure 2.1 Software Appearance of FTMP

- 8 -

CHAPTER 3. ~ The System Bus

The System Bus interconnects all LRU's of the Fault-Tolerant
Multiprocessor and is the transfer medium for exchanging all
data, clocking, control and status signals. The bus system is
five fold redundant, consisting of five identical bus sets. Each
bus set is composed of four lines. These are a Poll line, P
line, a processor Transmit line, T line, a processor Receive
line, R line, and a Clock line, C ~ine. Each LRU of the system
is interfaced such that it always receives all bus lines. In
addition it can be dynamically configured such that it may
transmit on any bus line. The design of the interface circuitry
of the LRU is such that any single point fault within an LRU can
at most·disable only one of the bus sets. Bus Guardian Units,
BGU's, within each LRU are responsible for providing enabling
signals to the interface circuitry which allow that LRU to
transmit on particular bus lines. Each LRU has two BGU's. In
order that the LRU be enabled to transmit on a bus line it is
necessary that the interface circuitry receive e~abling signals
from both BGU's of .that LRU. Thus the LRU can still be
disconnected from the bus <blocked from transmitting> even if one
of the BGU's should fail such that it is providing enabling
signals to the interface circuitry.

The basic, operating principles of the FTMP require that triads
of processors and memories be formed and that each member of a
triad be assigned to transmit on a different bus set. The triads
operate in tight synchronism so that the transmissions from each
element of a triad will be synchronized with one another. It is
thus possible to listen to the three separate bus lines on which
a triad is transmitting, and to perform a majority vote to
synthesize a correct transmission even if one element of the
triad should fail. It is also possible to note and record any
disagreements between elements of a triad which might become
apparent during this voting process. Processor triad, system
memory triad and real-time clock/counter transmissions are always
of this triplex form. The receiving party is responsible for
performing the vote and error masking function, should one of
these triads have a failed member.

Synchronous operation requires that all LRU's operate with a
common time base. This common time base is provided by the
clocking system. Clock generators within each LRU lock to a
voted version of the redundant system clocks which appear on the
system bus clock lines. These redundant clock signals are

- 9 -

provided by gating the clock generator outputs of selected LRU's
onto the C lines of the system bus. The selected LRU's
effectively lock to each other while all other LRU's lock to the
selected LRU's.

This chapter discusses the System
the LRU System Bus Interface design,
design and operation.

3.1 System Bus Design and Operation

Bus design and operation,
and the Bus Guardian Unit

The System Bus interconnects all LRU's of the FTMP providing
. the timing, control and data paths for all intermodule
communication and synchronization. The basic construction
provides five fold redundancy. There are five complete and
independent bus sets. Each bus set is made up of a poll line, P
line, a processor Transmit line, T line, a processor Receive
line, R line, and a Clock line, C line. Each of these logical
bus lines is a single twisted pair of wires. One of these wires
serves as the signal wire, the other is grounded. The bus wires
interconnect the LRU's in a multidrop fashion with each LRU
attaching to the bus by means of a short stub to the LRU
interface circuitry. LRU slots 00 and 11 are at opposite ends of
the bus with the intervening slots being fairly uniformly spread
along the bus. Each end of the bus is terminated with the
·characteristic impedance of the transmission line so that signal
reflections from the ends do not occur. Each bus operates as a
wired 'OR'. If there are simultaneous transmissions from several
LRU's onto one bus line, then the result is the logical 'OR' of
the multiple transmission signals. The transmission line
termination is such that the undriven state (when no
transmissions are in progress) is a logical 'zero'. The overall
length of the bus is roughly three meters, propagation time from
one end of the bus to the other being about 20 nsec. The basic
signal bandwidth of the bus is in excess of 20 MHz.

The signal formats and protocols for each of the bus lines is
described in the following subsections.

3.1.1 The Clock Buses.

Each of the bus sets contains a clock line. These lines are
used to distribute redundant copies of a common system wide time
base, called the system clock. At anyone time either three or
four of the C lines are active, the other line(s) being either
failed or spare. A copy of the system clock appears as a 1 MHz.
square wave on one of the active C lines. One period of this
square wave is called a system epoch. The system epoch begins at
the rising edge of the system clock. All unfailed and active C
lines carry independent copies of the system clock. All of these
copies are identical excepting for some small time skews between
them which result from circuit variations and propagation delay

- 10 -

variations due to LRU location on the bus.
small fraction of the epoch time.

This time skew is a

An LRU receives all C lines, selects 3 of the 5 lines,
performs a majority circuit reduction of those 3 signals to 1 and
phase locks its own crystal oscillator to that one signal.
Presumming that the LRU is configured to select 3 active Clines,
this effectively creates within the LRU its own private copy of
the system clock signal. Since all LRU's can be configured to
lock to the active C lines, each LRU's crystal oscillator can in
effect be locked to the same common time base.

The LRU's themselves are used as the source of the individual
system clock signals. The system is either configured such that
four LRU's have their internal clock signal gated out onto
separate C lines and each of these LRU's selects and locks to the
clock signals of the three other LRU, or it is configured such
that only three LRU's have their internal clock signal gated onto
separate C lines and each of these LRU's selects and locks to the
clock signals of the other two LRU's and itself. The first
configuration allows all correctly functioning LRU's to remain
synchronized with one another in the presence of any single fault
in the clock system. LRU's which are not system clock sources
can select and lock to any three of the four active C lines. The
second configuration is nearly as good excepting for certain
pathological single point failures which could induce lose of
synchronization. In this case since there are only three active
C lines, every LRU selects and locks to the same three signals.
The likelihood that a single point failure is one of the
pathological cases which could cause lose of synchronization is
very remote.

Should an LRU system clock source fail it is possible to
detect that failure, disconnect that LRU from its C line and to
connect another LRU to the same line. Since there are ten LRU's
within the system a large number of this type of failures could
be tolerated without degradation of the clocking system. If one
of the C lines itself should fail it can be replaced by an
inactive but functional C line from another bus set. Initially,
one such failure can be tolerated and still maintain the quad
clock source configuration. A second such failure necessitates
reversion to the triplex clock source configuration.

Note, that even though the C lines are wired 'OR' and no
physical damage occurs if two LRU's are gated onto the same line,
multiple transmissions onto the same line can considerably
distort the square wave characteristic of the resultant system
clock on that line. In the worst case the skews between the
LRU's can produce a resultant clock signal which is always 'one'.
This could frustrate the system's ability to obtain and maintain
synchronization. If mUltiple clock sources are gated onto more
than one of the active clock lines the operation of the clock
system is indeterminate. Multiple clock sources may be gated
onto one of the active clock lines and the clock system will

- 11 -

continue to function correctly as long as no clock faults or bus
faults occur which disable any of the other active clock lines.

3.1.2 The Poll Bus

Each of the bus sets contains a poll line. These lines are
used to arbitrate among the processor triads seeking control of
the system bus., At anyone time three of the five P lines are
active the other two lines are failed or spare. The data rate on
the P line is 1 Mbit/sec. Transmissions onto the P lines are
synchronous with the system clock. Transmission format is NRZ
(Non Return to Zero). A transmitting processor's system bus
controller drives the P line to the correct. bit value at the
beginning of the epoch and holds that value until the next epoch.
The P line bit value is read at the epoch midpoint. The time
skews between LRU's is small enough to assure that the P line
signal values will be correct and stable at all LRU's at the
local timebase epoch midpoint.

The resultant value read from the three P lines is the
majority function of the three values sampled at the epoch
midpoint. Each element of a processor triad is assigned to a
different one of the three active P lines. Processor triads use
the P lines in allocating control of the system bus. A processor
triad participates in a competitive poll when it seeks control of
the system bus. The winner of the poll obtains control of the
bus. During a poll simultaneous transmissions onto the P lines
by multiple triads may occur.' The signal value on anyone line
is the wired 'OR' of the multiple transmissions onto that line
during that bit period. The resultant value read from the P
lines during any bit period is then the majority function of
these wired 'OR' signals.

A triad recognizes that the system bus is free if the P bus is
'zero' for four consecutive bit periods. If a triad seeks
control of the bus it then initiates a poll. The basic format of
the bus poll is shown in Figure 3.1. The first bit of the poll
is a 'one'. The next three bits are the most significant bits of
the processor poll number. The fifth bit is a 'one' which
prevents an inadvertent series of four 'zero's. The sixth thru
eighth bits are the next three most significant bits of the
processor poll number. Again this is followed by a 'one' to
prevent an inadvertent series of four 'zero's. The tenth through
twelfth bits of the poll are the least significant bits of the
poll number. If at any time during this poll, the processor
triad reads back a poll bit which differs from its transmitted
bit, it immediately drops out of the poll. The triad with the
highest poll number is the only triad that survives to the end of
the poll sequence. This triad gains control of the system bus.
It retains control by continually transmitting 'one's onto the P
bus. When it wishes to release control, it simply stops
transmitting. ,This will result in 'zero's on the P bus. After
four bit periods the bus is recognized as free. The bus then

- 12 -

remains free until another triad(s) initiates the next poll. The
functioning of the poll is relatively simple when all processor
triads are synchronized. It is not as simple when processor
synchronization has not been achieved. The reader is referred to
Section 4.7 on the processor system bus controller for a more
detailed description of the polling complexities and the dynamics
of the interactions among the system bus controllers during
polling sequences.

bus idle -->I<------~poll sequence----------> 1<-- bus held
o 0 001 a a alb b b 1 c c c 1 1 1 1

1 2 3 4 5 6 7 8 9 10 11 12 13

where a a a b b b c c c = processor poll number

Figure 3.1 Basic polling Sequence Format

3.1.3 The Processor Transmit Bus

Each of the system bus sets contains one processor Transmit
line, a T line. The T lines are used in transmitting processor
triad read and write commands. During a processor triad write
the T lines carry both the system bus address and the data word.
During a processor triad read the T lines carry only the system
bus address.

Each element of a processor triad is assigned to transmit on a
different T line. All elements of a processor triad transmit
their read or write commands in tight synchronism with one
another. Processor commands are transmitted serially onto the T
bus at an 8 Mbit/sec. rate. Figure 3.2 illustrates the format
for both processor reads and writes. It is impossible for the
separate elements of a processor triad to maintain synchronous
operation to the extent that the skews between them would be less
than one half of one of the T bus bit periods (62.5 nsec.) The
time skew between processors of a single triad can in fact be
several such bit periods. Because of this encoding of the
transmitted bit streams at the source and resynchronization of
the separate incoming bit streams at the receivers is required.
The transmitter does not begin a transmission until the middle of
an epoch. Since the synchronization of the processors is to
better than a fraction of an epoch, any receiving element cannot
mistake the epoch in which the transmission began. FIFO's within
receiving circuitry provide adequate buffering so as to allow a

- 13 -

half epoch delay from the point when the second of the triplex
transmissions begins to arrive at the receiver, to the point
where the FIFO's begin to be. unloaded. All of the FIFO's are
then unloaded synchronously with the receiving LRU's internal
system clock. In effect the receiving element merely decides in
which epoch a triplex transmission began, delays a half epoch,
and starts accepting the received data bit by bit synchronously
with its own internal view of the epoch alignment. Skew is never
large enough to cause the beginning of . transmission from the
separate elements of a triad to appear in different epochs. The
FIFO's hold the variable. number of bits required in adjusting for
the time skew between the transmitting processor system bus
controller's epoch and the receiving units epoch. Since the same
bit of the processor command is unloaded simultaneously from all
three incoming channels, a simple voting circuit is adequate to
perform error correction should one of the processor elements of
a triad fail.

This encoding and resynchronization requires that the serial
bit streams from each source contain clock and transaction
synchronization information. The beginning of a transaction
synchronization is provided by a half epoch (the first half of
the epoch) of null transmission. The address and data bits are
then transmitted as a series of pulse width modulated pulses.
The pulses are used to carry the clocking information, the width
of the pulses carries the data. A 'one' is encoded as a long
pulse on' the T line, a 'zero' is encoded as a short pulse.
Within the 125 nsec. bit period of the T bus a 'one' is encoded
by transmitting an 83 nsec 'one' followed by a 42 nsec 'zero'. A
'zero' is encoded as a 42 nsec 'one' followed by a 83 nsec.
'zero'. Figure 3.3 illustrates this encoding.

- 14 -

I single read command I next read command I
epoch 1 epoch 2 epoch 3 epoch 1 epoch 2 epoch 3
. . . . · · . I I I • I I I . . • I • . . .

0< Address > 0< Address >

System Read Command Format

I 'single write command I next command
epoch 1 epoch 2 epoch 3 epoch 4 epoch 5 epoch 1 epoch 2
. I · . . · . . . I · · . I · · · . · . · I · · · · · • . I . . . · . . . I·· . · . · . I · . · .

1< Address ><---Data > R< Address ••

System Write Command Format

R = 0 read command
= 1 write command

Address transmitted most significant bit first
Data transmitted most significant bit first

Commands may be tightly packed or idle epochs may exist
between them. Reads and writes may be intermixed.

Figure 3.2 System Bus Read/Write Command Formats

/

_. ____ . ____ : ____ : ____ !-I __ i--I_i--. I-i--I-·-I--!-I~~_i-I __ i--I_.
< SYNCH > R/W AlB A17 A16 A15 /. • •
< EPOCH 1 > <--I A03 A02 A01 AOO

/ EPOCH 3 >
/

Figure 3.3 T Bus Signal Encoding Format

3.1.4 The Processor Receive Bus

Each of the system bus sets contains one processor Receive
line, an R line. The R lines are used in receiving slave region
replies to processor triad system bus read commands. During a
processor triad read the R lines carry the data word being
transmitted by the responding slave region{s).

- 15 -

At anyone time three of the five R lines are active; the
other two are either failed or spare. This set of three lines is
called the R line triad, or simply the R bus. Each slave region
is assigned to transmit on one of the active R lines. These
assignments are made such that each element of a system memory
triad is assigned to transmit on a different R line. Processor
commands are transmitted serially onto the T bus at an 8
Mbit/sec. rate. Slave region replies are locked to the processor
read command, following in epochs six and seven of a processor
read transaction. Note that in a series of tightly packed read
commands the T bus transmissions of the next transaction overlap
the R bus transmissions of the current transaction. Figure 3.4
illustrates the format for both processor read commands and the
interlocking timing of the slave response.

A single slave region may reply to a read command, as is the
case when reading I/O port registers or LRU status registers. In
such cases the receiving processor triad must accept data from
one of the lines of the active R lines. Voting among redundant
copies of the same transmission is not done in this case, but
instead this single copy is accepted as is. In this case,
synchronization among the incoming bits of multiple copies is not
necessary. This is not the only form of a read transaction,
however. Three slave regions may reply to a read command, as is
the case when reading system memory or the real-time
clock/counter. In these cases the receiving processors must
accept the redundant copies of the incoming data from· the R bus,
synch~onize the multiple bit streams and vote so as to mask any
single element errors. This requires that many of the same
techniques used in the encoding and resynchronizing of T bus
transmissions must also be used for the R bus. It is impossible
for the separate elements of a slave triad to maintain
synchronous operation to the extent that the skews between them
would be less than one half of one of the R bus bit periods (62.5
nsec.) The time skew between slaves of a single triad can in
fact be several such bit periods. Because of this encoding of
the transmitted bit streams at the source resynchronization of
the separate incoming bit streams at the receivers is required.
The slave begins transmission of the requested data at . the
beginning of epoch 6 of the read transaction. Since the
synchronization is to better than a fraction of an epoch, all
slave regions begin transmission of the reply during the same
epoch. FIFO's within receiving processors permit each processor
to delay until the middle of epoch six before beginning to unload
the incoming bits. All of the FIFO's are then unloaded
synchronously with the receiving LRU's internal system clock. In
effect the receiving processors delay until they are confident
that their FIFOs contain data and then start accepting the
received data bit by bit synchronously with their own internal
view of the epoch alignment. The FIFO's hold the variable number
of bits required in adjusting for the time skew between the
transmitting slaves and the receiving processors. Since, the
same bit of the slave reply is unloaded simultaneously from all
three incoming channels, a simple voting circuit is adequate to

- 16 -

perform error correction should one of the elements of a triad
fail.

This encoding and resynchronization requires that the serial
bit streams from each source contain clock information. The data
bits are transmitted as a series of pulse width modulated pulses.
The pulses are used to carry the clocking information, the width
of the pulses carries the data. A 'one' is encoded as a long
pulse on the R line, a 'zero' is encoded as a short pulse.
Within the 125 nsec bit period of the R bus a 'one' is encoded by
transmitting an 83 nsec 'one' followed by a 42 nsec 'zero'. A
'zero' is encoded as a 42 nsec 'one' followed by a 83 nsec
'zero'. Figure 3.5 illustrates this encoding of the R bus reply.
In this example, fragments of the wave form of two tightly packed
read replies are shown. Note that each of the replies in a
series of tightly packed responses is separated by an epoch of
null activity on the R bus. This results from the difference in
reply transmission time, two epochs, and read command
transmission time, three epochs. Read commands can be packed no
more tightly than one every three epochs, thus the replies can be
no more tightly packed than one every three epochs.

I first read command I possible second read ~
. epoch 1 epoch 2 epoch 3 B
••••••• 1 ••••••• 1 ••••••• 1 ••••••• 1 ••••••• 1 ••••••• 1.. u

0< Address > 0< Address > S

R
B
U
S

.... epoch 4 epoch 5 epoch 6
• I · · • . • · · I . • · . · • . I • • . . • • ~ I • · · • <---read data--->

I reply to I
first read

Address transmitted most significant bit first
Data transmitted most significant bit first

Commands may be tightly packed or idle epochs may exist
between them. Reads and Writes may be intermixed.

Figure 3.4 System Bus Read Format

- 17 -

I
I ____ . ____ . ____ iOI __ i-rl_i-rl_iol_1

null null null D15 D14 D13 I
EPOCH 5 > I <--EPOCH 6--1

I
Ith READ I I

I . . . I 11 __ IOI __ I-rI_IOI __ . ____ . ____ . ____ . I
I D03 D02 DOl Doolnu11 null null ~

I--EPOCH 7 > <--EPOCH 5-1
I

(I+1)th I
READ I . . .

1· ____ IOI __ I-rI_I-r
III null D15 D14 D

ICH 5--> I <--EPOCH 6--

Figure 3.5 R Bus Signal Encoding Format (Signal Fragment)

3.2 LRU System Bus Interface Design

Each LRU is interfaced to the system bus by means of System
Bus interface circuitry. The design of this circuitry is
critical from both a reliability and performance viewpoint. The
design must be such that any single failure within the interface
circuitry does not disable the bus system. Additionally, the
communication data rates and signal modulation bandwidths are
high enough to place rather rigid constraints on the electrical
performance of all interface circuitry.

Each bus set of the system bus is interfaced to the LRU by
means of an interface circuit. Individual interface circuits are
isolated from one another such that a single point failure can
effect at most one of these circuits. A single point failure can
therefore at most effect only one bus. These circuits listen to
or receive the signal present on each line of the bus set. There
are four receivers in each interface circuit, one for each line
of the bus set, the P, T, R, and Clines.

The T line is then buffered so as to create three copies. One
copy of the T line is then run to each BGU and one copy is run to
the slave region bus coupler. The T line is buffered in this
fashion so that if a short should occur on the T line input to
either of the ~GU's or on the T line input to the slave region
bus coupler, then that element is the only T line destination
affected. A short at the input to one BGU for example does not
impact the- integrity of the T line signals being received at the
input to the other BGU or the slave region coupler.

- 18 -

The P and R signal values are run to the processor region
system bus controller. The C signal is run to the clock
generation region. Again as with the T line signals, design of
the buffering is such that any shorts on the outputs of the line
receivers will not propagate back onto the system bus itself, or
to another output of the interface circuit.

Each interface circuit also contains a driver circuit for
transmitting onto each line of the system bus set. A driver
circuit must be enabled by a dedicated enabling line from each
~GU before transmission onto a bus line is enabled. The driver
circuit for the P and T lines of the bus set, when enabled, is
driven by the P and T outputs of the processor region system bus
controller. The driver circuit for the R line is driven by the R
output of the slave system bus coupler. The driver circuit for
the C line is driven by the C output of the clock generator.

The P, T, R, and C signals provided to a bus interface circuit
are individually buffered copies of these outputs. This
buffering is done at the signal source so that ~ny shorts on
these inputs to a bus interface circuit do not affect the

'integrity of the' inputs to the other four interface circuits of
the LRU. For example, the clock signal C is buffered so as to
create five copies of this signal, one copy of which is
distributed to each of the five bus interface circuits. Figure
3.6 illustrates the consumption of these signals by a single bus
ihterface circuit. If a failure of one of these interfaces
should short its inputs to ground, the other interfaces would
still receive a valid C, signal.

Each of the interface circuits is fault isolated from all
others so that any failure within such a circuit cannot affect
any of the other interface circuits or the buses to which the
other interfaces are attached, and the buffering is such that any
fault cannot physically propagate across these fault isolation
boundaries. In the worst case, a single interface circuit can at
most disable only one bus set of the five.

Figure 3.6 illustrates the logical organization of a bus
interface circuit.

- 19 -

to BGU 1 < < <-+
I

to slave coupler < < <-+-- < +
I

to BGU 2 < < <-+

+--> T Bus line

BGU 1 enable > e I
from bus controller > > AND > +

BGU 2 enable > e

Figure 3.6 Single ~us Interface Circuit.

Electrically, each of the transceivers are of identical
design. Signal formatting, encoding, decoding, etc. are not
performed within this circuitry, but are done at the ultimate
source or destination of the signal. As such they are just high
speed buffering circuits. The 8 Mbit/sec data rates of the T and
R bus lines place the most constraining specifications for buffer
performance on the circuit design.

- 20 -

3.3 Bus Guardian Unit Design and Operation

Each LRU contains two Bus Guardian Units, which function
together and with the system bus interface circuits, to protect
the system bus from LRU faults and failures.

Each BGU provides, as its sole output, 20 enabling lines.
Each enabling line runs to the driver of a bus interface circuit
where it is used as an enabling line by that driver. The driver
must bave an enabling signal from both BGU's of tqe LRU before it
will allow transmission by the LRU onto the associated bus line.
Thus either BGU can, by asserting a disable on the appropriate
enabling line, block LRU transmissions onto a bus line. Both
BGU's operating together are required to enable transmissions
onto a bus line.

The status of the enabling lines from a BGU is held by that
BGU in enabling registers. There are four enabling registers,
each of five bits. Enabling registe~ 0 contains the enabling
bits for each of the five P bus lines on which an LRU might
transmit. Enabling register 1 contains the enabling bits for
each of the five R bus lines. Enabling register 2 contains the
enabling bits for each of the five T bus lines., Enabling
register 3 constrains the enabling bits for ~ach of the five C
bus lines. Bit 0 of each of these four registers corresponds to
the enabling bits for all lines, P, R, T, and C, of bus set O.
Bit 1 corresponds to the enabling bits for bus set 1, bit 2 for
bus set 2, etc. A one stored in a particular bit position
provides an enabling signal to the bus interface. A zero
provides a disabling signal. The register contents are backed up
by LRU battery power should there be a primary power failure.
Thus their contents are nonvolatile during power interruptions.
While primary power is down the BGU's provide disabling signals
to the interface circuitry. Should battery power fail (or be
turned off) while primary power is off, the register contents are
reset to zero.

The register contents of a BGU may be altered by any processor
triad by means of an appropriately constructed system bus write
transaction. All five copies of the T bus are provided to each
BGU by the bus interface circuitry. The BGU selects three of
these five signals, processes them through the necessary
deskewing circuits, voter, serial to parallel converter, and
address recognition circuits. Each BGU of the system responds to
one system bus address. Processor triad system bus write
commands which are addressed to that BGU's system bus address are
acted upon. All read commands and write commands to other than
that BGU's unique address are ignored. The data word which is
written to a BGU system bus address is interpreted as a command.
Bits DlO, D09, and DOS of the data word are used to select a BGU
register. The least significant bits of the data word are taken
as the. new content to be stored into that register.

- 21 -

~'

In addition to the first four registers, which contain the
enabling bits for the bus lines, there is a fifth register, of
four bits, which is used to hold the five to three select code to
be used by the BGU's T bus input select circuitry. A individual
select code must be provided wherever redundant bus data is
reduced and voted. In this case each BGU must select the three
of five R buses which are active and then vote their content.
The select code is used by the BGU to select which of the 5 T bus
lines are to be used. All other BGU registers are spare and
writes to them are ignored. Figure 3.7 illustrates these
register functions and the system bus address format for writing
to a BGU.

enables
X X X X X 0 0 0 X X X p4 p3 p2 p1 pO

enables
X X X X X 0 0 1 X X X r4 r3 r2 r1 rO

enables
X X X X X 0 1 0 X X X t4 t3 t2 tl to

enables ,
X X X X X 0 1 1 X X X c4 c3 c2 c1 cO

select
X X X X X 1 0 0 X X X X S3 S2 S1 SO

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BGU Command Word Formats

1 1 1 1 1 1 1 1 1 1 11 a a a al 1 1 1 I~
18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

aaaa = LRU identification number
s =BGU number within LRU

BGU System Bus Address Format

Figure 3.7 BGU Command and Address Formats

- 22 -

CHAPTER 4. - Processor Region Design and Operation

This chapter discusses the processor region design and
operation. It is intended to provide all the information
required by the software designer on the operation of the
processor region hardware. Hardware detail is provided to a
level required for designing and implementing the software, and
to a level adequate for the understanding of failure modes and
their effects. This chapter should also serve as an outline or
guide in understanding the detailed hardware documentation and
logic diagrams. It is not however intended to be the detailed
hardware documentation manual, such as might be used in making or
effecting repairs to the system. Such documentation is provided
by Collins Avionics in the form of a data package to be delivered
with the FTMP engineering model itself.

The processor region of the LRU consists of a CAPS-6
processor·, a cache memory management unit, local cache memory in
the form of both PROM and RAM modules, an interval timer, a
communications and control register interface, and a system bus
coupler. These elements are interconnected by the processor
region transfer bus, a parallel 16 bit address and 16 bit data
bus. Figure 4.1 illustrates the overall organization of this LRU
region. The transfer bus of the processor region extends to·a
test connector at the front of the LRU. The CAPS-6 test adapter
can be connected at this point and the activity of the transfer
bus can then be remotely monitored or controlled. This chapter
does not discuss the test adapter further and for purposes of
this discussion the processor region is assumed to be operating
without the test adapter attached.

- 23 -

<------data lines---------------->
CAPS-6

PROCESSOR
--add-->

MEMORY
MANAGEMENT

UNIT
(MAPPER) I .

+-lnterrupt--

INTERVAL
+--interrupt--- TIMER

+-reset---

+--interrupt-----

>--from sys. I/O &

CONTROL and
COMMUNICATIONS

REGISTERS
INTERFACE

memo region--->

PROM (8R)

RAM (8R)

>--P line select code--->
>--R line select code-> SYSTEM

<-' -P line errors
<--R line errors

BUS
<--P lines (5) out
>--P lines (5) in >

COUPLER
>--R lines (5) in >

<--T lines (5) out

T
R
A

--add--> N
S
F
E
R

B
<------> U

S

<------>

<----->

< >

< >

Figure 4.1 Processor Region Organization

- 24 -

4.1 The Processor Region Transfer Bus

Data can be transferred between two units of the processor
region by means of the processor region transfer bus. During
each transfer, the bus is controlled by the unit which initiated
the data exchange. This unit is called the bus master. The
responding unit is called the target. Only one unit at a time
may be bus master. Control is allocated to units desiring
control of the transfer bus by a hardwired arbitration circuit.
The only units capable of initiating a transfer and of
controlling the transfer bus are the processor and the system bus
coupler. Once it gains control, the bus master selects a target
device for a transfer by outputting a transfer bus address and
asserting appropriate control signals so as to effect a read
(transfer of data to the ~aster) or write (transfer of data from
the master). Each potential target device responds to fixed
transfer bus addresses. The master unit then transfers data from
the target device or to the target device. A single target
device may respond to a number of transfer bus addresses with
each address referring to a different information source or
destination within the device. For example, the RAM memory unit
responds to 8192 transfer bus addresses corresponding to 8192
memory locations. Each of the memory locations can be either
individually read or written by any bus master. Certain target
addresses are either read only or write only. Reads of write
only or non-existent target addresses return "0000". Writes to
read only or non-existent target addresses have no effect. As an
example, the PROM memory is read only and responds to 8192 memory
locations. These locations cannot be altered by transfer bus
writes. It is also possible for otherwise unrelated functions to
share the same address, as might be the case of a write only
command register and a read only status register. In this case,
a write to a particular location need not directly affect the
information content which might subsequently be read from that
location. Reading or writing to certain target addresses might
also initiate peripheral actions beyond simple stores or fetches.
A write to the command register of the system bus coupler can
cause data blocks to be transferred from the processor region's
local memory to system memory for example. Figure 4.2 summarizes
the device location and function of all transfer bus addresses.

- 25 -

Transfer Bus
Address

OOOO-->lFFF

2000-->3FFF

FEOO-->FEFF

FFE8-->FFEB

FFEC-->FFEF

FFFO

FFF1-->FFF7

FFFC
FFFD
FFFE

FFFF

Device

PROM

RAM

Mapper

Control

Comm

Timer

SBC

Mapper

Rupt

Function

Read only memory array

CMOS read/write memory array

Memory Management Page Table

Control registers (read only)

IPC registers (read only)

Interval timer register

System bus controller
command/status registers.

Map interrupt fault address
Map clear command/status reg.
Map enable/disable reg.

Interrupt register

Figure 4.2 Processor Transfer Bus Address Assignments

These transfer bus address assignments are permanent and cannot
be altered (except by means of wiring changes).

The processor when accessing the transfer bus often configures
the cache memory management unit, the mapper, so that it
transforms the address provided by the processor into a new
address, which is the actual address used on the transfer bus
during that read or write. The input address to the mapper is
called the virtual address and the output address is the real
address. The operation of the mapper can cause the apparent
addresses of devices, registers or memory locations to change as
viewed from the processor. The operation of the mapper and the
apparent address alterations should not be confused with the
fixed real addresses of all devices, registers and memory
locations. When the operation of the mapper is disabled, the
virtual address provided by the processor is used as the real
address for a bus transaction. The operation of the mapper is
discussed in further detail in Section 4.4.

4.2 Cache RAM

- 26 -

The cache RAM is an 8192 word CMOS memory that can be read or
written by using the processor region transfer bus. The 16-bit
transfer bus real addresses to which qache RAM responds are 2000
to 3FFF. After a power interruption or cold start the cache RAM
memory contents are indeterminate.

4.3 Cache PROM

The cache PROM is an 8192 word semiconductor memory that can
be read by using the processor region transfer bus. The 16-bit
transfer bus real addresses to which cache PROM responds are
"0000" to "lFFF". The PROM is made up of 2K X 8 programmable read
only memory arrays (2716). These PROM chips can be erased with
ultra-violet. light and reprogrammed. It is not necessary to
remove the chips from the cards to reprogram them. The PROM
memory card must be removed from the LRU and inserted ·into a
special programming fixture in the ground support equipment to
reprogram it. The PROM is non-volatile and holds its contents
until reprogrammed.

4.4 Memory Management Unit (Mapper)

The function of the memory management unit or the mapper is to
map processor generated virtual addresses into real addresses.
These real addresses are then used in place of the virtual
addresses in processor controlled transfer bus transactions. The
mapper mechanism uses a 256 word page table of 12-bit words.
When in operation the mapper uses the high order byte of the
virtual address to index into the 256 word page table, and
obtains a replacement high order byte. The least· significant byte
of th~ page table entry replaces the high order byte of the
virtual address creating a real address. Each entry in the page
table effectively relocates or maps a 256 word page of virtual
memory onto a 256 word page in real memory. Since it is not
always possible to assure that the virtual page is present in
memory and since it will also be necessary to write protect pages
of the real memory store, two of the remaining four bits of each
page table entry are used to indicate absence of the associated
real page, and to write protect the page. Bit 09 of the page
table entry should be set to 'one' to indicate that the page is
present in real memory and should be set to 'zero' to indicate
its absence. A processor reference to an absent page will cause
a page fault .interrupt. The instruction in progress is
interrupted, the processor state is backed up to the pre
instruction state, and processor accepts the page fault
interrupt. Bit 08 of the page table entry is used to write
protect the associated page of real memory. If set to 'one', the
page is write protected. A processor store to a write protected
page while the processor is in user mode interrupts the
instruction in progress, backs up the processor to the the pre
instruction state, and causes the processor to immediately accept

- 27 -

the write protect interrupt. A write protect bit is ignored when
the processor is operating in the privileged state.

The map fault register latches and holds the virtual address
whenever an instruction causes a page fault or write protect
interrupt. The map fault register can be read by the appropriate
interrupt handling routine from real address "FFFC". It is read
only.

The mapper page table may be read by the processor if the
processor is in privileged mode by reading any address that maps
into real address "FEOO" through "FEFF". The mapper page table
may be written by the processor only if the mapper is turned off
and the processor is in privileged mode by writing real addresses
"FEOO" through "FEFF". Location "FEOO" corresponds to page "00",
"FEFF" corresponds to page "FF". The mapper may be turned on or
off <enabled or disabled} by writing a 'one' or a 'zero' in
location FFFE, provided the processor is in privileged mode.
Location FFFE may also be read to determine mapper status.

The processor reset microcode disables the mapper and
initializes the processor to interrupt mode.

If the processor is in privileged mode and the mapper is
disabled the page table can be quickly initialized by writing a
'one' into the least significant bit of real address "FFFD".
This results in all 256 entries of the mapper being set to "OFE".
The address "FFFD" may be read to determine when the
initialization procedure has been completed. The least
significant bit of the word will read 'one' as long as the
procedure is in progress and will read 'zero' when it has been
completed. The initialization procedure takes ,about 32
microseconds.

Figure 4.3 illustrates the overall functional organization of
the Memory Management Unit. Note that the mapper only maps
virtual addresses of the processor. Any other bus master deals
exclusively with the real address space of the transfer bus. In
controlling anyDMA devices, such as the system bus controller,
the programmer must explicitly translate addresses from the
virtual address space, used by the processor, to the real address
space of the transfer bus before setting up the DMA control
registers.

- 28 -

B LSB l6-bit
---+====>

real
add

mapper: off
B MSB

+-->

l6-bit
======+---+->
virtual
address

clear< > .

x x x x.S S.P.R.A A A A A A A A

spare-l I
address bits

present--+ A15-AOB
real address

write protect-+

****** 256 PAGE TABLE ******
ENTRIES

mux -+
+->

on

B MSB

------>page fault
interrupt

memory
----->protect

interrupt

Figure 4.3 Memory Management Unit Organization

4.5 Interval Timer ,
The interval timer is a system clock driven 16 bit count down

register and interrupt mechanism that can be used to accurately
meter time intervals. The system clock is divided by 250, and
the output of the divider network is used to decrement the timer
count down register. The register may be loaded by writing to
real address "FFFO". The intermediate states of the divider
network are cleared whenever the register is written, thus the
first decrementing occurs exactly 250 microseconds after the
register has been loaded. The register may be read at any time
without affecting its operation. A timer interrupt is requested
whenever the register is decremented to zero. The timer
interrupt is interrupt number C. The content of the timer
register can be treated as a 16 bit positive number. It can
therefore be set to request an interrupt at up to 16 seconds into
the future. The timer is continually decremented and a timer
interrupt is requested every 16 seconds. The timer interrupt may
be disabled by masking interrupt 'C'. The timer interval can be
reset at any time by a new store to the timer register. The
timer register is volatile and is reset to zero after a power
interruption.

4.6 Control and Communication Registers

- 29 -

There are sixteen control and communication registers within
each LRU. Each of these registers can be written by means of a
standard system bus write transaction to the appropriate system
bus address. They are all write only from the system bus, they
cannot be read by means of a system bus read transaction.
However, eight of these registers can be directly read by the
processor by means of the processor region transfer bus. These
registers are read only from the transfer bus. The writing of
these registers must therefore be done by a triad of processors
(any triad can write any register), while the reading of the
registers can only be done by the single processor of the LRU
containing the register. Four of these eight registers are the
CPU control registers. Four of them are inter-processor triad
communication registers.

The four CPU control registers are each 4 bits wide, with the
4 bit wide bit field being right justified in the word. Certain
of these registers in addition to being directly accessible to
the processor, have hardwired control functions. Register a
controls whether the processor is in the run or reset state and
is called the RESET register. Bit a (BOO) of that register is
used to control the processor reset signal. When it is 'zero'
the reset signal is asserted., When it is 'one' the reset is
unasserted. The processor executes the standard microcode reset
sequence when the reset signal is released. Control register 0,
bits B03, B02, and BOl, dictate the three bit triad
identification code of the processor region of the LRU. This
code is used by the poll sequence mechanism of the system bus
controller and by the slave region's communication register
address recognition mechanism. Registers 1, 2 and 3 can be read
by the processor and have no hardware assigned function. Figure
4.4 illustrates the register system bus address (for writing),
the processor transfer bus address (for reading) and the function
of any hardware assigned bits of each register.

- 30 -

Reg

00
0

01
1

10
2

11
3

System Bus Address Transfer Bus Add Format

111,1111,1111,iiii,0000 1111,1111,1110,1000 t2 t1 to rr
7 F F I 0 F F E 8

111,1111,1111,iiii,0001 1111,1111,1110,1001 ua ua ua ua
7 F F I 1 F F E 9

111,1111,1111,iiii,0010 1111,1111,1110,1010 ua ua ua ua
7 F F I 2 F F E A

111,1111,1111,iiii,0011 1111,1111,1110,1011 ua ua ua ua
7 F F I 3 F F E B

iiii LRU identification (binary)
I LRU identification (hex)
rr -- reset/run
t2,t1,tO -- triad identification
ua -- unassigned

Fig~re 4.4 Processor Control Registers.

The four Inter-Processor triad Communication (IPC) registers
provide the means for implementing direct processor triad to
processor triad communications. Each of the IPC registers is
four bits wide with the bit field being right justified in th~
word. An IPC register can be written by a system bus write
transaction to the appropriate address just as the control
registers can. Unlike the control registers, the system bus
address of an IPC register is keyed to the processor triad
identification code of the LRU (contained in processor control
register 0) instead of by the LRU identification directly. It is
therefore possible to simultaneously write to the communication
registers of every processor with the same triad identification.
In effect this provides the means of directly transmitting from
one processor triad to another by means of system bus write
transactions. Two of these IPC registers (2 and"3) generate an
IPC interrupt ("B") when they are written into. Figure 4.5
summarizes the system bus addresses and transfer bus addresses
for each of these registers.

- 31 -

Reg

'"If()
o

01
1

10
2

11
3

System Bus Address Transfer Bus Add Interrupt

111,1111,1111,11tt,tOOO 1111,1111,1110,1100 no
7 F F - - F F E C

111,1111,1111,11tt,tOOl 1111,1111,1110,1101 no
7 F F - - F F E D

111,1111,1111,11tt,t010 1111,1111,1110,1110 yes "B"
7 F F - - F F E E

111,1111,1111,11tt,tOl1 1111,1111,1110,1111 yes "B"
7 F F - - F F E F

ttt -- processor triad identification

Figure 4.5 Inter-Processor triad Communication (IPC) Registers

The CPU control registers as. well as the IPC registers are
provided with a battery back-up, and are therefore non-volatile.
If the battery power is lost when the primary power is off the
registers are reset to zero. A processor is initially held in the
reset state when power is first applied after loss of both
battery and primary power, as a consequence of control register 0
having been reset. This control register reset can be
circumvented by means of a shorting plug which can be inserted
into the front of an LRU. If a processor reads the reset/run bit
and finds it set to zero then the shorting plug must be inplace
on that LRU.

- 32 -

4.7 System Bus Controller

The System Bus Controller is designed to transfer blocks of
from 1 to 256 words between the local processor region memory and
system memory. It also serves as a synchronizing mechanism,
whereby the operation of two or more processor regions can be
brought into synchronism.

A single transfer of a block of data of from 1 to 256 words is
called a system bus transaction. A transaction may either be a
system memory write: data is moved from the processor region
memory to system memory, or a transaction may bea system memory
read: data is moved from system memory into the local processor
region memory. It is necessary that the system bus controller
perform a number of sequential operations in order to effect
either a read or a write transaction. First the controller must
gain control of the system bus. It then retains control of the
bus while it effects the desired data transfer. Finally, it
releases the system bus. Once a processor triad has gained
control of the system bus it retains control until it voluntarily
releases the bus. The controller may be instructed to hold the
bus between transactions, allowing the processor to string
together a number of transactions. In this mode of operation the
controller need only obtain control at the beginning of the
compound transaction and release it at the end. Alternatively,
the controller may be instructed to obtain control of the system
bus, perform a single transaction, and immediately release the
bus. This is called a simple transaction.

Arbitration for control of the bus is provided by having each
of the contending processor triads participate in a competitive
cooperative poll each time they desire control. The processor
triad with the highest competitive poll number is the processor
which gains control of the bus. The poll number is a nine bit
code consisting of three, three-bit subfie1ds. The three most
significant bits are the static priority code, SPC. The next
three-bit subfie1d is the dynamic priority code, OPC. The least
significant three bit field is the unique triad identification
code, TID, of the requesting processor triad. The static
priority code is set by the processor and is used by the
processor to give its request for bus service priority over less
urgent requests. If a conflict occurs between two processor
triads, each seeking control of the bus at the same time, then
control always passes to the triad with the highest static
priority. If multiple triads are seeking control, all of which
are using the same static priority code, then control will pass
to the controller triad with the highest dynamic priority code.
When a system bus controller initiates the effort to obtain
control of the system bus it initially sets the dynamic priority
code to zero. It then increments this code by one each time it
loses a polling sequence to another controller of equal static
priority. This effectively boosts the priority of the requesting
controller by a factor related to that controller's waiting time
for the bus. A triad is thus assured that it cannot be

- 33 -

repeatedly beaten by another triad" of equal static priority.
Finally, if both the static and dynamic priority of the competing
triads are equal the poll sequence is decided by the triad
identification. The bus is granted to the unit with highest
triad identification. Since the triad identification is unique
to a triad this serves to break any ties.

The operation of the separate processor regions of a processor
triad is normally tightly synchronized. Under such circumstances
this replicated operation can be discussed as if it were a single
unit. The most noteworthy exception to this generalization is
the operation of the system bus controllers during a polling
sequence and before the separate elements of a processor triad
have achieved synchronous operation. It is this behavior which
provides the mechanism for synchronizing the separate elements of
a processor triad.

A system bus controller participates in a poll sequence by
transmitting one bit at a time on its assigned P line and
listening to the voted input from all three active P lines. A
poll may begin when the system bus is free. The system bus is
free if during the preceding four bit periods the voted P bus
value was 'zero'. 'Zero' is the undriven state of the P bus
lines, therefore zero will be the voted result when n"o triad is
controlling the bus and holding the P lines at 'one'. A bus
controller, seeking control of the system bus, recognizes that
the bus is free by detecting four sequential 'zero's on the P
lines and attempts to initiate a poll by transmitting a 'one' on
its assigned P line.

Under normal circumstances when the bus controller is
synchronized with the other two members of its triad, the
resultant voted P bus value is a 'one', as each element in
synchronism transmits on its assigned P bus. This series of at
least four 'zero's followed by a 'one' marks the beginning of the
poll. The poll then proceeds and for the next three bit periods
the controller transmits the static priority code, most
significant bit first. If for any bit period the voted result of
the P bus, differs from the transmitted bit, then the controller
immediately drops out of the poll and waits for the system bus to
become free again. Under normal circumstances when all triads
are synchronized, the only time the resultant might differ from
the transmitted value of a controller is when its 'zero'
transmission is overwritten by a 'one' transmitted by a competing
triad, with a higher poll number. After the static priority code
is transmitted a 'one' is transmitted to prevent the possibility
of four 'zero's in a row. This is followed by the dynamic
priority code another 'one' and finally the triad identification.
Again, if for any bit period the voted results differ from the
transmitted bit then the triad immediately drops from the poll.
Thus under normal circumstances, when all triads are
synchronized, the triad with the highest nine-bit poll number
will be the only triad surviving to the end of the poll. It then
retains control of the system bus by transmitting 'one's on the

- 34 -

poll bus lines until it wishes to release it. Any triads which
dropped out of the poll wait for the bus to be released and then
reattempt the poll sequence.

This fairly tidy behavior is somewhat more complex if the
individual bus controllers are not synchronized" with each other
at the beginning of the poll. Under this circumstance the voted
result read from the P bus can differ from the bit transmitted
because of the wired 'OR' characteristic of the bus, or it can
differ because the single element transmitting on the bus was not
joined by a partner. Thus, a controller may transmit a 'one' and
read back a 'zero', it may transmit a 'zero' and read back a
'one', or it may actually read back what it transmitted. At the
beginning of the poll a controller will detect that the bus is
idle by a series of four or more 'zero's on the P bus and
attempts to initiate a poll by transmitting a 'one' on its
assigned P bus line. If it is the only controller transmitting a
'one' then it will read back a 'zero'. The controller in effect
stalls at this point repeatedly transmitting a 'one' on its
assigned bus as it attempts to initiate a poll sequence. It
remains stalled at this point until it is joined by another
controller, assigned to another bus, which is also attempting to
initiate a poll sequence. Together, with each transmitting a
'one' on separate P lines they can initiate a poll sequence. The
voted result will be 'one' and the poll begins. These two bus
controllers are in fact now synchronized with one another. If
these two bus controllers are members of the same triad they will
continue through the poll sequence, gain control of the system
bus, perform any commanded transaction and then release their
processors to continue instruction execution. After obtaining
synchronization the bus controllers remain synchronized, and the
release of their processors is synchronous. Operation of the bus
controllers and processors is such that this synchronous release
in effect synchronizes the operation of the separate processor
regions. If the individual processors are so configured as to
have been in identical states (executing the same program, being
at the same point in that program, etc.) then they will remain
synchronized with one another. This synchronization process is
likely to succeed in only synchronizing two of three elements of
a triad on the first pass. When all the elements of a triad are
completely out of synch then the leading element seeks control of
the bus, but stalls and is forced to wait for the second element.
When the second element catches up with the first they
synchronize and together perform the poll sequence and gain
control and proceed. The third element arriving late is left
behind and stalls at the bus request stage. The two synchronized
elements must then execute the proper procedures for looping back
and picking up the tardy processor region. They can do this by
repeating the bus request sequence. This causes them to sweep by
and pick up the stalled processor region. Appropriate coding
will assure that when this micro level of synchronization is
obtained, that it can be preserved, and that all processors of
the triad will execute the same code from that point onward.

- 35 -

,

A different and more complex sequence of events occurs if a
bus controller is joined not by a member of its own triad, but by
a member of a second triad. Together they can and do initiate
the poll sequence. However since they are using different poll
numbers they are unable to complete the sequence and will both
drop out before gaining control. This will cause them to recycle
to the point where they are both waiting for the poll to begin
again. Since they have both stopped transmitting, four 'zero's
will occur and another poll sequence will begin. There may.in
fact be a number of these false starts before a successful poll
sequence takes place. Greater complexity occurs when the
competing and separate bus controllers overwrite each other when
assigned to the same bus. In the end these repeated numbers of
false starts succeed in stalling everyone until a high priority
triad synchronizes and gains control of the bus. Note that the
dynamic priority adjustment mechanism could frustrate this effort
to synchronize. A means of disabling the dynamic priority
mechanism is therefore provided.

The processor controls the operation of the system bus
controller by writing into several control registers. Figure 4.6
summarizes the function of these registers and their real address
assignments on the processor region transfer bus.

- 36 -

Processor
Transfer Bus

Address /
----_./

FFF1 write
read

Control Reglster Content

Command (write) and Status (read) Register

I
XI XI XI XI XI XI XI X\WRIRQIP2Ip1IpO\SXIHBIHA\ X X X X X X X X WR RQ P2 P1 PO SX BG ER
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WR- Read(O)/Write(l) System Memory
'RQ - Transfer Request(l)/NOP(O)
P2,P1,PO - Static Priority Code
SX - Simplex(1)/Voted(0) Read
HB - Hold bus(1)/Re1ease bus(O) after Transaction
HA - Increment(O)/Do not Increment(l) System

Memory Displacement Reg. during transaction
BG - Bus Grant: Holding Bus(l)/Not Holding Bus(O)
ER - System Page Boundary Overflow

Last Word Transferred, dddddddddddddddd
FFF2 RO I dl dl dl dl dl dl dl dl dl dl dl dl dl dl dl dl

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

System Memory Page, nnnnnnnnnnn ..
FFF 3 WO I X I X I X I X I X I n I n I n I n I n I n I n I n I n I n I n I

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Page Displacement, dddddddd
FFF4 WO I xl Xl Xl xl xl xl xl xl dl dl dl dl dl dl dl dl

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Local Memory DMA Control Word
FFF5 WO I 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Word Count, cccccccccccccccc
FFF6 WO I cl cl cl cl cl cl cl cl cl cl cl cl cl cl cl cl

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Starting Address, aaaaaaaaaaaaaaaa, in Local Memory
FFF7 WO I al al al al al al al al al al al al al al al al

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Figure 4.6 System Bus Controller Register Assignments

- 37 -

Data is transferred between system memory and local memory by
first writing into the control registers (FFF3-FFF7) and then by
initiating a transfer by writing into the command register (FFFl)
of the system bus controller. The order in which the control
registers are written is not significant.

Location "FFF3", the System Memory Page Register, should be
set to point to the page of system memory from/to which the
transfer is to take place. The system memory page of a word is
determined by the lL most significant bits of the system bus
address of the first word of the block.

Location "FFF4", the displacement register, points to the
starting location within the system memory page of the data block
to be transferred. The displacement within the page is
determined by taking the 8 least significant bits of the system
memory starting address of the block to be transferred. At the
end of a transaction this register will point to the next word of
the system memory page which would have been transferred if the
transaction had continued one more word. Note that it is
impossible to perform a block transfer across a system memory or
cache memory page boundary. If such a transfer is attempted the
transaction is terminated when the 8 bit displacement address is
incremented past "FF" to "00", and the word count has not been
exhausted. In such a case the displacement register is left
equal to zero at the end of the transaction.

Location "FFF5", the local memory DMA control register,
controls the processor region transfer bus DMA mechanism. It
should be set to zero. It is unchanged at the end of a
transaction. Note that since this register should always be
zero, it will only be necessary to write it once during the
initialization procedure following the power on reset.

Location "FFF6", the word count register, specifies the number
of words to be transferred. If an attempt is made to transfer a
block of data which spans two pages of system memory or cache
memory then the transaction is terminated after the last word of
the first page is transferred and the ER bit of the status
register is set. The status register is a read only register
residing at location "FFFl".It mirrors the contents of the
command register in bits 2 through 7. At the end of a
transaction, the word count register will contain the number of
words of the original block remaining to be transferred.
Assuming normal termination (no attempt to transfer across a page
boundary), the register will be zero. .

Location "FFF7", the local memory starting address, points to
the starting address in the processor region transfer bus real
address space of the block of addresses from/to which data is to
be read/written. This register is incremented after each word
transfer. At the end of a transaction it points to the next
address in the processor region transfer bus real address space
from/to which the next word would have been read/written if the

- 38 -

transfer had continued one more word.

A data transfer is initi~ted by writing to location "FFFl",
the command register.

Bit 6, the RQ or Request bit, of that write must be a one to
initiate the transfer.

Bi~ 7, the Write/Read bit, .determines the direction of the
transfer. A one commands a transfer to system memory from local
memory, a zero commands a transfer from system memory to local
memory.

Bit 0, the HA or Hold Address bit, inhibits the normal
incrementing of the system memory page displacement register as
each word is transferred. When HA equals one, each read or write
of system memory is from or to the same address. Note that
although the system memory address is frozen during the
transaction, the normal incrementing of the local memory
addresses still occurs. This mode of transfer is used in reading
or writing the I/O port FIFO buffer or in writing multiple
registers of a BGU in a single transaction.

Bit 1, the HB or Hold Bus bit,
controller to hold the bus after the
set to zero the system bus will be
transaction.

when set to one commands
transaction is complete. If
released at the end of the

Bit 2, the SX or Simplex read bit, when set to one configures -the
R bus input circuitry to 'OR' all incoming data from the three
selected R buses, and to ignore disagreements. When set to zero,
the incoming data from the three selected R buses are voted
normally and the error detection/monitoring circuitry is armed.
This bit has no effect when the direction of the data transfer is
from local memory to system memory.

Bits 3, 4 and 5, the static priority bits, specify the static
priority code to be used by the controller in its competition for
the bus. If the bus controller already controls the system bus
this field has no effect on the transaction. If the controller
does not already have control of the bus it will acquire control
in order to effect the commanded transfer.

The command register must be rewritten each time a transaction is
initiated.

Bit 0, the ER bit, is set to one if the last transaction was
terminated by an attempt to transfer data past a system page
boundry.

Bit 1, the BG bit, is set to one if the controller is holding
control of the system bus. If HB set was specified in the
previous request this bit should read one. If HB reset was
specified in the previous request this bit should read zero.

- 39 -

Location "FFF2" can be read and will contain a copy of the
last data word transferred by the system bus controller.

, .

Upon receiving a transfer request the bus ~ontroller seizes
control of the processor region transfer bus and holds it until
the transfer is complete. This effectively holds the processor
in a suspended state awaiting completion of the transfer. If
necessary the controller then seeks control of the system bus.
If it already holds control of the system bus or after obtain~ng
control it then affects the requested transfer. Once the
transfer is complete it releases the processor region transfer
bus and either releases or holds the system bus depending upon
whether the HB was zero or one. The polling sequence, used in
acqulrlng the system bus, will synchronize those controllers
which participated in.in and won the poll to the same state •. If
they then execute the same transfer they will remain in
synchronism. They will release control of theiF processor region
transfer buses at the same time and their processors will
therefore resume processing at exactly the same time. This
effectively synchronizes those processors. If they then continue
to execute the same instruction stream they will remain
synchronized.

The bus controller accepts and processes the five redundant
copies of the P and R system bus lines. It selects three of the
five P lines and votes among them reporting any errors to the LRU
status registers where they are latched. It uses the four bit P
line select code provided by a system command register (the P
Select Register, described in greater detail in Section 5.4.l) in
determining which three of five P lines are selected. The voting
and error detection takes place during each P bus bit period,
even when the controller is idle. Thus, P bus errors are
reported by all LRU's, even though some of the reporting.LRU may
be unconnected to the erroneous activity.

The bus controller accepts and processes the five redundant
copies of the R bus only when it is expecting a reply over the
system bus. It selects three of the five R lines for processing
based upon the R line select code provided by a system control
register. It either votes and performs error reporting on these
lines or 'OR's them together suppressing error reporting
depending upon the content of the SX bit of the controller
command register. Only those bus controllers directly involved
in the transaction will report R bus errors.

- 40 -

4.8 The CAPS-6 Processor

The Collins Avionics CAPS-6 processor is used as the processor
element of the processor region. Alterations were made to the
standard CAPS-6 processor so as to allow the processor to be
driven from an external clock source, in this case the clock is
provided by the clock generation region. Since all operations
within the processor region are synchronous with the clock, and
since the clock regions of the several LRU's can be phase locked
with one another, the operation of separate processor regions
will stay tightly synchronized, once initially synchronized, as
long as each processor executes exactly the same instructions, as
long as the phase locked clocks remain synchronized, as long as
the communications interrupts occur synchronously in each
processor (as will be the case if the triad identification is
identical), and as long as the timer interrupts occur
synchronously (as will be the case· if the timer is set after
synchronization is achieved). The CAPS-6 processor. was
additionally modified to provide for instruction backup should a
mapper interrupt occur during an instruction execution. This
restores the processor state to the point that existed
immediately before the execution of the instruction which caused
the mapper interrupt. These changes while critical to the
correct operation of the FTMP do not affect the apparent
operation of the machine at the architectural and instruction
description level.

4.8.1 CAPS-6 Instruction Set and Architecture

. In order to provide some context for the detailed instruction
and architecture description which follows, it is necessary to
provide a brief foundation description of the CAPS-6 overall
architecture. This preliminary description is not intended to be
complete but is intended to serve as a starting point. The
detailed instruction set description which follows builds on this
starting point, adding elaboration and detail as required and
appropriate. .

The basic architecture of the CAPS-6 processor is that of a
stack machine. Figure 4.7 illustrates the basic processor
organization as it is apparent to the programmer.

The program syllable counter, SPC~, points to the byte address
in memory from which the next instruction is to be fetched.
Addresses in memory are word addresses. A byte address is
con~tructed by shifting a word address left by one and using the
least significant bit to address a byte within the word. The
even byte is the least significant byte of a word, the odd byte

- 41 -

is the most significant byte. Program addresses are the only
byte addresses used by this machine. All memory references made
by the processor are references to memory words. Where necessary
the processor performs the necessary word disassembly in order to
access program bytes.

The register TOS points to the top of stack. The word pointed
to by TOS contains the value of the top word of the stack. The
stack is stored in RAM memory. When a word is pushed onto the
stack TOS is decremented by one and the word is stored into the
memory location pointed to by the new value of TOS. When a word
is pulled from the stack the memory location pointed to by TOS is
read and the TOS is then incremented by one. As the stack grows
the TOS points to successively lower addresses in memory. The
register STKLM, stack limit, contains the lowest address that can
be written into by a stack operation. An attempt to decrement
the TOS register such that it would be less than the STKLM
register. will cause a stack overflow interrupt. The local
environment register, LENV, points to the stack frame mark of the
current local environment. The local environment is an area of
memory that contains local variables of the current procedure. It
can be accessed by using LENV as a base register. A stack frame
mark contains three quantities, the address of the entry point of
the current procedure (called the PROC IO), the return SPCR
address of procedure which called the current procedure, and a
pointer to the stack frame marker of this calling procedure.
When a procedure is called a new set of local variables are
allocated on the stack: a new stack frame mark is written and
linked back to the previous mark, and the LENV register is
adjusted to point to the new mark. When a return is executed
this process is reversed. The function of the stack is treated
in greater detail by the instruction set description.

In addition to the stack, the programmer
register table in accessing global memory.
points to the first word of a 16 word block
active base register table is located.

- 42 -

may also use a base
A register BRPT

in memory where the

program
code

SPCR---> ••••••• >

current
base
register
table

BRPT---> ______________ __

LENV-->

TOS->

STKLM->

caller's
locals

previous LENV

caller's IO

previous SPCR

caller's
accumulator

space

argument
storage

current
local
storage

caller's LENV

PROC 10

caller's SPCR

current
accumulator

space

STACK

Figure 4.7 Basic Architecture

- 43 -

->+

The following sections detail the CAPS-6 instruction set. All
addresses refer to locations in the virtual or real address space
depending upon whether the memory management unit operation is
enabled or disabled. Except where noted, the instruction
execution is unaffected by whether dynamic address translation is
being performed. The following notational conventions are used:

OPCODE <OPERAND>
OPCODE OPERAND

where: <OPERAND> implies the operand is contained in the
instruction stream.

and OPERAND implies the operand is contained in the
top of stack.

additionally:
(arg)

for example:
(TOS)
(TOS+1)

«TOS»

is the content of the memory location
whose address has a value of argo

is the value stored at the top of stack
is the value stored just under the top of
stack
is the value stored in the location pointed
to by the value stored at the top of stack

4.8.1.1 Data Transfer Instructions.

Data transfer instructions are used for either loading data
onto the top of stack for a subsequent operation or storing data
residing on the top of stack into memory.

LIT4 <K> : FOUR-BIT LITERAL.

A 4-bit literal is contained in the least significant bits of
the LIT4 operation syllable. This literal field is extracted from
the operation syllable and pushed, right-justified, into the top
of the stack. The 12 most significant bits of the new top of
stack are cleared to zero.

Stack
position

so
Sl
S2
S3

Stack Status
Initial Final

A
B
C
D

- 44 -

K
A
B
C

LIT8 <K>: EIGHT-BIT LITERAL.

An 8-bit literal
operation syllable.
justified, into the
of the top of stack

is contained in the byte following the LIT8
This literal field is pushed, right

top of the stack. The most significant byte
is cleared to zero.

Stack
Position

So
Sl
S2
S3

Stack Status
Initial Final

A
B
C
D

K
A
B
C

LIT16 <K>: SINGLE WORD LITERAL.

A 16-bit literal is obtained from the program syllable string
and placed in the top of stack. The LIT16 operation syllable is
interpreted to reference the following two 8-bit syllables of the
program and place them into the stack. The two successive
syllables appear in order of the least significant half of the
literal and then the most significant half of the literal. The
literal may be in the same 16-bit memory word or it may bridge
two consecutive memory words.

Stack
position

So
Sl
S2
S3

Stack Status
Initial Final

A
B
C
D

- 45 -

K
A
B
C

LIT32 <K>: DOUBLE WORD LITERAL.

A 32-bit literal is obtained from the program syllable string
and placed in the top of stack. The LIT32 operation syllable is
interpreted to reference the following four a-bit syllables of
the program and place them into the stack. The 4 successive
syllables appear in order of the least significant byte of the
literal and then the next least significant byte, etc.

Stack Stack Status
Position Initial Final

SO A K(LS HALF)
Sl B K(MS HALF)
S2 C A
S3 D B

REFLS <K> :' REFERENCE LOCAL SINGLE WORD.

References (reads) a l6-bit word from the Local Environment
portion of memory and places it in the top of the stack. The base
address is the contents of LENV register. K, the four least
significant bits of the REFLS syllable, is the index on LENV
(i.e., the sum of LENV and K points to the Kth word of the Local
Environment).

Stack
Position

SO
Sl
S2
S3

Stack Status
Initial Final

A
B
C
D

- 46 -

(LENV+K)
A
B
C

REFLD <K>: REFERENCE LOCAL DOUBLE WORD.

References (reads) a double word (two 16-bit words) from the
Local Environment and places it in the two top words of the
stack. The base address for the double word is the content. of
the LENV register. K, the four least significant bits of the
REFLD operation syllable, is the index on LENV. The sum of LENV
and K points to the least significant half of the double word.

ASNLS <K>,V

Stack Stack Status
position Initial Final

SO A (LENV+K)
Sl B (LENV+K+l)
S2 C A
S3 0 B

• • ASSIGN TO LOCAL SINGLE WORD.

The 16-bit word in the top of the stack is read destructively
and stored (assigned) into memory in the Local Environment. The
address in the memory where this assignment is made is computed
by adding K to the contents of the LENV register. K is the four
least significant bits of the ASNLS syllable.

Stack
. Position

So
Sl
S2
S3

Stack Status
Initial Final

V
A
B
C

- 47 -

A
B
C
D

ASNLD <K>,V' : ASSIGN TO LOCAL DOUBLE WORD.

The double word, V', (two 16-bit words) is initially in 'the
two top words of the stack: the least significant half is SO, and
the most significant half is Sl. These two words are read
destructively from the stack and stored (assigned) into two
consecutive words of memory in the Local Environment. The
assignment is made by computing addresses utilizing the LENV
register and K, the four least significant bits of the ASNLD
operation syllable.

REFLSE <K> . •

Stack Stack Status
position Initial Final

SO V' (LS half) A
Sl V' (MS half) B
S2 A C
S3 B D

EXTENDED REFERENCE LOCAL SINGLE WORD

References (reads) a 16-bit word from the Local Environment
portion of memory and places it in the top of the stack. The base
address is the contents of LENV register (a pointer to the first
word of the Local Environment). K, the a-bit value of the byte
following the REFLSE syllable, is the index on LENV (i.e., the
sum of LENV and K points to the Kth word of the Local
Environment). The Local Environment has zero origin (i.e., the
first word is word zero).

Stack Stack Status
position Initial Final

SO A (LENV+K)
Sl B A
S2 C B
S3 D C

- 48 -

REFLDE <K> EXTENDED REFERENCE LOCAL DOUBLE WORD

References (reads) a double word (two l6-bit words) from the
local Environment portion of memory and places it in the two top
words of the stack. The base address for the double word is the
contents of the LENV register (a pointer to the first word of the
Local Environment). K, the value of the byte following the REFLDE
operation syllable, is the index on LENV. The sum of LENV and K
points to the least significant half.of the double word.

ASNLSE <K>,V

Stack
Position

SO
Sl
S2
S3

. .

Stack Status
Initial Final

A (LENV+K)
B (LENV+K+1)
C A
D B

EXTENDED ASSIGN TO LOCAL SINGLE WORD •

The 16-bit word in the top' of the stack is read destructively
and stored (assigned) into memory in the Local Environment. The
address in the memory where this assignment is made is computed
by adding K to the contents of the LENV register (a pointer to
the first word of the local environment) K is the value of the
byte following the ASNLSE syllable and is the index on LENV
(i.e., the sum of LENV and K is the address of the Kth word of
the Local Environment). The Local Environment has zero origin
(i.e., the first word is word zero).

Stack
position

SO
51
52
S3

Stack Status
Initial Final

V
A
B
C

- 49 -

A
B
C
D

ASNLDE <K>,V' EXTENDED ASSIGN TO LOCAL DOUBLE WORD.

The double word, V', (two 16-bit words) is initially in the
top words of the stack: the least significant half is SO, and the
most significant half is Sl. These two words are read
destructively from the stack and stored (assigned) into two
consecutive words of memory in the Local Environment. The·
assignment is made by computing addresses utilizing the LENV
register (a pointer to the first word of the Local Environment)
and K, the value of the byte that follows the ASNLDE operation
syllable.

Stack Stack Status
Position Initial Final

SO V' (LS half) A
Sl V' (MS half) B
S2 A C
S3 B D

LOCL I GLOBAL RELATIVE ADDRESS OF LOCAL WORD.

Generates the absolute address of the Ith word of
Environment. This computed address is placed in the
stack.

Stack
position

SO
Sl
S2
S3

Stack Status
Initial Final

I
A
B
C

- 50 -

LENV+I
A
B
C

the Local
top of the

REFGS I REFERENCE GLOBAL SINGLE WORD.

References (reads) a 16-bit word from memory and places it in
the top of the stack. I, a 16-bit value initially in the top word
of the stack, points to the word to be referenced. when the
16-bit word is referenced (fetched) from memory, it replaces I in
the top word of the stack (i.e., I is destroyed).

Stack Status Stack
Position Initial Final

So
Sl
S2
S3

I
A
B
C

REFGD I : REFERENCE GLOBAL DOUBLE WORD.

(I)
A
B
C

References (reads) a double word (two 16-bit words) from
memory and places it in the two top words of the stack. The
address for the double word is I, a 16 bit value initially in SO,
the top word of the stack. The stack is first pushed, moving I to
Sl, to make room for both halves of the double word. The least
significant half goes to SO; the most significant half to S1. I
is destroyed when Sl is loaded with the referenced most
significant half of the double word. I. is the address of the
least significant half of the double word, while I + 1 points to
the most significant half of the double word. .

Stack Stack Status
position Initial Final

SO I (I)
Sl A (1+1)
S2 B A
S3 C B

- 51 -

ASNGS V, I ASSIGN GLOBAL SINGLE WORD.

The 16-bit word in the second word of the stack is read
destructively and stored (assigned) into memory. The address in
memory where" this assignment is made is I, a 16-bit value
initially in the top word of the stack. Upon completion of the
assignment, both I and the value to be assigned are removed from
the stack by incrementing TOS by two (i.e., popping the stack
twice) •

ASNGD V' ,I

Stack
position

So
Sl
S2
S3

Stack Status
Initial Final

I
V
A
B

A
B
C
D

ASSIGN GLOBAL DOUBLE WORD.

The address, I, is initially in the top of the stack (SO).
The second and third words of the stack contain the double word,
V', (two 16-bit words) with the least significant half in Sl and
the most significant half in S2. The double word, V', is read
destructively from the stack and stored (assigned) into two
consecutive words in memory. The least significant half goes
into the address I~ the most significant half to I + 1. Upon
completion of the double word assignment, the stack is popped
three times to remove the double word and the address I.

Stack Stack Status
position Initial Final

SO I A
Sl V' (LS HALF) B
S2 V' (MS HALF) C
S3 A D

- 52 -

REFSA <K>: REFERENCE SINGLE ABSOLUTE. References (reads) a
16-bit word from memory and places it in the top of the stack.
The address K, is the" l6-bit value in the two bytes £ollo,ing the
REFSA syllable.

Stack Status Stack
position Initial Final

So
Sl
S2
S3

A
B
C
D

REFDA <K>: REFERENCE DOUBLE ABSOLUTE.

(K)
A
B
C

References (reads) two 16-bit words from memory and places it
in the top of the,stack. The address K, is the 16-bit value in
the two bytes following the REFDA syllable.

Stack Status Stack
position Initial Final

ASNSA <K>,V • •

SO
S1
S2
S3

A
B
C
D

ASSIGN SINGLE ABSOLUTE •

The l6-bit word, v, in the top of
destructively and assigned (stored) into the
K, is the 16-bit value in the two bytes
syllable.

Stack Status

(K)
(K+1)

A
B

the stack is read
memory. The address
following the ASNSA

Stack
position Initial Final

so
Sl
S2
S3

V
A
B
C

- 53 -

A
B
C
D

ASNDA <K>,V' ASSIGN DOUBLE ABSOLUTE.

The double word, V', is initially in the two top words of the
stack; the least significant half is SO, and the most significant
is Sl. These two words are read destructively from the stack and
assigned (stored) to the memory. The address K, is the 16-bit
value in the two bytes following the ASNDA syllable.

Stack Stack Status
position Initial Final

SO V' (LS half) A
51 V' (MS half) B
52 A C
53 B D

REFSC <0,1>: REFERENCE SINGLE COMPONENT.

References (reads) a 16-bit word from memory and places it in
the top of the stack. 0 is a positive offset <16. I is an index
from the LENV register and points to the I'th word in the local
environment. The address from which the word is obtained is
computed by adding 0 to the contents of the word pOinted to by
LENV + I. If, however, the index I is 0 then the address is
obtained by adding 0 to the contents of the top of the stack.

Stack Stack Status
position Initial Final

SO A «LENV+I)+O)
Sl B A
S2 C B
53 D C

- 54 -

REFDC <0,1>: REFERENCE DOUBLE COMPONENT.

References (reads) a double word from memory and places it in the
top two words of the stack. 0 is a positive offset < 16. I is an
index from the LENV register and points to the I'th word in the
local environment. The addresses from which the double word is
obtained are computed by adding 0 and 0 + 1 to the contents of
the word pointed to LENV + I. If, however, the index i is 0 then
the addresses are obtained by adding 0 and 0 + 1 to the contents
of the top of the stack.

Stack Stack Status
position Initial Final

SO A «LENV+I)+O)
Sl B «LENV+I)+O+l)
S2 C A
S3 D B

ASNSC <O,I>,V ASSIGN SINGLE COMPONENT.

The 16-bit word, V, in the top of the stack is read
destructively and stored (assigned) into memory. 0 is a positive
offset < 16. I is an index fro~ the LENV register and points to .
the I'th word in the local environment. The address in which the
word is to be stored is obtained by adding 0 to the contents of
the word pointed to by LENV + I. If, however, the index I is zero
then the address is obtained by adding 0 to the contents of Sl.

Stack
position

SO
Sl
S2
S3

Stack Status
Initial Final

V
A
B
C

- 55 -

A
B
C
D

ASNDC <O,I>,VI ASSIGN DOUBLE COMPONENT.

The double word, VI, in the top two words of the stack are
read destructively and stored (assigned)" into memory. 0 is a
positive offset < 16. I is an index from the LENV register and
points to the lIth word of the local environment. The addresses
in which the double word is to be stored are obtained by adding 0
and 0 + 1 to the contents of the word pointed to by LENV + I.
If, however, the index I is 0 then the addresses are obtained by
adding 0 a,nd 0 + 1 to the contents of S2.

Stack Stack Status
position Initial Final

SO VI (LS half) A
Sl VI (MS half) B
S2 A C
S3 B D

REFSP <P,O>: REFERENCE SINGLE USING POINTER TABLE

References (reads) a 16-bit word from the Global Environment
portion of memory and places it in the top of the stack. P is an
offset . into the currently active base register pointer table
(pointed to by the BRPT register) and 0 is either a positive
offset or zero. The address from which the word is obtained is
computed by adding 0 to the contents of the word pointed to by
BRPT + P.

Stack Stack Status
position Initial Final

SO A «BRPT+P)+O)
Sl B A
S2 C B
S3 D C

- 56 -

REFDP <P,O>: REFERENCE DOUBLE USING POINTER.

References (reads) a double word from the Global Environment
portion of memory and places it into the top two words of the
stack. P is an offset into the current base register pointer
table and 0 is either a positive offset or zero. The addresses
from which the double word is obtained are computed by adding 0
and 0 + 1 to the contents of the word pointed to by BRPT + P.

Stack Stack Status
position Initial Final

SO A «BRPT+P)+O)
51 B «BRPT+P)+O+l)
52 C A
53 D B

ASNSP <P,O>,V ASSIGN SINGLE USING POINTER.

The 16-bit word, V, in the top of the stack is read
destructively and stored (assigned) into memory. P is an offset
into the current base register pointer table (pointed to by the
BRPT register) and 0 is either a positive offset or zero. The
address in which the word is to be stored is obtained by adding 0
to the contents of the word pointed to by PDTR + P.

Stack
Position

SO
51
52
53

Stack Status
Initial Final

V
A
B
C

- 57 -

A
B
C
D

ASNDP <P,O>,V' ASSIGN DOUBLE USING POINTER.

The double word, V', in the top two words of the stack are
read destructively and stored (assigned) into memory. P is an
offset into the current base register pointer table (pointed to
by the BRPT register) and 0 is either a positive offset or zero.
The addresses in which the double word is to be stored are
obtained by adding 0 and 0 + 1 to the contents of the word
pointed to by BRPT + P.

Stack Stack Status
Position Initial Final

SO V' (LS half) A
Sl V' (MS half) B
S2 A C
S3 B D

REFSPI <P,O,I> REFERENCE SINGLE USING POINTER AND INDEX.

References (reads) a l6-bit word from memory and places it in
the top of the stack. P is an offset into the current base
register pointer table (pointed to by the BRPT register). 0 is
either a positive offset or zero. I is an index from the LENV
register and points to the I'th word of the local environment.
The address from which the word is obtained is computed by adding
the contents of the word pointed to by LENV + I to the result of
adding 0 to the contents of the word pointed to by BRPT + P.

Stack
Position

SO
Sl
S2
S3

Stack Status
Initial Final

A
B
C
D

- 58 -

«BRPT+P)+O+(LENV+I»
A
B
C

REFDPI <P,O,I> REFERENCE DOUBLE USING POINTER AND INDEX.

References (reads) a double word from the Global Environment
portion of memory and places it into the top two words of the
stack. P is an offset into the current base register pointer
table (pointed to by the BRPT register). 0 is either a positive
offset or zero. I is an index from the LENV register and points
to the I'th word of the local environment. The addresses from
which the double word is obtained are computed by adding twice
the contents of the word pointed to by LENV + I to the results of
adding 0 and 0 + 1 to the contents of the word pointed to by PDTR
+ P.

Stack
Position

ASNSPI <P,O,I>,V

So
Sl
S2
S3

• .

Stack Status
Initial Final

A
B
C
D

«BRPT+P)+O+2*(LENV+I»
«BRPT+P)+O+l+2*(LENV+I»

A
B

ASSIGN SINGLE USING POINTER AND INDEX.

The 16-bit word, V, in the top of the stack is read
destructively and stored (assigned) into memory. P is an offset
into the currently active page definition table (pointed to by
the BRPT register) and ~ is either a positive offset or zero. I
is an index from the LENV register and points to the I'th word of
the local environment. The address in which the word is to be
stored is obtained by adding the contents of the word pointed to
by LENV + I to the result of adding Oto the contents of the word
pointed to by BRPT + P.

Stack Stack Status
Position Initial Final

SO V A
Sl A B
S2 B C
S3 C D

- 59 -

ASNDPI <P,O,I>,V I ASSIGN DOUBLE USING POINTER AND INDEX.

The doub!e word, VI, in the top two words of the stack are
read destructively and stored (assigned) into memory. P is an
offset into the current base register pointer table (pointed to
by the BRPT register) and ° is either a positive offset or zero.
I is an index from the LENV register and points to the lIth word
of the Local environment. The addresses in which the double word
is to be stored are obtained by adding twice the content of the.
word pointed to by LENV + I to the results of adding ° and ° + 1
to the contents of. the word pointed to by BRPT + P.

Stack Stack Status
Position Initial Final

SO VI (LS half) A
Sl VI (MS half) B
S2 A C
S3 B D

4.8.1.2 Arithmetic Instructions.

ADD X,Y TWO's COMPLEMENT INTEGER OR FRACTIONAL ADD.

The ADD operator performs binary addition on two l6-bit
operands initially in the top two positions of the stack (SO and
Sl) and pops the stack to replace the original operands, leaving
the result in the top of the stack (SO). The result is the binary
sum of the two l6-bit operands. Overflow occurs if the result x+y
can not be represented in 16 bits.

Stack Stack Status
Position Initial Final

SO y x+y
Sl X A
S2 A B
S3 B C

- 60 -

SUB X,Y TWO's COMPLEMENT INTEGER OR FRACTIONAL SUBTRACT.

The subtract operator performs binary two's complement
subtraction of Y, a l6-bit operand initially in the top of the
stack (SO) from X, a l6-bit operand initially in the second word
of the stack (Sl). The stack is popped to remove· the original
operands, leaving the result in the new top of the stack (SO).
The result is the two's complement difference X-Yo Overflow
occurs if the result X-Y can not.be represented in 16 bits.

MPYI X,Y

Stack
Position

SO
Sl
S2
S3

Stack Status
Initial Final

y
X
A
B

X-Y
A
B
C

TWO's COMPLEMENT INTEGER MULTIPLY.

The MPYI operator performs binary multiplication of two l6-bit
integer operands in two's complement form and pops the stack to
replace the original operands, leaving the l6-bit result in the
new top of stack. Initially, the multiplier Y is in the top of
the stack (SO) and the multiplicand X is the next position (Sl).
The result is the binary product Y times X, modulo 2expl6: i.e.,
the least significant 16 bits of the double-length product.
Overflow occurs if the result x*y can not be represented in 16
bits. In case of overflow the result in SO is 7FFF or 8000
depending on the sign of the result.

Stack
Position

SO
Sl
S2
S3

Stack Status
Initial Final

Y
X
A
B

- 61 -

X*y
A
B
C

DIVI X,Y TWOs COMPLEMENT INTEGER DIVIDE.

The DIVI operator divides X, a fixed point two's complement
integer in stack position Sl, by Y, a fixed point two's
complement integer in stack position so. The original operands
are eliminated by a stack adjustment and the result, the quotient
represented as a two's complement integer, is placed in the top
of the stack, SO. If the divisor is zero, the divide operation
is not performed, and the result equal to ·zero is left in the top
of the stack. For non-zero operands, the result of the DIV
operator is the 16-bit signed two's complement representation of
the integer binary divide operation on the operands (originally
in two complement representation) converted to positive integer
representation. The two's complement of the integer divide
quotient forms the result if. the original operands had opposite
signs. Since an integer result is produced, the result quotient
is zero if the absolute value of the dividend is less than that
of the divisor. No remainder representation is preserved.

ABSV X . .

Stack
position

so
Sl
S2
S3

Stack Status
Initial Final

y
X
A
B

X/Y
A
B
C

ABSOLUTE VALUE, SINGLE WORD.

This operator replaces the 16-bit word, X, in so by its
absolute value. That is, if the leftmost bit (bit 15) of X is a
1, the two's complement of X is placed in SO; otherwise, the
stack remains as it was prior to the operation. Overflow occurs
if X-"8000".

Stack
position

so
Sl
S2
S3

Stack Status
Initial Final

X
A
B
C

- 62 -

Ixi
A
B
C

MPY X,Y TWO's COMPLEMENT FRACTIONAL MULTIPLY.

The MPY operator performs binary multiplication of two 16-bit
fraction operands in two's complement form and pops the stack to
replace the original operands, leaving the l6-bit result in the
new top of stack. Initially the multiplier Y is in the top of the
stack (SO) and the multiplicand X is the next position (51). The
result is the binary product Y times X; i.e., the most
significant 16 bits of the double-length product. Overflow occurs
if x=y="aOOO".

MPYE X,Y

Stack
position

SO
51
52
53

Stack Status
Initial Final

Y
X
A
B

X*Y
A
B
C

TWO's COMPLEMENT FRACTIONAL MULTIPLY.

The MPYE operator performs binary multiplication of two l6-bit
fraction operands in two's complement form and pops the stack to
replace the original operands, leaving the 32-bit result in the
top 2 words of stack. Initially the multiplier Y is in the top of
the stack (SO) and the multiplicand X is the next position (51).
The result is the binary product Y times X; i.e., the the 32-bit
double-length product. Overflow occurs if x=y·"aOOO".

Stack Stack Status
Position Initial Final

SO Y x*y (LS HALF)
51 X X*Y (MS HALF)
52 A A
53 B B

- 63 -

DIV X,Y TWO's COMPLEMENT FRACTIONAL DIVIDE.

The DIV operator divides X, a fixed point two's complement
fraction in stack position 51, by Y, a fixed point two's
complement fraction in stack position SO. The original operands
are eliminated by a stack adjustment and the result, the quotient
represented as a two's complement fraction, is placed in the top
of the stack, SO. If the divisor is zero, the divide operation
is not performed, and the result equal to· zero is left in the top
of the stack. Overflow occurs if IYI<IXI or X=Y="BOOO".

ADDD X' , Y'

Stack
position

SO
51
52
53

Stack Status
Initial Final

Y
X
A
B

x/Y
A
B
C

TWO'S COMPLEMENT DOUBLE WORD ADD.

The ADDD operator performs binary addition on two 32-bit
(double) operands initially in the top four positions of the
stack (SO through 53) and pops the stack to replace the original
operands, leaving the result in the top of the stack (SO, 51).
The result is the binary sum of the two 32-bit operands. Overflow
occurs if X'+Y' can not be represented in 32 bits.

Stack Stack Status
position Initial Final

SO Y' (LS half) X'+Y'(LS half}
51 Y' (MS half) X' +Y' (MS half)
52 X' (LS half) A
53 X' (MS half) B

- 64 -

SUBD X' , Y' TWO'S COMPLEMENT, DOUBLE WORD SUBTRACT.

The subtract operator performs binary· two's
subtraction of Y', a 32-bit operand initially in the
registers from X' , a 32-bit operand initially in the
registers. The stack is popped to remove the original
leaving the result in the new top of the stack (SO,
result is the two's complement difference X' - Y'.
occurs if X' - Y' can not be represented in 32 ~its.

Stack Stack Status
Position Initial Final

complement
SO and Sl
S2 and S3
operands,
Sl). The

Overflow

SO Y' (LS halt> X' -Y' (LS half)
Sl Y' (MS half) X' -Y' (MS half)
S2 X' (LS HALF) A
S3 X' (MS HALF) B

MPYD X' ,Y' : TWO's COMPLEMENT FRACTIONAL MULTIPLY, DOUBLE WORD

The MPYD operator performs binary multiplication of two 32-bit
fraction operands in two's complement form and POPS the stack to
replace the original operands, leaving the 32-bit result in the
new top of stack Initially the multiplier Y' is in the SO and Sl
registers and the multiplicand X' is in S2 and S3. The result is
the binary product Y' times X'; i.e., the most significant 32
bits of the four word product.

Stack Stack Status
Position Initial Final

SO Y' (LS HALF) X'*Y'(LS half)
Sl Y' (MS HALF) X' *Y' (MS half)
S2 X' (LS HALF) A
S3 X' (MS HALF) B

- 65 -

DIVD X' ,Y' : TWO's COMPLEMENT FRACTIONAL DIVIDE, DOUBLE WORD.

The DIVD operat?r divides X', a fixed point two's complement
32 bit fraction ln (S2, S3), by Y', a fixed point two's
complement 32-bit fraction in (SO, Sl). The original operands are
eliminated by a stack adjustment and the result, the quotient
represented as a two's complement fraction, is placed into SO and
Sl. If the divisor is zero, the divide operation is not
performed,.and the result equal to zero is left in the top of the
stack.

ABSDX' • .

Stack Stack Status
position Initial Final

SO Y' (LS half) X' /Y' (LS
Sl Y' (MS half) X' /Y' (MS
S2 X' (LS half) A
S3 X' (MS half) B

ABSOLUTE VALUE, DOUBLE WORD •

half)
half)

This operator replaces the 32-bit (double-length) word X' in
(Sl, SO) with its absolute value. That is, if the sign bit of X'
(bit 15 of Sl) is a 1, then the two's complement of X' is placed
in (Sl, SO): otherwise, the stack remains as it was prior to the
operation. Overflow occurs if X'="80000000".

Stack
position

SO
Sl
S2
S3

Stack Status
Initial Final

X' (LS half)
X' (MS half)

A
B

- 66 -

I
X'I(LS half)
X' (MS half)

A
B

EXTS X EXTEND SIGN.

This operator extends the sign bit of the operand in SO. The
operand stays in the top of the stack (SO) and the extended sign
(0 or -1) is stored in Sl. Space for SIGN (X) is allocated on the
stack by pushing the stack once and moving X to the top of the
stack.

MPYID X' , Y'

Stack
Position

SO
Sl
S2
S3

Stack Status
Initial Final

X
A
B
C

x
SIGN(X)

A
B

TWO's COMPLEMENT INTEGER MULTIPLY, DOUBLEWORD

The MPYID operator performs binary multiplication of two
32-bit integer operands in . two's complement form and pops the
stack to replace the original operands, leaving the 32-bit result
in the SO and Sl registers. Initially the multiplier Y' is in SO
and Sl, and the multiplicand X' is in S2 and S3. The result is
the binary product Y' times X', modulo 2 exp 32; i.e., the least
significant 32 bits of the four word product.

Stack Stack Status
position Initial Final

SO Y' (LS half) X' *y' (LS half)
Sl Y' (MS half) X'*Y'(MS half)
S2 X' (LS half) A
S3~ X' (MS half) B

- 67 -

DIVID X' ,Y' : TWO's COMPLEMENT INTEGER DIVIDE, DOUBLEWORD.

The DIVID operator divides X', a fixed point two's complement
integer in 52 and 53 by Y', a fixed point two's complement
integer in SO and 51. The original operands are eliminated by a
stack adjustment and - the result, the quotient· represented as a
two's complement integer, is placed in the top of the stack, in
SO and 51. If the divisor is zero, the divide operation is not
performed, and the result equal to zero is left in the top of the
stack.

Stack Stack Status
position Initial Final

SO y' (L5 half) X' /Y' (L5 half)
51 Y' (M5 half) X' /Y' (M5 half)
52 Xi (L5 half) A
53 X' (M5 half) B

4.8.1.3 Bit Manipulation Instructions.

SRS X,L : RIGHT SHIFT. ,

This operator right shifts the operand X, in stack position
51, by the amount L in stack position so. The shift is performed
with a zero fill. The stack is popped once after the shift is
performed.

Stack
position

so
Sl
52
53

Stack Status
Initial Final

L
X
A
B

- 68 -

X
A
B
C

SLS X,L : LEFT SHIFT.

This operator left shifts the operand X, in stack position 51,
by the amount L in stack position so. The shift is performed with
a zero fill. The stack is popped once after the shift is
performed.

Stack
Position

50
51
52
53

Stack 5tatus
Initial Final

L
X
A
B

X
A
B
C

INSERT Y,X,S,L . . INSERT FIELD IN WORD •

The INSERT operator extracts a right-justified field of length
L from Y, a single-word stack operand, and inserts it into a
cleared field (starting at bit number 5 and length L) in another
single-word operand, X. Initially the source operand X is in
stack position 52, the operand Y in 53. The starting bit number S
(0<5<15) is encoded in the least significant four bits of (51),
and the field length, L (0<L<16) is encoded in the least
significant five bits of (SO). The extracted field begins at bit
position 5 and ends at bit position S+L-l. For the purpose of
counting bit positions, the least significant bit is '0' and the
most significant bit is '15'. The l6-bit result with inserted
field is placed at the top of the stack and the original stack
contents (SO, 51, 52, 53) discarded.

Stack
Position

50
51
52
53

Stack Status
Initial Final

l6-L
5
X
Y

- 69 -

X
A
B
C

XTRACT X,S,L : EXTRACT FIELD FROM WORD.

The XTRACT operator extracts a field defined bY,a starting bit
number and a length (number of bits) from a 16-bit word (X) , in
the third word of the stack. The result, the right-justified
extracted field, is placed in the top word of the stack, and the
field description parameters and the original word are discarded~
Initially the operand X is in stack location (S2), the starting
bit number, S (0<S<15) is in the least significant 4 bits of
stack location Sl, and the field length in bits, L (0<L<16) is in
the least significant 5 bits of the top of the stack (SO). The
extracted field begins at bit position S and ends at bit position
S+L-l. For the purpose of counting bit positions, the least
significant bit is '0' and the most significant bit is '15'.

REFBIT N,X

Stack Status Stack
Position Initial Final

SO
Sl
S2
S3

16-L
S
X
A

REFERENCE BIT.

X
A
B
C

This operator reads the Nth bit of memory pointed to by X.
Initially, address X is in the top of the stack (SO) and N is in
Sl. Finally, X and N are popped from the stack and the bit value
(0 or 1) is returned in SO.

Stack
Position

SO
Sl
S2
S3

Stack Status
Initial Final

X
N
A
B

- 70 -

BIT VALUE
A
B
C

ASNBIT V,X,N: ASSIGN BIT.

This operator assigns (writes) the value V (0 or 1) in the Nth
bit of memory location X. Initially X, N and V are in SO, Sl and
S2, respectively. Finally, all three operands are popped from the
stack.

Stack Status Stack
position Initial Final

SO
Sl
S2
S3

X
N
V
A

4.8.1.4 Logical Instructions.

AND X,Y : LOGICAL AND, SINGLE WORD.

A
B
C
D

This operator produces the logical bit-by-bit product of the
two 16-bit words initially on top of the stack. That is, the word
X in Sl is 'AND-ed' with the word Y in so. The result is placed
in Sl and then the TOS pointer is incremented by 1, leaving the
result on top of the stack.

Stack Stack Status
position Initial Final

SO Y X AND Y
Sl X A
S2 A B
S3 B C

- 71 -

OR X,Y : LOGICAL OR, SINGLE WORD.

This operator produces the logical bit-by-bit inclusive OR of
the two l6-bit words initially on top of the stack. That is, the
word X in Sl is 'OR-ed' with the word Y in SO. The result is
placed in Sl and then the TOS pointer is incremented by 1,
leaving the result on top of the stack.

Stack Stack Status
Position Initial Final

SO Y X OR Y
Sl X A
S2 A B
S3 B C

XOR X,Y LOGICAL EXCLUSIVE OR, SINGLE WORD.

This operator produces the logical bit-by-bit exclusive-or of
the two 16-bit words initially on top of the stack. That is, the
exclusive sum of the word X in Sl and the word Y in SO is formed.
The result is placed in 51 and then the TOs pointer is
incremented by 1, leaving the result on top of the stack.

NOT X • .

Stack Stack Status
Position Initial

SO Y
51 X
52 A
53 B

LOGICAL COMPLEMENT, SINGLE WORD.

Final

X XOR Y
A
B
C

This operator replaces the 16-bit word X in SO by its one's
complement.

Stack
position

SO
51
S2
S3

Stack Status
Initial Final

X
A
B
C

- 72 -

NOT X
A
B
C

4.8.1.5 Relational Instructions.

GR X,Y TWO's COMPLEMENT INTEGER GREATER THAN, SINGLE WORD.

This operator algebraically compares two 16-bit integers
(fixed point representation) initially in the top of the stack.
'Is X greater than Y?' (X is in 51 and Y in SO.) If X is
algebraically greater than Y, then the logical true value (all
ONEs) is placed in the top of the stack (SO). If X is equal to,
or algebraically less than Y, then the logical false value (all
ZEROs) is placed in the top word of the stack. In either case, a
stack 'pop' adjustment replaces the original operands with the
logical results in the new top of the stack.

Stack Stack Status
position Initial Final

SO Y LOGICAL RESULT
51 X A
52 A B
53 B C

GRD x' ,y' : TWO's COMPLEMENT INTEGER GREATER THAN, DOUBLE WORD.

This operator algebraically compares two 32-bit integers
(fixed point representation) initially in the top of the stack.
'Is X' greater than Y'?'. (X' is in (S2, 53); Y' is in (SO, 51».
If X' is algebraically greater than Y', then the logical true
value (all ONEs) is placed in the top of the stack (SO). If X' is
equal to, or algebraically less than Y', then the logical false
value (all zeros) is placed in the top word of the stack. either
case, a stack 'pop' adjustment replaces the original operands
with the logical results in the new top of stack.

Stack
Position

SO
Sl
52
53

Stack Status
Initial Final

Y'(LS HALF)
Y'(NS HALF)
X'(LS HALF)
X'(NS HALF)

- 73 -

RESULT(LS HALF)
RESULT(NS HALF)

A
B

EQ X,Y EQUAL, 5INGLE WORD.

This 'operator compares two 16-bit operands in the top two
stack positions for equivalence. If the contents of the top of
the stack (50) is equal to the contents of the next stack
position (51), then the result is the logical truth value (all
ONEs); otherwise, the result is the logical false value (all
ZEROs). In either case, a stack pop replaces the original
operands with the logical result in the top of the stack (50).

EQD X' , Y' . .

5tack
position

50
51
52
53

5tack 5tatus
Initial Final

Y
X
A
B

LOGICAL RE5ULT
A
B
C

EQUAL, DOUBLE WORD •.

This operator compares two 32-bit operands in the top four
stack positions for equivalence. If the contents of 52 and 53
(X') is equal to the contents of the 50 and 51 (Y') then the
result is the logical truth value (all ones); otherwise, the
result is the logical false value (all ZEROs). In either case, a
stack pop replaces the original operands with the logical result
in the top of stack (50).

Stack Stack Status
Position Initial Final

50 Y' (L5 HALF) RE5ULT(L5 HALF)
51 Y' (M5 HALF) RE5ULT(M5 HALF}
52 X' (LS HALF) A
53 X' (M5 HALF) B

- 74 -

,

4.8.1.6 Control Transfer Instructions.

1FT C,N . . IF CONDITION TRUE, CONTINUE, ELSE SKIP.

The 1FT operator provides conditional self-relative program
control transfer. If the condition, C, initially in stack
location (Sl) is true (not all ZEROS), then the program syllable
execution continues in sequence. If the condition, C, is false
(all ZEROS), the N program syllables are skipped. If the skip is
to be performed, the current contents of the program syllable
counter are incremented by N, a TWOs complement number in the top
of the stack (SO) to form the address of the next program
syllable to be executed. A stack pop of 2 eliminates both the
condition and the skip count from the top of the stack.

Stack
Position

SO
Sl
S2
53

Stack Status
Initial Final

N
C
A
B

A
B
C
D

IFF C,N : IF CONDITION FALSE, CONTINUE, ELSE SKIP.

The IFF operator ,provides conditional self-relative program
control transfer. If the condition C, initially in the stack
location (Sl) is false (all ZEROS) then program syllable
execution continues in sequence. If the condition C is true (not
all ZEROS) then N program syllables are skipped. If the SKIP is
to be performed the current contents of the program syllable
counter are incremented by N, a twos complement number in the top
of the stack (SO) to form the address of the next program
syllable to be executed. A stack pop of 2 eliminates both the
condition and skip count from the top of the stack.

Stack Stack Status
position Initial Final

SO N A
Sl C B
S2 A C
S3 B D

- 75 -

BRANCH<L>: BRANCH TO LOCATION L.

This operator transfers control to address L by loading SPCR
with L. Address L is contained in the 2 bytes following the
BRANCH opcode byte.

SKIP N : UNCONDITIONAL SKIP.

The skip operator provides unconditional self-relative program
control transfer, an unconditional skip by the number of program
syllables specified by N, a 16-bit two's complement number in the
top of the stack. After incrementing the current value of the
program syllable count register by the contents of the top of the
stack, N, a stack adjustment pops N from the stack.

Stack
Position

Stack Status
Initial Final

So
51
52
53

N
A
B
C

A
B
C
D

SVSKIP N • . SAVE CURRENT SPCR & SKIP N SYLLABLES.

This operator saves the current
syllable counter, SPCR, and skips
address of the next program syllable
incrementing the contents of the top
contents of the SPCR replace the skip
the stack.

contents of the program
N program syllables. The
to be executed is formed by
of the stack. The initial

number, N,. in the top of

Stack
position

Stack Status

So
Sl
S2
53

Initial Final

N
A
B
C

- 76 -

SPCR
A
B
C

POC : POWER ON CLEAR.

Upon application of power to the CPU, the control is
transferred to the microcode for this instruction. This
instruction expects cache locations 0 to 3 in ROM to contain the
following initialization information:

o IPROC
1 ITOS
2 ISTKLIM
3 IPSD

The POC instruction initializes the TOS and STKLIM registers to
values contained in locations land 2. The LENV and SPCR are
initialized to O. The privileged mode is turned on by setting PMR
tol and the mapper is turned off by writing 0 to "FFFE".
Control is then transferred to CALL microsequence which in turn
passes control to the procedure pointed to by location O.
Location 3 of ROM should point to the PSD of this initial
procedure.

- 77 -

4.8.1.7 Interrupt Related Instructions.

INTERRUPT PROCESSING.

The mechanism for handling interrupts includes procedures for
interrupting a user program when interrupts are enabled, and an
instruction for returning to user mode from interrupt mode,
INTRTN. Since the procedure for interrupting a user program is
not an instruction it is described here. For an interrupt to
occur the processor must be in user mode (interrupts enabled)~ An
interrupt can then occur at the end of the current instruction
before the next instruction has begun. When this occurs the user
stack becomes inactive and the interrupt stack is activated. :The
machine state is saved in the current Processor State Descriptor
(PSD). The location of this PSD is contained on the top of the
Interrupt Stack. The PSD contains the following information:

PSD
o. TOS
1. STKLIM
2. SPCR
3. LENV
4. PMR
5. MAP SELECT
6. OTHER PSD

INFORMATION

The machine state is restored to the interrupt mode which is
defined by the interrupt PSD. The interrupt PSD is pointed to by
the internal register ISR. Next, the highest priority interrupt
requesting service is pushed into the interrupt stack and that
interrupt is cleared. Finally, all interrupts are disabled and
interrupt program is activated. The instruction interrupt
return, INTRTN, will reverse this process and restart .the
interrupted procedure. The instruction HALT will cause an
interrupt (number lO'Hex). The HALT interrupt can not be
disabled. The instructions assign mask, ASNMSK and reference
mask, REFMSK, allow access to the interrupt mask. The table
below summarizes the interrupt assignments for the implementation
of the CAPS-6 processor.

- 78 -

Interrupt
Number

o
1
2
3
4
5
6
7

·8
9
A
B
C
D
E
F

10
11
12
13
14
15
16
17

Maskab1e
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
no
no
no
no
no
no
no
no

Assignment/function
unassigned*
unassigned*
unassigned*
unassigned*
unassigned*
unassigned*
unassigned*
unassigned*
unassigned
unassigned
arithmetic overflow
IPC register 2 or 3 written
interval timer
write protect violate
page fault
reserved (for test adapter)
halt instruction execution
illegal opcode
stack overflow
non-local search fault
privileged instruction fault
pmcall fault
unassigned
unassigned

* unavailable in this processor implementation

INTRTN PSD.PTR : INTERRUPT RETURN

Normally, this operator is executed in interrupt mode to
return to a previously interrupted user mode program, the
currently active stack is the interrupt stack (current contents
of TOS point to the top of the interrupt stack). The current
machine state is saved in the interrupt PSD. The user mode
machine state is restored from the PSD pointed to by PSD.PTR (SO
of the interrupt stack). The interrupts are enabled and the user
task resumes in the state when the task was interrupted.

HALT :

This operator causes an interrupt 10'Hex. Interrupt lO'Hex is
nonmaskable.

- 79 -

REFMSK: REFERENCE MASK.

Thi~ operator references (reads) the mask register (M) from
the interrupt controller and pushes the resulting word onto the
top of the stack. Bit a of the mask register corresponds to
interrupt 0, bit 1 to interrupt 1, etc. through bit 15 of the
mask register which corresponds to interrupt 15. A bit set to
'zero' implies that the corresponding interrupt is disabled, a
'one' means it is enabled.

ASNMSK M

Stack Status Stack
position Initial Final

so
Sl
S2
S3

ASSIGN MASK •.

A
B
C
D

M
A
B
C

This operator assigns (writes) M into the mask register of the
interrupt controller. Initially M is in the top of the stack.
After writing M into the mask register, the stack is popped once.
The bit position n of the mask register corresponds to interrupt
number n. A bit set to 'zero' implies that the corresponding
interrupt is disabled, a 'one' means it is enabled.

Stack
position

SO
Sl
S2
S3

Stack Status
Initial Final

M
A
B
C

- 80 -

A
B
C
D

SWPMSK M : SWAP MASK

This operator assigns (writes) M into the mask register of the
interrupt controller. The original contents of the mask register
are saved on top of the stack. Initially, M is in the top of the
stack. That is, the new interrupt mask is swapped with· the old
mask.

CLRINT N

Stack Status Stack
position Initial Final

So
Sl
S2
S3

M
A
B
C

CLEAR INTERRUPT.

OLD.MASK
A
B
C

This operator clears the interrupt specified in the 4 least
significant bits of the top of the stack. After the operation the
stack is popped once.

Stack
Position

So
Sl
S2
S3

,
Stack Status

Initial Final

N
A
B
C

- 81 -

A
B
C
D

4.8.1.8 Subroutine Linkage Instructions.

CALL Xl, ••• ,XN,F CALL SUBROUTINE F.

This operator transfers program control to a "called" routine
and provides for passage of parameters, allocation of dynamic
storage on the stack for local variables, and saving of the code
descriptor of the "Caller" routine for subsequent return.

a. Initially the top of the stack contains F, the l6-bit
program syllable address of the called function or
subroutine, and succeeding stack positions contain the
respective parameters.

b. A stack adjustment moves TOS so as to provide space for
local variables (owns and temporaries). The number, w,
of such variables is obtained from the 16-bit header of
the subroutine body. (The leftmost byte of the header
is masked prior to use.)

c. The subroutine address ("procedure i.d."), LENV and
SPCR are stored in the top three stack positions.

d. Initial contents of the SPCR are replaced with the
procedure address +4, effecting a transfer of control
to the subroutine.

e. The contents .of the LENV register are set equal to the
stack pointer plus two, TOS+2.

The initial and final stack states are
Figure on the following page.

indicated in the

1 F actually points to the least significant byte of the
header word of the procedure body.

2 The compiler places a 1 in the leftmost bit position of
every procedure body header word, in order to distinguish
proc body code from alias beads. This is useful in
implementation of DOlT-type mechanisms.

- 82 -

STACK BEFORE EXECUTION OF CALL INSTRUCTION

•
•

TOS -> PROCID

arg N

arg N-l

arg N-2

· · ·
arg 1

caller's
accumulator

space

caller's SPCR

PROCID

LENV -> caller's LENV

local
environment

•

·
•

- 83 -

STACK AFTER EXECUTION OF CALL INSTRUCTION

•

·
TOS -> caller's SPCR

PROCID

LENV -> caller's LENV --+

J

J-l

•

·
•

1

arg N

arg N-l

arg N-2

·
•

·
arg 1

caller's
accumulator

space

<--+

•
·

- 84 -

PMCALL Xl, ••• ,XN,N CALL PRIVILEGED SUBROUTINE N.

This operator transfers program control to a call routine via
an index into a table of privileged subroutine entry points. The
table is pointed to by the real address 4. The index, N, is
verified to be within the table limits. Upon CPU initialization
the largest index is stored in real address 5. If the index is
valid, the CPU enters the privileged mode state. SO is replaced
with the indexed entry of the privileged subroutines table and
the CPU transfers control to the CALL instruction. (See CALL
instruction)

Stack Stack Status
Position Initial Final

SO N PROC.ID
Sl arg N arg N
S2 arg N-l arg N-l

•
Sn arg 1 arg 1

PMOFF: PRIVILEGED MODE OFF.

This instruction compares the privileged mode register, PMR,
with the contents of the location pointed to by LENV. If a match
occurs, PMR is replaced with zeros and the CPU disables
privileged mode.

RETURN K : RETURN FROM SUBROUTINE.

This operator provides for re-establishing the necessary state
to return to a "caller" routine and to return (in the stack) an
arbitrary number of values that may have been generated by the
called subroutine. The number of words K (owns plus temporaries
plus argument words) to be de-allocated is initially on top of
the stack. The SPCR and LENV values of the caller program saved
in the stack at the current LENV-2 and LENV locations replace the
current SPCR andLENV values. The subroutine's returned values
are copied down in the stack as K stack locations are de
allocated (the called programs owns and temporaries plus any
arguments). The initial and final stack states are shown in the
figures on the following pages.

- 85 -

STACK BEFORE EXECUTION OF RETURN INSTRUCTION

·
•

TOS -> K

Subroutine
Return
Values

caller's SPCR

PROCID

LENV -> caller's LENV --+

J

J-l

•

·
1

arg N

arg N-l

· ·
arg 1

caller's
accumulator

space

<--+

•

- 86 -

STACK AFTER EXECUTION OF RETURN INSTRUCTION

•

·
TOS -> Subroutine

Return
Values

caller's
accumulator

space

caller's SPCR

PROCID

LENV -> caller's LENV

local
environment

•
•
•

- 87 -

,
',\

..
,-'.

GOTO A TRANSFER PROGRAM CONTROL VIA ALIAS BEAD.

The GO TO instruction is used to jump to a program point which
is outside the scope of the currently active subroutine. Control
is passed by means of an alias bead. The formats for the four
types of alias bead are shown below. Initially, SO contains the
byte address of the least significant byte of the first word of
the alias bead. If the transfer is through a switch, Sl must
initially contain the switch index value. The situation is as
follows: The new SPCR value is obtained from the alias bead, as
is the LENV if the destination is a recursive procedure. If.the
destination procedure is nonrecursive, the stack is "unwound"
until a "proc i.d." is found in the stack frame which matches
that of the alias bead. Then the associated local environment is
activated. If the control transfer is to be through a switch~
then the index value is moved from Sl of the initial stack to SO
of the resulting stack. The microsequence for the GOTO operator
is shown on the following page.

LABEL AND SWITCH ALIASES.
Label Alias, Non-recursive:

Label alias Value 0
VALUE SPCR of label
VALUE procid

Label Alias, Recursive: , Label alias VALUE 1
VALUE SPCR of label
VALUE LENV

Switch Alias, Non-recursive:
Switch alias VALUE 2

VALUE SPCR of switch
VALUE procid

Switch Alias, Recursive:
Switch alias VALUE 3

VALUE SPCR of switch
VALUE LENV

Note: The code in the first word of an alias bead identifies
its type. Any code value greater than 3 denotes a procedure; in
fact, the leftmost bit of procedure body header word is always
set to 1 by the assembler. Note: For recursive alias beads, the
LENV (as well as the rest of the bead) is generated dynamically
by run-time support software or microcode.

- 88· -

GOTO:
so shifted right one ->SO
M(SO) -> CODE; hardware temporary
SO + 1 -> t; hardware temporary
'POP' :
CODE = 1 or 3 =>

begin

end

M(t+l) -> LENV;
M(t) -> SPCR;
go to alias.go;

M(t+l) -> p; hardware temporary
LENV -> tl; hardware temporary Loop: p = M<tl - 1> =>

begin
tl -> LENV;
M(t) -> SPCR;
go to alias.go;

end
M(tl) -> tl;
tl = 0 =>

begin

end

Set program interrupt bit;
DONE;

go to loop; Alias.go: CODE = 2 or 3 =>
begin
SO -> M(LENV-3);

LENV-3 -> TOS:
end
else LENV-2 -> TOS;

DONE:

- 89 -

4.8.1.9 Loop Control Instructions.

The instructions FOR, STEP, UNTIL, and WHILE described in this
section are used to efficiently implement FOR loops in the
procedural language. These instructions are used for loops of ' the
form:

For I = II STEP 12 UNTIL 13 DO •••• ;
or

For I = II STEP 12 WHILE B3 DO
the form:

LOC I • Address of I ,
REF II • initial value ,
FOR L,B · Save SPCR and ,

· , · DO body code ,
· ,

REF 12 · step 12 ,
STEP · Increment I by ,

L EQU * · , REF 13 or B3 · 13 or B3 ,
UNTIL or WHILE • Test I against ,

.; The code will be of

of I
branch to L

12

13 or test B3

FOR I,Il,<L> SAVE CURRENT SPCR AND BRANCH TO ADDRESS L.

This operator saves the current contents of the program
syllable counter, SPCR, and transfers control to address L by
loading SPCR with L. Address L is contained in the 2 bytes
following the FOR opcode byte. SO contains the initial value II
of the loop variable I , Sl contains the address of the loop
variable. SO is assigned to the location pointed to by Sl and the
saved SPCR replaces SO.

Stack
Position

SO
Sl
S2
S3

Stack Status
Initial Final

11 (value)
I (adr)
A
B

- 90 -

SPCR
I
A
B

STEP 12 STEP LOOP VARIABLE I BY AMOUNT 12.

This operator adds the loop increment 12 to the loop variable
I. Initially the value of 12 is in SO and the address of I is in
S2. The stack is then popped once.

Stack Stack Status
Position Initial Final

SO 12 (value) SPCR
Sl SPCR I
S2 I (adr) A
S3 A B

WHILE B3 TEST VARIABLE B3 AGAINST 0 AND LOOP OR EXIT.

This operator tests the boolean variable B3 to determine if
the loop should continue or exit. Initially the value of B3 is in
SO. If SO is non-zero the loop continues by popping the stack
once and storing SO (the saved SPCR) in SPCR. Otherwise the loop
exits by popping the stack three times.

Stack Stack Status
Position Initial Loop Exit

SO B3 SPCR A
Sl SPCR I B
S2 I A C
S3 A B D

- 91 -

UNTIL 13 : TEST LOOP VARIABLE I AGAINST 13 AND LOOP OR EXIT.

This operator tests the loop variable I against the final loop
value 13 to determine if the loop should continue or exit.
Initially the value 13 is in SO and the address of I is in S2. If
the value of I is less than or equal to 13 the loop continues by
popping the stack once and storing SO (the saved SPCR) into SPCR.
Otherwise the loop exits by popping the stack three times.

Stack Stack Status
position Initial Loop Exit

SO 13 SPCR A
Sl SPCR I B
S2 I A C
S3 A B D

LOOPT L,C LOOP ON CONDITION TRUE.

This operator provides conditional loop return control (loop
on condition true). Initially, the top of the stack (SO) contains
a condition, C, and the next stack position (Sl) contains a
16-bit absolute program syllable address corresponding to a loop
head label, L. If the condition in SO is true (not all ZEROS),
then the address in Sl replaces the current contents of the
program syllable count register SPCR and a stack pop adjustment
eliminates the condition, C, from the stack. If the condition is
false (all ZEROS), then the SPCR is not changed (next program
syllable in sequence to be executed; loop exit) and a stack
adjustment pops both Land C from the stack.

Stack Stack Status
Position Initial Loop Exit

SO C L A
Sl L A B
S2 A B C
S3 B C D

- 92 -

LOOPF L,C LOOP ON CONDITION FALSE.

The operator provides conditional loop return control (loop on
condition false). Initially, the top of the stack (SO) contains a
condition, C, and the next stack position (Sl) contains a 16-bit
absolute program syllable address corresponding to a loop head
label, L. If the condition in SO is false (all ZEROS), then the
address in Sl replaces the current contents of the program
syllable count register SPCR and a stack "pop" adjustment
eliminates the condition, C from the stack. If the condition is
true (not all ZEROS), then the SPCR is not changed (next program
syllable in sequence to be executed- loop exit) and a stack
adjustment pops both Land C from the stack.

Stack Stack Status
position Initial Loop Exit

SO C L A
Sl L A B
S2 A B C
S3 B C D

4.8.1.10 Outer Block Data Transfer Instructions.

REFNSE<K,P>
SINGLE WORD.

EXTENDED REFERENCE NON LOCAL ENVIRONMENT

References (reads) a 16-bit word from the Nonlocal Environment
portion of memory identified by the second and third syllables
following the REFNSE syllable. The base address used is the
address of the nonlocal stack frame located by matching the
procedure I.D., P, to the proc. I.D. stored in the stack frame.
If no match is found, a program interrupt will be generated. K,
the value of the byte that follows the REFNSE syllable, is added
to the base.

Stack Stack Status
position Initial Final

SO A (LENV@P+K)
51 B A
S2 C B
S3 D C

- 93 -

REFNDE<K,P>
DOUBLE WORD.

EXTENDED REFERENCE TO NONLOCAL ENVIRONMENT

References (reads) a double word (two 16-bit words) from the
Nonlocal environment identified by P, the second and third
syllables following the REFNDE syllable~ The base address used is
that of the nonlocal stack frame whose procedure I.D. matches P.
K, the value of the byte following the REFNDE operation syllable,
is the index used. The sum of base.and K points to the least
significant half of the double word, while the sum of base and K
+ 1 points to the most significant half of the double word. An
interrupt occurs if no match on P is found.

Stack
position

ASNNSE <K,P>,V
SINGLE WORD.

SO
S1
S2
S3

Stack Status
Initial Final

A (LENV@P+K)
B (LENV@P+K+1)
C A
D B

EXTENDED ASSIGN TO NONLOCAL ENVIRONMENT

,
The 16-bit word in the top of the stack is read destructively

and stored (assigned) into memory in the Nonlocal environment
identified by P, the second and third syllables following the
ASNNSE syllable. The base address used is that of the nonlocal
stack frame whose proc I.D. matches P. K is the value of the
byte following the ASNNSE syllable and is added to the base to
form the address of the resulting store. A program interrupt is
generated if no match on P can be found.

Stack
Position

SO
S1
S2
S3

Stack Status
Initial Final

V
A
B
C

- 94 -

A
B
C
D

ASNNDE <K,P>,V'
DOUBLE WORD.

EXTENDED ASSIGN TO NONLOCAL ENVIRONMENT-

The double word, V', (two l6-bit words) is initially in the
two top words of the stack; the least significant half is SO, and
the most significant half is Sl. These two words are read
destructively from the stack and stored (assigned) into two
consecutive words of memory in the nonlocal environment
identified by P, the second and third syllables following the
ASNNDE syllable. The base address used is that of the nonlocal
stack ~rame whose procedure I.D. matches P. K, the value of the
byte following the ASNNDE byte, is added to the base to form the
address of the least significant word of the resulting store. An
interrupt occurs if no match on P can be found.

Stack Stack Status
Position Initial Final

SO V' (LS half) A
Sl V' (MS half) B
S2 A C
S3 B D

NLOCL I,P : GLOBAL RELATIVE ADDRESS OF NON LOCAL WORD.

Generates an address (relative to the Global Environment) that
is the Ith word of the nonlocal environment identified by
procedure I.D. P. This I-byte instruction is analogous to the
LOCL instruction, but refers to nonlocal environment rather than
to local environment. The two top words of the stack must
indicate (a) in Sl, the environment being referenced, and (b) in
SO, the relative displacement of the required variable within its
environment. The stack is popped two places and then the global
relative address of the requested variable is pushed onto the
stack.

Stack Stack Status
Position Initial Final

SO I LENV@P+I
Sl P A
S2 A B
S3 B C

- 95 -

4.8.1.11 Stack Management Instructions.

POP N POP STACK

This operator pops the stack by one word. The value of TOS is
incremented by one.

DUPS V . • DUPLICATE TOP OF STACK, SINGLE WORD.

The single word duplicate top of the stack operator executes a
stack push operation and copies the initial contents V (16-bit
word) of the top of stack into the location which is the new top
of stack. The value V and its duplicate are left in the top two
stack positions (Sl and SO).

DUPD V' . .

Stack
Position

SO
Sl
S2
S3

Stack Status
Initial Final

V
A

·B
C

V
V
A
B

DUPLICATE TOP OF STACK, DOUBLE WORD •

The double word duplicate top of stack operator executes a
push 2 operation and copies the double word V' initially in the
top two positions of the stack into the corresponding two new
positions at the top of the stack. The double word V' and its
duplicate are left in the top four words of the stack.

Stack Stack Status
Position Initial Final

SO V' (LS HALF) V' (LS HALF)
Sl V' (MS HALF) V' (MS HALF)
S2 A V' (LS HALF)
S3 B V' (MS HALF)

- 96 -

EXCHS U,V EXCHANGE, 'SINGLE WORD.

This operator exchanges the two words currently on top of the
stack.

Stack Stack Status
Position Initial Final

SO U V
51 V U
52 A A
53 B B

EXCHD U' , V' EXCHANGE, DOUBLE WORD.

This operator exchanges the two double-length words currently
on top of the stack. That is, SO and 52 are swapped, and 51 and
53 are swapped.

Stack Stack Status
position Initial Final

SO U' (LS HALF) V' (LS HALF)
51 U' (MS HALF) V' (MS HALF)
52 V' (LS HALF) U' (LS HALF)
5'3 V'(MS HALF) U' (MS HALF)

NOP: NULL OPCODE.

This operator has no effect on the stack contents. Control is
simply passed to the next instruction in the program sequence.

- 97 -

CHAPTER S. - Slave Region Design and Operation

This chapter discusses the Slave- Region design and operation.
Excepting for the BGU's, all devices. which are addressed 'and
accessed by means of the system bus are within the Slave Region.
These devices or modules are system memory modules, system I/O
ports, real-time clock/counters, and LRU control, status and
communications registers. Each of these units is interfaced to a
transfer bus which is internal to the Slave Region. A slave
coupler couples this slave transfer bus to the system bus.

S.l Slave System Bus Coupler

The Slave System Bus Coupler functions to accept the serial
system bus commands, either reads or writes, convert them to the
parallel format of the slave region transfer bus, and to control
that transfer bus executing the indicated read or write to
devices attached to the slave region transfer bus.

The slave bus coupler first converts the serial address of a
system bus read or write into a parallel format and then maps
this 19 bit address into a 16 bit address. In the case of a
system bus write, it then converts the serial data word to a
parallel format and executes a transfer bus write of that word to
the mapped 16 bit address. Devices attached to the slave
transfer bus are responsible for recognizing their own addresses
(in the mapped address space) and storing the data addressed to
them. In the case of a system bus read, the slave coupler
initiates a transfer bus read using the mapped address. Devices
attached to the slave transfer bus are responsible for
recognlzlng their own addresses (within the mapped address
space). A device which recognizes its own address responds with
the requested data word and a positive acknowledgment. If the
slave coupler receives a positive acknowledgment it accepts. the
data word, converting it to the serial format used on the system
bus, and transmits it on the R bus outputs of the slave coupler.
These R bus outputs are then gated directly to the system bus R
line{s) where appropriately enabled by that LRU's BGU R line
enabling registers.

Operation
the attached
The arrival
operation of

of the slave coupler, the slave transfer bus, and of
devices is synchronous with the LRU system clock.

of a system bus command serves to synchronize the
the slave coupler to a particular frame of the LRU

- 98 -

system clock. In those situations where several slave couplers
must respond to a system read or write simultaneously, as in the
case of a system memory triad read or ~rite, this synchronization
to a particular frame of the LRU system clocks of each of the
responding LRU's serves to assure simultaneous and tightly
synchronized operation of each element of the responding triad,
since the LRU system clocks of all LRU are synchronized by the
system clocking mechanism. Thus the slave region is
automatically synchronizing. No special action is required to
achieve tightly synchronized operation of slave region triads, as
is required to acheive processor triad synchronization.

The mapping of the 19 bit system bus address into a 16 bit
mapped address, which is used internally on the slave transfer
bus, is relatively simple. In the case where the five most
significant bits of the system bus address equal the content of
the five least significant bits of the system memory relocation
register (an LRU control register) the mapped slave transfer bus
address is created by directly using the 14 least significant
bits of the system bus address as the 14 least significant bits
of the slave transfer bus address and using 00 as the two most
significant bits of the 16 bit slave transfer bus address. The
16K system memory module will respond to transfer'bus addresses
"0000" through "3FFF". The writing of the LRU system memory
relocation register thus determines which 16K block of the system
memory address space the system memory module of an LRU will
respond to.

In the case where the 5 most significant bits of the system
bus address do not equal the content of the relocation register
the slave transfer address is constructed as fpllows. System bus
address bits 18 through 10 are 'AND'ed together. If this result
is 'zero' then 01 is used as the two most significant bits of the
slave bus address and the 14 least significant bits of the system
bus address are used as the 14 least significant bits of the
slave bus address. There are no devices which respond to these
addresses in the current implementation. If this result is 'one'
then slave address bits 15, 13, 12, 11, and 10 are set to 'one',
slave address bit 14 is set equal to system bus address bit 8,
and slave address bits 9 and 8 are set equal to system bus
address bits 9 and 8 except when the system bus address bits 9,
8, 3, 2, 1 and 0 equal 100011 in which case slave address bits 9
and 8 are set equal to 01. Figure 5.1 summarizes this mapping.
Note that this entire mapping procedure is transparent to the
processor triad and that for all practical purposes slave
transfer bus devices can be treated as if they responded to
system bus addresses directly. For this reason, all other
sections of this volume discuss device function and system bus
address assignments as if this were the case. Figure 5.2
summarizes the system 'bus address assignments for all slave
units.

- 99 -

if rrrrr = re10c reg.

system bus address slave bus address

rrr,rraa,aaaa,aaaa,aaaa -> OOaa,aaaa,aaaa,aaaa

if rrrrrssss =1= 111111111

system bus address slave bus address

rrr,rrss,ssaa,aaaa,aaaa "-> 01ss,ssaa,aaaa,aaaa

if rrrrrrrrr = 111111111 and abdddd =1= 100011

system bus address slave bus address

rrr,rrrr,rrab,cccc,dddd --> 1b11,11ab,cccc,dddd

if rrrrrrrrr = 111111111 and abdddd = 100011

system bus address slave bus address

rrr,rrrr,rrab,cccc,dddd --> 1011,1101,cccc,0011

Figure 5.1 System Bus Address to
Slave Transfer Bus Address Mapping

- 100 -

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I
01

reg

1'1 1 1 1 1 1 1 1 1 1 0 0 sel LRU

ERROR LATCH STATUS REGISTER ADDRESS

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 1 01 LRU reg se1

I/O PORT ADDRESSES

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 1 11 LRU reg sel

LRU CONTROL REGISTER ADDRESSES ,

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 I~I
reg

1 1 1 1 1 1 1 1 1 1 1 1 triad se1

PROCESSOR TRIAD COMMUNICATION REGISTER ADDRESSES

Figure 5.2 System Bus Address Assignment Summary

- 101 -

5.2 System RAM

Each LRU in the FTMP contains 16K words of system memory. The
system memory is made up of lK x 4 bit CMOS RAM chips. It is
backed by battery power to provide non-volatile storage. The
memory can be read or written over the system bus. It responds to
a 19-bit address when the 5 most significant bits of the 19 bit
address match the 5 low order bits of the MRR control register.
The 14 low order bits of the address, which can range from 0000
to 3FFF, select a word from the 16K memory array. Figure 5.3
illustrates the address format for accessing system memory.

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

block select Word Select (0000 to 3FFF)

Figure 5.3 System Bus Address Format of System Memory

5.3 Real Time Clock

An accurate time reference is provided in the FTMP by a real
time clock with a resolution of 250 microseconds. Logically, the
real time clock is a 32-bit wide register that is incremented
every 250 microseconds. Thus if reset, the clock can be
incremented continually for approximately 12-1/2 days before
overflowing.

The clock can be read on the system bus by addressing
locations "7FFFF" (high order clock word) and "7FFFE" (low order
word). A read from 7FFFE latches the state of the clock (all 32
bits) and the low order word is gated to the bus. A subsequent
read from "7FFFF" gates the high order word that is already in
the latch onto the bus. Each LRU has a 32-bit clock register but
only one triad of LRU's is assigned to respond to reads· of the
real-time clock. All LRU's respond to writes to the real-time
clock. An LRU may be armed to respond to clock read requests by
setting bit 5 of its Memory Relocation Register to 1. When the
least significant word of the real-time clock ("7FFFE") is
written, the divider network, which is used to derive the 250
microsecond clock from the system clock, is cleared and held at
zero. When the most significant word ("7FFFF") is then written
the divider network is released. Since all real-time clocks and
their associated divider networks respond to writes in
synchronism with one another, a write serves to synchronize all
clocks to one another. Furthermore, since they are all
incremented by identical derivatives of the system clock time
base, they will then stay synchronized. If an element of the
clock triad fails it is not necessary to reinitialize the real-.

- 102 -

time clock system in order to effect repair. The failed unit can
be replaced by removing it from ,the system and assigning another
unit in its place. That unit is already operating in synchronism
with the elements of the real-time clock/counter triad.

The real-time clock is volatile and the loss of primary power
causes its contents to be lost.

5.4 Control, Communication and Status Registers

There are 17 control, communication and status
each LRU. These are described in the following
sections.

5.4.1 Control Registers

registers in
three sub-

There are nine control registers within each LRU. Each
register is used to perform control specific LRU functions. These
registers are shown in Figure 5.4.

Registers 0 to 3 are 4-bit wide CPU control registers. The
least significant bit of Register 0 controls the reset/run state
of the CPU. The next 3 bits of Register 0 contain the processor
triad identification assignment for the processor region. CPU
control registers 1, 2 and 3 are presently unassigned.

Control registers 4 to 7 are 4-bit wide line select registers.
Registers 4 and 5 are used by the processor region bus
controller. Register 6 is used by the I/O region bus coupler and
register 7 is used by the clock region bus coupler. Each four
bit code designates which three of five lines are to be selected
by the input voting circuitry. Figure 5.5 summarizes the code to
line select relationship. The codes to line select mapping is
identical from all lines. This code to line select mapping is
also identical to the code to line select mapping used by the
BGU's, however the select register and input circuitry of the
BGU's are separate from this control and input circuitry.

Register 8 is a 6-bit system memory relocation register. The 5
low order bits of this register form the 5 high order bits (bits
14 to 18) of the 19 bit address space to which system memory in
this LRU responds on the system bus. The most significant bit of
the relocation register is used to arm/disarm the real time clock
of the LRU. If the MSB is a 'one', the LRU responds to 'read
clock' requests. Otherwise, read clock requests are ignored.

The system address format of control registers is shown in
Figure 5.6. As can be seen from this figure, the address of the
registers is LRU specific. Therefore, the contents of the control
registers in a given LRU can be altered independent of other
LRU's. The control registers can not be read over the system bus.

- 103 -

Reg. # Reglster Functlon

0 CPU Control 0
1 CPU Control 1
2 CPU Control 2

" 3 CPU Control 3

4 P Select
5 R Select
6 T Select
7 C Select

8 Memory Relocation

Figure 5.4 Control Registers

Select Code Selected Bus Set

0 1, 2: , 4 <
1 1, 2, 5 <
2 1, 3, 4 <
3 1, 3, 5 <
4 2, 3, 4 <
5 2, 3, 5 <
6 2, 4, 5 <
7 3, 4, 5 <
8 1, 2, 3 <
9 1, 2, 3
A 1, 3, 3
B 1, 3, 3
C 2, 3, 3
D 1, 2, 3
E 3, 4, 5
F 1, 4, 5 <

< : legal select codes

Figure 5.5 Select Code to Selected Bus Set Mapping Table.

- 104 -

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 1 1 LRU ID \REG SELECT

Figure 5.6 System Bus Address Format of Control Registers

5.4.2 Communication Registers

There are four Inter-Processor triad Communication (IPC)
registers in each LRU which provide a direct communication link
between processor triads. The registers are 4 bits wide. Their
system bus address format is shown in Figure 5.7. IPC register
addresses are keyed to specific processor triad identification.
Therefore the IPC registers of any LRU with the appropriate
processor triad identification will respond to a system bus write
to an IPC register. Since all members of a processor triad have
the same processor triad assignment, all members of a processor
triad will receive the IPC write simultaneously. Writes to IPC
register 2 or 3 of the LRU will pend an interrupt for the
processor. The IPC registers can not be read over the system
bus.

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Proc. REG.
1 1 1 1 1 1 1 1 1 1 1 1 1 Triad 0 SELECT

Id •
Figure 5.7 System Bus Address Format of IPC Registers

- 105 -

5.4.3 Status Registers

There are four status registers in each LRU and are known as
theP, R, T and C bus error latches. The error latches are 5 bits
wide. They can be read over the system bus. The address format
is shown in Figure 5.8. Error latches have LRU specific addresses
and only one LRU responds to a given error latch read request.
Reading an error latch clears that latch to zero. The latches can
not be written into via the system bus. The bits in the error
latches are set in response to pulses from the associated input
circuitry: the system bus controller input circuitry in the case
of the P and R error latches, the slave system bus coupler input
circuitry in the case of the T error latch, and the clock
generator input circuitry in the case of the C error latch. Bit
o set corresponds to an error on bus set 1, bit 1 to bus set 2,
bit 2 to bus set 3, bit 3 to bus set 4, and bit 4 corresponds to
an error on bus set 5. An error latch is reset when it is read.

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 1 0 0 0 1~~r~~TI LRU· 1D

Figure 5.8 System Bus Address Format of Status Registers

5.5 I/O Port

Each LRU in the FTMP contains an Input/Output port. The I/O
port links the LRU to remote terminals (RT) via an external 1553A
bus. The port contains three 16-bit wide registers and a 32-word
long first-in first-out (FIFO) type data buffer. The functions of
the three registers are as follows. Register 0 (RO) is the 1553
command register. Register 1 (Rl) is the port status register and
register 2 (R2) is the port control register. These registers
can be accessed on the system bus using the address format shown
in Figure 5.9. The command and control registers (RO and R2) are
write only while the status register (Rl) is a read only
register. The FIFO buffer can be read and written over the system
bus using the address shown in Figure 5.10. As can be seen from
the figure the FIFO buffer in a given LRU responds to a single
system bus address. The buffer as well as the registers have LRU
specific system bus addresses and only one LRU responds to a
given I/O port command.

Section 5.5.1 describes various fields in the command, control
and status registers. Section 5.5.2 describes the operation of
the I/O port to communicate with the remote terminals.

- 106 -

5.5.1 I/O Port Registers

The various fields of the 1553 command register are shown in
Figure 5.11. Bits 11 to 15 (5 high order bits) of RO contain the
address of the remote terminal to which the transmission is
directed. Bit 10 is the 'Receive/Transmit' bit. It determines the
direction of the transmission. If bit 10 is zero the I/O port
will transmit; if one the I/O port will receive. Bits 5 to 9 are
the RT subaddress. If .all zero then it is a mode command. Bits 0
to 4 (5 low order bits) contain the number of words to be
transmitted. If all 5 bits are zero, the number is 32.

Figure 5.12 shows the detailed fields of the port status
register. Bit 15 (the most significant bit) is the 'Ready' bit.
It is set when the port is ready for another 1553 transaction
sequence. Bit 14 is the 'Bus Busy' bit. It is set if a command
word transmission is attempted while the 1553 bus is busy. Bit 13
is the 'Buffer Full' bit. It is set when the FIFO buffer is full,
that is, contains 32 words. Bit 12 is the 'Buffer Em~ty' bit and
is set if the FIFO is empty. Bit 11 is the 'Word Count Error'
bit. It is set if a word count error is detected. The count error
occurs if 1) the port transmitted a 'Receive' command and too few

\ words were contained in the FIFO to transmit the required word
count or 2) the port transmitted a 'Transmit' command and the RT
transmitted too few or too many words. If the FIFO contains more
words than required before a transmission no count error will
occur. Bit 10 is the 'Message Error' bit. It is set when a
message error during a 1553 transaction is detected. A number of
different errors can cause this bit to be set. This bit will be
set if the RT fails to send a status reply within 15 microseconds
after the completion of the command word transmission. The
message error bit is also set if a command word transmission is
attempted when the 1553 bus is busy. This also sets the 'Bus
Busy' bit, explained earlier. A word count error also sets the
message error bit. Bits of 0 to 9 (the 10 low order bits) of Rl
contain the 1553 RT status reply. Upon completion of a 1553
transaction the remote terminal sends its status into these bits.

A write into the port command register clears the status
register to zero.

Figure 5.13 shows the format of the port control register.
Bit 15 of the control register is the 'Reset' bit. Setting this
bit clears the command and status registers and the FIFO data
buffer. The reset bit itself is cleared by the port after the
port reset sequence has been completed. The reset sequence may
take up to 55 microseconds if the buffer is full. After a reset,
the 'Empty' bit will be set in the status register indicating
that the data buffer is empty and the 'Ready' bit will be set
indicating that a transaction sequence may begin. Bit 0 of the
control register is the 'Flush Buffer' bit. Setting this bit
empties the FIFO buffer. The bit is reset by the port when it
has completed emptying the buffer.

- 107 -

,

5.5.2 I/O Port Operation

All 1553 data words are written to or read from the 32-word
FIFO buffer. To send a message to a remote terminal, it is
necessary first to load the buffer with the data to be sent,
assuming that the I/O port has already been reset by setting the
'Port reset' bit in the control register. The next step then is
to check the 'Ready' bit in the status register to make sure that
the port is ready for a 1553 transaction. If so, the command
register is loaded with the RT address, the word count and
Receive command since the RT is going to receive the message.
Writing into the command register clears the status register to
zero, causes the contents of the command register and 'word
count' number of words from the FIFO buffer to be transmitted
over the 1553 bus. At the completion of the I/O transaction the
status register contains the. status reply from the remote
terminal. The status register also contains the status of the
transaction. That is, 'Message Error' , 'Word Count Error' and
other bits in the status register are set to indicate whether the
transmission was successful.

To receive a message from an RT, a 'Transmit' command is
loaded into the command register after the data buffer has been
cleared and the 'Ready' bit of the status register has been
checked. writing into the command register causes the contents of
the command register to be sent on the 1553 bus. After the data
from the RT has been received in the port buffer, the status
register would contain the RT status reply and the outcome of the
transaction.

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 11 1 1 1 1 1 0 LRU ID o 0 SELECT I
REG.

Figure 5.9 System Bus Address Format of I/O Port Registers

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 110 LRU ID o 0 1 1

Figure 5.10 System Bus Address Format of FIFO Buffer

- 108 -

15 14 13 12 11 10 9 8 7 6 5 4 3 210

RT XMIT/ RT WORD
ADDRESS RECV SUBADDRESS COUNT

Figure 5.11 I/O Port Command Register(Reg. 0)

15 14 13 12 11 10 987 654 3 2 1 a

PRT BUS BUF BUF WRD MSG
RDY BSY FUL ZRO CNT ERR REMOTE TERMINAL STATUS REPLY

ERR

Figure 5.12 I/O Port Status Register (Reg. 1)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 a

RESET I I FLUSH
BI T UNUSED BUFFER

Figure 5.13 I/O Port Control Register (Reg. 2)

- 109 -

CHAPTER 6. - Clock Generation Region Design and Operation

All circuitry of the LRU (except for the BGU's) use or rely
upon the timing base provided by the clock region. This region
provides the local LRU version of the 1 MHz. system clock, as
well as clock multiples such as 16 MHz., 8 MHz., 4 MHz., 2 MHz.
and the submultiples such as 500 KHz. All of these auxiliary
frequencies are phase related to the -local system clock by the
divider and generation mechanism which are used to create them.

The heart of the clock region is a voltage controlled crystal
oscillator, with a nominal center frequency of 16 MHz. All of
the subfrequencies including the basic 1 MHz. system clock are
created by dividing this source signal. The crystal oscillators
are accurate to .001 % and may be pulled via the control voltage
input by .01 %. Such variations in the clock frequencies are
insignificant relative to the correct operation of the FTMP
circuitry. Use of the system clock as the ultimate time base for
the real-time clock/counter limits its accuracy to that of the
system clock signal. In the worst case, this implies an error of
about 1 minute per day. Such an error could manifest itself into
navigation errors as large as four nautical miles over a. ten hour
mission. Typical performance should be about four or five times
better than this worst case number.

Each clock generation region synchronizes with the clock
generation regions of the other LRU's by phase locking its

_ internal 1 MHz. system clock to the system bus timing signals.
Certain of these LRU's serve as the sources of system bus timing
signals when their internal 1 MHz. system clocks are gated onto
system bus C lines. Others simply listen to the C bus and have no
effect on its content. In either case an LRU generates an
internal reference signal by recelvlng all five Clines,
selecting three of these five and passing them through simple
majority logic. This reference signal is then phase compared to
the internal system clock. If the system clock leads the
reference signal, an error signal proportional to this lead is
generated and applied to the voltage control input of the crystal
oscillator. This signal tends to depress the operating frequency
of the oscillator. If the internal system clock lags the
reference signal the error signal, proportional to the lag, is in
the direction such that it elevates the operating frequency of
the oscillator. The code used by the input select circuitry in
determining which three of the five C lines are to be gated to
the voter is provided by an LRU control register of the slave

- 110 -

region. Figure 6.1 illustrates the basic organization of the
clock generation region. Figure 6.2 depicts this block diagram
using classical control block representations for its operation.

to Bus interface <-+------------+
circuitry local system

to other LRU
circuitry <----+

>

>

clock

Figure 6.1 Clock Generation Region.

reference reLclk.

phase compare
+

I
+----+

error

sign

inp-ur-
voltage
controlled
crystal
oscillator

clock >---> l/S
(frequency)

----->0----> K/(T*S+l) -+
(phase) A

from voter
system
clock
(phase)

l/S <-----------------+

internal system clock (frequency)
to other cir. <--+

al

Figure 6.2 Clock Generator (Frequency/Phase Control Diagram)

- 111 -

The transfer function of such a system is:

(freq. in)/(freq. out) = K / (T*S**2 + 5 + 1)

As a minimum for clock system stability this loop should be
overdamped. Damping is:

D = .5 / SQRT(T*K)

The K chosen for this implementation is:

K = .1 Hz./deg. phase error

or dimensionally more correct

K = 37 / sec.

which implies:

T < .006 sec.

The T's for the voltage controlled crystals are all comfortably
below this limit.

The phase locked loop also serves to filter the reference
signal, eliminating the effect of high frequency glitches and
asymmetric duty cycles. The output of the voter circuit may be
asymmetric or have high frequency spikes due to legitimate skews
between valid clock signals and the effect of a failed clock line
on the operation of the voter circuit. The outputs of the
crystal oscillator and its various divider circuits are always
symmetric and the phase lock loop rejects frequency components in
the reference signal which are beyond the capture range of the
crystal. It is this basic unsuitability of the raw reference
signal which compels the use of the crystal output for internal
timing instead of the direct use of the reference for LRU
clocking functions.

The clock generation regions of mUltiple LRU's may be used in
either of two ways to create the common C line timing signals.
Four LRU's may be selected as the clock quad, with the output of
each LRU's clock generator being gated onto a different Cline.
Each LRU then selects and votes on the C lines being used by the
other three LRU's. Configured in this fashion, the clock
generators of the clock quad effectively lock to each other so
that their transmissions onto the C lines are of the same
frequency and are in phase with one another. Any single failure
of the clocking system, either in a clock generator or in the
bussing distributing the clocks, can at most disable one of the C
line bus signals. Any LRU which is not a member of the clock
quad can synchronize its internal system clock to that of the
clock quad by selecting and voting on any three of the four
active bus lines to create its reference signal. All functioning
LRU's can therefore maintain clock synchronism with one another

- 112 -

despite any single fault in either the clock quad or the bus
system. When such a fault occurs the system can be repaired by
assignin~ one of the functioning but passive LRU generators to
take over transmissions onto a C line in place of a failed
generator, or by using the spare C line in place of a failed C
line.

An alternate configuration is to select three clock generators
to function as a clock triad. Each element of the clock triad
transmits onto a different C line. Each element of the clock
triad selects and votes on the same C lines. Thus the reference
signal used by a clock triad member is a combination of, the
signals from the other two elements of the triad and one's own
signal. The reference signal used by the LRU's which are not
members of the clock triad is simply derived by voting on the
three signals from the clock triad. The clock generators of all
LRU's will remain synchronized with one another despite any
single failure of a clock generator or any single failure of the
bussing system, excepting for certain pathological and remote
failure events. It is- because of these pathological failure
events that the clock quad configuration is preferred and the
clock triad is only used when inadequate buses or generators
remain to construct a fault free clock quad.

Figure 6.3 illustrates the interconnections to create a clock
quad. Figure 6.4 illustrates the interconnections to create a
clock triad.

- 113 -

clock
quad

element
1

clock
quad

element
2

clock
quad

element
3

clock
quad

element
4

passive
clock

element

Figure 6.3

<------
<.--------
<-------+

Clines
I

- ->+

--+
-+

->+

<------
<--------- --+
<.----------+

-+

<,--------
<,------
<,--------+

------->+ ,
<:----------
<:----------
<:----------

<
<
< +

I

->+

-+
-+

----+
- -'-+
-+

-- -+
-+

bus system

Clock Quad Interconnections

- 114 -

clock
triad
element

I

clock
triad
element

2

clock
triad
element

3

passive
clock

element

passive
clock

element

Clines

<------
<------
<-------+

<.------
<,------
<-------+

>+

<
<
< +

<------
<------
<-------+

I
- ->+

I
--+
-+

->+

-1-+
-+

- -+
-+

--+
-+

<------- -- --+
< -+
< +

1
bus system

Figure 6.4 Clock Triad Interconnections

- 115 -

CHAPTER 7. - Power System

The power system consists of four primary power supplies,
which function to provide quad redundant power to each LRU of the
system, local power regulators in each LRU, and local battery
backup within each LRU for maintaining system memory and system
configuration registers during primary power interruptions.

Each of the four primary power supplies accepts 208 VAC, 400
Hz three phase power and outputs 28 VDC onto a different one of
the four primary power buses. Each power supply can sustain 150
amperes output current indefinitely and in excess of 1500 amperes
peak output current for short periods. Total power consumption
of all LRU's can be sustained by anyone of the four primary
power supplies. Four primary power buses distribute power to all
LRU's of the system. Each primary power supply drives a
different power bus and each LRU has access to all power buses •.

Each LRU has a power regulator which accepts power from the
quad redundant primary power buses, and converts it to the
appropriate LRU internal voltages. Each power regulator can draw
power from anyone of the four primary power buses, and will
maintain internal LRU voltages within regulation as long as at
least one of the power buses is within its input operating range
of 18 to 40 VDC. Within each LRU, the combining of primary power
is provided in a two stage process. First, two pairs are
combined by a diode junction. Secondly, a dual switching
regulator draws power from this intermediate pair, combining them
to produce the regulated internal ·power. Each primary power bus
is fused as it enters the LRU so that any internal short circuits
within an LRU could at most only provide a momentary disturbance
on the primary power buses before the fuses blew. Energy storage
within the regulator is such that the LRU internal voltages will
remain within regulation in the event that another LRUbriefly
shorts all primary power buses. Due to the nature of the diode
junction which is used to combine the power from two buses, it is
impossible to assure that most of the power being drawn from the
diode junction is not being sourced from only one bus of the
pair. If diode junctions were used exclusively to combine power
it would in fact be difficult to assure that all power for all
LRU's was not being drawn from one supply. The second stage dual
switch regulator provides the means for balancing the power drain
f~om each of the primary power supplies. Within the LRU, the
dual regulator draws nearly equal power from each of the two
diode junctions. Since it is possible that all of the power

- 116 -

drawn from a diode junction may be sourced from only one bus, a
single LRUf may under worst case draw about half its power from
one power bus. If all LRU's combined the same pairs of primary
power buses, then it would be possible that only two power
supplies were driving the entire system. Each LRU is configured
to combine differing pairs of the primary power buses so as to
avoid this possibility. Thus while any single LRU may be drawing
power from only two buses, it is impossible for all LRU's to be
drawing power from only these two buses. This tends to
distribute the load among the power supplies such that in the
worst case power is drawn from at least three of the power
supplies, and in most cases power is drawn from all power
supplies. Figure 7.1 illustrates examples of interconnecting two
LRU's to the primary power buses.

fuse
+- -(-)--:>1-+

1->
+- - -(-) >1--+ switching

+-- -- - --(-) > 1--+
1--> regulator

+- - - -- -(-) > 1--+

LRU 00

+- -(-)-->1--+
1->

+- -- -- --- --(-) >1--+ switching

+-- - - -(-) > 1--+
1-> regulator

+-- -- -(-) > 1--+

primary power
buses

LRU 01

LRU

---->
power

LRU

--->
power

Figure 7.1 LRU Power Interconnection Examples.

- 117 -

Each LRU also contains battery backup circuitry to power the
CMOS memory and configuration registers should primary power be
lost. These batteries can provide some 100 hours of protection
against power loss. Integral charging circuitry assures that the
batteries are recharged when primary power is available. A
switch on the front of each LRU allows the batteries to be
disconnected and the LRU completely shut down for long term
storage or shipment. This avoids discharging the batteries
needlessly, and provides the means of assuring that all power has
been removed from the backplane and circuit cards when repair is
undertaken. Total charging time from complete discharge is eight
hours.

- 118 -

1. Report No. 2. Government Accession No.

NASA CR-l66071
4. Title and Subtitle

DEVELOPMENT AND EVALUATION OF A FAULT-TOLERANT
MULTIPROCESSOR (FTMP) COMPUTER
Volume I - FTMP principles of Operation

7. Aut/lOr(s'

T. B. Smith, III and J. H. La1a

3. Recipient's Catalog No.

5. Report Date

May 1983
6. Performing Organization Code

8. Performing Organization Report No.

CSDL-R-1600

1---------------------------------4 10. Work Unit No.
9. Performing Organization Name and Addreu

The Charles Stark Draper Laboratory, Inc.
555 Technology Square

11. Contract or Grant No.

NASl-15336
Cambridge, Massachusetts 02139 I-______________________________ ~ 13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
. Washington, DC 20546

15. Supplementary Notes

Langley Technical Monitor: Charles W. Meissner, Jr.
Final Report

16. Abstract

Contractor Report

14. Sponsoring Agency Code

This report is Volume I of a four-volume report on the Fault-Tolerant Multi
processor (FTMP) project. It covers in detail the FTMP architecture and principles
of operation, and is intended to serve as a comprehensive guide to the hardware
organization and operation.

The FTMP engineering model was constructed by the Collins Avionics Group of
the Rockwell International Corporation to the architectural and functional
specifications provided by the C. S. Draper Laboratory.

The basic organization of the FTMP is that of a general purpose homogeneous
multiprocessor. Three processors operate on a shared system (memory and I/O) bus.
Replication and tight synchronization of all elements and hardware voting is
employed to detect and correct any single fault. Reconfiguration is then employed
to "repair" a fault. Multiple faults may be tolerated as a sequence of single
faults with repair between fault occurrences.

17. Key Words (Suggested by Author(s))

Fault-Tolerance
Multiprocessor
Synchronous
Reconfigurab1e

19. Security Classif. (of this report'

Unclassified

18. Distribution Statement

~Distribution

Subject Category 62

20. Security Class/f. (of this page'
Unclassified

21. No. of Pages

122

22. Price,

Available: NASA's Industrial Applications Centers

End of Document

