
NASA Contractor Report 166072

N F\SA - C/(--I {Jg ,0lL '., ,.;'1
'\~

NASA-CR-166072
19850022394

DEVELOPMENT AND EVALUATION
OF A FAULT-TOLERANT
MULTIPROCESSOR (FTMP) COMPUTER
Volume II
FTMP Software

Jaynarayan H. Lala and T. Basil Smith, III

THE CHARLES STARK DRAPER LABORATORY, INC.
555 Technology Square
Cambridge, Massachusetts 02139

CONTRACT NAS1-15336
MAY 1983

iQB;.EAB~OME&TIG;DISSEMINIJJQN

Because of lis significant early commercial potential, this Information,
~ch has been developed under a U.S. Governme~m, Is
bel'i1lr>d~"~mlnated within the United State~J.,I},.""lnce of general
publicatloii7'Thi,,'~formation may be _~l,Ipllcated and used by the
recipient with the exj)rhsJlm,tatlol1Jhiiflt not be published. Release
of this Information to other cfQ'.neiUc parties by the recipient shall be
made subject to thesel!.rnltaflons. Forelgnreleastt"!!lY be made only
wllh prlor~AS ,sproval and appropriate export' Ucii'lses. This
legend shall,. . marked on any reproduction of this Information In
whole!!1J part.

Review for general release May, 1985

NI\S/\
National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665

111
NF02222

lIBRARY COpy

LANGLEY RESEARCH CENTER
LIBRARY, NASA

HAMPTON, VIRGINIA

FOREWORD

This report was authored by Dr. Jaynarayan H. Lala. Dr. T. Basil
Smith was the project engineer. Mr. Charles Meissner was the NASA
technical monitor for the period January-December 1982, and Mr. Nicholas
Murray was the technical monitor from August 1978 to December 1981.
Following are some of the people who contributed to the success of this
project.

Draper Laboratory

Dr. Albert Hopkins
Mr. Jack McKenna
Ms. Linda Alger
Mr. Kevin Koch
Mr. Robert Scott
Mr. Joseph Marino
Mr. David Hauger
Mr. Mario Santarelli

Collins Avionics

Mr. Ron Coffin
Mr. Charles Schulz

i

/u gS-- .B {)7~fol­

~7J~.

This Page Intentionally left Blank

TABLE OF,CONTENTS

Page

1. Introduction •••••• • ' ••••••• " ••••••••••••• '.' ••••••• ' •••• 0_ 1

2. FTMP Software Overview ••• 7

2. 1 Executive Software •••••••••••••••••••• " ••••• ' •••••••••••••••••• 7
2.2 Facilities Software ••• 10
2.3 Acceptance Test/Diagnostic Software ••••••••••••••••••••••••• 13
2.4 Applications Software •••••••••••• ' •••••••••••••• ' ••••••••••••• 15
2.5 Support Software ••.•• 16

3. Executive Software •• 19

3.1 Basic concepts •• 19
3.2 Kernel •••••••••• ~ ••• 33

3.2.1 Kernel Functions •••••••••••••••••••• ~ ••••••••••••••••• 33
3.2.2 Kernel N-S Diagram ••••••••••••••••••••••••• ' ••••••••••• 35
3.2.3 Kernel Data Base •••••••••••••••••••••••••••••••••••••• 39

3.3 System Restart •• 45
3. 3 • 1 Functions •••••••••••••••••••••••••• ' ••••••••••••••••••• 45
3.3.2 Data Base ••• 49
3.3.3 N-S Diagram ••• 53

3.4 Task Scheduling and Dispatching ••••••••••••••••••••••••••••• 60
3.4.1 Dispatch Strategy and Implementation •••••••••••••••••• 61
3.4.2 Dispatcher Data Base •••••••••••••••••••••••••••••••••• 74
3.4.3 Dispatcher N-S Diagrams ••••••••••••••••••••••••••••••• aO

3.5 System Configuration Control •••••••••••••••••••••••••••••••• 95
3. 5. 1 sec ••• 96
3 • 5. 2 FSCC ••• 11 0
3.5.3 Fault Detection •••••••••••••••••••••••••••••••••••••• 112

3.5.3.1 Fault Detection Methodology •••••••••••••••••• 112
3.5.3.2 Fault Detection Program and Data Base •••••••• 114

3.5.4 Fault Identification ••••••••••••••••••••••••••••••••• 119
3.5.4.1 Hard Failure Analysis •••••••••••••••••••••••• 120

3.5.4.1.1 Single Fault Analysis •••••••••••••• 121
3.5.4.1.2 Double Fault Analysis •••••••••••••• 123
3.5.4.1.3 Triple Fault Analysis •••••••••••••• 123
3.5.4.1.4 Quad Fault Analysis •••••••••••••••• 124

3.5.4.2 Transient Fault Analysis ••••••••••••••••••••• 124
3.5.4.3 SCC, HFA and TFA Data Base ••••••••••••••••••• 126

3.5.5 Spare Cycling ... 127
3.5.5.1 SWAP.PROC •••••••••••••••••••••••••••••••••••• 129
3. 5.5.2 SWAP. HEM ••••••••••••••• •.•••••••••••• ~ ••••••• • 130
3.5.5.3 SWAP.BUS ' •••••••••• ~ .' •••••••••••• 130

iii

TABLE OF CONTENTS (Cont.)

Page

3.5.6 System Reconfiguration ••• ~ •••••••••••••••••••••••••••• 131
3.5.6.1 Deactivate Processor •••••••••••••••••••••••••• 134
3.5.6.2 Deactivate Memory ••••••••••••••••••••••••••••• 139
3.5.6.3 Deactivate Clock.~ •••••••••••••••••••••••••••• 139
3.5.6.4 Deactivate P Bus •••••••••••••••••••••••••••••• 142
3.5.6.5 Deactivate R Bus •••••••••••••••••••••••••••••• 142
3.5.6.6 Deactivate T Bus.~ •••••••••••••••••••••••••••• 147
3.5.6.7 Deactivate C Bus •••••••••••••••••••••••••••••• 147
3.5.6.8 Rotate Triad on P Bus ••••••••••••••••••••••••• 147
3.5.6.9 Rotate Triad on T Bus ••••••••••••••••••••••••• 150
3.5.6.10
3.5.6.11

Rotate Memory •••••••••••••••••••••••••••••••• 150
Exchange Oscillators ••••••••••••••••••••••••• 151

3.5.6.12 Shadow Memory •••••••••••••••••••••••••••••••• 151
3.5.6.13 Swap Processor ••••••••••••••••••••••••••••••• 151
3.5.6.14 Swap Memory ••••••••••••• ~ •••••••••••••••••••• 152
3.5.6.15 Swap Oscillator •••••••••••••••••••••••••••••• 152
3.5.6.16 Swap P Bus ••••••••••••••••••••••••••••••••••• 152
3.5.6.17 Swap R Bus ••••••••••••••••••••••••••••••••••• 152
3.5.6.18 swap T Bus ••••••••••••••••••••••••••••••••••• 153
3.5.6.19 Swap C Bus ••••••••••••••••••••••••••••••••••• 153

3.6 Input/Output •• 153
3.6. 1 'rrY ••• 154
3. 6.2 SENSOR. 10 •••••••••••••••••••••••••••••••• • -••••••••••• • 157

3.7 Executive Primitives •• 157
3.7.1 System Bus Service Routines ••••••••••••••••••••••••••• 158
3.7.2 Error Latch Service Routines •••••••••••••••••••••••••• 162
3.7.3 Timer Routines •• 163
3.7.4 Miscellaneous Primitives •••••••••••••••••••••••••••••• 166

4. Facilities Software ••• 173

4.1 eTA ••• 173
4.2 Prom Programm.er •••••••••••••••• ~-' ••••••••••••••••••••••••••• • 175
4.3 Fault injector software (FIS) ••••••••••••••••••••••••••••••• 176
4.4 CAPS simulator •• 178
4.5 Miscellaneous Facilities Software Packages •••••••••••••••••• 179

5. Acceptance Test/Diagnostic Software ••••••••••••••••••••••••••••• 181

5.1 LRD Diagnostics •••••••••••••••• ~ ••••••••••••••••••••••••••• • 182
5.2 Opcode Diagnostics ••••••••••••• ~ •••••••••••••••••••••••••••• 185
5.3 Interrupt Diagostics •• 185
5.4 Cache Memory Diagnostics •••••••••••••••••••••••••••••••••••• 185
5.5 Synchronization and Multiprocessing Diagnostics ••••••••••••• 186
5.6 Clock Diagnostics ••• 186

iv

TABLE OF CONTENTS (Cont.)

Page

6. Applications Software ••• 191

6.1 Console Software •••••••••••••••••••••••••••• < •••••••••••••••• 191
6.2 Flight Control Software ••••••••••••••••••••••••••••••••••••• 204

6.2.1 APFDS ••• 2OS
6.2.2 Autoland •• 211

6.3 FTMP Core Software Summary •••••••••••••••••••••••••••••••••• 217

7. Support So'ftware •• 222

REFERENCE •••••••••••••••••• • ' •• 226

'V

Figure

1-1
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21
3-22
3-23
3-24
3-25
3-26
3-27
3-28
3-29
3-30
3-31
3-32
3-33
3-34
3-35
3-36
3-37
3-38
3-39
3-40
3-41
3-42
3-43

LIST OF FIGURES

Page

FTMP support environment ••••••••••••••••••••••••••••••••••••• 4
Software appearance of FTMP (Virtual Machine) ••••••••••••••• 21
Structure of process state descriptor (PSD) ••••••••••••••••• 23
Machine state before an interrupt ••••••••••••••••••••••••••• 26
Machine state after an interrupt •••••••••••••••••••••••••••• 27
Machine state after resuming an"interrupted process ••••••••• 28
Interrupt handling ••••••••••••• ; •••••••••••••••••••••••••••• 29
Pend/Activate handling ••••••• ~.~ •••••••••••••••••••••••••••• 31
Overall PSD structure and priority •••••••••••••••••••••••••• 32
Kernel N-S diagram •• 36
Stack initialization ••••••••••••••••••••••••••••••••••••••• 38
Stack before initialization ••••••••••••••••••••••••••••••••• 40
Stack after initialization •••••••••••••••••••••••••••••••••• 40
Kernel data base
Kernel data base

Cache PROM ••••••••••••••••••••••••••••••• 42
Cache RAM •••••••••••••••••••••••••••••••• 43

Triad 10 table •• 50
Memory relocation and RTC table ••••••••••••••••••••••••••••• 50
T Selects and C enables ••••••••••••••••••••••••••••••••••••• 50
P, R, and T Bus enables ••••••••••••••••••••••••••••••••••••• 52
P, R, T, and C Select table ••••••••••••••••••••••••••••••••• 52
Restart N-S diagram ••• 55
FTMP workload characterization •••••••••••••••••••••••••••••• 62
Dispatcher overload performance ••••••••••••••••••••••••••••• 67
Major frame initiation ••••••••••••••••••••••••••.•••••••••••• 69
R4 frame termination/Resume RJ •••••••••••••••••••••••••••••• 71
R4 frame initiation, interrupting R3 and R1 ••••••••••••••••• 72
R4 control block ••••••••••••••• ; •••••••••••••••••••••••••••• 75
Triad tracker ••• 75
Task data structures •• 76
N-S diagram of R4 dispatcher •••••••••••••••••••••••••••••••• 81
N-S diagram of R3 and R1 dispat~hers •••••••••••••••••••••••• 84
Select task N-S diagram ••••••••••••••••••••••••••••••••••••• 89
Execute N-S diagram ••• 91
sec N-S diaqram ••• 97
Fault detection N-S diagram •••• : ••••••••••••••••••••••••••• 115
ACTIVE. BUS ••••••••••••••••••••• ~ •••••••••••••••• _ •••••••••• • 117
SPARE. BUS •••••••••••••••••••••• ~ •••••••••••••••••••••••••• • 117
BUS. MASK ••••••••••••••••••••••• ~ •••••••••••••••••••••••••• • 117
LATCH and TR.LATCH ••• 118
ERR.LATCH •••••••••••••••••••••• ; ••••••••••••••••••••••••••• 118
LATCH.STATUS ••• 118
Single fault analysis •••••••••••••••••••••••••••••••••••••• 122
Deactivate and Rotate Commands.; ••••••••••••••••••••••••••• 132
Swap commands •••••••••••••••••• f ••••••••••••••••••••••••••• 135

vi

3-44
3-45
3-46
3-47
3-48
3-49
3-50
3-51
3-52
3-53
3-54
3-55
3-56
3-57
3-58
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-18
6-19

LIST OF FIGURES (Cont.)

Page

Assign shadow command •••••••••••••••••••••••••••••••••••••• 136
Deactivate processor ••••••••••••••••••••••••••••••••••••••• 137
Deactivate memory •• 140
Deactivate oscillator •••••••••••••••••••••••••••••••••••••• 141
Deactivate P Bus ••• 143
Bus select codes ••• 144
Deactivate R Bus ••• 145
Simplex codes •• 146
Deactivate T bus ••• 148
Deactivate C bus ••• 149
Lock word structure •• 167
N-S diagram of lock •• 169
Lock word before being unlocked •••••••••••••••••••••••••••• 170
Lock word after being unlocked ••••••••••••••••••••••••••••• 170
N-S diagram of unlock •••••••••••••••••••••••••••••••••••••• 170
System Status Display •••••••••••••••••••••••••••••••••••••• 193
LRU Bus Assignment Display ••••••••••••••••••••••••••••••••• 194
Failure Log Display •• 195
Transient Failure Log Display •••••••••••••••••••••••••••••• 196
I/O Port Status Display •••••••••••••••••••••••••••••••••••• 197
Autopilot/Flight Director Status Display ••••••••••••••••••• 199
CWS - Pitch Loop ••• 206
CWS - Roll Loop •• 206
Lateral SAS •• -•••••• 209
Altitude hold •• 209
Mach hold •• 210
vertical speed hold •• 210
Heading hold ••• 212
Auto land
Auto land
Autoland

Airspeed •• 213
Glide slope ••••••••••••••••••••••••••••••••••••• 213
Flare ••• 214

Auto land Lateral ••• 216
FTMP Load Module Memory Map •••••••••••••••••••••••••••••••• 218
FTMP Address Spaces •• 220

vii

CHAPTER 1

. INTRODUCTION

This report is Volume II of a multi-volume report on the Fault

Tolerant Multiprocessor (FTMP) project sponsored by the Langley Research

Center of the National Aeronautics and, Space Administration under con­

tract NAS1 - 15336. The major topic covered by this volume is the soft­

ware developed under this project. A prerequisite for understanding this

report is some knowledge of the FTMP architecture and its principles of

operations described in Volume I. It is assumed here that the reader is

familiar with the contents of Volume I.

This report is intended to be a comprehensive functional descrip­

tion of the FTMP software with special emphasis on the FTMP Executive and

Applications Programs. The finest level of detail of the software des­

cription treated under this document is the flow-chart level, in most

cases. The actual source language description of the programs and the

outputs of compilers, assemblers and linkers are cited as references. The

reader is urged to consult these reference documents for the instruction

level details of the FTMP software.

The FTMP software can be divided into five broad categories:

Executive, Diagnostics, Applications, Support, and Facilities. The

1

Executive is responsible for the orderly start of the FTMP, maintaining

system integrity in the presence of hardware faults and timely execution

of applications tasks. The Diagnostic software consists of off-line and

on-line system test and self-test programs. The off-line diagnostics run

in a stand-alone mode while the on-line self-test programs are intended

for real-time in-flight diagnostics and are dispatched by the Executive.

Applications programs constitute the core of the FTMP software from the

FTMP user viewpoint. They consist of aircraft navigation, guidance, and

flight control algorithms tailored for a Boeing 707 type commercial

transport aircraft. All the flight control modes presently available on

Lockheed L-1011 Tristar are included in this software package. The Sup­

port software provides th.e necessary tools to convert all these programs

into a format su;table for execution by" the FTMP. These tools include a

cross-compiler, host-compiler, cross-assembler, and a linker. Finally,

the Facilities software is a package of miscellaneous routines that are

used to run the hardware facilities surrounding the FTMP.

There are three different computers, including the FTMP, on which

various parts of the FTMP software are executed. These are the FTMP, a

PDP-11/60, and an AMDAHL-470/V8. A hardware description of the FTMP can

be found in Volume I of this report. The PDP-11/60 is a typical mini­

computer that supports a multiuser RSX-11M operating system. The AMDAHL-

470/V8 is a large mainframe computer that supports the MVS operating

system. The PDP-.11 is connected to the Amdahl computer through a TSO

(Time Share Option) link. The PDP-11 is linked to the FTMP via the Test

2

Adapter. Figure 1-1 shows a block diagram of various hardware elements

and their interconnections.

All the software that is intended to be run on the FTMP, that is,

the Executive, Applications software, and Diagnostic software, is written

in either the high-level language AED or the CAPS-6 assembly-level lan­

guage. The AED programs are compiled on the Amdahl using the AED cross­

compiler. This compiler produces object code for the CAPS-6 processor.

The assembly language programs are assembled using a CAPS-6 cross­

assembler on the Amdahl computer. The linker, which also runs on the

Amdahl, links various object code libraries to produce a load module

suitable to be loaded into the FTMP. The AED cross-compiler itself is

written in AED. It is compiled using the AED host compiler which is also

resident on the Amdahl.

All the facilities software is resident on the PDP-11. It is

written in the PDP-11 assembly language and FORTRAN. The FTMP load mod-

.ules are down-loaded from Amdahl into the PDP-11 using the TSO link that

connects these two computers. The load modules are stored in PDP-11 on an

RL01 disk-pack. They can be transferred from there to the FTMP system

memory or cache by using a loader program which is part of the Facilities

software. The load module can also be transferred into individual PROM

cards. To do this, the PROM card containing 16 PROM's is inserted in the

PROM programmer socket that has been attached on the PDP-11 UNIBUS. It

may then be programmed using the PROM programmer routine which is also

part of the facilities software.

3

TSO
AMDAHL

LINK 470/V8

DUAL
707 t-- VAX PCL11

COCKPIT 11/780 PDP 11/60
(707 SIM)

PDP 11 UNIBUS

I I PROM PROGRAMMER J TEST ADAPTER

1553
- FAULT -

SEVEN - INJECTOR -
FTMP 1553 - F T M P -

DISPLAY RS232 INTERFACES ~ -
&

MONITOR

Figure 1-1. FTMP Support Environment.

4

It may be mentioned here that the software that runs on the FTMP,

that is, the Executive, Applications programs, and Diagnostic programs,

has been written following structured programming techniques. There are

no 'GOTO' statements in this software.

Chapter 2 gives an overview of the FTMP software. Chapters 3, 4,

5, 6,and 7 describe the Executive, Facilities, Diagnostics, Applications,

and Support software, respectively.

5

This Page Intentionally left Blank

CHAPTER 2

FTMP SOFTWARE OVERVIEW .

The FTMP software can be conveniently divided into five functional

categories. These are described in the following five sections •.

2.1 Executive Software

The Executive software is responsible for managing the hardware

and software resources, for maintaining system integrity and for timely

and orderly execution of applications tasks. It forms a link between the

FTMP hardware and the user programs. The FTMP hardware, along with the

Executive, project an image of a virtual machine to the user such that

the hardware redundancy and redundancy management become transparent to

the user. The user is only aware of a multiprocessing environment in

which several processors execute tasks in parallel and are linked togeth­

er by a single shared memory.

The part of the Executive software that is responsible for the

execution of the applications tasks is called the Dispatcher. The Dis­

patcher is at the heart of the Executive. The remaining executive or

systems tasks, that is, all systems tasks other than the Dispatcher, are

treated by the Dispatcher like applications or user tasks. These other

7

systems tasks include a system configuration . controller, system status

displays and self-test programs. They are scheduled to run by the Dis­

patcher just the same as user tasks.

All the user and systems tasks are repetitive in nature. They are

executed at one of three different iteration rates. The three rate

groups, called R4, R3, and R 1, presently execute at 20, 10, and 2.5

hertz, respectively. The highest frequency tasks, that is, those in the

R4 rate group, are given the highest priority, while the lowest frequency

tasks, that is, those in the R1 rate group, are given the lowest priority

for execution. The configuration controller and display tasks are dis­

patched·at the R1 rate.

The Executive is a timer-interrupt driven "floating" executive.

Each iteration of the R4 rate group tasks is initiated by a hardware

timer interrupt. The Executive can run in any processor triad. Hence the

name floating. In other words, no processor triad is a master or slave

triad. All triads have equal authority. Of course, only one triad is

allowed to alter the Executive data bases at any given time. Access to

the shared data bases, such as task queues etc., by different processor

triads, is controlled by semaphores resident in the system memory. The

timer interrupt initiates R4 task iteration or frame in just one triad.

The other triads follow the lead triad when told to do so through IPC

(Inter-processor Communication) registers. At the completion of an R4

frame, whichever triad happens to dispatch the last R4 task becomes

responsible for initiating the next R4 frame using the timer-interrupt.

The second element of the Executive is the system configuration

controller. The configuration controller detects hardware faults by

8

analyzing information from the error latches. It is also responsible for

identifying faulty units and reconfiguring the system to replace them

with spares, or gracefully degrading the system if no spares are avail­

able. Faults are isolated to the LRU (Line Replaceable Unit) sub-unit

level such as processor, memory, clock, I/O port, and system bus line.

Weak intersections of LRU's and buses, that is, an LRU unable to transmit

or receive on a particular bus line, are also identified. Faults that do

not persist long enough to be isolated to one of the aforementioned

sub-uni t levels are handled by a transient fault analysis algorithm.

Demerits are assigned to all the concerned sub-units when a transient

fault is observed. The accumulated demerits are then analyzed for statis­

tical significance to locate the source(s) of transient faults. In addi­

tion to on-demand FDIR (Fault Detection, Isolation and Recovery) the

configuration controller periodically checks critical hardware elements

using self-test programs. Examples of such items are voters and error

latches. Spare sub-units are also constantly cycled into active state to

ascertain their integrity. These include processors, system memory units,

fault-tolerant clock elements, I/O ports, and system bus lines.

The third element of the Executive software is the bootstrap­

/restart program. This program is responsible for bootstrapping the FTMP

when the system is "cold", that is the system memory has not been ini­

tialized. In the cold start case, the system memory is initialized using

an external device such as a cassette tape on a 1553 remote terminal. The

bootstrap program itself is resident in the cache PROM of each processor

unit. The restart program is also responsible for restoring the system to

9

a correct operational state after a power interruption. In this case the

system memory is already loaded with all the programs, data, and the

pre-power interrupt system configuration. The FTMP is brought up to this

configuration and all the relevant data bases such as task queues for the

dispatcher are re-initialized.

The fourth element of the Executive is the cache memory manage­

ment. The cache RAM in each processor unit is only 8k words, while the

total amount of data and programs in the system memory is 32k words.

Therefore some method is necessary to page programs/data in and out of

the cache. This is accomplished by an on~demand paging algorithm that

reads the required page of data/program from the system memory into a

cache page. The cache page is chosen on a round-robin basis.

The last element of the Executive is really a hardware enhancement

function. The CAPS-6 processor does not have vectored interrupts. This

function is now provided in the software. That is, all interrupts are

vectored to their respective interrupt handling routines through the

Executive software.

Chapter 3 describes the Executive software in detail.

2.2 Facilities Software

The FTMP is supported by a PDP-11/60 computer for loading programs

into its system memory and to perform numerous other support functions.

These other functions include test adapter commands, programming FTMP

processor PROM's, fault-injector commands, and a CAPS-6 processor simula­

tor. Software to implement these functions resides on the PDP-11 and is

written in the PDP-11 assembly language or in FORTRAN IV Plus.

10

The first of these facilities software packages is the test adap­

ter interface program, called the CTA (Collins Test Adapter program). The

test adapter is the keyboard interface to an LRU of the FTMP. It can be

connected to an LRU through the processor region transfer bus. At the

same time, the test adapter can be connected to the PDP-11 on the Uni­

bus. The CT program provides on any PDP-11 terminal all the functions

that are available on the test adapter keyboard such as halt, run,

reset, etc.

Additionally, all the FTMP control registers can be accessed from

CTA using mnemonics. To access the system memory and other registers

which are on the FTMP system bus and not directly available on the proc­

essor region transfer bus, it is necessary first to load a cooperator

program (COOp) in the master LRU cache with the help of CTA. Having done

this, CTA can access all the system bus devices through the COOP prog­

ram. For example, the FTMP system memory can then be loaded from a load

file resident on a PDP-11 dispack. Other system bus devices such as the

Real Time Clock, Error Latches, etc. can then also be accessed from a

PDP-11 terminal using CTA.

The PROM programmer package provides all the necessary commands at

a PDP-11 terminal to program eight "2716" PROM's contained on a single

FTMP cache card. The hardware to perform this function is attached to the

PDP-11 Unibus. The data for programming the PROM's is obtained from the

standard FTMP load module resident on the PDP-11 disk. This load module,

however, can be edited and modified prior to being used to program the

PROM's.

11

The fault-injector software (FIS) package provides commands at a

PDP-11 terminal to perform all the functions necessary to inject faults

into the FTMP and observe the results. The fault-injector hardware is

attached to the PDP-11 Unibus and consists of six cards, each of which

can be interfaced to eight pins of an IC package on the FTMP. Signals,

simulating hardware faults, can be injected on any combination of these

48 pins from the PDP-11. The FIS program can be used to define the sub­

ject IC characteristics (number of pins etc.), mapping of these pins into

the fault-injector pins, description of faults to be simulated on each

pin and actually inserting the faults. It also keeps record of the result

of each fault injection by collecting data sent by the FTMP to the PDP-11

via a 1553 interface. This data includes identification of the faulty

unit, time taken to identify the fault, etc. FIS, once initialized for a

given fault set, can perform the fault injection repeatedly for any

desired number of times without manual intervention. The 1553 link be­

tween the PDP-11 and the FTMP is used by FIS to communicate to the FTMP

configuration controller and make sure that the previous fault has been

identified and the system has been reconfigured to receive and identify

the next fault.

The last part of the facilities software package is the CAPS-6

processor simulator. The simulator provides a uniprocessor environment

with some of the multiprocessor functions such as inter-processor commu­

nication registers and control registers on all 12 LRU's. This simulator

was used to debug parts of the FTMP Executive software, mainly the Ker­

nel, Dispatcher, and the Restart program, prior to the delivery of the

12

FTMP hardware. Specifically, this package simulates the CAPS-6 instruc­

tion set, some control registers such as CPU control registers, IPC

(InterProcessor Communication) registers, Bus Guardian Unit registers,

Error Latches etc., 12K processor cache memory an 48k system memory.

Additionally, it also simulates the Real-Time Clock and timer, IPC, and

stack overflow interrupts.

Chapter 4 describes the facilities software in detail.

2.3 Acceptance Test/ Diagnostic Software

A set of acceptance test programs was written at Collins Avionics

and at CSDL to verify FTMP hardware operation prior to the delivery of

the hardware to CSDL. These programs have since been modified and expand­

ed at the CSDL to extend their scope to more areas of the FTM hardware.

Basically, each of these diagnostic programs runs in stand alone

mode without any support from the FTMP Executive. That is, they are used

to exercise the computer in a ground support environment. Typically, the

LRU to be tested is made the master LRU by inserting the master plug into

it. The master LRU is then connected to PDP-11 via the transfer bus and

the test adapter. The appropriate dignostic program is then loaded into

the cache RAM of the master LRU from PDP-11 using the CTA program (see

Section 2.2). The results of the test (pass/fail) appear in the test

adapter display registers. If the test is a failure, a reason code in­

dicating which part of the test the LRU fai1ed is a1so shown. Parts of

the LRU which are tested in this manner include the processor instruction

set, interrupts, cache RAM, system memory contained in the LRU, I/O port

13 .

registers, system control unit registers, and interfaces between the LRU

and the system bus. To ascertain complete system integrity, these

diagnostic tests must be performed on all the LRU's, one unit at a time.

There are other architectural features of the FTMP which can not

be tested for correctness of operation by exercising LRU's individually.

Examples of these include synchronous operation of three processors, bus

contention and arbitration between several processors, phase-locked

operation between various clocks, etc.

To test these aspects of the FTMP operation, a number of LRU's

must be started up. This is accomplished by loading system memory with

the appropriate diagnostic· program via the master LRU. Each processor

required to participate in the test is then enabled on all the buses and

one of its control registers initialized such that upon being reset the

processor loads its cache from the system memory and waits for further

instructions in its control registers. A number of processors can thus be

loaded with identical programs without moving the test adapter cable (the

transfer bus from one LRU to the next. Once all the LRU's participating

in the test have been loaded with appropriate programs the master LRU

hogs the system bus, issues commands to the candidate LRU's by writing

into their respective control registers and then releases the system

bus. The master LRU then observes the results by continually monitoring

the system memory locations containing the results.

Chapter 5 describes the diagnostic programs in detail.

14

2.4 Applications Software

Since the FTMP is intended as a central processing complex for a

commercial transport aircraft, the applications programs have been writ­

ten to fulfill that function. The applications programs on the FTMP

perform almost all the flight control functions found in a modern commer­

cial transport aircraft such as the Lockheed L-1011 Tristar. These in­

clude guidance and navigation, air data computation, basic stability

augmentation, and various modes of the autopilot/ flight-director system

for all the flight regimes, that is, take-off, climb, cruise, descent,

approach, and landing.

The basic stability augmentation system (SAS) provides yaw damping

and turn coordination during cruise, roll damping when the autopilot is

not engaged and yaw damping, runway alignment and roll-out during auto­

land operations. The autopilot/flight director system provides a basic

control wheel steering (CWS) mode of operation in which the autopilot

holds a constant pitch and roll attitude and the pilot's pitch and roll

stick inputs are interpreted as rate commands to change the aircraft

attitude. For the climb and descent phases of flight, three different

modes of operation are available. These are the vertical speed hold, the

indicated airspeed (IAS) hold and Mach hold. During the cruise phase the

Mach hold or altitude hold modes of the autopilot may be engaged. Addi­

tionally, a heading hold and VOR tracking can be used during any of these

flight regimes for directional guidance and control. Localizer/VOR track­

ing is provided for the approach phase and localizer/glide slope tracking

(Instrument Landing System or ILS) are used for autoland operations.

15

Speed is controlled by modulating thrust if the autothrottle mode is

used. Two autothrottle modes of operation are available: constant air­

speed or constant angle of attack.

The control laws have been chosen for a Boeing 707 type aircraft.

Dynamics of such a type of aircraft are simulated on the dual VAX-11/780

computers of the Draper simulation facility. This simulation facility

also includes a fully instrumented flight deck of a 707 driven by the VAX

computers. Figure 1-1 shows the communication links between the FTMP and

the 707 cockpit. The aircraft and engine instruments and the autopilot

mode select switches are sent from the VAX computers to the PDP-11 over a

high speed data link (DEC PCL11). From the PDP-11 the data is transmitted

over MIL-STD 1553 avionics data bus to the FTMP. To send actuator com­

mands back from the FTMP to the aircraft simulation, the reverse route is

used. There are six 1553 bus interfaces between the PDP-11 and the FTMP.

Four of these are connected to two I/O ports each in the FTMP and the

remaining two are tied to one port each. Thus anyone of the ten I/O

ports on the FTMP may bused to communicate with the 707 simulator.

The applications software also includes programs to display FTMP

status information on a console and accept operator commands from the

console.

Chapter 6 describes the applications programs in detail.

2.5 Support Software

All the programs that run on the FTMP are written either in a high

level language called AED or the CAPS assembly language. There are no

16

facilities on the FTMP itself to compile or assemble these source prog­

rams. These programs must be converted into the FTMP machine language on

one of the mainframe computers such as IBM 360/370, UNIVAC 1108, or

Amdahl 470 for which the support software is available. At CSDL an AED

cross-compiler and a CAPS cross-assembler have been installed on an

Amdahl 470/V8 which is the CSDL central computing facility.

The AED cross-compiler compiles and assembles AED source programs

to produce relocatable object code modules. '!he CAPS cross-assembler

assembles CAPS assembly language programs into relocatable object code

modules. A cross-linker, also resident on the Amdahl, links these librar­

ies of relocatable object code modules into an absolute load module. Each

of these functions can be performed either in a background batch mode or

on-line using the interactive TSO (Time Share qption) facility available

on the Amdahl. '!here is a direct TSO link between the Amdahl and the

PDP-11 (see Figure 1-1). '!he FTMP programs can be interactively created,

edited, compiled, assembled and linked directly from any terminal that is

attached to the PDP-11 computer. Having created an absolute load module

on the Amdahl, either in the batch mode or on TSO, the load module can be

transmitted over the TSO link to the PDP-11 where it is stored on an RL01

disk pack. '!he load module produced by the cross-linker is in hexadecimal

format. Prior to being transmitted to the PDP-11 it is converted into an

ASCII character format. '!he load module contains a complete core image or

memory image of all the programs that are to reside in the FTMP. This,

for example, includes the Executive, all the applications programs and

all the data bases. If one of these programs or data bases needs to be

17

altered then a new load module containing the new core image must be

produced and down-loaded into the PDP-11. Each record of the load module

contains an identification tag indicating its eventual destination in the

FTMP such as the cache PROM, the cache RAM or the system memory. The

loader which is resident on the PDP-11 checks the identity of each record

and loads it into the appropriate section of the FTMP memory. This same

load module is also used to program the FTMP PROM's (see Section 2.2).

In addition to the AED cross-compiler, an AED host compiler is

also available on the Amdahl. The host compiler compiles AED source

programs and produces an object code that can be directly executed on the

Amdahl. Since the AED cross-compiler itself is written in AED, the host

compiler is used to compile the cross-compiler. It may also be used to

debug FTMP programs on the Amdahl provided certain data type declarations

in these programs are modified to make them compatible with the Amdahl

data types.

Details of the support software are described in Chapter 7.

18

CHAPTER 3

EXECUTIVE SOFTWARE

There are certain prerequisite concepts which are central to a

thorough understanding of the FTMP software. Examples of these concepts

are the software appearance of the machine, definition of a "process" in

the context of the FTMP, transfer of control between processes, and the

handling and use of interrupts in the multiprocessor. Section 3. 1 de-

fines and elaborates these concepts. section 3.2 details part of the

Executive, called Kernel, which implements some of the basic primitives

defined in these concepts. The rest of the executive software can be

divided into five major functional modules: System Restart, Task Ois-

patch, Configuration Control, Input/Output, and Executive Primitives.

The functions, program implementation, and data structures for each of

these five elements of the Executive are described in the succeeding five

sections.

3.1 Basic Concepts

The software appearance of the fault tolerant multiprocessor is

much simpler compared to the actual hardware. This is due to the FTMP

architecture which hides most of the hardware redundancy from the

19

programmer. Figure 3-1 shows the FTMP from a software viewpoint. The

basic architecture of the virtual FTMP is that of a multiprocessor with

three processors sharing a single system memory which can be accessed by

only one processor at a time over the system bus. Also available over

the system bus are a set of 11 I/O ports, each of which is connected to a

MIL-STD-1553 avionics data bus. A 32-bit real-time clock and 48 error

latches, which record any errors on the system bus, can be read over the

system bus just like any other memory location. The bus contention

between the processors as well as the hardware redundancy underlying

various elements is transparent to the programmer. The applications

programmer, for example, does not need to know the fact that each proces­

sor really is a set of three processors or that the 32k system memory is

really two. 16k modules each of which is also triplicated, in order, for

example, to be able to write the flight control software. This simpli-

fied software appearance of the multiprocessor extends to some of the

executive software also. The task dispatcher, for example, need not

concern itself with the processor, memory, or the system bus redundancy,

while the system restart and most of the configuration controller do.

The hardware details of the FTMP, beyond what is shown in Figure 3-1 as

the virtual FTMP, will be described where necessary in this chapter.

While the overall architecture of the FTMP is similar to that of a

conventional multiprocessor, each processor of this multiprocessor is

multiprogrammed to work on several "processes" simultaneously. Although

strictly speaking, a processor can be working only on one process at any

given instant, several processes can be in different stages of progress

20

Processor Processor Processor I I/O Port 1 I 1 2 3 I

8k 8k 8k 8k 8k 8k I I/O Port 2 I PROM RAM PROM RAM PROM RAM I

I I/O Port 3 I I

I I/O Port 4 I I

System J I/O Port 5 I Memory I
32k

I I/O Port 6 I
SYSTEM BUS I

I I/O Port 7 J l

I I/O Port 8 I I
Real Time Error

Clock Latches I I/O Port 9 I I

I I/O Port 10 I
I

Figure 3-1. Software appearance of FTMP (virtual machine).

21

a t the same time. The processor can suspend work on one process and

switch its attention to another process in an orderly manner. To under­

stand this capability of the Executive to multiprogram each processor, it

is necessary first to define a "process" in the present context. A

"process" is simply a "state of the machine," that is, the hardware. The

concept of process is sometimes confused with a program. But a program

is not a state of the machine, it is a set of precise instructions to be

followed by the machine.

Associated with each process is an 8-word data base called the

Process State Descriptor or the PSD. A PSD is a snapshot of a program at

a given instant in time. Such a snapshot contains enough information to

restore the machine back to its original state when it suspends that

process. A PSD, thus, is a convenient way of switching context and

working simultaneously on several processes. Figure 3-2 shows the eight

components of the PSD. The first two words of the PSD describe the

boundaries of the stack space allocated this process. The third word is

the SPCR (Syllable Program Counter Register), that is, the next

instruction of the process. The fourth word is the LENV (Local

Environment) Register or the pointer to the memory area containing all

the local variables for the process. The next word indicates whether the

processor is in the privileged mode (PMR=1) or the user mode (PMR=O) when

executing this process. Certain instructions, including the system bus

access, can be executed by the process only when it is in the privileged

mode. All of the executive software runs in the privileged mode. The

next word indicates whether the mapper is turned off (MAPPER=O) or on

22

TOS
(Top Of Stack)

STKLM
(Stack Limit)

SPCR
(Program Counter)

LENV
(Local Environment)

PMR
(Privileged Mode)

MAPPER

INTERRUPT MASK

PSD POINTER

Figure 3-2. Structure of Process State Descriptor (PSD).

23

(MAPPER=1), that is, whether the cache memory is to be accessed directly

(program addresses are real) or by mapping the program address through

the memory mapper (program addresses are virtual). All of the executive

software, with the exception of the Restart Program and the Page Fault

Handler, runs in the mapped mode. The seventh word is the interrupt mask

and indicates which of the eight hardware interrupts are to be allowed

during the execution of this process. The last word points to the PSD of

the process that should be resumed when the present process terminates.

A process terminates when the processor executes the HALT instruction.

Normally when a process is active, that is, the processor is exe­

cuting that process, all 1;he information about its state is actually

distributed in the stack and control registers. At this time, the PSD

associated with this process, which is pointed to by APSD (Active PSD),

is empty or has no useful information in it except for the pointer to the

next PSD. When this process terminates, its PSD is filled in with the

appropriate information as shown at the time by various registers. These

registers are then restored with the contents of the new PSD which is

pointed to by the last word of the old PSD. These two functions, viz.

saving the state of the machine in the old PSD and restoring the state of

the machine with the new PSD, would normally be performed in the hard­

ware. However, since the CAPS-6 processor does not have this capability,

the executive software provides this hardware enhancement function. A

program written in the CAPS assembly language, FTMP.ASM(KERNEL), is

entered when the processor terminates a process by executing the HALT

instruction. The Kernel saves the state of the machine in the old PSD

24

and loads the registers with the new PSD and then transfers control to

the new PSD by executing the INTRTN (interrupt return) instruction.

The Kernel actually performs several other hardware enhancement

functions. One of these is "interrupt vectoring". When an interrupt

occurs that is not masked in the active process, the active process is

suspended and control transfers to the Kernel. The Kernel saves the

process state in the PSD, obtains the pointer to the new PSD associated

with the interrupt handler and loads the machine with the new PSD. The

pointers to interrupt handling processes are stored in a table called the

INT.TABLE. The interrupted PSD is chained behind the interrupt PSD by

saving the pointer to the ,interrupted PSD in the interrupt PSD. The APSD

is changed to point to the interrupt PSD. The Kernel then executes

INTRTN instruction to transfer control to the interrupt process. Figures

3-3 and 3-4 show the state of the two processes involved in this sequence

of events before and after the interrupt, respectively. When the inter­

rupt process terminates by executing HALT, control transfers to the

Kernel which restores the previously interrupted process from its PSD and

the processor resumes execution of that process at the precise point

where it was interrupted. This is shown in Figure 3-5. The HALT in-

struction, which is used to terminate a process, itself causes an inter-

rupt, thereby transferring control to the Kernel. Since HALT in this

machine is used in effect to terminate one process and resume another

one, it has been synonymized with RESUME in the programs.

Figure 3-6 summarizes how an interrupt is handled in the FTMP.

Prior to the interrupt process, Z is the active process. The interrupt

25

ACTIVE PROCESS

-TOS-
r---:>

-STKLIM-

-SPCR-
>

-LENV- ACC'S

-PMR-
RETURN SPCR

-MAPPER-
PROC 10

-MASK-
:> LENV I--

PSO PNTR

LOCALS

STKLIM

TOS

INT 8
LENV

INT 9 INACTIVE PROCESS

INT 10

INT 11 w-> TOS >

STKLIM
INT 12 >

SPCR ACC'S

LENV
RETURN SPCR

PMR
PROC 10

MAPPER
> LENV t---

MASK

-PSO PNTR- LOCALS

Figure 3-3. Machine state before an interrupt.

26

" TOS

STKLIM

SPCR

LENV

PMR

MAPPER

MASK

PSO PNTR

~

I

I
L---> -TOS-

-STKLIM-

-SPCR-

-LENV-

-PMR-

-MAPPER-

-MASK-

I PSO PNTR t---

INACTIVE PROCESS

.---->

1------>

1------>

STKLIM

TOS

LENV

>

>

1.--__ >

ACC'S

RETURN SPCR

PROC 10

LENV I--

LOCALS

ACTIVE PROCESS
(INTERRUPT)

ACC'S

RETURN SPCR

PROC 10

LENV n
LOCALS 1

Figure 3-4. Machine state after an interrupt.

27

> -TOS-

-STKLIM-

-SPCR-

-LENV-

-PMR-

-MAPPER-

-MASK-

PSO PNTR

STKLIM

TOS

LENV

TOS r
STKLIM I

SPCR

LENV

PMR

MAPPER

MASK

-PSO PNTR-

ACTIVE PROCESS

.---->

I.

>
ACC'S

RETURN SPCR

PROC 10

LENV

LOCALS

INACTIVE PROCESS
(INTERRUPT)

>

>
ACC'S

RETURN SPCR

PROC 10

> LENV n
LOCALS 1

Figure 3-5. Machine state after resuming interrupted process.

28

INTERRUPT

AP->[proc Z AP-> rupt proc

proc Z 1<

-> I rupt proc

rupt process (act)

process Z (active) process Z (pending)

RESUME

AP-> proc Z

-> I rupt proc

process Z (active)

Figure 3-6. Interrupt handling.

29

process is inactive at this time. When the interrupt occurs, the inter-

rupt process is made active and process Z is "pended" behind it. When

the interrupt process does a "resume", the interrupt process is made

inactive and the process Z is "resumed," i.e., activated.

So far, two ways have been described of transferring control from

one process to another, viz. through resume or an interrupt. There are

two other ways of altering the order in which processes will be executed.

These are called Pend and Activate. Figure 3-7 illustrates the use of

these two primitives. As seen in this figure, initially X is the active

process and Y and Z are chained behind it. If process X decides to pend

process A, it can do so (p~ovided X is a privileged process) by calling

the Pend routine with a pointer to the APSD as the argument. Process A

is pended where its built-in priority dictates. Assuming A has higher

priority than Z but lower than Y, it will be chained between Y and Z. A

discussion of the PSD priority follows shortly. The Activate primitive

is used to transfer control to another process as illustrated in Fig-

ure 3-7. If process X wishes to activate process B, it does so by exe-

cuting the same HALT instruction which is used to resume another process

but with a non-zero argument, the argument in fact being the PSD pointer

to process B. Activate function is handled by the Kernel while the Pend

function is performed by a routine FTMP.ASM(PEND).

There is a process associated with each of the 11 interrupts that

have been defined in the CAPS-6 processor. In addition, there are eight

other processes as shown in Figure 3-8. The process at the top, the

overflow interrupt handler, has the highest priority and the process at

30

PEND (A) ACTIVATE(B)

AP-> x AP-> x AP-> B

y y x

B (active)

X (active) X (pending)

X (active) y (pending)

y (pending) A (pending)

z (pending)

Figure 3-7. Pend/Activate handling.

31

11 PSD's for Interrupts

(1 Process For Each Interrupt Handler)

Restart

R4 Dispatcher

R4 Application Task

R3 Dispatcher

R3 Applica,tion Task

R1 Dispatcher

R1 Application Task

Idle

Figure 3-8. Overall PSD structure and priority.

32

the bottom, the idle process, has the lowest priority. This priority

structure is used to pend a given process in its appropriate place in the

PSD chain. The usefulness of this will be evident in the next section.

As can be seen from Figure 3-8, since the idle process is at the bottom

of the PSD chain, its PSD pointer is null, that is, idle PSD does not

point to any other PSD. The idle process therefore should never termi­

nate (by doing resume). Indeed, that is the case. As the name implies,

a processor falls into this process when it has no other task to perform

and it stays in idle until interrupted to execute another process.

Section 3.2 describes the Kernel program which implements primi­

tives described above.

3.2 Kernel

The following three subsections describe the functions, flow­

chart, and data bases of Kernel.

3.2.1 Kernel Functions

This program resides in the cache PROM of each processor. When

the power is first applied to the processor, a POC (Power On Clear)

interrupt is generated. The microcode executes the POC reset sequence

and transfers control to the program whose address appears in location 0

of the PROM. Since the Kernel address is stored at this location, the

Kernel is the first program to start up after a power interruption or

after the processor is reset.

33

Depending upon the contents of the CPU control register 3 (CPU R3),

the Kernel takes one of three different courses of action. If the regis-

ter R3 contains "F", a normal FTMP start is made.

means transferring control to the Restart process.

A normal FTMP start

To do this, the Re-

start PSD in the cache RAM is initialized from a copy in the PROM, the

stack, mapper, PMR, and other registers are initialized using information

from the Restart PSD and control is passed to Restart by executing the

INTRTN instruction.

If the register R3 is equal to 1, then system memory ("2005" to

"2007" and "2010" to "3FDF") is read into cache RAM ("2005" to "2007" and

"2010" to "3FDF"). Locations 2005 to 2007 contain the TOS, STKLIM and

SPCR of the alternate program which is then started up. This start-up

mode is useful when the diagnostics programs or any other programs are to

be run on a single LRU in a stand alone mode without support of the FTMP

Executive.

The third course of action is taken if R3 is equal. to 2. This

case is similar to the second case in that a program is copied from

system memory into cache. However, having done this the processor waits

in a loop until Register R3 is cleared. This start-up mode is used for

those diagnostic programs which require several LRU's to start up

simultaneously.

The next subsection describes the Kernel program with the help of

an N-S (Nassi-Shneiderman) [1] diagram or a flow-chart.

34

3.2.2 Kernel N-S Diagram

The source code for this assembly language program is contained in

FTMP.ASM(KERNEL) and the assembler output is in FTMP. LIST (KERNEL) • Fig­

ure 3-9 shows a flow-chart of the Kernel. There are two entry points in

this program. The first entry point is at the top of the flow-chart.

The program is entered here in response to a power interrupt or if the

processor is reset. If it is a normal system start, control is transfer­

red to Restart by executing INTRTN. Executing this instruction changes

the processor state from "interrupt mode" to "normal mode." In the

interrupt mode no interrupts are accepted while in the normal mode all

unmasked interrupts are ac~epted. When such an unmasked interrupt occurs

in the normal mode, the active process is suspended and control is trans­

ferred back to Kernel at the instruction immediately following INTRTN.

This is the second entry point of this program. This is also the only

entry point used once the processor has started up. That is, the proces­

sor returns here in response to any interrupt. Upon entry, the interrupt

number is in the top of Kernel stack and the next word in the stack

points to the interrupted PSD. The program checks to see if the inter­

rupt was done to Resume or Activate, in which case the interrupt number

would be 16 (HALT instruction generates interrupt 16). If it is HALT,

its argument is checked to distinguish between Resume and Activate.

Resume's argument is zero while Activate's argument points to the PSD of

the process to be activated. The HALT argument is in the TOS of the

interrupted PSD. For interrupts other than HALT, the pointer to the new

PSD is obtained by indexing interrupt number to the 16-word !NT.TABLE

35

P OC, RESET

>
E NTRY POINT

ONLY EXIT

F

N
T

<
ROM KERNEL

ORMAL EN-
RY POINT

>

INITIALIZE BUS HOG WORD, BUS CONTROL WORD, & SIMULATED PAGE FAULT WORD

IS THIS A NORMAL START OR ALTERNATE START?

NORMAL START (CPU R3 NEQ 1 OR 2) ALTERNATE START (CPU R3 EQL 1 or 2)

INITIALIZE INTERRUPT PSD (KERNEL COPY ALTERNATIVE PROGRAM VECTOR
PSD) IN RAM FROM SYSTEM MEMORY (2005-2007) TO
INITIALIZE RESTART PSD IN RAM BY CACHE (2005-2007)
COPYING IT FROM PROM COPY ALTERNATE PROGRAM FROM SYSTEM

MEMORY (2010-3FDF) TO CACHE
WHILE TRUE (2010-3FDF)

(CACHE 3FEO-3FFF IS USED AS STACK
SAVE POINTER TO NEW PSD IN APSD BY THIS PROCESS)
(ACTIVE PSD)

IS STACK ALREADY INITIALIZED IS CPU R3 = 2?
FOR THIS PROCESS?

NO YES YES NO

INITIALIZE STACK (SEE DE- NIL WHILE CPU R3 N~ <j> NIL
TAILS IN FIG. 3-10) I NIL

TRANSFER CONTROL TO NEW PROCESS ALLOCATE STACK SPACE FOR ALTERNATE
(EXECUTE INTRTN) PROGRAM

INITIALIZE SPCR WITH ALTERNATE
IS IT INTERRUPT 16? PROGRAM ADDRESS

TRANSFER CONTROL TO ALT PROGRAM
YES NO (EXECUTE HALT)

PROCESS RESUME/ACTIVATE INDEX
REMOVE INT NO FROM TOS INTERRUPT
GET HALT ARGUMENT FROM NO. INTO
TOS OF OLD PSD INT. TABLE

AND OBTAIN
IS HALT ARG <j>? NEW PSD

POINTER
YES NO

PROCESS RE- PROCESS AC-
SOME. GET TIVATE SIM-
PNTR TO NEW ULATE PM
PSD FROM VIOLATE INT
OLD PSD IF OLD PSD
CLEAR PSD IS NOT PRI-
PNTR ENTRY VILEGED
IN OLD PSD STRING OLD

PSD BEHIND

NEW PSD

OBTAIN INT MASK OF NEW PSD
SWAP MASK
STORE OLD INT MASK IN OLD PSD

Figure 3-9. Kernel N-S diagram.

36

(Interrupt Table) which resides in the cache PROM of each processor. In

the CAPS-6 processor, interrupts are numbered from 8 to 20. Of these, 8

and 9 are unassigned. The first entry in INT.TABLE corresponds to inter­

rupt 8, the second to 9 and so on.

Once the pointer to the new PSD has been obtained, the machine

state is saved in the old PSD, the new PSD information is loaded into the

registers and various PSD's are re-linked as illustrated in Figures 3-6

and 3-7. The order in which they are chained together is, of course,

dictated by which function is being performed, that is, Resume, Activate

or interrupt routing. The program exits in all of these cases after

saving the pointer to the ~ew PSD in APSD, initializing the stack for the

new process if necessary and executing the INTRTN instruction immediately

above the normal entry point. The Kernel is then positioned to start

over at the correct instruction in response to the next interrupt.

When a program is started the very first time, its stack is not

initialized. This is ascertained by checking the LENV entry in the PSD.

This pointer is null if the stack has not been initialized. To initial-

ize the stack, the following steps are taken (Figure 3-10 shows the N-S

diagram of this program).

(1) Obtain stack location (TOS) for this process from the PSD.

(2) Obtain the number of words to be allocated in the stack from

the header word of the program. The SPCR entry in the PSD

points to this word. The low order byte of the header word

is the number of local and temporary words required by the

program on the stack. The SPCR has the real address of the

37

MAPPER FOR THIS PROCESS ON?

YES NO

OBTAIN VIRTUAL WORD ADDRESS OF THE HEADER FROM SPCR ENTRY
IN PSD.COMPUTE VIRTUAL PAGE ADDRESS

IS THIS PAGE PRESENT IN CACHE?

YES NO NIL

NIL WRITE THIS PAGE NO IN SFWORD
SIMULATE PAGE FAULT INTERRUPT

TRANSLATE VIRTUAL ADDRESS OF HEADER INTO REAL ADDRESS
THROUGH MAPPER

OBTAIN NUMBER OF LOCALS, J, FROM THE HEADER WORD
ALLOCATE J WORDS ON STACK BY DECREMENTING TOS BY J AND SETTING LENV
TO THIS VALUE
ALLOCATE 3 MORE WORDS FOR STACK MARK
INITIALIZE STACK MARK (SPCR, PROC ID, LENV)
(SPCR & LENV ENTRIES IN STACK MARK ARE 0, PROC ID IS THE HEADER WORD)
INCREMENT SPCR PAST HEADER

Figure 3-10. Stack Initialization.

38

header if the process runs unmapped (mapper word = 0). This

address, however, is virtual if the mapper is turned on. For

the latter case, the virtual SPCR is translated into the real

address by mapping it through the memory mapper, provided the

required page is present in cache. If not, a page fault

interrupt is simulated to read the page from the system

memory into the cache.

(3) The required number of words, as determined in step (2), are

allocated in the stack by moving TOS.

initialized.

LENV is also

(4) An additional. three words are allocated in the stack and a

frame mark consisting of SPCR, PROC ID and LENV are written

in this space. (See Figure 3-9).

(5) The SPCR is incremented past the header word.

Figures 3-11 and 3-12 show the PSD and stack before and after

stack initialization.

At this point, it is appropriate to describe the data bases that

are either used directly by the Kernel or defined by the Kernel indi­

rectly. Some of these, such as INT.TABLE and Restart PSD, have already

been referred to in the above discussion. All the data bases that are

defined in the program FTMP.ASM(KERNEL), collectively referred to as the

Kernel data bases, are described below.

3.2.3 Kernel Data Base

The Kernel data base can be conveniently divided into two parts.

The first part is stored in the first page of cache PROM (Adr 0000 to

39

---->
TOS STACK

STKL1M

SPCR 1------->

LENV(O)

~--------------> HEADER

PSD OF
A NEW PROCESS CACHE

Figure 3-11. , Stack before initialization.

>

TOS
I > RETURN ADR(O) STACK

STKL1M
PROC 1D

SPCR

LENV I
LENV (0) >

LOCALS

""""~

HEADER

.I

I >
PSD CACHE I

Figure 3-12. Stack after initialization.

40

009F). The second part is in the first four pages of cache RAM (Adr 2000

to 2308).

Figure 3-13 shows the contents of page 1 of PROM. Locations 0, 1,

and 2 in PROM define the SPCR, TOS and STKLIM of Kernel. Location 3 is

the pointer to the interrupt or Kernel PSO. Location 4 points to a table

of privileged mode routines (PMTABLE) in RAM and the next word is the

length of this table. All of these locations are referenced in the

CAPS-6 microcode and therefore their definition can not be altered. The

INT.TABLE occupies locations 8 to 16. It contains vectors to various

interrupt handling processes. Each of these processes has a PSO associ­

ated with it. Additionally, there are eight other processes as defined

in Figure 3-8. PSO's associated with each of these processes (with the

exception of application task PSO's which reside in the system memory)

reside in the PROM locations 18 to 9F. The PROM copies of the PSO's are

used only to initialize the RAM copies of the PSO's upon system restart

or after being reset. The PSO's in RAM are updated when a process termi-

nates or is interrupted. In the PROM version, the PSO pointer and LENV

are null, indicating the uninitialized state of the process.

Figure 3-14 shows the Kernel data bases that reside in the first

four pages of the cache RAM. The first word of RAM (2000) points to the

active PSO (APSO). The next four words are used by the COOPERATOR prog­

ram to communicate with the CTA (see Section 4.1). The next three words

are the a~ternate program vector (SPCR, TOS, and STKLIM). Six words

starting at 2008 are reserved for the Kernel PSO. The next word is the

page fault word. It contains the virtual address that caused the last

41

Address Content

0-2 Kernel vector (SPCR, TOS, STKLIM)
3 Kernel PSD Pntr
4 PM Table Pntr
5 PM Table Length

8-16 Interrupt Table

18-1F
20-27
28-2F
30-37
38-3F
40-47
48-4F
50-57
58-SF
60-67
68-6F
70-77

78-7F
80-87
88-8F
90-97
98-9F

Interrupt PSD's
No Interrupt
OVerflow
IPC
Timer
Write Protect Violate
Page,Fault
Test Adapter
Illegal Opcode
Stack OVerflow
NonLocal Search Fault
Privileged Instruction Fault
Privileged Mode Violate Fault

Other PSD's
Restart
R4 Dispatcher
R3 Dispatcher
R1 Dispatcher
Idle

Figure 3-13. Kernel data base, Cache PROM.

42

Address

2000
2001-2004
2005-2007
2008-200D
200E
2010-201F

2020-2027
2028-202F
2030-2037
2038-203F
2040-2047
2048-204F
2050-2057
2058-205F
2060-2067
2068-206F
2070-2077
2078-207F

2080-2087
2088-208F
2090-2097
2098-209F
20AO-20A7
20A8-20AF
20BO-20B7
20B8-20BF

20CO-20DF
20EO-20EF
20FO-20FF
2100-2153
2154-2173
2174-21FF
2200-2267
2268-22EF
22DO-22DF
22EO-22EF
22FO-22FF
2300-2327
2328-234F
2350-237F
2380-23B7
23B8-23C7
23C8-23D7

Figure 3-14.

Content

APSD Pntr
Test Adapter - COOP
Alternate Program Vector
Kernel PSD
Page Fault Word
PM Table

Interrupt PSD's
No Interrupt
Overflow
IPC
Timer
WP Violate
Page Fault
Test Adapter
Illegal Opcode
Stack OVerflow
NL Search Fault
PI Fault
PM Fault

other PSD's
Restart
R4 Dispatcher
R4 Task
R3 Dispatcher
R3 Task
R1 Dispatcher
R1 Task
Idle

Stacks
Kernel
Stack Overflow
NL Search Fault
Restart
Idle
R4 Dispatcher
R3 Dispatcher
R1 Dispatcher
Illegal Opcode
Stack OVerflow
WP
IPC
Timer
Page Fault
No Interrupt, TA
PI Fault
PM Fault

Kernel data base, Cache RAM.

43

page fault. Sixteen words starting at location 10 are reserved for the

PMTABLE. Each entry of this table points to a privileged mode routine

that can be accessed only if the process calling the routine is

privileged. The microcode for the instruction PMCALL checks for this

requirement and creates a PM violate interrupt if the condition is not

satisfied. Locations 20 to BF are reserved for PSO' s of all the proc-

esses including the applications task processes. They are arranged

according to their built-in priority which was described earlier in

Section 3.1. Initially they do not contain any useful information. The

Restart PSO is initialized from the PROl>1 by the Kernel before transfer­

ring control to Restart process. The Restart initializes all the remain­

ing PSO's (except applications task PSO). Initialization of applications

task PSO's is done by the dispatcher and will be described in Sec-

tion 3.4. The next three pages of the cache memory (20CO to 2308) are

allocated as stack space for all processes (except applications tasks).

One restriction for a110cating this stack space is that stack area for a

process should not cross a cache page boundary. This makes sure that a

process doing data transfer between cache and the system memory would not

inadvertently cross a cache page boundary. Cache or system memory page

boundary can not be crossed in a single system bus transaction. To do a

bus transaction that involves more than one page, the transaction must be

subdivided. This will be further elaborated upon in Section 3.7 which

describes the system bus access service routines. For the sake of co~

pleteness it might be noted here that one page (256 words) is allocated

to each application task as its stack space. Since up to three tasks,

44

one from each rate group, can be in progress simultaneously, three cache

pages are reserved for application task stacks: 2500-25FF for R1, 2600-

26FF for RJ, and 2700-27FF for R4 rate group tasks (see Section 3.4 for

an explanation of these terms).

3.3 System Restart

3.3.1 Functions

The Restart program has two functions: one, to bootstrap the

system initially, also called the "cold start," and two, to restart the

system after a power interruption, also called the "hot start."

In the hot start,· the system memory is already loaded with the

required program and data, the system configuration tables are already

initialized (with the configuration of the system when the power went

down) and the task of the Restart program is to bring the system back up

to this configuration, keeping in mind the possibility that everything

that was operational before the power interrupt as indicated in the con­

figuration tables may no longer be so, that is, a unit may have failed

during the power transient. It may be recalled here, by the way, that

the system memory as well as all the system control unit registers within

each LRU have battery back-up while the cache memory does not. Therefore

they can be considered non-volatile from the power transient viewpoint.

The Restart program assumes that the system memory and control register

contents are unaltered with the exception of a failed unit. A unit may

have failed or an LRlJ may be unini tialized. This could, for example,

happen if the system power was shut off and an LRU was replaced by a new

45

, l_~ • .A .. • .•

LRU (on the ground, of course). After a hot start, a number of initial-

ization functions must be performed. For example, since the cache RAM

has no back-up, the mapper table in each LRU must be cleared to indicate

that none of the pages are loaded in cache. No effort is made to restart

in midstream tasks that were in progress when the power went down.

Instead all the task queues are reset so that task dispatching may begin

afresh. The process PSO's in the cache RAM are also, of course, lost and

these are reinitialized from their PROM versions. The new processes are,

however, not chained together. Restart must also perform this function.

In the case of the cold start the system memory does not contain

any useful information. Additionally, the control registers in the LRU's

are all zero as well. The system memory is first bootstrapped from an

external device much as a cassette tape on a 1553 remote terminal. Once

the system configuration tables in the system memory have been initial­

ized, the rest of the system start functions are the same here as in the

hot start.

Whether it is a cold or a hot start, there should be one and only

one processor triad that executes this program. Also, this is where

members of each processor triad come together and synchronize themselves

since the processors would lose synchronization once the power is turned

off and the power would not come back to all the LRU's at precisely the

same instant. The two basic and important functions of the restart

program, then are to synchronize members of each processor triad and to

arrange communication between processor triads such that any processor

triad can bring the whole multi-processor back to the configuration

46

indicated by system configuration tables and that triad is not hindered

by the remaining processor triads. This is accomplished as described in

the following.

As indicated in Section 3.2, upon application of power each proc­

essor executes the Kernel program which initializes the Restart PSD and

passes control to the Restart process. In this process all interrupts

are masked. This process runs in privileged, unmapped mode since the

page fault process has not been initialized at this point. Every proces­

sor that was active prior to power interruption (its run/reset bit was in

run mode) would start up as soon as the power is applied and end up in

the Restart process. After processor and cache initialization (details

of which will be described shortly in subsection 3.3.3), the processor

checks its triad identification contained in CPU Register RO. If it is

valid (not zero) the processor tries to synchronize with the other two

members of its triad. The first step here is to do a dummy system bus

transaction. Since at least two members are required to access the

system bus, the first processor to arrive at this instruction is forced

to wait (by hardware) until joined by at least one more member of the

same triad. Once two out of three members have synchronized thus, they

repeat the synch loop by doing dummy bus transactions a predetermined

number of times which is long enough to account for variations in power

being applied to different LRU' s. After each such loop the count is

transmitted by the triad member to themselves through the IPC register so

that the third member would bring its loop counter in agreement with the

other two processors. The system bus is hogged at the end of this loop

47

so that the first triad to synchronize has complete control over the

system. This triad then reads system configuration tables from the

system memory and brings the system up to the configuration. (Details of

this are describedin Section 3.3.3.)

Having restarted the system, this processor triad (which once

again appears as a single processor in a multiprocessor system) pends R4

Dispatcher process under the Restart process. Restart then does a resume

which transfers control to the dispatcher. If this triad or any member

of it needs to synchronize themselves with a new processor (as would be

the case when one of the members is being replaced) they would return

back to Restart process. However, they would start this process where

they left off, which is just after Resume. Here the new member is reset,

issued the new triad ID and synchronized with the other triad members.

One last function performed by the Restart program is recognition

of the master LRU mode. When the system is being started up with a

master LRU for debugging purposes, the Restart program activates the COOP

process thereby passing control to the test adapter. It regains control

only when COOP does a resume. In this mode, though, other processors are

not started so that the Executive software may be debugged on a single

processor.

Section 3.3.2 describes the data bases required by this process.

Section 3.3.3 describes the program in detail using N-S flowchart of

Restart.

48

3.3.2 Data Base

The most important data sets used by the Restart process are the

system configuration tables. There are five such tables. They reside in

the first page (0000 - 0100) of the system memory.

detailed in the following.

Their structure is

(1) TRIAD 10 TABLE. This is a 12 word array. The nth entry in

this table describes the status of the processor in the nth

LRU, that is, whether it is a member of a working triad, a

spare, shadow, or a failed unit. If it is associated with a

triad, its triad 10 is also contained in this word. The

exact structure of each such entry is shown in Figure 3-15.

(2) MEMORY RELOCATION & RTC TABLE. This is a 12 word array. The

nth entry in this table describes the status of the system

memory in the nth LRU, that is, whether it is a member of an

active triad, a spare, shadow, or a failed unit.' In any

case, the relocation assigned to this memory (Memory Reloca-

tion Register) is also contained in this word. One bit in

each word shows the status of the real-time clock in that

memory unit, that is, whether it is armed or disarmed.

Figure 3-16 shows the exact structure of each entry in this

table.

(3) P, R & T BUS ENABLES. This is a 12 word array. The nth word

shows the P, Rand T buses on which the nth LRU is enabled to

transmit. Figure 3-17 shows the structure of such a word.

(4) C BUS ENABLES, CLOCK STATUS AND T SELECTS. This is a 12 word

array. The nth word shows the status of the clock element in

49

TRIAD.ID.TABLE: 12 WORD ARRAY

ITH WORD HAS TRIAD ID OF ITH LRU AND STATUS OF THE LRU.
THERE ARE TWO STATUS BITS WITH THE FOLLOWING INTERPRETATION:
o = SPARE
1 = ACTIVE
2 = FAILED

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o

x x x x x x x x x LRU
STATUS

TRIAD ID
OF LRU

Figure 3-15. Triad ID table.

MRR.TABLE: 12 WORD ARRAY

ITH WORD HAS SYSTEM MEMORY RELOCATION VALUE (BITS 0 TO 4) FOR ITH LRU,
ARM/DISARM BIT (BIT 5) FOR THE REAL TIME CLOCK AND STATUS OF MEMORY
MODULE (BITS 6 & 7) IN THE ITH LRU. CLOCK IS ARMED IF BIT 5 IS '1'.
MEMORY MODULE IS A SPARE IF STATUS BITS ARE '00', ACTIVE IF '01' AND
FAILED IF '10'.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o

MEMORY RT RELOCATION
X X X X X X X X STATUS CLOCK CONSTANT

Figure 3-16. Memory relocation and RTC table.

PRT.TABLE: 12 WORD ARRAY

ITH WORD HAS P, R AND T BUS ENABLE BITS FOR ITH LRU.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o

P ENABLES R ENABLES T ENABLES

Figure 3-17. P, R, and T Bus enables.

50

the nth LRU, that is, whether it is a member of the clock

quad, a spare, or a failed unit. The C buses on which that

clock element is enabled are also shown. In addition, the T

bus select code for BGU's of the nth LRU is also contained in

the nth entry of this table. Figure 3-18 details the struc­

ture of this table.

(5) P, R, T & C BUS SELECT TABLE. This is a 12 word array. The

nth entry contains four 3-out-of-5 bus in-mux codes (bus

select codes) for the nth LRU, one each for P, R, T and C

buses. Figure 3-19 shows the structure of this table.

The reader should refer to FTMP.ASM(TABLES) for more information

about the initial system configuration and the content of these tables.

There are four other words, three in the system memory and one in

cache RAM, that are used by the Restart program.

(1) RESTART FLAG. The triad that starts up the system. sets this

flag in the system memory to indicate the fact that the

system was restarted. This flag is used by the task dis­

patcher to reset the task queues and perform other initial­

izations made necessary by the system being restarted (see

Section 3.4).

(2) TRIAD VOLS. This word in system memory indicates which

processor triads have volunteered for task assignment. Each

triad that successfully goes through the synchronization

process sets a bit (determined by its triad id) in this

word. This word is used by the dispatcher to assign tasks

(see Section 3.4).

51

TC.TABLE: 12 WORD ARRAY

ITH WORD HAS C BUS ENABLE BITS (BITS 0 TO 4) FOR ITH LRU, STATUS OF
OSCILLATOR IN THAT LRU (BITS 6 & 7) AND T SELECT BITS FOR BGU'S OF
THAT LRU (BITS 8 TO 11).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I X
X X X I T SELECT OSc I X C ENABLES

STATUS

Figure 3-18. T Selects and C enables.

SELECT.TABLE: 12 WORD ARRAY .

ITH WORD HAS P, R, T AND C BUS SELECT BITS FOR ITH LRU.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 o

P SELECT R SELECT T SELECT C SELECT

Figure 3-19. P, R, T, and C Select table.

52

(3) SYNCH CCMMAND. When a triad returns to the Iestart process

for synchronization with a new processor member it checks

this word in system memory to obtain the LRU number of the

new member. '!he synch command also contains a bit that is

set to 1 if this is the only triad in the system. If so, the

triad pends ~ dispatcher and resumes dispatching tasks. If

not, it drops down into idle process and waits for an IPC

interrupt from other triads to start ~ dispatcher. '!his

command is written by the configuration controller. The

triad indicates the completion of the synchronization process

by clearing this command in the system memory.

(4) TRIAD ID. '!his global variable in cache is set by the Re-

start program for use by other programs. Each processor

triad is assigned a 3-bit triad identification. '!his is

stored in CPU control register ro. '!he triad ID can be any

number from 0 to 7. However, the leading bit of the triad

IDs should be 1 in order for the bus poll hardware to func­

tion properly. '!his eliminates the use of triad IDs 0 to 3.

Therefore triads are assigned numbers 5, 6, or 7. However,

since triad ID is used as an index for a number of data sets,

the global variable TRIAD ID is set to 1, 2, or 3 in place of

real triad IDs 5, 6, and 7, respectively.

3.3.3 Restart N-S Diagram

This AED program resides in the cache PROO of each LRU. The

source code for this program is in FTMP.AED (RESTART) and the corrpiler

53

output is in FTMP.LIST (RESTART). A flowchart for this program is shown

in Figure 3-20. As indicated earlier, Kernel transfers control to this

program after a processor reset or a configuration control induced re­

set. In either case, the first function of this program is to initialize

a number of items in the processor and the cache memory. The processor

items are initialized by a subroutine called INITIALIZE.PROC. This

routine resets system bus access control register, clears the interval

timer in the processor, clears all interrupts and initializes the memory

mapper. Status of the PROM (32 pages) and lower 5 RAM pages (2000 -

24FF) is set to "Present" and "write protected." The user stack area

(2500 - 27FF) is set to present and the remaining virtual address space

is set to "not present." The mapper and I/O pages are initialized as

present and write protected. The cache initialization is done by a

subroutine called RESET.KERNEL. This procedure initializes all the PSO's

in the RAM (except Restart and user task PSD' s) by copying them from

PROM. It a1so c1ears the user stack. Since this procedure references a

number of data bases defined in Kernel it is assembled with Kernel.

Having initialized all the PSO's, it pends idle process to the Restart

process.

The next step is to form a triad by synchronizing with the other

two processor members of the triad if the processor has a valid triad ide

This is done by the synch procedure as explained in Section 3.3.1. Once a

triad has successfully gone through this synchronization process it is

holding the system bus. Therefore any other triad that is in the middle

of the synchronization process would wait until the bus is released. The

54

RESET SYSTEM MEMORY CONTROLLER.
RESET INTERVAL TIMER.
CLEAR ALL INTERRUPTS.
INITIALIZE MAPPER.
INITIALIZE PSD'S IN CACHE RAM.
PEND IDLE PSD.

READ TRIAD 10 FROM CPU REGISTER 1.

IS THE TRIAD 10 VALID? (NOT ZERO)

YES NO

HOG BUS. WAIT 5 MSECS.
1=15 READ TRIAD 10.

WHILE I > 1 (SYNCHRONIZE WITH 3RD
CPU HERE.)

SYNCH(). (ALLOW 3RD CPU TO

IS TRIAD 10 = 01

YES NO

GET IN HERE.)
XMIT I TO SELF IPC REG 1 •
READ IPC REG 1 •

WHILE TRUE FALL
~----------------~THRU &

SET I = IPC REG1 - 1.
COLD START. (BOOT

FROM TERMINAL.)
SYNC.
WITH A

~~~---------------------------r----~----------------~TRIAD. 

READ MEMORY RELOCATION (MRR) 
VALUES FROM SYSTEM MEMORY AND 
REISSUE MRR'S TO ALL LRU'S. 

REISSUE ALL P,R,T AND C BUS 
ENABLES AND T SELECTS TO ALL 
BGUS. 

REISSUE SELECT CODES TO ALL LRU'S 
READ TRIAD IDS OF ALL LRU' S FROM 

SYSTEM MEMORY. 
HALT ALL PROCESSORS EXCEPT 

MEMBERS OF SELF TRIAD. 
ISSUE '0' TRIAD 10 TO ALL PROCS. 
RESTART ALL PROCS EXCEPT SELF 

AND BAD PROCS. 
WAIT UNTIL ALL PROCS ALL PAST THE 

'POWER ON RESET' DECISION POINT. 
REISSUE ALL GOOD PROCS TRIAD IDS. 
CLEAR REAL TIME CLOCK. 
SET RESTART FLAG TO TRUE IN 

SYSTEM MEMORY. 
REFRESH SYSTEM MEMORY TO BRING 

ANY NEW LRU BOX UPTO DATE. 
CLEAR ALL ERROR LATCHES. 

XMIT 'PEND R4' REQUEST TO SELF. 
RELEASE BUS. 

Figure 3-20. Restart N-S diagram. 

55 



WHILE TRUE 

HOG BUS. 
DO A DUMMY BUS TRANSACTION. 
RELEASE BUS. (SYNCHRONIZE WITH 3RD CPU.) 
ENABLE IPC INTERRUPTS. (ALLOW R4 TO BE PENDED HERE. ) 
RESET CONFIGURATION CONTROL COMMAND TO ZERO. 
UPDATE TRIAD STATUS WORD IN SYSTEM MEMORY TO INDICATE TRIAD 

AVAILABILITY. 
IF ONLY TRIAD IN THE SYSTEM THEN PEND R4. 
RESUME. 

READ CONFIG. CONTROL COMMAND. (RETURN HERE TO SYNC WITH AN LRU.) 

IS THIS A 'SYNCHRONIZE' COMMAND? 

YES NO 

RESET TARGET LRU. 
XMIT '0' TRIAD ID AND RUN COMMAND TO THIS LRU. N 
CLEAR UNUSED CACHE TO O. 
INITIALIZE MAPPER, TIMER, SBA CNTL ETC. I 
WAIT TO ALLOW TARGET LRU TO COMPLETE ITS INITIALIZATION. 
XMIT TRIAD ID AND RUN SIGNAL TO TARGET LRU. L 
WAIT TO ALLOW TARGET LRU TO GET TO BUS POLL. 

Figure 3-20. Restart N-S diagram (cont.) 

56 



bus, however, is held by the controlling triad unit. It has reset all the 

processors. This forces the competing triad members to start over at the 

beginning. In any case, once a triad has been formed, the system config­

uration tables are read from system memory into cache and the system con­

figuration is brought in conformity with the tables. MRR (memory reloca­

tion including RT Clock Arm Command) is issued to all LRU·s. Each LRU is 

enabled on the P, R, T and C bus as indicated in the tables. P, R, T, 

and C bus in-mux codes are issued to all LRU • sand T select codes are 

issued to all BGU' s. All processors, except members of the self triad, 

are then reset and assigned "0" triad ide Of these processors, those 

marked good are restarted. Since these processors were assigned an 

invalid triad identification, this time they follow the right hand path 

of this program once they start executing the Restart program. This 

ensures that one and only one triad would restart the system without 

interruption from other triads. A 200-millisecond wait at this point 

ensures that restarted processors are past the "power-on reset" decision 

point. At this point all the good processors are issued their correct 

triad identifications so that they would fall through the right hand side 

of the program and into the second synchronization phase and form their 

respective triads. Actually, they fall through and wait for the bus to 

become available since the master triad is still hogging the bus. 

At this point, the master triad clears the real time clock and all 

the error latches, and sets the restart flag in the system memory. The 

system memory is refreshed to bring any LRU box up to date. To refresh 

the system memory it is read into cache one page at a time and written 

back. 

57 



Finally, the R4 dispatcher process is pended into the PSD chain by 

transmi tting a "Pend R4" request to the IPC Register 2 of the self triad. 

Writing to IPC 2 creates an IPC interrupt which is masked in the restart 

process. This interrupt stays in the dormant state until it is unmasked 

further in the program. At that point the routine responding to the IPC 

interrupt, viz. the IPC interrupt handler, checks the message in the I PC, 

register and pends R4 process in its appropriate place. The IPC inter­

rupt is the standard way of pending R4 process elsewhere in the Execu-

tive. Therefore this same method is used here. Having pended R4 

process, the master triad releases the bus and falls through into the 

second synchronization process which is used by all the other processors 

that followed the right hand path of the program. 

The IPC interrupts are enabled here, thereby allowing R4 process 

to be pended between the Restart and the idle process as dictated by its 

built-in priority. The IPC interrupt handler which pends the R4 process 

will be described later in greater detail. The triad sets appropriate 

bit in the TRIAD.VOLS in system memory indicating it is available for task 

assignment and then does Resume (0) to terminate the Restart process and 

start the process pended underneath it. Two possibilities exist. If this 

was the master triad it would start R4 dispatcher at this point. All 

other triads, however, would fall into the idle process since they did not 

pend R4 process. Thus at the end of the system start one triad would 

start the R4 dispatcher while the other triads wait in idle loop for 

further instructions from the master triad. After this point the master 

triad is no more privileged than the other triads. In fact, even during 

58 



restart, any triad that happens to arrive at the power-on reset point 

before all others assumes the role of the prime mover. The term "master 

triad" has simply been used to distinguish the two paths of the Restart 

process. 

The rest of the Restart program is used to pick up a new member in 

a processor triad. When the configuration controller decides that a triad 

should synchronize with a new processor, it issues a triad synch command 

and a "Pend Restart" request to the target triad. It may be noted here 

that once a triad does a Resume from restart, the Restart process is ter­

minated and it is no longer in the PSO chain. However, its PSO is updated 

at the time it is terminated so that when it is pended in the future it 

would start executing where it left off, that is, right after the Resume 

instruction. When the target triad returns here it fetches the LRU IO of 

the target processor from the synch command, resets this processor, issues 

a 0 triad IO to it and restarts it. The target triad then reinitializes 

its own processor and cache using INITIALIZE.PROC and RESET.KERNEL proce­

dures. The target triad and target processor then merge together and syn-

chronize. Following synchronization, synch command is cleared and 

TRIAD.VOLS is updated to indicate availability of this triad once again. 

If this is the only triad left in the system, as indicated by a bit in the 

synch command, it pends R4 dispatcher. Otherwise it falls into the idle 

process. 

The Restart program uses a number of procedures that are also used 

by the Executive elsewhere. These include the system memory access rou­

tines such as READ, WRITE, HOG. BUS, RELEASE.BUS and other more specialized 

59 



procedures such as CLR.ALL.ELS which clears all error latches. These 

programs are collectively known as Executive primitives and will be des­

cribed in detail in Section 3.7. 

3.4 Task Scheduling and Dispatching 

The user workload in the FTMP consists of repetitive application 

tasks such as guidance and navigation, autopilot, etc. The Executive 

tasks such as fault-detection, isolation, and recovery, as well as system 

displays, also must be executed periodically at certain iteration rates. 

The task dispatch algorithm, therefore, has been built around this re-

quirement. Three iteration frequencies are provided. A task may be 

scheduled to run at anyone of these three rates which are called R1, R3 

and R4. Their nominal frequency at present is 2.5, 10, and 20 Hertz. 

Although task scheduling and dispatching is central to any operat­

ing system, a number of other peripheral functions must also be per-

formed. The task schedule must be adjusted to take care of temporary 

system overload. I/O must be performed for tasks that require it. system 

bus transactions must also be performed for those tasks that are not priv-

ileged to do so. 

dispatcher. 

All of these functions are performed by the task 

Another important part of the Executive is the Configuration 

Controller. The input to this program is the content of 48 error latches 

for 12 LRUs. The output of the Configuration Controller is a set of com­

mands to change the system configuration. The Dispatcher executes these 

commands. Finally, the dispatcher also winds down gracefully the work 

60 



assignment of a triad that has been commanded to retire by the Configura­

tion Controller. 

All of these functions taken together form the core of the FTMP 

Executive. Each of these functions will be dealt with in detail in the 

remainder of this chapter. Section 3.4.1 describes the task dispatch 

algorithm and its implementation. 

3.4.1 Dispatch Strategy and Implementation 

As noted previously, tasks can be dispatched at one of three dif­

ferent rates. There is a separate dispatcher program to handle each rate 

group tasks. The task queues and other data sets are distinct for each 

dispatcher. Processors are multiprogrammed so that tasks from all three 

rate groups can be in progress simultaneously. There is, of course, dif­

ferent priority associated with each rate group so that certain tasks can 

preempt certain other tasks. Specifically, R4 rate group (highest fre-

quency) has the highest priority while R1 rate group (lowest frequency) 

has the lowest priority. Tasks within a single rate group are treated as 

equals. They are arranged in a queue and executed in that order on every 

iteration. Preconditions or constraints for starting a task are allowed 

so that a certain task may not begin until certain other tasks have co~ 

pleted during that iteration. The iteration cycles of the three rate 

groups are synchronized so that the beginning of an R1 cycle or frame 

coincides with the beginning of an R3 as well as an R4 cycle or frame. 

Evidently, there are eight R4 frames and four R3 frames for every R1 frame 

as determined by their respective iteration frequencies (see Figure 3-21). 

61 



! Major Frames r 
40 Hz 

Minor Frames 

20 Hz J<->I 
frame 

5 Hz 1<-- R1 frame >1 

t 
I 

Figure 3-21. FTMP workload characterization. 

62 

frame marks 



The start of a task execution cycle in which all rate group tasks begin a 

new frame is called a major frame. This, of course, happens every eighth 

R4 frame. 

The implementation of the dispatch strategy described is fairly 

straightforward in a uniprocessor environment. However, in a multi-

processor, a number of additional factors complicate this otherwise s~mple 

task management philosophy. For example, factors such as work division 

amongst processors and resources as well as data sharing must be given 

consideration. Since these issues only help to cloud the basics of the 

strategy implementation, it is instructive to first deal with a multi-

programmed uniprocessor environment. The multiprocessing considerations 

can then be seen more clearly and as a separate issue in their own right. 

Many multiprogramming details of the uniprocessor implementation, in fact, 

carryover to the multiprocessor scenario without any change. 

Wi th a single processor in the system, the question of workload 

division does not arise. The sole processor in the system must perform 

all tasks. Requirement of several frequencies and priorities dictates 

that the processor be multiprogrammed. A typical implementation would be 

as follows. There are three dispatchers, one for each rate group. There 

is a process associated with each dispatcher. The R4 dispatcher process 

is bootstrapped by the Restart process when the system starts up as 

described in Section 3.3. This, then, is the start of a major frame. 

That is, all tasks begin their first cycle at this point in time. There­

after they repeat as dictated by their respective iteration frequencies. 

The R4 dispatcher, therefore, pends R3 and R1 dispatcher processes in the 

63 



PSD chain. It then performs all the I/O for tasks from all the rate 

groups and then proceeds with the execution of R4 tasks. R4 task queue is 

read into cache from system memory and the first task that meets all the 

required constraints is chosen for dispatch. The pointers in the task 

queue are rearranged and the task queue :updated in the system memory. If 

the task is not privileged, all the data it needs from system memory is 

read into its stack area by the dispatcher. The data requirements are 

contained in a data control block in· system memory assigned to such 

tasks. There is also a PSD block associated with each task that is used 

to create a process for the task. Having created such an R4 application 

task process, the R4 dispatcher "activates" this process, thereby passing 

control to the task. To make sure that the control eventually returns to 

the dispatcher, a time-out limit, as indicated in the task control block, 

is placed on each task. The interval timer is loaded with this time so 

that in case of time-out, a timer interrupt would terminate the task. 

Upon normal completion of the task, however, it does a Resume to return 

control to the dispatcher which updates task data blocks in system memory, 

if required. This process continues until all the R4 rate group tasks 

have been dispatched. The R4 dispatcher then does a Resume to pass 

control to the R3 dispatcher. Before doing this, however, it loads the 

interval timer so that a timer interrupt would occur at the beginning of 

the next R4 frame. The R3 dispatcher executes all the R3 tasks and passes 

control to the R1 dispatcher which completes all R1 tasks and does a 

Resume to fall through into the idle process. Sometime during the RJ, R1, 

or idle process, depending on the work load, it is time to start the next 

64 



R4 frame. This is signaled by the t~er interrupt. When this happens, 

control passes to the t~er interrupt handler which pends R4 dispatcher in 

the PSD chain. Whatever process happened to be active at the time, R3 or 

R1 dispatcher or application task, is suspended while R4 dispatcher starts 

over. This is a minor R4 frame (see Figure 3-21). Therefore R4 dispatch­

er does not pend R3 or R1 processes this t~e. It completes another cycle 

of R4 tasks and resumes the previously interrupted process after having 

set the interval timer for the start of the next R4 frame. This R4 frame 

also coincides with the start of the R3 frame. Therefore, in that cycle, 

the R4 dispatcher pends R3 process but not R1. Thus the R3 process is 

pended every other cycle of R4 while the R1 process is pended every eighth 

R4 frame and this cycle continues to repeat itself. 

Two points here need to be elaborated upon. First, the interval 

timer which is a single hardware device in each processor is to be used 

for two purposes: one, to place a maximum time limit on each task, and 

two, to signal the start of each R4 frame. Since the interval timer can 

only be armed to go off at one point in the future, various timers (up to 

three of which can be active simultaneously) are tracked in software and 

the shortest of these is loaded in the hardware timer. The software also 

keeps track of the identity of the hardware timer so that when it does go 

off the timer interrupt handler knows which of the four software timers 

(R4, R3, R1 task or R4 frame) caused the timer interrupt. The second 

point concerns task scheduling in the face of work overload. It has been 

tacitly assumed in the previous discussion that the processor is able to 

keep up with the work load so that when it is time to start, say, an R3 

65 



frame, the previous R3 frame is assumed to have been completed. There 

are, however, situations when for short periods of time the workload 

exceeds the capaci ty of the processor. This can happen, for example, 

during transition from one mission phase to the next, etc. In any case, 

the dispatch philosophy has been designed to accommodate temporary over­

loads. Figure 3-22 shows the dispatcher overload performance. The basic 

strategy here is to not start a new frame until the previous frame is 

complete. More specifically, if the previous R1 frame is not completed 

on time, the start of the new R1 frame is delayed by two R4 frames. If 

the previous R3 frame is not completed on time, the new R3 and R1 frames 

are delayed by one R4 frame to allow the processor to catch up. Finally, 

R4 frames are initiated such that at least 40 percent of the processor 

time is available for R3 and R1 processes. This ensures that an overload 

in R4 group tasks, which have the highest priority, would not completely 

preempt the lower priority R3 and R1 group tasks. That is, if in any R4 

frame more than 60 percent of the R4 frame time is already consumed by 

the R4 tasks, then the timer alarm for the next R4 frame is set to go off 

(0.4 times R4 frame time) in future. 

To recapitulate salient points of the multiprogrammed single 

processor dispatch strategy, each R4 cycle is initiated by timer inter­

rupt. R3 and R1 dispatchers are scheduled by the R4 dispatcher at their 

appointed times. When all the tasks have been completed, the processor 

falls into the idle process to be interrupted at the start of the next R4 

frame. If tasks are not completed on time, start of future frames is 

delayed to allow processor to catch up. I/O for all tasks is performed 

by the R4 dispatcher. 

66 



~ 
-...I 

R4 Frame initiation time marks 

I I 1 I 1 I I I 1 I 1 1 I 1 I I I 1 I I I 1 I I I I I I 1 ITTfTr-I-11 1111 II I I I I I 

R3 frame initiation time marks 

slip due to R4 taking 
longer than 60% of R4 
frame 

r Il~T I , -I , 1+1 -r-l--' 

R1 frame initiation time marks 

slip due to R3 
incompletion 
(discrete increments) 

f r-- ------ -- r:+ 1-------- ---T----------I 1 

slip due to R1 
incompletion 
(discrete increments) 

Figure 3-22. Dispatcher overload performance. 



,. , 

This same strategy, with two modifications, can be extended to a 

multiprocessor environment. First, a timer interrupt is used to initiate 

an R4 frame in only one processor. This processor then sends a message 

to other processors through their IPC registers to begin work on R4 

frame. Second, since more than one processor can be dispatching tasks 

from the same queue, it is necessary to provide semaphores to limit 

access to shared resources to only one processor at any given time. This 

is accomplished by "lock" and "unlock" functions which control the sema-

phores. Before a processor can alter a data base it must "lock" it, and 

after releasing the data base, it must "unlock" it. 

With these changes in mind we can follow through a typical task 

dispatch cycle for the FTMP as illustrated in Figures 3-23 to 3-25. 

Figure 3-23 shows the initiation of a major frame. Three processors or 

triads are in the idle state. One processor, A, has its interval timer 

armed to go off at the start of the next R4 frame. When this happens, 

the timer interrupt handler pends R4 dispatcher and resumes it. The R4 

dispatcher does I/O for R4 tasks. At this point R4 tasks are ready to be 

dispatched. However, since this is the start of a major frame the R4 

dispatcher must also perform I/O for the R3 and R1 tasks. Therefore, 

processor A "kicks" processor B (sends it a pend R4 request through IPC 

interrupt). The IPC interrupt handler in processor B pends R4 dispatcher 

and resumes it. The R4 dispatcher pends R3 and R1, this being the start 

of a major frame. Meanwhile, processor C continues to be in idle state. 

Since only one processor can access the dispatcher data bases at any 

moment only one processor is kicked to start R4. Processor A locks R3 

68 



(j\ 
\0 

TIM 

IDLE 

TRIAD A 

IDLE 

TRIAD B 

IDLE 

TRIAD C 

INTERVAL TIMER INTERRUPT 

app # 4.2 app # 4.4 

R4 

TIM R3 

R4 R4 I/O R3 I/O R1 I/O R1 

IPC (R4 request) 

app # 4.1 lapp # 4.5 

R4 

I IPC I R3 

IPC I R4 R1 

IPC (R4 request) 

app # 4.3 app # 4.6 

R4 

IPC I I R3 

IPC I R4 R1 

Figure 3-23. Major frame initiation. 



and Rl data bases and performs I/O for these tasks. A t the same time 

processor B locks the R4 data bases and searches the R4 task queue and 

picks up a task to execute. Before starting the task, however, it un­

locks R4 and kicks processor C. Eventually all processors start to pick 

up R4 tasks and execute them. 

Figure 3-24 shows how an R4 frame is terminated and R3 resumed. 

It isseen that processor B is the last to exit from the R4 frame. Proc­

essor B, therefore, sets up its interval timer for the start of the next 

R4 frame and then it resumes the R3 process. Meanwhile processors A and 

C have already resumed R3 having completed all tasks in R4 frame. Figure 

3-25 shows the sequence of events when the timer interrupt occurs in 

processor B. The situation is now slightly different from that of Figure 

3-23. There, (Figure 3-23) all processors were idle. Here,(Figure 3-25) 

A and B are working on R3 applications tasks with the Rl process pended 

but yet to start while C is working on Rl, all tasks in R3 having already 

been dispatched. The actions taken here, however, are not much different 

from the previous case. First of all, B suspends the R3 task and starts 

the R4 dispatcher. This being a minor frame only R4 I/O needs to be 

done, at the end of which it picks up a task from the R4 queue and kicks 

processor A to start R4 work. A picks up the next R4 task and kicks C. 

The interrupted R3 tasks are resumed when all R4 tasks are completed and 

the last processor to exit the R4 frame sets itself "R4 responsible" by 

arming its interval timer. 

To summarize the multiprocessor dispatch strategy, an R4 frame is 

initiated in one processor (R4 responsible processor) by timer interrupt. 

70 



-
app * 4.n-1 

R4 app * 3.2 lapp * 3.5 

R3 

R1 

IDLE 

TRIAD A 
INTERVAL TIMER INTERRUPT 

.... 

app * 4.n-2 app * 4.n 

R4 lapp * 3.3 app * 
R3 

R1 

IDLE 

TRIAD B 

app * 4.n-3 

R4 app * 3.1 app * 3.4 

R3 

R1 

IDLE 

TRIAD C 

Figure 3-24. R4 Frame termination/Resume R3. 

71 



-
IPC app # 4.2 app # 4.5 

app # 3.x app # 3.x IPC R4 

R3 

R1 t 

IDLE 

TRIAD A 

INTERVAL TIMER RUPT 

l r-
TIM app # 4.1 app # 4.4 

ITIM R4 R4 I/O 

app # 3.x 

R3 

R1 

IDLE 

TRIAD B 
-
IPC a pp # 4.3 a pp # 4.6 

app # 3.x IPC R4 

R3 app # 1.1 

R1 

IDLE 

TRIAD C 

Figure 3-25. R4 Frame initiation, interrupting R3 and R1. 

72 



R4 processes in other processors are pended when they receive IPC inter­

rupts from the R4 responsible processor. R3 and R1 processes are sched­

uled within each processor by the R4 dispatcher. All I/O is done by the 

R4 dispatcher in R4 responsible processor. 

One last complication in the multiprocessor case is the graceful 

retirement of a processor or triad, as well as the smooth entry of a new 

triad. This is accomplished with the help of two words in system memory 

as follows. First, each triad that successfully starts up sets a bit 

corresponding to its ID in a word called TRIAD. VOLS (triad volunteers) 

indicating that it is ready for work assignment. When a triad is com­

manded to retire it resets that same bit after winding down all the tasks 

it had in progress. The retire command is checked after each task is 

completed. No new tasks are dispatched by the triad once it sees the 

retire command. Second, at the beginning of each R4 frame, the R4 res­

ponsible triad determines which triads should be assigned work for that 

frame. It does this by creating TRIADS.AVLBL (triads available) word 

which is just what TRIAD.VOLS happens to be at the time. This word then 

is used by the R4 responsible triad to make sure that each triad indicat­

ed as being available is kicked at least once and only once to start up 

the R4 process. 

This way a retiring triad gets out as soon as it sees the retire 

command. On the next frame it is omitted from the work assignment. 

Similarly a new triad waits in the idle process until the beginning of a 

new frame. Since the number of triads that started a frame is known 

clearly, it makes it easy to determine who is the last triad to exit an 

73 



R4 frame. This is important since the last triad out is also responsible 

for initiating the next R4 frame. The system would halt if the last 

triad out did not set itself R4 responsible. Finally, this also facili­

tates the determination of the end of an RJ or R1 frame. That is, if all 

the triads that started the R1 or RJ frame also exited from it then that 

frame must have terminated. This knowledge of whether the previous frame 

has ended is central to the decision of starting or delaying the next RJ 

or R1 frame. 

The next two subsections describe the data bases and N-S diagrams 

of the dispatcher, respectively. 

3.4.2 Dispatcher Data Base 

This subsection details the data base utilized by the R1, RJ, and 

R4 dispatchers. Although the data bases are unique to each dispatcher, 

their structure, with some minor exceptions, is identical. Data struc­

tures will be described assuming they apply to all rate groups and the 

differences where applicable will be pointed out. 

A majority of the data required by the dispatcher is naturally 

related to the tasks. 

First of all, there is a task queue for each rate group. Assoc-

iated with each task queue is a control block. Figure 3-26 shows the 

structure of the R4 control block. There are ten entries in the control 

block. The first entry points to the beginning of the R4 task queue. 

The second entry points to the task in this queue that is scheduled to be 

dispatched next. The third entry is the triad tracker. This word has 

74 



TOP PNTR 

NEXT PNTR 

TRIAD TRACKER 

FRAME COUNT 

SLIP 

TASKS DONE 

START R3 

START R1 

TIME LO 

TIME HI 

Figure 3-26. R4 control block. 

F E D C B A 9 8 7 6 5 4 3 2 o 

R4 RESPONSIBLE TRIADS KICKED TRIADS RUNNING TRIADS TO 
TRIAD R4 RUN R4 

Figure 3-27. Triad tracker. 

75 



FWD PNTR TYPE TOS 

BWD PNTR LENGTH STK LIM 

MAX TIME EVEN SYS ADR SPCR 

FRAME ODD SYS ADR -LENV-

DATA PNTR CACHE ADR PMR 

PSD PNTR NEXT PNTR MAPPER 

CONSTRAINTS NULL MASK 

BIT NO NULL -PSD PNTR-

(a) Task control block (b) Data control block (c) PSD 

Figure 3-28. Task data structures. 

76 



four 4-bit fields as shown in Figure 3-27. The four fields indicate i) 

triads scheduled to run R4, ii) triads currently running R4, iii) triads 

that have already been kicked to run R4 and iv) the triad responsible for 

starting the present R4 frame. Of course, the last two fields are not 

applicable to R3 and R1 control blocks. The next word is the frame num­

ber. It ranges from 0 to 15 for R4, 0 to 7 for R3 and 0 to 1 for R1 con­

trol block. The next word is "slip" which ranges from 0 to -15. It is 

used to delay (slip) R3 and R1 frames when they are behind schedule. The 

next word is called TASKS. DONE. Each task is assigned a bit in this 

word. When a task completes normally, its associated bit in the word is 

set. This word is used to determine if constraints, if any, for a task 

have been met. The next four words exist only in the R4 control block. 

The first two of these, START.R3 and START.R1, tell the R4 dispatcher 

whether R3 and R1 are to be pended in this cycle. The next two words 

constitute double precision absolute start time of the next R4 frame. 

Figure 3-28 shows the remaining data structures associated with 

tasks. The task queue is really a list of task control blocks which are 

chained together in the forward and backward direction. Figure 3-28 (a) 

shows the structure of one such control block. The top two words are 

the forward and backward pointers, respectively. The next word is the 

maximum time allotted to this task. The next word is frame count indi­

cating the last frame number in which this task completed successfully. 

The next two words point to the other two data sets associated with task, 

viz., the data control block and the task PSD. The next word, "Con-

straints," indicates which tasks must be completed before this task is 

77 



dispatched. The last word, task done bit number, is the bit number in 

the TASKS.DONE control word corresponding to this task. 

The next data set associated with a task is the data control block 

shown in Figure 3-28(b). This block or a number of these blocks chained 

together define data requirements for nonprivileged tasks. It may be 

recalled here that the nonprivileged tasks are not allowed to access 

system memory. The dispatcher reads in data before starting the task as 

defined by these data control blocks. At the completion of the task, 

results are written back to system memory in accordance with the control 

blocks. Each control block has a cache address, two system memory ad­

dresses and the type and bytes of data and a pointer to the next data 

block, if any. The two memory addresses are labeled odd and even. These 

are used on odd and even frame iterations of the task, respectively. If 

the two addresses are not the same, then that assures the integrity of 

data and a task can be rolled back and retried without already having 

destroyed the data. The type of data indicates the direction of trans­

fer, that is, from system memory to cache or vice versa or both. 

The last structure associated with each task is a dummy PSD shown 

in Figure 3-28(c). The structure of the PSD is the same as described 

earlier in Section 3.1. However, two of its elements, LENV and PSD.PNTR, 

are null. These are initialized by the dispatcher just before passing 

control to the task process. Briefly, the remaining elements of the PSD 

define stack location for the task process, its starting address, privi­

leged/nonprivilege status, whether it was mapped or unmapped and the 

interrupts that are allowed during execution of this task. 

78 



Associated with each task queue is a semaphore or a lock word. 

This word must be locked before a dispatcher can read in any control bloc 

from system memory. 

There are a certain number of words that are more directly assoc-

iated with each processor triad rather than each dispatcher. Two of 

these, TRIADS.VOLS and TRIADS.AVLBL have already been described in the 

preceding section. TRIADS.AVLBL is used to set various fields of 

TRIAD.TRACKER in R4, R3, and R1 control blocks. There is also a triad 

command array, one word for each triad, that is used by the configuration 

controller to command a triad to retire. Finally, the Restart flag, also 

described in an earlier section, tells the R4 dispatcher to initialize 

all the task queues, etc., in the system memory due to a system restart. 

For ease of experimentation in the FTMP development stages, two other 

words are provided. One is the R4 Period which is presently set at 50 

milliseconds but can be varied. The other is Slop which is set to 40 

percent. Slop is the minimum R4 frame time (in percent) allocated for R3 

and R1 processes. 

All of the variables described reside in the system memory. They 

are defined in the CAPS assembly language source program 

FTMP.ASM(TABLES). The assembler output appears in FTMP.LIST(TABLES) • 

. 
There are also a few cache variables used by the dispatchers. One 

is EXEC. LEVEL. This is primarily used by the LOCK/UNLOCK routines to 

avoid deadly embrace. This will be further explained in Section 3.7. 

EXEC.LEVEL is set to 0, 1 or 2 depending on whether R1, R3 or R4 dis-

patcher is being executed. The second cache global is R4. RESPONSIBLE 

which is set to TRUE when a triad arms its timer for the next R4 frame. 

Section 3.4.3 describes the dispatcher flow charts. 

79 

.,. 



3.4.3 Dispatcher N-S Diagrams 

The three dispatchers, R1, R3 and R4, perform a number of func­

tions which are common to them. The R1 and R3 dispatchers, in fact, are 

almost identical. They, of course, work on distinct data sets. The R1 

and R3 dispatchers may be considered a subset of the R4 dispatcher, from 

a functional viewpoint. The R4 dispatcher, in addition to doing every­

thing the other two dispatchers do, also initiates new frames, adjusts 

schedule for overload, performs task I/O, and communicates with the 

configuration controller. The R4 dispatcher flowchart will, therefore, 

be described here in detail and only those areas of the R1 and R3 dis­

patchers that differ in substance from R4 will be highlighted. Figures 

3-29 and 3-30 depict the N-S level flowcharts of the R4 and R3 (same as 

R1) dispatchers respectively. The source programs for the dispatchers 

may be found in FTMP.AED (DISPR4) and FTMP.AED (DISPR3R1). The compiled 

listings may be found in FTMP.LIST (DISPR4) and FTMP.LIST (DISPR3R1). 

The R4 dispatcher, it will be recalled here, is bootstrapped by 

the Restart program. On the first pass the dispatcher begins by initial-

izing global variables in cache. R4.RESPONSIBLE is set to false, 

EXEC.LEVEL is set to 3, R4 period and Slop are initialized by reading 

these values from system memory and a procedure TIMER.INIT is called that 

initializes all interval timer related variables. Programs that keep 

track of various timers in software have been grouped together in one 

library FTMP.AED(TIMERS). These are explained in detail in Section 

3.7.3. In the present discussion only the main function of each timer 

procedure will be described. Next, the system restart flag in the system 

80 



INITIALIZE CACHE GLOBALS 

IS RESTART FLAG SET IN THE SYSTEM MEMORY? 

YES NO 

INITIALIZE SYSTEM MEMORY. 
MAKE SELF R4 RESPONSIBLE. NIL 

ALWAYS 

SAVE OLD EXECUTIVE LEVEL AND SET NEW EXEC LEVEL TO R4. 
WRITE PROTECT R 1 AND RJ USER STACKS. 
HOLD TIMERS (RJ AND R1 APPLICATIONS TIMERS) 
LOCK R4 
READ R4 CONTROL BLOCK 
SET 'FIRST.TIME' TO FALSE. 

IS THIS TRIAD R4 RESPONSIBLE? 

YES NO 

BEGINNING OF R4 FRAME: 
INITIALIZE R4 CONTROL BLOCK TO BEGINNING OF FRAME CONDo 

R4 RESPONSIBLE = FALSE 
INITIALIZE TRIAD. TRACKER & TRIADS. AVLBL 

DO CONSOLE (DISPLAY) I/O 

I/O: 
OUTPUT R4 I/O DATA FROM BUFFERS 
INPUT R4 I/O DATA TO BUFFERS NIL 

TIME FOR RJ FRAME START? (MOD (FRAME. COUNT + SLIP,2) = 0) 

YES NO 

PREVIOUS RJ FRAME DONE? (RJ.DONE = 1) 

YES NO 
NIL 

LOCK RJ SLIP = SLIP - 1 
MARK RJ FOR FUTURE PENDING 
RJ.DONE = 0 

TIME FOR R1 FRAME START? 
(MOD (FRAME+SLIP,8) = 0) 

YES NO 

Figure 3-29. N-S diagram of R4 dispatcher. 

81 



PREVIOUS R1 FRAME DONE? 
(R1.DONE = 1 ) 

YES NO 
NIL 

LOCK R1 SLIP= 
MARK R1 FOR SLIP-2 

PENDING 
R1.DONE = 0 

WRITE R4 CONTROL BLOCK / 
UNLOCK R4 

R4 IPC RUPT TO ANOTHER TRIAD 

OUTPUT RJ I/O FROM BUFFERS 
PREPARE RJ INPUT I/O BUFFERS 
UNLOCK RJ 

R1 MARKED FOR PENDING 

YES NO 

OUTPUT R1 I/O BUFFERS 
PREPARE R1 INPUT BUFFERS NIL 
UNLOCK R1 

LOCK R4 / READ R4 CONTROL BLOCK 

EXECUTE RECONFIGURATION COMMANDS 

IS IT FIRST ITERATION OF THIS TRIAD THRU THIS FRAME? 

YES NO 

R4.FRAME = FRAME 

IS RJ PENDING? NIL 

YES NO 

QUEUE RJ PROCESS BEHIND R4. 

IS R1 PENDING?· NIL 

YES NO 

QUEUE R1 PROCESS BEHIND RJ. NIL 

R4.ACTIVE = TRUE, LIST.DONE = FALSE. 

Figure 3-29. N-S diagram of R4 dispatcher (cont.). 

82 



WHILE R4.ACTlVE 

READ TRIAD.COMMAND FROM SYSTEM MEMORY & SET/RESET 'RETIRE'. 

IF LIST.DONE OR RETIRE 

THEN ELSE 

LAST TRIAD? SELECT.TASK( ) 
(RETURNS: LIST.DONE, TASK) 

YES NO 

IF RETIRE LIST. DONE? 

THEN ELSE YES NO 

KICK UPDATE NEXT NIL UPDATE R4.CONTROL IN 
R4 TIME-TICK SYSTEM MEMORY. 
SET TRIAD R4 KICK , UNLOCK(R4). 

RESPONSIBLE EXECUTE TASK. 
LOCK(R4) • 

IF RETIRE READ R4.CONTROL INTO 
NIL 

THEN ELSE CACHE. 

MARK THIS TRIAD 
'UNABLE R4' NIL 

MARK TRIAD NOT DOING R4. 
R4.ACTlVE = FALSE. 

UPDATE R4.CONTROL BLOCK IN SYSTEM MEMORY. 
UNLOCK (R4 ) .• 
DISABLE ALL INTERRUPTS. 
RESTORE PREVIOUS EXECUTIVE LEVEL. 
RESTART TIMERS (R3 AND R1 APPLICATIONS TIMERS) • 
RESUME PREVIOUSLY INTERRUPTED PROCESS. 

Figure 3-29. N-S diagram of R4 dispatcher (cant.). 

83 



AIHlAYS 

SAVE OLD EXECUTIVE LEVEL AND SET NEW EXEC LEVEL TO RX (R1 OR RJ) • 
ENABLE ALL INTERRUPTS. 
HOLD TIMERS (R1 APPLICATIONS TIMERS IF RX=R3). 
LOCK rue 
READ rue CONTROL BLOCK 

MARK THIS TRIAD AS WORKING ON RX 

R.ACTIVE = TRUE, LIST. DONE = FALSE. 

WHILE R.ACTIVE 

READ TRIAD.CCJo.1MAND FRCM SYSTEM z.1EMORY & SET/RESET r RETIRE r • 

IF LIST. DONE OR RETIRE 

THEN ELSE 

LAST TRIAD? SELECT. TASK ( ) 
(RETURNS: LIST. DONE, TASK) 

YES NO 

RESET TASK QUEUE BY LIST. DONE? 

SETTING: YES NO 
NEXT.PNTR=TOP.PNTR 
INCR. FRAME COUNT UPDATE RX.CONTROL IN 
MODULO 8. NIL SYSTEM MEMORY. 
DISABLE RUPTS, THEN UNLOCK ( :rue) • 

WRITE R.DONE IN MM. EXECUTE TASK. 
SYSTEM MEMORY. LOCK( RX) • 

READ RX.CONTROL INTO 
IF RETIRE NIL 

THEN ELSE 

SET MARK THIS TRIAD 
RX.TRIAD.IDLE NOT WORKING ON 

= TRUE. RX. 

R.ACTIVE = FALSE. 

UPDATE RX.CONTROL BLOCK IN SYSTEM MEMORY. 
UNLOCK ( :rue) • 

DISABLE ALL INTERRUPTS. 
RESTORE PREVIOUS EXECUTIVE LEVEL. 
RESTART TIMERS (R1 APPLICATIONS TIMERS IF RX=R3). 
RESUME PREVIOUSLY INTERRUPTED PROCESS. 

Figure 3-30. N-S diagram of RJ and R1 dispatchers. 

84 

CACHE. 



memory is checked. If the flag is set, this is the first triad to start 

up after the system restart. It must, therefore, initialize a number of 

data structures in the system memory. The restart flag is reset, config­

uration commands cleared, all resources unlocked, task queue control 

blocks for all the rate groups reset, configuration controller and 1553 

I/O routines initialized. Finally, the triad marks itself R4 responsi­

ble. The succeeding triads that start up would skip system memory 

initialization and also would not be R4 responsible. 

The initialization phase is executed only once. The program then 

falls into an infinite loop from which it can only exit by resuming 

another process or being interrupted. First of all, a procedure from 

timers, HOLD.R3.R1.TIMERS, is called. It stops any R1 or R3 task timers 

which may be running, since a lower priority task may have been inter-

rupted to begin the R4 dispatcher. Next, the executive level 

(EXEC.LEVEL) is initialized to R4 after saving the previously interrupted 

execution level, if any. The R1 and R3 user stacks are write protected 

from the R4 user tasks by marking their status as WP (write protect) in 

the mapper. The R4 data bases are locked by calling the lock procedure 

with the R4 semaphore as the argument. The lock procedure would return 

only when it has locked the semaphore. If the resource is not acces­

sible, that is, it is already locked by another triad, then this triad 

must wait until it is unlocked. The details of lock, unlock and other 

general purpose procedures used by dispatcher are described in Section 

3.7. Having locked the R4 data base, the R4 control block is read into 

cache. The FIRST.TIME flag, indicating whether this is the first itera­

tion of this triad though the present R4 frame, is set to false. 

85 



Next, if this triad initiated the present R4 frame, that is, if it 

was the R4 responsible triad, then it must perform a number of frame 

initialization tasks. The R4 responsible triad sets R4 responsible to 

false, FIRST.TIME to true. It resets the R4 control block by setting the 

next task pointer equal to the top pointer, incrementing FRAME. COUNT, 

setting START.R3 and START.R1 to false, and TASKS.DONE to zero. 

RECONF.DONE flag, in the system memory, is reset indicating commands for 

the configuration controller, if any, have not been done in this frame. 

Next TRIAD.VOLS is copied into TRIADS.AVLBL and various fields of 

TRIAD.TRACKER initialized from TRIADS.AVLBL. The bit corresponding to 

this triad in the kick field of TRIAD. TRACKER is reset, indicating this 

triad should not be kicked to start R4 again. Next, the busy bit in 

TRIAD. TRACKER is set to indicate this triad has already begun the R4 

dispatcher. 

The sum of FRAME. COUNT and SLIP is checked to see if an R3 or R1 

cycle is also scheduled to start now. If either frame is to be started 

up, then a check is made to determine if the previous frame for that rate 

group has finished yet. This is done by checking the first field of 

TRIAD. TRACKER in the control block of that rate group. It will be recal­

led here that this field is set at the start of a new frame to indicate 

all the triads that are assigned work for this frame. As each triad 

exits the frame it resets its bit in this field. The previous frame has 

therefore finished if this TRIAD. TRACKER field is zero. If the previous 

frame is done, then R1.START, R3.START, or both, as the case may be, are 

set to true. The triad tracker in the R1 and R3 control blocks is also 

86 



reinitialized from TRIADS.AVLBL after locking R3 or R1. As other triads, 

which are not R4 responsible, start the up R4 dispatcher, they check 

these two variables before pending the R3 and R1 processes. If the 

previous R3 cycle has not finished the start of the R3 frame is postponed 

until the next R4 frame. If the previous R1 cycle has not finished, the 

start of the new R1 frame is postponed by two R4 frames. This is done by 

decrementing SLIP by 1 or 2 (modulo - 16). 

Next, R4 task I/O and Console (FTMP Display and Monitor) I/O is 

performed by calling appropriate procedures using the DOIT facility of 

AED. The dispatcher programs reside in the PROM while the I/O programs 

reside in the system memory and their addresses are subject to change 

during development stages. Their starting addresses are therefore stored 

in system memory. The dispatcher reads the starting addresses into its 

stack and the DOIT procedure calls the program pointed to by TOS. (Nor-

mally, the procedure address must be in the instruction stream, that is, 

the PROM). In any case, if the R3 frame is also to be started then the 

R4 responsible triad kicks another triad to start up the R4 dispatcher, 

updates the R4 control block in system memory, and releases the R4 data 

base by unlocking it. The kick procedure is passed TRIAD. TRACKER as the 

argument. The kick routine picks a triad that has not been kicked yet 

and resets that bit in the TRIAD. TRACKER kick field. Having kicked 

another triad, the R4 responsible triad then performs R3 I/O, unlocks the 

R3 data base, and performs R1 I/O as well, if this is the start of a 

major frame. 

87 



This completes all the R4 responsible functions. The rest of the 

R4 dispatcher is executed by all the triads, whether R4 responsible or 

not. 

FIRST.TIME is set true if this is the first iteration of the triad 

through an R4 frame. The "busy bit" in triad tracker is set to indicate 

thistriad has entered the R4 dispatcher. RECONF.DONE flag in system 

memory is checked to see if configuration control commands have been 

executed. The commands issued by the configuration controller must be 

executed at least once and only once. Some triads are prohibited from 

executing some of these commands. For example, a processor triad can not 

dismantle or reconfigure itself. Any commands that this triad is able to 

execute, it does by calling a procedure RECONFIGURE. This procedure is 

logically a part of the configuration controller and will be described 

along with the controller in the next section. 

Next, the R3 and R1 processes are pended in the PSD chain, if 

appropriate f1ags are set. Having done this one-time frame initializa-

tion, the triad falls into the main loop of the dispatcher to dispatch 

tasks. It stays in this loop until all the R4 tasks have been dispatch­

ed. If LIST.DONE is false, that is, all tasks are not done yet, a proce­

dure called SELECT.TASK is called to pick up the next task from the R4 

task queue. An N-S diagram of SELECT.TASK is shown in Figure 3-31. This 

procedure reads into cache the task control block pointed to by 

NEXT.PNTR. It checks to see if the constraints for this task, if any, 

are met. If not, then this task is bypassed. Next, the task control 

block, pointed to by the forward pointer of this task, is read into 

88 



INITIALIZE: CAND.PNTR = NEXT.PNTR (PICK 1ST TASK IN THE LIST AS 
TASK. FOUND = FALSE A CANDIDATE TASK) 
LIST.DONE = FALSE 

WHILE NOT TASK. FOUND (DO THIS LOOP UNTIL A TASK IS FOUND OR ) 

OR NOT LIST.DONE ( THERE ARE NO MORE TASKS TO BE DISPATCHED) 

IF CAND.PNTR EQL NULL 
( ALL TASKS FOR THIS FRAME DISPATCHED?) 

THEN ELSE 

LIST.DONE READ CONTROL BLOCK FOR NEXT TASK INTO CACHE. 
= TRUE 

(LIST OF IF CONSTRAINTS FOR THIS TASK SATISFIED 
TASKS DONE) (TASKS INDICATED IN TASK.CONSTR DONE) 

THEN ELSE 

ANY TASKS BYPASSED DUE TO CONSTRAINTS ADVANCE 
CAND.PNTR 

YES NO TO NEXT 
TASK IN • 

ADVANCE THE LIST 
NEXT PNTR 

( SET 
NEXT.PNTR = 
CAND.FWD.PNTR 

) 

TASK. FOUND = TRUE 

Figure 3-31 Select task N-S diagram 

89 



cache. This process continues until a task that meets all the con-

straints is found. The forward and backward pointers in the task queue 

are adjusted to reflect the new status, NEXT.PNTR in the control block is 

updated and a pointer to the control block of the selected task is re-

turned to the dispatcher. If no task is found, LIST.DONE is set to 

true. Assuming a task is found, the triad kicks another triad to pick up 

the R4 dispatcher, updates the R4 control block in system memory, and 

unlocks R4 data base. It then calls a procedure, EXECUTE, to execute the 

task. 

An N-S diagram of EXECUTE is shown in Figure 3-32. This procedure 

reads in the data control block, if any, of the selected task from system 

memory. If there is such a block, the required data is read into the 

indicated cache address from the even or odd memory address, depending on 

whether this is an even or an odd frame. The data control blocks are 

followed through their chained pointers until all the required data for 

this task has been assembled in cache. Next, the task PSD is copied from 

the system memory into the R4 application task PSD slot. Then a proce­

dure called START.R4.TIMER is called with the maximum time limit for this 

task as the argument. This procedure loads the interval timer with this 

time limit. The control is then transferred to the task by activating 

the R4 application task PSD. If the task terminates normally, control 

returns to the R4 dispatcher. A routine called STOP.R4.TIMER is called 

to clear the interval timer. On the other hand, if the task times out, 

that is, exceeds its time limit, a timer interrupt causes the task pro­

cess to be suspended and control is transferred to the timer interrupt 

90 



DISABLE ALL INTERRUPTS WHILE MODIFYING INTERVAL TIMER. 
SET INTERVAL TIMER TO TASK TIMER LIMIT. 
ENABLE INTERRUPTS. 

DATA.PNTR = CAND.DATA.PNTR (READ INPUT DATA FOR THE TASK FROM ) 

WHILE DATA.PNTR NEQ NULL ( SYSTEM MEMORY BUFFERS. ) 

IS THE DATA AREA READ/WRITE OR READ ONLY? 

YES NO 

IS THIS AN EVEN FRAME? 

YES NO NIL 

READ FROM EVEN BUF READ FROM ODD BUFFER 

DATA.PNTR = NEXT.DATA.PNTR (ADVANCE PNTR TO NEXT DATA AREA) 

INITIALIZE R4 TASK PSD IN CACHE. 
ACTIVATE THE TASK. 

DATA.PNTR = CAND.DATA.PNTR (WRITE OUTPUT OF THIS TASK INTO ) 

WHILE DATA.PNTR NEQ NULL ( SYSTEM MEMORY BUFFERS. ) 

IS THE DATA AREA READ/WRITE OR WRITE ONLY? 

YES NO 

IS THIS AN EVEN FRAME? 

YES NO NIL 

WRITE INTO EVEN BUF WRITE INTO ODD BUFFER 

DATA.PNTR = NEXT.DATA.PNTR (ADVANCE PNTR TO NEXT DATA AREA) 

INDICATE TASK COMPLETION IN THE CURRENT FRAME BY WRITING CURRENT 
FRAME NO. IN TASK CONTROL BLOCK AND BY 

SETTING APPROPRIATE BIT (CAND.BIT.NO) IN THE CONSTRAINT WORD. 
DISBALE INTERRUPTS. 
CLEAR INTERVAL TIMER. 
ENABLE INTERRUPTS. 

Figure 3-32. Execute N-S diagram 

91 



handler. At this point, however, the user task process is still in the 

PSD chain. The timer interrupt handler, which is also part of TIMERS, 

having determined the cause of the interrupt purges the user task PSD 

from the PSD chain, sets a return code in the user PSD and resumes the R4 

dispatcher process. The R4 dispatcher checks the task return code and 

displays a message on the FTMP monitor if the task ended abnormally. 

Finally, the EXECUTE procedure writes out the task results into the 

system memory as dictated by the task data blocks. It also updates frame 

count in task control block to indicate the completion of the task during 

this R4 frame. 

Having executed the selected task, the R4 dispatcher goes back to 

get control of the R4 data base. Having done that, TASKS .DONE in the 

control block is updated to indicate completion of the selected task. 

This process continues until all the tasks have been dispatched. When 

this is done, the triad exits the R4 frame by resetting its bit in the 

first field of TRIAD.TRACKER. If it is not the last triad to exit the 

frame, it kicks another triad to pick up R4. If, on the other hand, it 

is the last triad to exit the frame, it makes itself R4 responsible. To 

do so, the start time of the next R4 frame as indicated in the R4 control 

block is updated. This R4 start time is then compared to the current 

time to see if enough time (40 percent of the R4 frame time or Slop) is 

left to do the R3 and R1 processes. If not, the start of the next R4 

frame is delayed to allow at least 40 percent of the R4 frame time to do 

lower priority processes. In any case, a procedure, SET.R4.RUPT.TlME, is 

called with the start time of the next R4 frame as its argument. This 

92 



procedure computes the correct interval with which to arm the interval 

timer. 

The sequence of events is slightly different if a triad is com­

manded to retire. This command word is checked before dispatching a new 

task so that the response time'to the command will be the minimum possi­

ble. If the triad is to retire and it is not the last one to exit the 

frame, it simply kicks another triad. However, if it is the last one 

out, it obviously cannot make itself R4 responsible. Therefore, it 

modifies the kick field of TRIAD. TRACKER (obviously if this is the last 

triad to quit, all other triads have already been kicked) so as to rekick 

another triad, thereby making sure that someone does start the next R4 

frame. In any case, the retiring triad also resets its bit in TRIAD.VOLS 

indicating it is not available for work assignment. 

This completes the task dispatch loop. The R4 control block is 

then updated in system memory and the R4 data base unlocked. The 

EXEC.LEVEL is restored to its original value and all previously halted 

timers restarted by calling a procedure RELEASE.R3.R1.TIMERS. The R1 and 

R3 user stack entries in the mapper are also restored to their original 

status. 

The dispatcher then resumes the previously interrupted process. 

The R3 and R1 dispatchers are very much the same with some obvious 

exceptions. The R4 responsible functions (I/O, etc.) are not performed. 

If it is the R3 dispatcher, the R1 timer is stopped at entry and restart­

ed before exiting. Also the R1 user stack is write protected at entry 

and restored to its original status before exiting. Neither of these 

93 



functions is applicable to R1 dispatcher. 

patchers do not kick other triads. 

Finally, the R3 and R1 dis-

The dispatchers use a number of Executive primitives. As mention-

ed earlier, all the timer related functions are collected together in 

FTMP. AED (TIMERS) • The system bus related routines, those that access 

memory, real-time clock, and other control registers on the system bus 

are grouped together in FTMP. ASM(SERVICE). These are, however, not used 

to read error latches or clear them. These more efficient customized 

routines are collected under "error latch service routines." Finally, a 

number of miscellaneous primitives such as lock, unlock, kick, etc., are 

collected in the library FTMP.AED(GPROCS). All of these Executive primi­

tives are described in Section 3.7. 

94 



3.5 System Configuration Control 

The overall function of the FTMP system configuration controller 

is to maintain system integrity in the presence of hardware faults. It 

does this by detecting faults, identifying the faulty units, and replac­

ing them with spares or gracefully degrading the system if no spares are 

available. Hard, as well as transient, faults are handled by the config-

uration controller. To assure a high level of system integrity at all 

times, spare units are periodically brought on-line. This includes 

processors, system memory units, all buses, and clock elements. To 

minimize reconfiguration time, spare processor and memory units are 

assigned to shadow active processor and memory triads. In addition, 

self-test programs are run continually on active elements to uncover any 

latent or lurking faults. Finally, a customized version of the control­

ler communicates with the Fault Injection Software (FIS) resident in 

PDP-11 through the 1553 bus to facilitate the fault-injection and subse­

quent data collection process. 

The program that performs all the functions outlined above is SCC 

(System Configuration Controller). This program runs as a privileged R1 

rate group applications task. It calls various procedures to perform 

individual functions such as fault detection, hard failure analysis, 

deactivate failed units, assigning shadows, etc. Section 3.5.1 describes 

the overall configuration control structure by detailing the SCC proce­

dure. The subsequent six sections describe in detail each major function 

such as fault detection, identification, etc. 

95 



3.5.1 see 

This is the main system configuration control procedure. Its N-S 

diagram is shown in Figure 3-33. see, as well as most procedures called 

by see, have been structured to perform like state machines. That is, 

the function performed by the program on a given cycle depends on the 

state of the program. This has been done due to the fact that there is a 

great deal of continuity from one cycle to the next of these programs. 

For example, to identify a faulty bus may take up to four cycles of see. 

The actions taken by the identification program on a given cycle depend 

upon the past history. This knowledge about the past history of the 

system can be conveyed either through a data base, usually quite large, 

resident in the system memory or more briefly and efficiently through the 

state of the program. 

The see program has four states as described in the following: 

(1) Restart: The R4 dispatcher initializes the see program to 

this state upon system restart. see initializes its internal variables 

here and changes the program state to 'Normal Entry'. 

(2 ) Normal Entry: As the name implies, this segment of the 

program is executed under normal circumstances. In this phase see calls 

an error detection program. The detection program reads 48 error latches 

and condenses the information into 4 words for the identification phase. 

If any errors are detected in this phase, the program state is changed to 

'Identify'. Under normal circumstances there should not be any errors. 

In that case, routine configuration changes, as required by the current 

system status, are made. These are explained below. 

96 



READ PROGRAM STATE FROM SYSTEM MEMORY. 
DONE = FALSE 
WHILE NOT DONE 

GO TO PROGRAM STATE (ONE OF FOUR) 
END. OF. PROGRAM: 

WRITE PROGRAM STATE TO SYSTEM MEMORY 

RESTART: (STATE 1) 

SET LATCH STATUS OF LRU'S NOT ENABLED ON R BUS TO 'FAILED' 
INITIALIZE SUSPECT LIST & SWAPTIME 
SET PROGRAM STATE = NORMAL. ENTRY. 
GOTO END.OF.PROGRAM 

Figure 3-33. SCC N-S diagram. 

97 



1.0 
(X) 

NORMAL. ENTRY: (STATE 2) 

YES 

SET PROM STATE = IDENTIFY 
IDENTIFY STATE = 0 
NO.OF.PASSES = 0 

-----

PROCESS ERROR LATCHES 

ANY FAULTS DETECTED? 

NO 

3 OR MORE SPARE PROCS? 

YES NO 

SET ANY IDLE SPARE PROC? 
RECONF.STATE = 4 
TO FORM A NEW YES NO 
PROCESSOR TRIAD 

SET ANY IDLE MEMORY? 
RECONF.STATE = 8 
TO ASSIGN SHADOW YES NO 
PROC 

SET TIME TO CYCLE? 
RECONF.STATE = 11 
TO ASSIGN SHADOW YES NO 
MEMORY 

SET RECONF SET 
STATE = 13 DONE 
TO CYCLE = TRUE I 

A SPARE 
.1 
l 

IS DONE = TRUE? I 
I 

YES NO 

NIL SET PROM STATE = RECONF 

I 

GO TO END.OF.PROGRAM 

Figure 3-33. SCC N-S diagram (cont.) 



IllEN'I'U'Y: (S'I'ATE 3) 
---------- ----

liliAD NU.UP.PASSES PRUM SYS'l'EM MEMORY 
INCHEMEN'l' NU.Qlo'.PASSES 
CON'l'INUE =: TRUE 

-
IS '1'HIS FIRST TIME THRU? 

YES NO 

HAVE ALL RECONFIGURATION CMNDS BEEN EXECUTED? 

YES NO 
NIL 

CONTINUE 
PROCESS.ERROR.LATCHES() = FALSE 

DONE 
= TRUE 

CONTINUE? 

YES NO 

FAULTY. UNIT. FOUND = FALSE 
HFA (HARD FAILURE ANALYSIS) 

FAULTY UNIT IDENTIFIED? 

YES NO 

PROGRAM STATE ASSIGN.DEMERITS() NIL 
= RECONFIGURE 
RECONF.STATE NO.OF.PASSES > 4? OR NO RECONF CMNDS 
= 0 

YES NO 

TRANSIENT.FAULT.ANALYSIS() DONE 
PROGRAM STATE = RECONFIGURE = TRUE 

FAULTY UNIT FOUND? 

YES NO 

RECONF.STATE = 1 IF NO RECONFCMND 
THEN ISSUE RECONF.-
CMNDS AND SET 
RECONF.STATE = 7 
ELSE SET RECONF.-
STATE = 100 

WRITE NO.OF.PASSES TO SYSTEM MEMORY. 

GO TO END.OF.PROGRAM 

Figure 3-33. sec N-S diagram (cont.). 

99 



RECONFIGURE: (STATE 4) 

IS RECONF STATE = 100? 

YES NO 

NIL GOTO R.STATE (1 TO 14) 

ALL DONE (STATE = 100)? 

YES NO 

CLEAR ALL ERROR LATCHES 
SET SWAP TIME NIL 
PROM STATE = NORMAL ENTRY 

SET REFRESH DISPLAY FLAG 
DONE = TRUE 

R.STATE 1: 

TRANSFER 'LONE ACCUSER' DEMERITS TO PERMANENT FILE 
IF ANY ERROR LATCH HAS 2 OR MORE SUCH DEMERITS MARK IT AS FAULTY UNIT 

IS THE FAULTY UNIT MEMORY OR CLOCK? 

YES NO 

ISSUE RECONFIGURATION CMNDS TO ISSUE RECONFIGURATION CMND TO 
DEACTIVATE ALL SUBUNITS OF THE DEACTIVATE ONLY THE FAILED UNIT 
TARGET LRU SET R.STATE = 3 OR 2 (BUS OR ANY 
SET R.STATE = 2 OTHER FAILURE) 

R.STATE 2: 

IF DEACTIVATE CMNDS (1 TO 3) HAVE BEEN EXECUTED, THEN ALL DONE 
(SET R.STATE = 100) 

R.STATE 3: 

IF BUS DEACTIVATE CMND HAS BEEN EXECUTED, THEN ALL DONE 
(SET R.STATE = 100) 

Figure 3-33. SCC N-S diagram (cont.). 

100 



R.STATE 4: 

START 3 SPARE PROCESSORS TO FORM A NEW TRIAD 
SET R.STATE = 5 
RESET SWAP CYCLE 

R.STATE 5: 

ISSUE TRIAD 10 TO PROCESSORS 
SET R. STATE = 6 

R.STATE 6: 

ALL DONE (SET R.STATE = 100) 

R.STATE 7: 

IF ALL DIAGNOSTIC RECONFIGURATION CMNDS HAVE 
BEEN EXECUTED, THEN SET R.STATE = 100 

Figure 3-33. SCC N-S diagram (cont.) 

101 



R.STATE 8: 

IS THERE A PROC TRIAD WITHOUT A SHADOW? 

YES NO 

ISSUE GOTO IDLE CMND TO TARGET SET PROM STATE = NORMAL ENTRY 
TRIAD 
SET R.STATE = 9 

RESET SWAP CYCLE 

R.STATE 9: 

IS TARGET TRIAD IN IDLE MODE? 

YES NO 

DISABLE SPARE ON ALL P&T BUSES 
SET ITS R3 TO F NIL 
ISSUE SYNCH CMND TO TARGET TRIAD 
SET R.STATE = 10 

R.STATE 10: 

SET R.STATE 100 IF THE TARGET TRIAD HAS SYNCHRONIZED WITH THE SPARE 

R.STATE 11: 

ISSUE 'ASSIGN MEMORY SHADOW' CMND 
SET R.STATE = 12 
RESET SWAP CYCLE 

R.STATE 12: 

SET R.STATE = 100 IF ASSIGN SHADOW CMND HAS BEEN EXECUTED 

Figure 3-33. SCC N-S diagram (cont.). 

102 



R.STATE 13: 

ISSUE SWAP CMND 
SET R.STATE = 14 

R.STATE 14: 

SET R.STATE = 100 IF SWAP CMNDS HAVE BEEN EXECUTED 

Figure 3-33. SCC N-S diagram (cont.). 

103 



First of all, system configuration tables are searched to see if 

there are three spare processors to form a new processor triad. This 

function is provided solely as a laboratory environment facility and 

would not normally be part of the flight version code. This facility 

enables the operator to retry failed processors. If three spares are 

available, the program state is changed to 'Reconfigure' and the state of 

reconfiguration program is also initialized appropriately. 

If there are any spare processor or memory units then they are 

assigned to shadow active triads. This also entails a change in program 

state to Reconfigure and a different state within the reconfiguration 

segment. Forming a new processor triad or assigning shadows generally 

takes several passes of see. Once any of these operations has started, 

the see program stays in Reconfigurati~n state until the operation is 

complete. Error detection is suppressed during this phase. see returns 

to normal mode once the specified system configuration change has been 

completed. 

If there are no more idle spares to be assigned as shadows, the 

system is put into a cycling mode. In this mode, shadow processors and 

memory units are swapped with active units and spare bus lines are inter­

changed with active bus lines. Of course, only one unit is swapped at a 

time. The swapping is done once every 10 seconds. When it is time to 

cycle, the see state is changed from normal mode to Reconfigure with the 

reconfiguration state initialized appropriately. Since cycling of spares 

happens only occasionally in relation to the see iteration rate, on most 

passes of see only the error detection program is run. During these low 

104 



workload cycles, self-test programs are run to uncover latent faults. If 

any faults are uncovered in this process, the sec program state is 

changed to Reconfigure. 

(3) Identify: This sec program segment is first entered when a 

fault is detected by the detection phase of the sec program. A hard 

failure analysis (HFA) program is called to process the four condensed 

error latches (one for each bus) produced by the detection phase. If the 

faulty unit can be identified based on this information, the sec state is 

changed to Reconfigure. If, however, the information is not sufficient 

to isolate the faulty unit, a list of suspect units is saved in system 

memory and diagnostic reconfiguration commands issued to change system 

configuration in order to collect more data on the source of faults. The 

reconfiguration commands are executed in the R4 dispatcher prolog. If 

after four passes the hard failure analysis cannot identify the source of 

faults a transient fault analysis (TFA) program is called. TFA assigns 

demerits to all suspects and performs statistical analysis of data col­

lected since the system was started up. If the data shows a unit to be 

above statistically significant threshold, then that unit is removed from 

service. The sec program state for this purpose is changed to Reconfig­

ure. If no significant trend is found, the program state is changed to 

Normal Entry and normal processing resumed. 

The hard failure analysis can handle only one failure of a given 

type of unit at a given time. That is, a simultaneous failure of a 

processor and memory or a memory and P or T bus can be handled but not 

two processors, two memories, etc. Actually, any failure combination 

105 



that results in two out of three active buses of a given type to be in 

error would not be handled by HFA. If the system is still able to mask 

these errors and continue to perform normally, the transient fault analy-

sis is used to identify the multiple sources of errors. TFA assigns 

demerits to all suspect units and eventually the faulty units would 

accumulate enough demerits to cross the identification threshold. It may 

be noted here that this situation would almost never occur during normal 

operation of the FTMP but can happen during system startup. 

(4 ) Reconfigure: There are several ways of getting to this 

segment of sec. Anytime the system needs to be reconfigured, except when 

the hard failure analysis is in progress, the sec program state is 

changed to Reconfigure. There are 15 different states of this segment of 

sec. These are explained as follows. 

state 1 is entered from Identify phase when a faulty unit has been 

identified. In this state, appropriate reconfiguration commands are 

issued to deactivate failed units. As pointed out earlier, these com-

mands are executed in the R4 dispatcher prolog by a procedure called 

eONeOM (configuration commands). The commands are stored in the system 

memory. The command words include the identity and type of failed unit 

such as processor 5 or R bus 2 etc. but do not specify the spare with 

which the failed unit may be replaced. - The program that executes the 

configuration commands searches the system configuration table and then 

decides upon the optimum reconfiguration strategy. This program clears 

the command word in the system memory when it has finished executing the 

command. In any case, having issued the commands, the reconfiguration 

106 



state is changed to 2 or 3 depending on what commands were issued. In 

states 2 and 3, appropriate command words in system are checked to see if 

they have been cleared. At the completion of the commands, the reconfig­

uration state is changed to 100. Functions performed in state 100 will 

be explained shortly. 

In addition to issuing deactivate conunands, state 1 also handles 

the 'lying-fault syndrome'. That is, when a unit is deactivated based 

solely on the complaint of one other unit, the accuser is marked as a 

potential faulty unit. If in future the accuser should single-handedly 

complain about another unit then the accuser is deactivated first. For 

example, suppose processor 5 alone indicates through its error latches 

that processor 7 is making errors on the P or the T bus. As a result of 

this, processor 7 is deactivated but at the same time processor 5 is 

marked. If at some time in future processor 5's latches alone indicate 

that say, processor 2, is faulty, then processor 5 rather than 2 is 

deactivated. This strategy prevents a single unit from knocking out all 

others through the 'lying-fault syndrome'. 

The next reconfiguration state is 4. This state is entered from 

normal see mode if there are enough spares to start a new processor 

triad. In this state, a program START.TRIAD is called. This program 

enables the three processors on appropriate P and T buses, enables their 

parent LRU ' s on R buses if they are not already enabled, issues zero 

triad id and run command to processors and updates system configuration 

tables. The reconfiguration state is then changed to 5. On the next 

pass of see, by which time the processors should have completed their 

initialization and synchronization phase, a valid triad id is issued to 

107 



the three processors. The state is changed to 6. On the next pass the 

state is changed from 6 to 100. 

state 100 is the last state of reconfiguration segment. All 

reconfiguration program segments must eventually exit through this 

state. In this state, all the error latches are cleared, the spare 

swaptime is updated and the see program state is changed to Normal Entry. 

The next state is 7. This state is entered from the identifica­

tion phase after a transient fault has been observed and reconfiguration 

commands have been issued. The program stays in this state until the 

commands have been executed, at which t~e the state is changed to 100. 

state 8 is entered from normal see mode if a spare processor has 

to be assigned to shadow a triad. The concept of shadowing a triad can 

be explained as follows. A shadow processor is in tight synchronism with 

the active members of the triad it is shadowing. It is assigned the same 

triad id as the active units. It listens to all commands on the buses. 

It receives IPC interrupts same as the active members. It participates 

in the bus poll. However, it is not enabled to transmit on the P or the 

T bus. Failure recovery for a triad with a shadow is speedier since it 

only involves swapping bus enables of the failed and the shadow proces-

sors. The triad does not have to wind down its task assignments and 

synchronize with a new processor member. In any case, in this state a 

program FIND.TRIAD is called. This program finds a processor triad that 

does not have a shadow and issues 'GOTO IDLE' command to the triad. The 

state is then changed to 9. On the next pass of see, in state 9, the 

target triad is checked to see if it has gone to idle process. If it has 

108 



a 'SYNCH' (synchronize with spare),' command is issued to the target 

triad. The spare processor's control registers are initialized and 

configuration tables are updated. State is changed to 10. The program 

stays in state 10 until the 'SYNCH' command has been executed. Then the 

state is changed to 100. 

The next reconfiguration state is 11. This is entered from normal 

SCC mode if a spare memory is available to be assigned as a shadow. A 

shadow memory has the same memory relocation (MRR) as the active members 

of the triad it is shadowing. However, its 'write only' bit is set in 

MRR while the RTC is disarmed. Therefore, the shadow memory responds to 

memory write requests but it does not respond to read requests. Failure 

recovery for a triad with a shadow is speedier since its contents are 

already in agreement with the active triad members. A shadow memory may 

or may not be enabled on the R bus depending on whether its associated 

processor or I/O port is or is not active. The 'write only' bit in MRR, 

in any case, inhibits the shadow unit from transmitting on the R bus 

notwithstanding the fact that it may be enabled on the R bus. A proce­

dure 'MEM.SHADOW.CMND' is called from this state. This procedure issues 

'Assign Shadow' commands to be executed by CONCOM in R4 dispatcher pro­

log. There are two active memory triads. The spares are evenly divided 

amongst the two triads. Initially, when there are several spares all 

units to be assigned to shadow one triad are refreshed simultaneously. 

If one triad exhausts all its shadow units while the other triad still 

has more than one shadow, the shadow units are transferred from one triad 

to the other so that each triad has at least one shadow assigned to it. 

109 



Having issued the command the state is changed to 12. The program stays 

in this state until shadow units have been refreshed. The program state 

is then changed to 100 where all error latches are cleared and see state 

changed to Normal Entry. 

The next reconfiguration state is 13. This is entered from normal 

see mode if 10 seconds have elapsed since the last swap of active and 

shadow uni ts. A procedure ISSUE.SWAP.CMND is called from this state. 

This procedure determines which two units should be exchanged next and 

issues appropriate commands to be executed by SWAP.LRUS in R4 dispatcher 

prolog. The commands are stored in the system memory. The details of 

these two procedures, tha t is, ISSUE. SWAP. eMND and SWAP. LRUS, wi 11 be 

described in a subsequent subsection. In any case, having issued the 

commands the state is changed to 14. The program stays in this state 

until the swap commands have been executed. The state is then changed to 

100. 

Section 3.5.2 describes the fault-injector provisions of this 

program. 

3.5.2 Fsee 

A customized version of see, called Fsee has been written to 

facilitate automatic fault-injection in LRU 3 of the FTMP and subsequent 

data collection. 

In this version of see, provisions have been made to communicate 

to the Fault Injection Software (FIS) package, running in the PDP-11, 

through the 1553 bus. The FIS can command a fault to be injected into 

LRU 3 of the FTMP. The objective is to measure the FTMP response time to 

110 



this event. The response time is broken down into three phases, fault 

detection time, identification time, and recovery time. Since the FTMP 

does not know the time at which the fault is injected, the FTMP time base 

(the Real Time Clock) is sent to FIS every R4 frame. The value of the RT 

Clock at the time the fault is detected, identified, and recovered is 

also sent to FIS. The FIS can then compute the actual detection, identi-

fication, and recovery times. The identification and recovery times can 

be computed with an accuracy equal to the least count of the RT Clock 

which is 1/4 millisecond. The detection time, however, has an error 

equal to ± 1/2 the R4 frame time since the fault injection time is known 

only to that accuracy. 

In order to repeatedly inject a fault and observe the results, an 

FSCC-FIS communication protocol has been devised to allow the repair of 

LRU 3 after each fault-injection event. This protocol works as follows. 

When FIS is ready to inject a fault, it sends a GET.READY command to FSCC 

via 1 553 • FSCC looks a t this word in its normal mode. If it is true, 

the FSCC state is changed to Reconfigure and the reconfiguraton state is 

initialized to 13. Recall that in SCC state 13 corresponds to cycling 

spare units. In FSCC spares are not cycled. Instead in this state , 

• status of processor 3 and memory 3 is checked. If they are failed, they 

are repaired by changing their status in the system configuration ta-

bles. The reconfiguration state is changed to 100 so that on the subse-

quent FSCC pass the spare units viz. processor and memory 3 can be as-

signed to shadow active triads. If the units were not failed, the state 

is changed to 14. In this state, swap commands are issued to swap 

111 



processor and memory 3 with active members of their parent triads. The 

state is changed to 15. Also, a signal called ACK.GET.READY is sent to 

FIS acknowledging that GET. READY command has been received and acted upon 

by FSCC. FIS then clears GET.READY. FSCC waits in state 15 until swap 

commands have been executed. It then sends a READY word to FIS indicat­

ing that LRU 3 components have been repaired and are in the active 

state. The detect, identify and recovery times to be sent to FIS are 

cleared to zero and the state is changed to 100. 

When the fault is identified, the identity of the faulty unit and 

the reason code are also sent by FSCC to FIS. 

misdiagnosed faults. 

FIS keeps track of any 

The next subsection describes the detection phase of the configu-

ration control program. 

3.5.3 Fault Detection 

3.5.3.1 Fault Detection Methodology 

Fault detection in FTMP relies upon hardware majority voting and 

subsequent disagreement detection between the majority voter output and 

each of the three inputs. The disagreements are stored in hardware 

registers called error latches. Each LRU has four error latches, one for 

each type of bus, that is, poll (P), transmit (T), receive (R) and clock 

(C) bus. The 48 latches from 12 LRU's are read as simplex-source non­

voted data over the system R bus. In the presence of faults on the R bus 

itself, the error latches read over the faulty R bus line can therefore 

be corrupted. An R bus line may be unusable either because the bus line 

112 



itself is faulty or because an LRU is actively transmitting on the line. 

In any case, those error latches received over a faulty R bus must be 

discarded before using any error latch information for fault detection. 

Therefore, any faulty R bus, if there is one, must be identified even 

before latches can be used to detect and identify any faultsl 

To overcome this chicken and egg problem, each error latch is 

examined for three reasonableness tests. The three tests are as fol-

lows. A good latch should not indicate errors on an inactive bus line or 

on more than one active bus line and finally the leading 11 bits of the 

latch should all be 1. The first of these three tests is not applied to 

C latches since they compare all five C bus lines to the majority out­

put. If a latch fails any test, the R bus line on which it was read is 

marked suspect. In addition, the remaining R latches which do meet all 

three tests are checked to see if they indicate errors on any R bus 

line. This R bus line is also marked as suspect. Then all latches read 

over the suspect R bus lines are discarded. 

The next phase of the detection process is to condense the remain­

ing latches into four words, one for each bus type, for the identifica-

tion phase. To do this, error latches are further filtered through 

several masks. First of all, error latches from failed units are dis­

carded. That is, P and T latches of failed processors or P, R, T, and C 

latches of failed memory units are discarded. Next, each latch is fil­

tered through a bus mask to ignore/errors on certain buses. For example, 

C latches are filtered through a C bus mask to ignore errors reported on 

the inacti ve C bus. The remaining latches for each bus type are then 

113 



'or'ed together to form one error word for each bus. The four words then 

indicate errors on the 20 bus lines. If any error is indicated, a flag 

in set by the fault detection program indicating to SCC that a fault has 

been detected. SCC would then invoke the identification program. 

If there is only one faulty unit in the system, only one bus line 

should be flagged by an error word. However, if multiple units have 

failed, multiple bus lines may l:e flagged by error words. The fault 

identification program has two components, hard failure analysis (HFA) 

and transient fault analysis (TFA). HFA can identify faulty units only 

if one unit of a given type such as a processor, memory or LRU is 

failed. Multiple simultaneous failures are handled by TFA. Therefore, 

fault detection program converts error latch information into two sets of 

error words one for HFA and the other for TFA. The HFA error words are 

cleared if there are multiple errors. 

Finally, if a bus error is detected only by a single LRU, the 

identity of that LRU is stored. This information is used by SCC to 

handle the 'lying-fault-syndrome' as explained in Section 3.5.1. 

3.5.3.2 Fault Detection program and Data Base 

Figure 3-34 shows an N-S diagram of the fault detection program. 

This procedure, called PROCESS.ERROR.LATCHES, is called either from 

Normal Entry or Identify mode of SCC. In either case, it returns four 

error words for Hard Failure Analysis and four error words for Transient 

Fault Analysis. In addition, a word indicating the number of buses in 

114 



PROCESS ERROR LATCHES 

READ 48 ERROR LATCHES FROM 12 LRU'S 
PERFORM SOURCE CONGRUENCY EQUALIZATION ON LATCHES 
READ SYSTEM CONFIGURATION TABLES FROM SYSTEM MEMORY 

IF ANY GOOD LATCH HAS A MISSING LEADING 1, AN ERROR ON AN INACTIVE 
BUS OR ERRORS ON MULTIPLE BUSES, MARK THE R BUS ON WHICH THIS LATCH 
IS ENABLED UNUSABLE 
IF ANY GOOD LATCH WITHOUT ANY OF THE ABOVE SYMPTOMS INDICATES ERROR 
ON AN R BUS MARK THAT BUS SUSPECT OR UNUSABLE 

IF A GOOD LATCH THAT IS ENABLED ON A USABLE R BUS (NOT SUSPECT) 
INDICATES ERROR ON p~ UNMASKED BUS, SET BIT CORRESPONDING TO THAT 
BUS LINE IN THE ARRAY LATCH AND TR.LATCH 

IF ANY WORD IN ARRAY LATCH INDICATES ERRORS ON MULTIPLE BUSES SET 
THAT WORD TO ZERO 
(LATCH ARRAY IS USED BY HFA, TR.LATCH BY TFA) 

Figure 3-34. Fault detection N-S diagram. 

115 



error is also returned. This word is examined by SCC to decide if iden-

tify program should be invoked. Other details of the detection program 

are as described in the previous section. 

The structure of various data base elements used by this program 

is shown in Figures 3-35 through 3-40. Figure 3-35 shows the ACTIVE.BUS 

array. This is a four-word array. There is one word for each bus type. 

The 5 least significant bits (LSB' s) of each word show the active bus 

lines. A 1 in one of these bit positions corresponds to an active bus 

line. Figure 3-36 shows the SPARE. BUS array. The structure of this 

array is similar to that of ACTIVE.BUS. A 1 in one of the least signifi-

cant 5 bits corresponds to a spare bus line. Figure 3-37 shows the 

BUS.MASK array which is also similar in structure to the previous two 

arrays. A 1 in one of the 5 LSB's indicates that errors on that bus line 

should be masked or ignored by the fault detection program. 

The next two arrays, LATCH and TR.LATCH, are both 4 word arrays 

and have structure as shown in Figure 3-38. There is one word for each 

bus type. A 1 in one of the 5 LSB's corresponds to an error on that bus 

line. LATCH and TR.LATCH are the error word arrays produced by the fault 

detection program for HFA and TFA, respectively. Figure 3-39 shows the 

structure of the ERR.LATCH array which is 48 words long. This array 

contains the raw error latch readings from the 12 LRU's. They are organ-

ized in 12 groups, each group containing P, R, T, and C latches from an 

LRU. The 11 most significant bits of each entry should normally be all 

1. A 1 on one of the 5 LSB's indicates error on that bus line. Figure 

3-40 shows the LATCH. STATUS array. This is a four-word array, one word 

116 



ACTIVE.BUS: 4 WORD ARRAY 

THERE IS ONE WORD FOR EACH BUS TYPE (P, R, T & C). 
EACH WORD SHOWS THE ACTIVE BUS LINES (5 LEAST SIGNIFIACANT BITS) 
FOR A BUS TYPE. A '1' IN A BIT POSITION CORRESPONDS TO AN 
ACTIVE BUS LINE. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o 

I X X X X X X X X X X X ACTIVE BUS LINES 

Figure 3-35. ACTIVE.BUS. 

SPARE.BUS: 4 WORD ARRAY 

THERE IS ONE WORD FOR EACH TYPE OF BUS (p, R, T & C). 
EACH WORD SHOWS THE SPARE BUS LINES (5 LEAST SIGNIFIACANT BITS) 
FOR A BUS TYPE. A '1' IN A BIT POSITION CORRESPONDS TO A SPARE BUS LINE. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o 

I X X X X X X X X X X X SPARE BUS LINES 

Figure 3-36. SPARE.BUS 

BUS.MASK: 4 WORD ARRAY 

THERE IS ONE WORD FOR EACH TYPE OF BUS (p, R, T & C). 
EACH WORD SHOWS THE BUS LINES ON WHICH ERRORS SHOULD BE IGNORED (5 LEAST 
SIGNIFICANT BITS). A '1' IN A BIT POSITION IMPLIES THAT ERRORS ON THAT 
BUS LINE SHOULD BE IGNORED WHEN PROCESSING ERROR LATCHES. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o 

I X X X X X X X X X X X BUS MASK 

Figure 3-37. BUS.MASK. 

117 



LATCH: 4 WORD ARRAY 

EACH WORD SHOWS ERRORS ON BUS LINES (5 LEAST SIGNIFIACANT BITS) 
FOR P, R, T AND C BUSES. A '1' IN A BIT POSITION CORRESPONDS TO AN 
ERROR ON THAT BUS LINE. 

15 14 13 12 11 10 987 654 3 2 1 o 

Ix X X X X X X X X X Xl ERRORS 

Figure 3-38. LATCH and TR.LATCH. 

ERR.LATCH: 48 WORD ARRAY 

THIS ARRAY CONTAINS THE RAW ERROR LATCH READINGS FROM 12 LRU'S. 
THESE ARE ORGANIZED IN 12 GROUPS, EACH GROUP CONTAINING 4 LATCHES 
FROM AN LRU. 

15 14 13 12 11 10 987 6 5 4 3 2 1 o 

[X X X X X X X X X X xl ERRORS 

Figure 3-39. ERR. LATCH. 

LATCH. STATUS: 4 WORD ARRAY 

THIS ARRAY CONTAINS THE STATUS OF 48 ERROR LATCHES. THERE IS ONE BIT 
FOR EACH ERROR LATCH. A '1' INDICATES THAT THE ERROR LATCH IS FAILED. 
THE 12 LEAST SIGNIFICANT BITS IN EACH WORD CORRESPOND TO THE STATUS 
OF LATCHES IN 12 LRU'S FOR A GIVEN BUS. THE 4 WORDS CORRESPOND TO 
P, R, T AND C BUSES RESPECTIVELY. 

15 14 13 12 11 10 987 6 5 4 3 2 1 o 

X X X X STATUS OF 12 LATCHES (ONE FROM EACH LRU) 

Figure 3-40. LATCH. STATUS. 

118 



for each bus type. The 12 LSB's in each word correspond to the status of 

the 12 latches in 12 LRU's for a given bus type. The four words corres­

pond to P, R, T, and C buses respectively. A 1 in a bit position indi­

cates that the latch from that LRU is to be ignored. 

3.5.4 Fault Identification 

The error latches in the FTMP indicate only the bus lines which 

disagree with the majority. The identity of the source transmitting on 

that bus line at the time the disagreement is detected is not recorded. 

Since up to 3 LRU's can be enabled on a given P or T bus and up to 4 on 

an R bus the identity of the faulty unit cannot be ascertained simply 

with the help of the error latch information. The fault identification 

process is therefore slightly more involved than might appear at first. 

Sometimes the faul t is such that the source of the fault is ob­

vious. At other times, however, a number of units can be attributed the 

fault. In that case it is necessary to reconfigure the system and ob­

serve the results to resolve the ambiguity in the source of the fault. 

This process may have to be repeated several times depending upon the 

number of units enabled on the bus in error and the source of fault. A 

fault that does not persist through this process, which may take several 

hundred milliseconds, can not be identified simply by associating errors 

on a bus with units enabled on that bus. Two fault detection strategies, 

therefore, have been provided, viz., Hard Failure Analysis (HFA) and 

Transient Fault Analysis (TFA). HFA is always tried first if the fault 

disappears while the HFA is in progress, the TFA is then invoked. The 

next two sections describe these two programs. 

119 



3.5.4.1 Hard Failure Analysis 

The input to this procedure is the 4 word error array, called 

LATCH, produced by the fault detection program. The array LATCH indi-

cates which of the P, R, T, and C bus lines are in error. Depending on 

the type of fault, anywhere from 1 to all 4 buses could be in error. 

Each of these four cases are handled by four different programs. 

Before describing the four programs, it is interesting to note the 

failure signatures of different components in the FTMP. The broadest 

failure signature is painted by an LRU failure due to one of the common 

mode failures. For example, if the power supply or the clock in an LRU 

fails, all the buses on which that LRU is enabled would show errors. If 

the processor and clock of that LRU are 'active, errors would appear on 

the associated P, R, T, and C bus lines. This type of failure is the 

easiest to locate simply by determining which LRU is enabled on the four 

buses in error. Another multi-symptom failure signature is one caused by 

a processor failure. Most processor failures result in errors on the P 

and the T bus. Initial system configuration has been arranged such that 

each processor is assigned to a unique P and T bus combination. LRU and 

processor failures, therefore, can be identified in a single pass of 

HFA. Bus and memory failures can appear on single or multiple buses 

depending on the type of fault. A memory array failure, such as a 

stuck-at-O or stuck-at-1 bit, would show up only as an R bus error. 

However, a fault in the memory controller such that it does not respond 

to read requests would cause error latches from that LRU to fail reason­

ableness checks in addition to causing errors on the R bus. If a single 

120 



bus line is faulty, errors would be limited only to that bus. However, a 

whole bus set can be shorted together in an LRU causing errors on one bus 

line of each type of bus. 

The four programs that handle. the four classes of errors are 

described in the following. 

3.5.4.1.1 Single Fault Analysis 

This procedure is called by HFA when there is an error only on one 

bus. An N-S diagram of this program is shown in Figure 3-41. This 

program, like most other see programs, is state driven. The state number 

of this program is the number of suspect elements. On each pass, a list 

of suspect elements is made. This list includes the suspect bus, that 

is, the bus in error, and all LRU's enabled on that bus. This number can 

vary from 1 for a e bus to 4 for an R bus. In any case, on the first 

pass, the suspect list is saved in the system memory and reconfiguration 

commands are issued to distribute suspect LRU's on different buses. The 

program state is initialized to number of suspects and saved for the next 

pass. On the next pass the suspect LRU is identified if the error moved 

with the LRU to a different bus. If the error stayed on the same bus, 

the list of suspects is narrowed. The remaining suspect LRU's are once 

again distributed on different buses by reconfiguring the buses. This 

process continues until the suspect LRU or the suspect bus is confirmed 

to be the faulty unit. If the faulty unit is neither an LRU nor a bus 

but a combination of them, that is, an LRU unable to transmit on a 

particular bus line, the error would disappear as soon as the faulty 

121 



ANY ERRORS ON THIS PASS? 

YES 

FIND LRU'S ENABLED ON THE 'BAD' BUS. 
IF THIS IS NOT THE FIRST PASS AND ERROR THIS TIME 
IS ON A DIFFERENT BUS FROM PREVIOUS TIME THEN SET 
HFA STATE = 0 (START OVER AGIAN). 
GO TO HFA STATE. 

NO 

IF HFA STATE 
IS 2 (ONLY 1 
LRU & 1 BUS 
ARE SUSPECTS) 
THEN r-__________________________________________________ -1INTERSECTION 

STATE 0: (FIRST PASS) OF THIS LRU & 
SUSPECTS ARE THE BUS AND ALL THE LRU'S ENABLED ON IT BUS IS FAULTY. 
ISSUE APPROPRIATE RECONFIGURATION COMMANDS DEPENDING 
ON THE BUS IN ERROR 

P & T BUSES: ROTATE PROCESSOR TRIADS ON PiT BUS 
R BUS: ROTATE MEMORY TRIADS ON R BUS 

(IF 2 TRIADS THEN ROTATE 1ST LEFT, ROTATE 2ND 
RIGHT) 
C BUS~ EXCHANGE OSCILLATOR ON THE C BUS WITH ONE 

ON THE SPARE 
SET HFA STATE = NO OF SUSPECTS (2 TO 4) 

STATE 2: (TWO SUSPECTS: ONE BUS, ONE LRU) 
COMPARE THE SUSPECT BUS LINE ON THIS PASS TO THE 
ONE FROM THE PREVIOUS PASS. 
IF THE ERROR STAYED WITH THE SAME BUS THEN THE BUS 
IS FAULTY. 
IF THE ERROR MOVED WITH THE SUSPECT LRU THEN THE 
LRU (PROCESSOR, MEMORY OR OSCILLATOR) IS FAULTY. 
IF NEITHER OF THESE IS TRUE THEN START OVER AGAIN. 
SET FAULTY. UNIT & HFA.STATE ACCORDINGLY. 

STATE 3: (SUSPECTS: ONE BUS, 2 LRU'S) 
IF ERROR 'MOVED LEFT' THEN THE FIRST SUSPECT LRU IS 
THE FAULTY UNIT. 
IF ERROR 'MOVED RIGHT' THEN THE SECOND SUSPECT LRU 
IS THE FAULTY UNIT. 
IF ERROR STAYED ON THE SAME BUS THEN THE BUS IS 
FAULTY. 

STATE 4 AND 5: (SUSPECTS: ONE BUS, 3 or 4 LRU'S) 
IF ERROR 'MOVED LEFT' THEN THE FIRST SUSPECT LRU IS 
THE FAULTY UNIT. 
IF ERROR 'MOVED RIGHT' THEN THE SECOND SUSPECT LRU 
IS THE FAULTY UNIT. 
IF ERROR STAYED ON THE SAME BUS THEN THE LIST OF 
SUSPECTS NARROWED TO 2 OR 3 UNITS: 1 BUS & 1 OR 2 
LRU'S 

WRITE THE LIST OF SUSPECTS TO SYSTEM MEMORY. 

Figure 3-41. Single fault analysis. 

122 

CONFIRM BY 
REENABLING 
SUSPECT LRU ON 
SUSPECT BUS. 



combination is broken. This fault is identified as a 'weak intersection' 

of the LRU and the bus. It is confirmed by enabling the suspect LRU back 

on the suspect bus. 

If at any time during this process of localizing the source of the 

fault, the error on the bus disappears completely or the error appears on 

an unexpected bus, the hard failure analysis is terminated and the tran­

sient fault analysis is invoked by the Identify program. 

3.5.4.1.2 Double Fault Analysis 

This procedure is called by HFA if two buses are in error. A list 

of suspect LRU's is formed by determining which units are enabled on the 

two suspect buses. A program called FIND.COMMON.UNITS is called for this 

purpose. The two error words are passed as arguments to this procedure. 

If only a single common unit is found, the suspect LRU is identified in a 

single pass. If several LRU's are found, then they are distributed on 

different buses. On the next pass a new list of suspects is formed and 

compared to the old list to determine any LRU's that are common to both. 

Finally, if no single unit can be attributed errors on the two suspect 

buses, then the bus lines are compared to see if a bus set may be faulty. 

3.5.4.1.3 Triple Fault Analysis 

This procedure is very similar to the previous one. System con-

figuration tables are searched to determine if a single LRU or bus set 

can be the faulty .un~t. In case of ambiguity, the system is reconfigured 

and suspect LRU's on the two passes are compared to reveal any common 

LRU. 

123 



3.5.4.1.4 Quad Fault Analysis 

This procedure is same as the previous one except that it handles 

four suspect buses. 

3.5.4.2 Transient Fault Analysis 

The transient fault analysis is based on the concept of 'fault 

index'. Each element in the FTMP, that is, processor, memory, bus line, 

and clock element, is assigned a fault index. This index is the fraction 

of all relevant unresolved faults in which the element was a suspect. As 

such, the index would vary from 0 to 1. Not all faults are relevant to 

all elements. For example, an error on the P bus incriminates processors 

and P bus lines but not memory, clock, or other bus types. An unresolved 

fault is one that was not attributed to a single unit by HFA. 

In the full-up system configuration (3 processor triads, 2 memory 

triads, 5 bus lines of each type and 10 clock elements), the fault-index 

of good processors would hover around 0.33. The numbers for memory, bus, 

and clock are 0.33, 0.20, and 0.10, respectively. The fault-index of 

faulty units, on the other hand, would tend towards 1.0 in the presence 

of a single fault source of a kind. The fault indices of all elements 

are initialized to their expected good values. Every time a transient 

fault occurs, these fault indices are revised as explained in the 

following. 

The new fault index for those elements which are suspect in the 

present incidence is computed as follows. 

124 



NEW FI = OLD FI.{1 - X) + X. 

X is a weight assigned to the latest fault incidence. The choice of X 

depends upon the required response time in isolating the faulty unit and 

the probability of false alarm or false identification. X is chosen to 

be 1/8. For those units which are not implicated by the present fault 

incidence the fault-index is reduced by the following formula. 

NEW FI 
1 

(OLD FI - X) • 1-X. 

A fault isolation threshold is assigned to each type of element. If the 

fault-index of a unit crosses this threshold, that unit is declared to be 

faulty. At the same time the fault-index of all other relevant units is 

reset to their initial value. The thresholds for processor, memory, bus, 

and clock are 0.7, 0.7, 0.6 and 0.7, respectively. 

There are two programs which perform the transient faul t analy-

sis. These are ASSIGN.DEMERITS and TFA. ASSIGN.DEMERITS is called from 

Identify phase of SCC on each pass. Its input is the 4 word error array 

TR.LATCH prepared by the fault detection phase. It examines the system 

configuration tables and assigns a demerit count to each suspect unit. 

If the faulty unit is found by HFA, the demerits are thrown away and a 

new demerit count started with the next occurrence of a fault. If HFA 

cannot locate the faulty unit, a program called TFA is called. This 

program transfers the temporary demerits assigned by ASSIGN.DEMERIT to a 

permanent form by recomputing the fault-index of all the implicated 

units. The fault-index of units not implicated is also recomputed as 

described previously. A unit is not implicated if it is active but not 

125 



enabled on the suspect bus. Spare units, therefore, are not assigned 

this good merit badge. Two separate fauit-indices are kept for proces­

sors, one for errors on the P bus and a second for errors on the T bus. 

A processor is deactivated if either of its two fault-indices crosses the 

threshold. If a processor is thrown out due to its P fault-index, then 

only the P fault-index of other units is reset. 

3.5.4.3 SCC, HFA, and TFA Data Base 

The data sets used by SCC, HFA, and TFA, in addition to those 

described in Section 3.5.3.2, are as follows. 

All variables to be described in this section are used from one 

iteration to the next and they are all saved in the system memory. The 

states of the main SCC program, HFA, and Reconfigure are saved in a 3 

word array SCC.STATE. This array is initialized after the system re-

starts. An 8 word array, SUSPECT.LIST, is used to store the number of 

suspects, the IO ' s of up to 4 suspect LRU' s, suspect bus type and bus 

line and the number of buses reporting errors. A 4 word array, 

EL.DEMERIT, is used to assign temporary demerits to 'lone accusers'. The 

structure of this array is same as that of EL.STATUS described earlier. 

A 12 word array EL.ERR is used to hold permanent count of 'lone accus­

ers'. There is one word for each LRU. Each word has 4 4-bit nibbles, 

one each for P, R, T and C latches. Two arrays, SUBUNIT.ERR (12 words) 

and BUS.ERR (5 words) are used by ASSIGIN.DEMERIT to assign temporary 

transient fault demerits to various FTMP elements. Each element of these 

arrays has four 4-bit fields. The four fields of SUBUNIT.ERR elements 

126 



are used for processor (P bus errors), memory, processor (T bus errors), 

and clock demerit counts. The four fields of BUS.ERR are similarly used 

for P, R, T, and C bus demerit counts. The permanent demerits or fault­

indices are in two arrays SUBUNIT. INDEX (48 words) and BUS.INDEX (20 

words). The first array, SUBUNIT. INDEX, is organized as a 12 x 4 word 

array. The first 12 words of the array are fault-indices for the 12 

processors (P bus errors), the next 12 for memory, the next 12 for pro-

cessors (T bus errors) , and the last 12 for the clocks. The second 

array, BUS. INDEX, is organized as a 5 x 4 word array. The first 5 words 

are fault-indices of the 5 P bus lines. The subsequent 5 word groups are 

fault-indices of the R, T, and C buses respectively. There are two other 

words used by SCC. These are NO.PASSES, which is the number of HFA 

iterations performed to isolate a fault, an~ FAULTY.LATCH which is set to 

TRUE if any error latch demerits are assigned to lone accusers. 

3.5.5 Spare Cycling 

All spare elements in the FTMP, processors, memories, buses, 

clocks, are periodically activated to discover any latent faults as 

pointed out earlier in Section 3.5.1. Under normal circumstances, that 

is, in the absence of any failures, a procedure ISSUE.SWAP.CMND is called 

from SCC every 10 seconds. This procedure determines which spare unit 

should be brought on-line and issues appropriate swap commands which are 

executed by the R4 dispatcher prolog. 

On each pass only one spare unit is swapped with an active unit. 

There are two swap cycles, major and minor. During a major cycle, one 

127 



· spare bus of each type· is made active. A major cycle has four minor 

cycles. During each minor cycle, each processor and memory triad goes 

through one swap and one of the four bus types also is swapped once. 

There is a word in the system memory, RESET. SWAP. CYCLE, which is 

set to TRUE by SCC after any change in the system configuration due to a 

failure. At that point, the major cycle is reset and cycling begins at 

the top of the cycle. A cycle begins wi th a processor triad, goes 

through all processor triads with shadows, then goes through all memory 

triads with shadows and the P bus. This minor cycle is repeated three 

more times except that the R, T, and C buses are swapped on the subse-

quent three iterations. The four minor cycles constitute one major 

cycle. The details of the program are as follows. 

The procedure ISSUE.SWAP.CMND is a state driven program and has 3 

states, 1, 2, and 3 which correspond to processor, memory, and bus swap. 

In state 1 a procedure SWAP.PROC is called with the ID of the target 

triad as an argument. If the target triad has a shadow, a command is 

issued by SWAP.PROC to swap the shadow with an active member. SWAP.PROC 

also sets a variable DONE to TRUE. The target triad ID is incremented. 

If all processor triads with shadows have gone through a swap, the prog­

ram state is changed to 2. If SWAP.PROC"returns the variable DONE set to 

FALSE indicating the target triad did not have a shadow, SWAP.PROC is 

called once again with the next triad 10 as its argument. This ensures 

that a swap command is issued every time ISSUE.SWAP.CMND is called. 

State 2 actions are similar to that of state 1. A procedure 

SWAP.HEM with MRR of the target triad as its argument is called. This 

128 



procedure issues a command to swap one of the shadows of the target triad 

with one of its active member. When all memory triads with shadows have 

gone through a swap, the program state is changed to 3. 

In state 3 a procedure SWAP.BUS with the type of bus to be swapped 

(P, R, T, or C) as its argument is called. It issues an appropriate swap 

command and the program state is changed back to 1. 

scribes the three swap procedures. 

The following de-

3.5.5.1 SWAP.PROC 

This procedure is called with the IO of the target triad as its 

argument. It examines a 3-word array NUM.SH.PT in the system memory to 

see if the target triad has a shadow. If it does, the LRU IO of the 

shadow processor is obtained from a 3-word array SHADOW. PT. The IO of 

the active unit with which the shadow is to be swapped is obtained from a 

9-word array ACTlVE.PT. This array holds LRU IO's of the active members 

of the three processor triads. A 3-word pointer array APNTR.PT has 

pointers which point to active processors to be swapped next from each 

triad. This ensures that each active member in turn is rotated into the 

spare state. A swap command is formed once the active and the shadow 

proces~or IO's have been determined. This command is stored in system 

memory to be executed by the R4 dispatcher prolog. The pointer in the 

APNTR.PT array is updated and a boolean DONE is set to true. 

target triad dots not have a shadow, no action is taken. 

If the 

The data sets used by this procedure such as ACTlVE.PT, SHADOW.PT 

etc. are initialized by a procedure SETUP. PROCESSORS. This procedure is 

129 



called by ISSUE.SWAP.CMND if RESET. SWAP. CYCLE is true. SETUP. PROCESSORS 

examines the system configuration tables and determines active members of 

all processor triads, their shadows, if any, and stores this information 

in the data sets used here. If the system configuration changes due to 

any failures the swap data sets are reinitialized by SETUP.PROCESSORS 

with the new system configuration information. Reformatting of the 

system configuration information for swapping significantly reduces 

computations by the swap procedures. 

3.5.5.2 SWAP.MEM 

This procedure is called with the 10 of the target memory triad as 

its argument. The swap data sets used by this procedure are initialized 

by SETUP.MEMORY. 

First of all, NUM.SH.MT array is examined to see' if the target 

triad has a shadow. A memory triad, unlike a processor triad, may have 

several shadows. The shadow and the active units to be swapped are 

obtained from the arrays SHADOW.MT and ACTIVE.MT, respectively. SPNTR.MT 

and APNTR.MT arrays hold pointers to the next shadow and active units, 

respectively. A swap command is formed once the 10' s of target units 

have been determined. No action is taken if the target triad does not 

have a shadow. DONE is set to TRUE if a swap command is issued. 

3.5.5.3 SWAP.BUS 

This procedure is called with the bus type to be swapped as its 

argument. The swap data sets used by this procedure are initialized by 

SETUP. BUS. 

130 



rir6t of all, NUM.SP.DUS array is examined to see if the target 

bus typ~ has a spar~. APN'l'.BUS AND SPN'l'R.BUS arrays point to the next 

active and spare buses to be swapped. The two target bus numbers are 

obtained by using these pointers as indices into ACTIVE. BUS and SPARE.BUS 

arrays. An appropriate swap command is issued and DONE is set to TRUE. 

No action is taken if there is no spare bus. 

3.5.6 System Reconfiguration 

All the system reconfiguration commands are executed by the R4 

dispatcher prolog. The commands are inserted in the system memory by 

SCC. There are four types of commands as follows. 

(1) unit Deactivate Commands: These commands are issued to 

deactivate a failed active unit. There are four such command 

words, one each for processor, memory, clock, and bus. The 

structure of each of these words is shown in Figure 3-42. 

These words are located in the system memory in the 

CC.COMMAND array. 

(2) Diagnostic Reconfiguration Commands: These commands are 

issued to change bus assignments of processors, memories, and 

clocks. They are contained in two words which are also part 

of the CC.COMMAND array. The structure of these two command 

words is shown in Figure 3-42. 

(3 ) Swap Commands: These ·commands are issued to swap active and 

shadow units. There are four such command words contained in 

the SWAP. COMMANDS array. Their structure is shown in Figure 

3-43. 

131 



THE FIRST WORD IN THE COMMAND WORD ARRAY IS THE 'DEACTIVATE PROCESSOR' 
COMMAND. THE COMMAND IS NULL IF THE WORD IS ZERO. FOR A NON-ZERO WORD 
VARIOUS FIELDS OF THE WORD ARE INTERPRETED AS SHOWN BELOW: 
THE LRU NO. OF THE PROCESSOR TO BE DECOMMISSIONED IS IN BITS 8-11. 
THE LOW ORDER BYTE CONTAINS THE PROCESSOR STATUS AND ITS PARENT TRIAD 10 
THIS ENTRY IS THE SAME AS THE ENTRY FOR THIS LRU IN TRIAD 10 TABLE. 

WORD 0 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o 

o o LRU 10 o o I =~ I 0 I TRIAD ID I 
SECOND WORD IN THE COMMAND WORD ARRAY IS THE 'DEACTIVATE MEMORY' 
COMMAND. BITS 8-11 ARE THE LRU NO OF THE MEMORY MODULE. 
THE LOW ORDER BYTE IS THE SAME AS THE ENTRY IN MRR TABLE FOR THIS LRU. 

WORD 1 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o 

MEMORY RT 
1 0 0 0 LRU 10 STATUS ENBL RELOCATION CONST 

THIRD WORD IN THE COMMAND WORD ARRAY IS THE 'DEACTIVATE OSCILLATOR' 
COMMAND. BITS 8-11 ARE THE LRU NO OF THE OSCILLATOR. 
THE LOW ORDER BYTE IS THE SAME AS THE ENTRY IN TC TABLE FOR THIS LRU. 

WORD 2 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 

o o LRU 10 
OSC I 
STATUS 0 BUS ENABLES 

FOURTH WORD IN THE COMMAND WORD ARRAY IS THE 'DEACTIVATE BUS' 
COMMAND. BITS 0-3 ARE THE BUS IDENTIFICATION ( 0, 1, 2 & 3 FOR P, R, 
T AND C RESPECTIVELY. 4 IMPLIES THE WHOLE BUS SET, I.E., P,R,T & C) 
BITS 8-12 ARE THE BUS LINE IDENTIFICATION (I.E. BUS LINE 1,2,4,8 OR "10" 

WORD 3 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o 

1
00 o BUS LINE 10 o o o o o BUS TYPE 

Figure 3-42. Deactivate and Rotate commands. 

132 



FIFTH WORD IN THE COMMAND WORD ARRAY IS THE 'ROTATE LEFT' 
COMMAND. BITS 0-3 ARE THE BUS IDENTIFICATION ( 0, 1, 2 & 3 FOR P, R, 
T AND C RESPECTIVELY) AND BITS 8-11 ARE THE LRU NO. THAT IS TO BE 
ROTATED. 

WORD 4 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 

o o LRU ID o o o o o BUS TYPE 

SIXTH WORD IN THE COMMAND WORD ARRAY IS THE 'ROTATE RIGHT' 
COMMAND. BITS 0-3 ARE THE BUS IDENTIFICATION ( 0, 1, 2 & 3 FOR P, R, 
T AND C RESPECTIVELY) AND BITS 8-11 ARE THE LRU NO. THAT IS TO BE 
ROTATED. 

WORD 5 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 o 

o o LRU 10 o o o o o BUS TYPE 

Figure 3-42. Deactivate and Rotate commands (cont.) 

133 



(4) Assign Shadow Command: 

assign a shadow memory. 

Finally, this command is issued to 

It is in the system memory word 

MEMORY. COMMAND. Its structure is shown in Figure 3-44. 

The R4 dispatcher calls a procedure RECONF to execute these recon~ 

figuration commands. The procedure RECONF examines each command word in 

the system memory and calls appropriate procedures to execute the com­

mands. There are nineteen such procedures. These are described in the 

following subsections. 

3.5.6.1 Deactivate Processor 

The object of this procedure is to replace the failed processor 

whose ID is passed in the command word by a suitable shadow or spare 

processor. If neither of these options is feasible, the parent triad of 

the failed processor is retired and the remaining two good processors are 

thrown into the spare pool. An N-S diagram of the procedure is shown in 

Figure 3-45. 

The failed processor can be replaced by a spare in one pass if 

that spare is assigned to shadow the parent triad. In this case, the 

failed processor in reset and disabled on P and T buses and the shadow 

processor is enabled on the same P and T buses. Also, if the parent LRU 

of the shadow processor is not enabled on an R bus, the LRU is assigned 

to one of the active R buses. The R bus is chosen such that there are no 

more than three LRU's already enabled on it. 

If the target triad is not being shadowed by a processor but 

either an idle spare or a spare that is shadowing another triad is 

134 



F E o C B A 9 8 7 6 5 4 3 2 1 o 

o o o 0 o o o o ACTIVE LRU 10 SHADOW LRU 10 

Swap Processor Command 

F E o C B A 9 8 7 6 5 4 3 2 1 o 

o o o o o o o o ACTIVE LRU 10 SHADOW LRU 10 

Swap Memory Command 

F E o C B A 9 8 7 6 5 4 3 2 1 o 

o o o o ACTIVE BUS LINE SPARE BUS LINE 

swap Bus Command 

Figure 3-43. Swap commands. 

135 



F E D c B A 9 8 7 6 5 4 3 2 1 o 

I 1 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 1 I SHADOW MRR 

Figure 3-44. Assign shadow command. 

136 



IS PROGRAM STATE = O? (FIRST TIME THRU?) 

YES NO 

IS TARGET PROCESSOR A SPARE? IS TARGET TRIAD IN IDLE PROCESS YET? 

YES NO YES NO 

MARK PROCESSOR IF TRIAD HAS A READ TRIAD 10 TABLE FROM SYSTEM 
FAILED IN SHADOW ENABLE MEMORY. N 
TRIAD 10 TABLE IT ON P, T SEARCH THE TABLE TO FIND A SPARE 
HOG BUS. BUSES AND SET PROCESSOR. I 
DISABLE PROC STATE = 4. IF 
ON ALL P & T NOT, ISSUE IS A SPARE PROCESSOR AVAILABLE? L 
BUSES. GOTO IDLE CMND 
ISSUE' 0 TRIAD TO TARGET YES NO 
ID AND RESET TRIAD (IF MUL-
TARGET PROC TIPLE TRIADS) HOG BUS. 

ELSE SET OBTAIN P & T ENABLES DISABLE PROC 
RELEASE BUS. SYNCH.LAST.- OF TARGET PROCESSOR. ON P & T BUSES 
SET PRGM STATE TRIAD TO TRUE HOG BUS. ISSUE 0 TRIAD 

=4 (ALL DONE) AND STATE = 2 DISABLE TARGET PROC 10 AND RESET 
ON P & T BUSES. PROCESSOR. 

RELEASE BUS. 
ISSUE o TRIAD ID & RESET TARGET MARK TRIAD 
PROC. RESTART SPARE PROC. ENABLE FAILED IN 
SPARE ON SAME P & T BUSES AS TRIAD 10 TABLE 
TARGET PROC. ISSUE 'SYNCH' UPDATE P & T 
COMMAND TO TARGET TRIAD THRU AN ENABLE TABLES 
IPC INTERRUPT. RELEASE BUS. FOR THIS LRU 
UPDATE TRIAD 10 TABLE FOR SPARE 
AND TARGET PROCESSORS. UPDATE P & SET PRGM STATE 
T ASSIGNMENT TABLES FOR THE 2 = 4 (ALL DONE) 
PROCESSORS. SET PROGRAM STATE 
= 4 (ALL DONE) 

Figure 3-45. Deactivate processor. 

137 



available, the target triad is issued a 'GOTO.IDLE' command. On subs~ 

quent passes of this procedure this command word is checked to see if the 

triad has retired', that is, gone to Idle mode. At that time, two differ-

ent actions are taken depending upon whether a spare processor is avail-

able or not. If a spare is available, it is enabled on appropriate P, R, 

and T buses, and its control register R3 is initialized to F. The target 

triad is sent an IPC interrupt to pend RESTART process and a SYNCH com-

mi:md is also issued to the target triad to synchronize wi th the spare 

processor. The SYNCH command word is checked on subsequent passes to see 

if the triad has synchronized with the spare. At tha't point, the proce-

dure returns an All Done code to RECONF signifying completion of 'Deacti-

vate Processor' command. If a spare is not available, the target triad 

is dismembered by resetting the two good members of the triad and disab­

ling them on the P and T buses. 

A special case occurs when only one processor triad is left in the 

system. In this case, the GOTO.IDLE command is not issued. Instead a 

flag, SYNCH.LAST.TRIAD, in the cache memory is set to TRUE and theSYNCH 

command is also issued at the same time. The flag is checked by each 

triad in the idle process. If the flag is set, the Restart process is 
'. 

acti va ted from the idle process. In the Res tart process, the' triad 

synchronizes'with the new processor and bootstraps R4 dispatcher 

directly. 

In all cases, the P and T Latch status of the failed arid ·the newly 

activated units is adjusted to reflect their changed status in :the 

system. 

.' 
138 



3.5.6.2 Deactivate Memory 

The object of this procedure is to replace the failed memory whose 

ID is passed in the deactivate command word with a suitable shadow or 

spare unit. An N-S diagram of this procedure is shown in Figure 3-46. 

If the parent triad of the failed module is being shadowed by a 

spare memory, the triad can be repaired in one pass. The failed unit is 

disabled on the R bus and issued an MRR of 1E. The shadow is enabled on 

the R bus and its MRR is changed to clear the write only bit and arm the 

Real Time Clock, if necessary. The R latch status of the failed and the 

shadow units is changed too. In case there is no shadow memory but a 

spare is available, all of the above mentioned actions are taken. In 

addition, one 256 word page of the spare memory is refreshed by reading 

that page of the triad and writing it back while holding the bus. On the 

subsequent 63 passes of this procedure the remaining 63 pages of the 

spare memory are refreshed. A word, REFRESH.ADR, in the system memory is 

used to store the current refresh address. 

3.5.6.3 Deactivate Clock 

This procedure is called to replace a failed clock element "by a 

spare. Its N-S diagram is shown in Figure 3-47. The bad clock element 

or oscillator is disabled on the C bus by writing into the BGU registers 

of its parent LRU. A spare oscillator, if one is available, is enabled 

on the C bus. Their C latch status is adjusted accordingly. 

139 



IS PROGRAM STATE = O? (FIRST TIME THRU?) 

YES NO 

IS THE TARGET MEMORY A SPARE? OBTAIN LAST REFRESH 
ADDRESS FROM SYSTEM 

YES NO MEMORY. 

HOG BUS. READ MRR TABLE FROM SYSTEM HOG BUS. 
DISABLE MEMORY MEMORY. READ ONE SYSTEM MEMORY 
ON ALL R BUSES SEARCH THE TABLE TO FIND A PAGE STARTING AT 
REISSUE AN MRR SPARE OR SHADOW MEMORY REFRESH ADR. 
.. F" TO TARGET MODULE. WRITE THAT PAGE BACK. 
MEMORY. IF A SHADOW IS AVLBL ISSUE RELEASE BUS. 
MARK MEMORY IT CORRECT MRR AND SET 
FAILED IN MRR STATE = 4. 
TABLE & UPDATE 
MRR ENTRY IN IS A SPARE MEMORY AVAILABLE? 
THE TABLE. 
RELEASE BUS. AVAILABLE? ALL 16K REFRESHED? 
SET PRGM STATE 

=4 (ALL DONE) YES NO YES NO 

OBTAIN R ENABLES HOG BUS. SET UPDATE 
& MRR OF TARGET. DIS BALE PRGM STATE REFRESH ADR 
HOG BUS. TARGET UNIT = 4 IN SYSTEM 
DISABLE TARGET ON ALL R (ALL DONE) MEMORY .• 
MEMORY ON ALL BUSES. 
R BUSES. ISSUE ISSUE MRR = 

MRR = "F" TO TARGET MEMORY. "F" TO THE TARGET. UPDATE PRT, 
ENABLE SPARE UNIT ON THE R ASSIGNMENT AND MRR TABLES. 
SAME R BUS AS THE TARGET. RELEASE BUS. 
RELOCATE SPARE TO SAME AD-
DRESS SPACE AS THE TARGET SET PRGM STATE = 4 (ALL DONE) 
AND ARM ITS REAL TIME CLOCK 
IF THE TARGET MEMORY WAS 
ARMED UPDATE PRT, R ASSIGN 
& MRR TABLES FOR THE TARGET 
& THE SPARE UNIT. RELEASE 
BUS. INITIALIZE REFRESH 
ADR. SET PRGM STATE = 2. 

Figure 3-46. Deactivate memory. 

140 



IS THE TARGET OSCILLATOR A SPARE? 

YES NO 

UPDATE OSC STATUS READ TC TABLE FROM SYSTEM MEMORY. 
.' 

IN TC TABLE. SEARCH THE TABLE FOR A SPARE OSC. 
UPDATE C ASSIGN 
TABLE. IS A SPARE OSC AVAILABLE? 

SET PRGM STATE = 4 YES NO 
(ALL DONE) 

OBTAIN C BUS ENABLES OF HOG BUS. 
TARGET OSC. DISABLE TARGET OSC 
HOG BUS. ON ALL C BUSES. 
DISABLE TARGET OSC ON ALL UPDATE TC TABLE & 
C BUSES. C ASSIGN TABLE. 
ENABLE SPARE OSC ON THE C RELEASE BUS. 
BUS OF TARGET. 
UPDATE TC & C ASSIGN TABLES SET PRGM STATE = 4 
RELEASE BUS. (ALL DONE) 
SET PRGM STATE = 4 

(ALL DONE) 

Figure 3-47. Deactivate oscillator. 

141 



3.5.6.4 Deactivate P Bus 

The object of this procedure is to replace a failed P bus line 

with a spare P bus line. Its N-S diagr~ is 'shown in Figure 3-48. 

If a spare bus is available, the new 3-out-of-5 bus select code is 

computed. There are sixteen such codes, 0 to 15, 9 of which are legal. 

A 16 word array in the system memory, called BUS. SELgCT. CODES, lists 

which 3 buses are selected by each of these sixteen codes. The structure 

of this array is shown in Figure 3-49. The new select code is obtained 

from this table. All LRU' s are issued this new code by writing into 

their select registers. Then each processor that is enabled on the 

failed P bus is moved to the spare P bus by writing into its BGU regis­

ters. The P bus mask is changed to ign~re errors on the failed P bus but 

accept errors on the spare P bus. 

If no spare bus is available, only the bus mask is changed to 

ignore errors on the failed bus. 

3.5.6.5 Deactivate R Bus 

The object of this procedure is to replace a failed R bus line 

with a spare R bus line. Its N-S diagram is shown in Figure 3-50. 

This procedure is very similar to the P bus procedure. It, how-

ever, performs one additional function. It computes the new2-bit R bus 

simplex code for each LRU. To do this a 16 word array, called 

SIMPLEx. CODES, is read from the system memory. 

array is shown in Figure 3-51. 

142 

The structure of this 



READ ACTIVE BUS AND SPARE BUS TABLES 
FROM SYSTEM MEMORY. 

IS A SPARE P BUS AVAILABLE? 

YES NO 

SELECT ONE OF THE SPARE BUSES AS THE NEW ACTIVE BUS. 

READ SELECT CODE TABLE FROM SYSTEM MEMORY. 

COMPUTE THE NEW 3-oUT-OF-S SELECT CODE FOR THE NEW 
SET OF ACTIVE P BUSES. NIL 

READ PRT TABLE FROM SYSTEM MEMORY. 

FOR I = 0 STEP 1 UNTIL 11 DO 

IS PROCESSOR IN LRU I ENABLED ON THE TARGET P BUS? 

YES NO 

ENABLE PROCESSOR I ON THE SPARE P BUS. 
UPDATE ENTRIES IN PRT & P ASSIGN TABLES NIL 
FOK THIS PROCESSOR. 

UPDATE SPARE & ACTIVE BUS TABLES IN SYSTEM MEMORY. 

READ BUS SELECT TABLE FROM SYSTEM MEMORY. 

FOR I = 0 STEP 1 UNTIL 11 DO 

ISSUE NEW P SELECT CODE TO LRU I 
UPDATE ENTRY I IN SELECT TABLE FOR P BUS SELECT 

WRITE UPDATED SELECT TABLE IN SYSTEM MEMORY. 

READ P BUS MASK FROM SYSTEM MEMORY. 
RESET BIT CORRESPONDING TO TARGET P BUS IN THE MASK TO ZERO. 
WRITE MASK BACK TO SYSTEM MEMORY. 

Figure 3-48. Deactivate P Bus. 

143 



BUS.SELECT.CODES: 16 WORD ARRAY 

ITH WORD HAS THE 3 BUSES SELECTED BY CObE I. 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

IX X X X X X X X X X XI3 BUSES SELECTED BY II 

Figure 3-49. Bus select codes. 

144 



READ ACTIVE BUS AND SPARE BUS TABLES 
FROM SYSTEM MEMORY. 

IS A SPARE R BUS AVAILABLE? 

YES NO 

SELECT ONE OF THE SPARE BUSES AS THE NEW ACTIVE BUS. 

READ SELECT CODE TABLE FROM SYSTEM MEMORY. 

.. 
COMPUTE THE NEW 3-oUT-OF-5 SELECT CODE FOR THE NEW 
SET OF ACTIVE R BUSES. NIL 

READ SIMPLEX CODE TABLE FROM SYSTEM MEMORY. 
DETERMINE THE 2-BIT SIMPLEX CODE CORRESPONDING TO 
SELECTION OF THE NEW R BUS FROM THE ACTIVE R BUS SET. 

READ PRT TABLE AND BASE TRIAD TABLE FROM MEMORY. 

FOR I = 0 STEP 1 UNTIL 11 DO 

IS MEMORY IN LRU I ENABLED ON THE TARGET R BUS? 

YES NO 

ENABLE MEMORY I ON THE SPARE R BUS. 
UPDATE ENTRIES IN PRT & R ASSIGN TABLES NIL 
FOR THIS MEMORY. 
IF MEMORY I IS A MEMBER OF THE BASE TRIAD 
THEN UPDATE R ASSIGNMENT IN THAT TABLE ALSO 

UPDATE SPARE, ACTIVE & BASE TRIAD TABLES IN SYSTEM 
MEMORY. 
READ BUS SELECT TABLE FROM SYSTEM MEMORY. 

FOR I = 0 STEP 1 UNTIL 11 DO 

ISSUE NEW R SELECT CODE TO LRU I 
UPDATE ENTRY I IN SELECT TABLE FOR R BUS SELECT 

WRITE UPDATED SELECT TABLE IN SYSTEM MEMORY. 

READ R BUS MASK FROM SYSTEM MEMORY. 
RESET BIT CORRESPONDING TO TARGET R BUS IN THE MASK TO ZERO. 
WRITE MASK BACK TO SYSTEM MEMORY. 

Figure 3-50. Deactivate R Bus. 

145 



SIMPLEX. CODES: 16 WORD ARRAY 

EACH WORD HAS 52-BIT ENTRIES. THE ITH WORD CORRESPONDS TO BUS SELECT 
CODE I. EACH 2 BIT ENTRY IN THIS WORD IS THE SIMPLEX CODE FOR THAT 
BUS. 

15 14 13 12 11 10 987 654 3 2 1 o 

I BUS 1 f BUS 2 I BUS 3 BUS 4 BUS 5 X X X X X X 

Figure 3-51. Simplex codes. 

146 



3.5.6.6 Deactivate T Bus 

An N-S diagram of this procedure which is very similar to the P 

bus procedure is shown in Figure 3-52. It performs one additional func­

tion. The new T select code is issued to the BGU's as well as the LRU's. 

3.5.6.7 Deactivate C Bus 

An N-S diagram of this procedure is shown in Figure 3-53. This 

procedure is similar to the P bus procedure with the following excep-

tions. The new C bus select codes are computed such that active clock 

elements listen to the three clock elements other than themself. Also if 

no spare bus is available, all LRU's are issued a new select code to 

listen to the three good C buses. 

3.5.6.8 Rotate Triad on P Bus 

This procedure performs one of the diagnostic reconfigurations. 

It reassigns the P buses of the three processor members of the target 

triad. The target triad is the parent triad of the processor whose LRU 

ID is passed in the command word. The three processors are ' rotated' 

either 'left' or 'right' on the P bus as requested in the command word. 

A 'rotate left' involves enabling each processor on a higher numbered P 

bus while a 'rotate right' involves enabling each processor on a lower 

numbered P bus. For example, let us say processors 6, 7, and 8 are 

members of a triad and are enabled on P buses 3, 1, and 4. After a left 

rotation, the new bus assignments will be 4, 3, and 1 while it will be 1, 

4, and 3 after a right rotation. 

follows. 

The details of the procedure are as 

147 



READ ACTIVE BUS AND SPARE BUS TABLES 
FROM SYSTEM MEMORY. 

IS A SPARE T BUS AVAILABLE? 

YES NO 

SELECT ONE OF THE SPARE BUSES AS THE NEW ACTIVE BUS. 

READ SELECT CODE TABLE FROM SYSTEM MEMORY. 

COMPUTE THE NEW 3-oUT-OF-5 SELECT CODE FOR THE NEW 
SET OF ACTIVE T BUSES. NIL 

READ PRT & TC TABLES FROM SYSTEM MEMORY. 

FOR I = 0 STEP 1 UNTIL 11 DO 

IS PROCESSOR IN LRU I ENABLED ON THE TARGET T BUS? 

YES NO 

ENABLE PROCESSOR I ON THE SPARE T BUS. 
UPDATE ENTRIES IN PRT, TC AND T ASSIGN NIL 
TABLES FOR THIS PROCESSOR. 

UPDATE SPARE & ACTIVE BUS TABLES IN SYSTEM MEMORY. 

READ BUS SELECT TABLE FROM SYSTEM ~mMORY. 

FOR I = 0 STEP 1 UNTIL 11 DO 

ISSUE NEW T SELECT CODE TO LRU I 
ISSUE NEW T SELECT CODE TO BGU'S IN LRU I 
UPDATE ENTRY I IN SELECT TABLE FOR T BUS SELECT 

WRITE UPDATED SELECT TABLE IN SYSTEM MEMORY. 

READ T BUS MASK FROM SYSTEM MEMORY. -
RESET BIT CORRESPONDING TO TARGET T BUS IN THE MASK TO ZERO. 
WRITE MASK BACK TO SYSTEM MEMORY. 

Figure 3-52. Deactivate T bus. 

148 



READ ACTIVE BUS, SPARE BUS, TC AND SELECT CODE TABLES 
FROM SYSTEM MEMORY. 

IS A SPARE C BUS AVAILABLE? 

YES NO 

COMPUTE THE NEW 3-oUT-OF-5 SELECT DELETE TARGET BUS FROM THE 
CODE FOR THE C BUSES. ACTIVE C BUS SET. 

READ PRT TABLE FROM SYSTEM MEMORY. FOR I = 0 STEP 1 UNTIL 11 DO 

FOR I = 0 STEP 1 UNTIL 11 DO IF OSC IN LRU I ENABLED ON 
THE TARGET BUS THEN DISABLE 

IS OSC IN LRU I ENABLED IT. 
ON TARGET C BUS ? UPDATE TC AND C ASSIGN 

TABLE ENTRIES FOR LRU I. 
YES NO 

DISABLE UNIT I ON C BUS ARE THERE 3 GOOD BUSES LEFT? 
UPDATE ENTRIES IN TC & NIL 
C ASSIGN TABLES FOR THIS YES NO 
LRU. 

ISSUE NEW C SELECT CODE 
FOR I = o STEP 1 UNTIL 11 DO TO ALL LRU'S. 

(ALL LRU'S LISTEN TO NIL 
IS THE OSC IN LRU I 3 GOOD BUSES LEFT) 

ENABLED ON ANY C BUS? 

YES NO 

COMPUTE NEW C BUS ISSUE NEW 
SELECT CODE FOR C SELECT CODE 
OSC I SO IT TO LRU I. 
LISTENS TO 3 UPDATE SELECT 
OSCILLATORS OTHER TABLE. 
THAN SELF. 
UPDATE SEL TABLE 

WRITE UPDATED SELECT TABLE AND 
SPARE TABLE IN SYSTEM MEMORY. 

UPDATE ACTIVE BUS TABLE IN SYSTEM MEMORY. 
READ C BUS MASK FROM SYSTEM MEMORY. 
RESET BIT CORRESPONDING TO TARGET C BUS IN THE MASK TO ZERO. 
WRITE MASK BACK TO SYSTEM MEMORY. 

Figure 3-53. Deactivate C bus. 

149 



First of all, two accompanying members of the processor whose LRU 

ID is passed in the command word are determined by searching the 

TRIAD.ID.TABLE. The three processors are then arranged in an ascending 

or descending order of P bus assignments depending upon whether it is a 

left or a right rotate command. The' new P bus assignments are then 

determined simply by rotating the array containing the three LRU ID' s. 

To actually reassign the bus enables, each processor is first assigned on 

two P buses, the old and the new. Next, each processor is assigned to 

the new P bus only. 

3.5.6.9 Rotate Triad on T Bus 

This procedure performs one of the diagnostic reconfigurations. 

It rotates a triad on the T bus. The rotation is to the left or right as 

requested in the command word. This procedure is identical to the Rotate 

P Bus procedure except that processors are directly moved from their old 

T buses to the new ones without the intermediate step of enabling them on 

both the old and the new. 

3.5.6.10 Rotate Memory 

This procedure performs one of 'the diagnostic reconfigurations. 

It rotates the target memory triad on the R bus to the left or right as 

requested in the command word if the memory whose ID is passed in the 

command word is an active triad member. If the target memory is a spare 

or a shadow, it is simply assigned to a higher or a lower numbered active 

R bus depending upon whether the commanded direction is left or right. 

150 



If another spare or shadow is enabled on the new R bus it is moved to the 

old R bus to keep the maximum number of LRU's on any R bus to 4. 

3.5.6.11 Exchange Oscillators 

This procedure performs one of the diagnostic reconfigurations. 

It exchanges the C bus assignment of the oscillator whose ID is passed in 

the command word with that of a good oscillator clock element. The 

details of the procedure are as follows. 

The target clock is disabled on the C bus. Call this bus the 

target bus. One of the other three clock elements of the clock quad, a 

good clock, is then enabled on the target bus in addition to its own C 

bus or the good C bus. Finally, the target clock is enabled on the good 

C bus and the good clock is enabled only on the target C bus. 

3.5.6.12 Shadow Memory 

This procedure executes the Assign Shadow Memory command. It 

refreshes one 256-word page of target memory unites) on each pass. All 

16K words are refreshed in 64 passes of this program. 

3.5.6.13 Swap Processor 

This procedure swaps a shadow and an active processor. The ID's 

of the two units are passed in the swap command word. The active 

processor is disabled on the P and T buses and the shadow processor is 

assigned to those sameP and T buses. In addition, if the shadow is not 

enabled on any R bus, an active R bus with 3 or less LRU's already 

151 



enabled on it is found and the shadow is enabled on it. The system 

status tables are updated as is the latch status for the two processors. 

3.5.6.14 Swap Memory 

This procedure swaps a shadow and an active memory. The ID's of 

the two units are passed in the swap command word. If the shadow is not 

enabled on any R bus it is assigned to one as described in the previous 

procedure. Then the MRR registers, R bus assignments and simplex codes 

of the shadow and the active unit are swapped. 

3.5.6.15 Swap Oscillator 

This procedure swaps the C bus assignments of the two clock ele­

ments whose ID's are passed in the command word. 

·3.5.6.16 Swap P Bus 

This procedure swaps an active P bus with a spare P bus. The two 

bus line numbers are passed in the command word. This procedure is 

almost identical to the Deactivate P bus procedure. The only difference 

is that the spare bus identity is passed as an argument and it does not 

have to search system status tables to find a spare bus. 

3.5.6.17 Swap R Bus 

This procedure swaps an active R bus with a spare R bus. The two 

bus numbers are passed in the command word. This procedure also is 

almost identical to Deactivate R Bus with the exception noted above. 

152 



3.5.6.18 Swap T Bus 

This procedure swaps an active T bus with a spare T bus. The two 

bus numbers are passed in the command word. 

Deactivate T Bus. 

3.5.6.19 Swap C Bus 

It is almost identical to 

This procedure swaps an active C bus with a spare C bus. The two 

bus numbers are passed in the command word. It is almost identical to 

Deactivate C Bus. 

3.6 Input/Output 

All the input/output in the FTMP is performed through the I/O 

ports on the MIL-STD-1553 bus. There are 11 I/O ports in the FTMP. 

These are connected to seven 1553 emulators over fully duplex 1553 buses 

as shown in Figure 1-1. Four of the seven buses are tied to two I/O 

ports each, while the remaining three are connected to one port each. 

One of the seven 1553 emulators is connected to an HP terminal through an 

RS232 interface. This terminal is used for FTMP status display and as an 

operator's monitor station or a console. The other six 1553 emulators, 

each of which can directly access PDP-11's memory (DMA into PDP-11), form 

the interface between the FTMP and a network of I/O nodes simulated in 

the PDP-11. This network is used to exchange information between the 

Boeing 707 simulation running in dual VAX 11/780 computers and the FTMP. 

Finally, one of the 1553 emulators is also used to communicate between 

the Fault Injector Software (FIS), which is resident in the PDP-11, and 

the FTMP System Configuration Controller (SCC). 

153 



The basic I/O routines in the FTMP, then, perform three functions, 

viz., 1) display and monitor I/O, 2) aircraft sensor and actuator I/O and 

3) FIs-see communication. The first of these is performed by a procedure 

called TTY. The other two functions are performed by a set of six proce-

dures: R4.IN, R4.0UT, RJ.IN, RJ.OUT, R1.IN and R1.0UT. These six proce-

• 
dures perform either the input or the output function and they run at R4, 

RJ or R1 iteration rates as indicated by their names. The information 

exchanged between the aircraft simulation and the applications tasks in 

the FTMP is divided into these three rate groups. Slowly changing items 

such as navigation data are updated at the lowest frequency while criti-

cal items such as the aircraft attitude information are updated at the 

highest frequency. The FIs-see communication is done at the R4 frequen-

cy. In any case, all I/O is done by the R4 dispatcher prolog. 

There are actually only two procedures that perform the 1553 I/O 

transactions. One of these is TTY. The other is SENSOR.IO which is 

called with appropriate arguments from R4.IN, R4.0UT, R3.IN, R3.0UT, 

R1.IN and R1.0UT. These two procedures are described in the next two 

subsections. 

3.6.1 TTY 

This procedure is called by the R4 dispatcher in the dispatcher 

prolog. It performs a single 1553 transaction on each pass. This trans-

action involves either reading input typed on the FTMP console or sending 

display data to the console. The maximum number of characters transfer-

red in either direction in a single pass is 64 (32 words). The maximum 

data rate to the console is 480 characters/second. 

154 



This procedure uses one of two I/O ports that are connected to the 

console via the 1553 emulator. If the primary I/O port fails or if the 

1553 I/O transaction cannot be completed using the primary port, then all 

further I/O is performed through the secondary port. If this port fails 

too, then the primary port is checked once again in case it has been 

repaired through operator action. The designation primary and secondary 

is arbitrary. 

The 1553 emulator which interfaces with the console has input and 

output buffers which are used to hold data being sent from and to the 

console, respectively. Before commencing any transaction for the con-

sole, the TTY program sends a "status" request to the 1553 emulator. The 

1553 microcode sends back three words in response to the status request. 

The first of these words is the "terminal" or console status indicating 

any error flags set by the previous RS232 transaction to the terminal. 

The second word is the number of bytes, say M, waiting in the input 

buffer of the emulator. The third word is the number of bytes available, 

say N, in the output buffer of the emulator. 

If there is any input from the console, that. is, if M is not zero 

then M bytes or 64, whichever is smaller, are read by TTY from the 

emulator. This is accomplished by doing several 1553 bus transactions. 

These will be explained shortly. The input obtained from the terminal is 

stored in a circular input buffer in the FTMP system memory. The Display 

program empties the input buffer and takes appropriate action as command­

ed by the input data. If there is no input from the terminal, that is if 

M is zero, then the FTMP output buffer is checked for any data to be 

155 



transmitted to the console. This data, if any, is sent to the emulator 

provided the emulator output buffer has any room left in it. In any 

case, only a maximum of 64 characters are transmitted in one pass of this 

program. The following describes a typical 1553 bus transaction. 

The I/O port status register is read by doing a simplex source 

read (SREAD) on the system bus. The status word thus obtained is written 

back to system memory using a source congruency write (SWRITE). The 

status word is then read into cache using a normal read (READ) • The 

ready bit in the status word is checke;d to see if the I/O port is ready 

for a 1553 transaction. The I/O port status is checked a maximum of 50 

times if the port is not ready. If the port is still not ready, the 

second I/O port is tried. Assuming the port is ready, a "Transmit RS232 

status" command is sent to the emulator by writing the command register 

of the port. The command register is written into by doing a high write 

(HWRITE) • The ready bi t in the I/O port is then checked, using the 

procedure described above, for the port to complete the 1553 transac-

tion. At the completion of this transaction the requested status words 

should be in the port FIFO (First In First Out) buffer. These are read 

by doing a non-incrementing simplex read (SNREAD). The three status 

words are then processed through the source congruency filter, that is, 

they are written to system memory using SWRITE and read back using READ. 

Assuming there is input, say M bytes, available from the console, 

a "transmit M bytes" command is sent to the emulator using the procedure 

described earlier. When the port completes the transaction, the FIFO is 

read to obtain the terminal input and then written into the FTMP circular 

input buffer. 

156 



If there is no input but output waiting to be sent to the 

terminal, the FIFO is loaded with the data, say N bytes, from the FTMP 

circular output buffer and a "receive N bytes" command word is written 

into the command register. Since this is the last 1553 transaction in 

this procedure, it does not wait for the port to complete the transaction 

before returning control to the R4 dispatcher. 

3.6.2 SENSOR.IO 

This I/O driver is similar to TTY. However, it does not have the 

RS232 protocol. It performs a single 1553 transaction, either input or 

output, as dictated by the arguments passed to it. It also uses a pair 

of I/O ports. However, these two ports are distinct from the pair used 

by TTY. SENSOR.IO also switches from one port to the other if the port 

it is using is marked failed or if it cannot complete a 1553 transaction 

due to errors. 

The single transaction performed by this procedure is either 

transmission of 32 words from the FTMP to 1553 or vice versa. The buffer 

area in the FTMP and the direction of transfer are passed to it as argu­

ments. The data contained in the buffer is aircraft sensors, navigation 

and guidance information, actuator commands or data being exchanged by 

FIS and sec. 

3.7 Executive Primitives 

Various parts of the FTMP Executive described in the previous five 

sections of this chapter repeatedly use some basic functions. These are 

157 



collecti vely called the Execu ti ve primi ti ves • They can be divided into 

four functional categories: System Bus Service Routines, Error Latch 

Service Routines, Timer Routines, and Miscellaneous Primi ti ves. 

are described in the following four subsections. 

These 

3.7.1 System Bus Service Routines 

These programs are used to read/write all the devices (except 

error latches) available on the system bus. These include the system 

memory, the I/O port registers and FIFO buffer, the BGU registers, the 

IPC registers, the bus in mux selectors, the CPU control registers and 

the real-time clock. Since these registers and the system memory are 

accessed quite frequently, it was necessary to write very efficient 

programs to perform the required functions. The programs are, therefore, 

wri tten in the CAPS assembly language and the source code for them is 

contained in the library FTMP.ASM (SERVICE). The assembled output is 

contained in FTMP.LIST (SERVICE). A total of 16 different functions are 

provided. However, there are only three main routines that actually 

perform the system bus transactions. The 16 functions are provided by 16 

entry points into the core routines. Each entry point defines a proce­

dure. The functions and arguments of each of the 16 procedures will be 

described next. 

(1) READ (SYS.ADR, CACHE.ADR, NUM). This procedure transfers NUM 

number of words from system memory address SYS .ADR to cache address 

CACHE.ADR. It is assumed here that a page boundary either in the system 

memory or in the cache will not be crossed. The bus transaction is 

158 



terminated by the hardware if such a condition should occur. Arguments 

are not checked by the software for this abnormal condition. NUM cannot 

be zero. If it is, the processor would hang up. Software does not 

check for this condition either. 

(2) WRITE (SYS.ADR, CACHE.ADR, NUM). This procedure is the same 

as READ except, of course, the direction of transfer is reversed. All 

the READ comments are equally applicable here. 

(3) HREAD (SYS.ADR, CACHE.ADR, NUM). This procedure reads the 

high address space on the system bus. The high system bus address space 

includes all the devices mentioned above except the system memory. The 

19-bit system bus address is formed by adding "70000" to the 16-bit 

address supplied in the argument SYS.ADR. 

(4) HWRITE (SYS.ADR, CACHE.ADR, NUM). This procedure writes de­

vices in the high system bus address space. HREAD and HWRlTE are typi­

cally used to access Real-Time Clock, BGU registers, Bus in-mux Select 

Registers, IPC registers and CPU control registers. 

(5) NREAD (SYS.ADR, CACHE.ADR, NUM). This procedure performs a 

non-incrementing read, that is, it reads NUM number of words from a 

single high system memory address "70000" + SYS .ADR into cache starting 

at location CACHE.ADR. 

(6) NWRITE (SYS.ADR, CACHE ADR, NUM). This procedure performs a 

non-incrementing write. NREAD and NWRlTE are typically used to access 

the I/O page FIFO buffer which is 32 words deep but has a single system 

bus address. 

159 



(7) SREAD (SYS.ADR, CACHE.ADR, 'NUM, SIMP.CODE). This procedure 

performs a non-voted simplex high read~ NUM number of words are trans-

ferred from "70000" + SYS .ADR to cache address CACHE.ADR. However, 

unlike the other read functions described, only a simplex source is 

chosen. All other reads listen to three sources on three buses and the 

data obtained is the voted majority output. Here, the data is read over 

a single bus which is determined by the simplex code SIMP.CODE. Error 

detection circuitry (R bus error latches) is suppressed during SREAD. 

SREAD is typically used to read simplex sources such as I/O port regis­

ters and error latches. 

(8) SWRITE (SYS.ADR, CACHE.ADR, NUM). This procedure, source 

congruency write, is used to transfer, NUM number of words from cache to 

system memory while suppressing errors on the T bus. This procedure is 

normally used to write that data to system memory which has been read 

using simplex source read routines. 

(9) SLREAD (SYS.ADR, CACHE.ADR, NUM, SIMP.CODE). This procedure 

performs a non-voted simplex read in the low address space. It is typi­

cally used by self-test programs to read a single system memory module. 

(10) SNREAD (SYS.ADR, CACHE.ADR, NUM, SIMP.CODE). This procedure 

performs a non-incrementing, simplex high read. It combines the 

functions of SREAD and NREAD. 

SNREAD is typically used to access FIFO buffer in the I/O port. 

(11) READL (SYS.ADR, CACHE.ADR, NUM). This procedure performs a 

long read operation across page boundaries. Since it must check the 

arguments in order to break up the transaction, there is considerable 

software overhead associated with reading system memory this way. 

160 



(12 ) WRITEL (SYS.ADR, CACHE.ADR, NUM). This procedure wri tes 

into system memory across page boundaries. 

(13) HOG.BUS. This procedure increments the cache global varia­

ble HOG.WORD. It does not perform a bus transaction. However, next time 

a bus transaction is performed, the bus will be "hogged" (not released) 

at the end of that transaction if HOG.WORD is non-zero. 

(14) RELEASE.BUS. This procedure decrements HOG.WORD and releas­

es the bus, if the HOG.WORD is zero, by doing a dummy bus transaction. 

If HOG.WORD is zero on entry to this procedure (an illegal condition), an 

illegal op code is executed, thereby trapping the triad in illegal op 

code interrupt handler. This feature has been provided solely as a means 

of debugging software. 

(15) ARELEASE.BUS. This procedure uncondi tionally releases the 

bus. The HOG.WORD is initialized to zero and if holding the bus it is 

released by doing a dummy bus tr~nsaction. 

(16) SYNC. This procedure is part of the processor synchroniza-

tion process. It acquires the bus and then releases it if the bus was 

not being held on entry to this procedure. Otherwise, it releases the 

bus and re-acquires it. In either case, the result is that all partici­

pating member processors are forced to do a bus poll. 

Procedures 1 to 10 use the same core with different entry points. 

The different entry points set up the high orderS bits of the bus ad­

dress and certain fields of the command word in two local variables. The 

core routine uses these two words along with the three procedure argu-

ments to load various SBA (System Bus Access) registers. HOG.WORD is 

161 



checked to determine if the bus should be held or released after the 

transaction and the SBA.CMND (command register) loaded appropriately to 

begin the bus transaction. Writing into the command register initiates 

the bus transaction upon completion of which control returns to the next 

instruction. All interrupts are masked at the start of the routine and 

the interrupt mask is restored to its original status at the end. 

Procedures 11 and 12, READL and WRITEL, use a slightly different 

core routine. Here, the required bus transaction is broken down into 

smaller parts, none of which crosses a cache or system page boundary. 

Interrupts are masked during these procedures also. 

Finally the last four procedures use a single core routine that 

performs a simple dummy bus transaction. In the dummy transaction one 

word is transferred from system memory address zero to cache location 

"4000" (which does not exist). 

transaction. 

3.7.2 Error Latch Service Routines 

Interrupts are masked during this 

Although error latches can be read using service routines de­

scribed in the previous section, it is possible to write even more effi­

cient routines that are customized for error latches. 

The first of these is READ.EL. This AEO procedure is called every 

R1 frame by SCC (System Configuration Control) program. The function of 

this procedure is to read all 48 error latches of 12 LRU·s. The READ.EL 

routine obtains R bus assignments of each LRU from system memory, sets up 

simplex read select bits and then calls an assembly language procedure 

ERRLATCH to actually do the bus transaction. 

162 



ERRLATCH is called with two arguments: (1) N, the LRU from which 

to read the latches, and (2) select bits for the simplex read. All four 

latches of LRU N are read and the four values are written in a predeter-

mined place, at MM.ERR.LATCH(4*N), in the system memory. 

The last procedure is CLR.ALL.ELS. This is an· AED procedure that 

clears all error latches by reading them. It uses SREAD service routine 

for this purpose. This procedure is called only infrequently by the 

configuration controller. 

3.7.3 Timer Routines 

The timer routines keep track of several interval timers in soft­

ware. There is only one hardware internal timer in each processor. This 

timer is continually decremented every 250 microseconds. When the timer 

decrements from zero to -1, a timer interrupt is generated. The interval 

timer, with the help of timer interrupt, is used to initiate a new R4 

frame and to place maximum execution time limits on applications tasks. 

Since a number of such tasks can be in progress simultaneously within a 

triad, several interval timers may be active simultaneously. The follow­

ing routines are used to track various interval timers in software and to 

take appropriate action when a timer interrupt is generated. Their 

source code is contained in FTMP.AED(TIMERS) and the compiled output 

appears in FTMP.LIST(TIMERS). 

TlMER.INIT. This procedure clears timer interrupt, sets interval 

timer to its maximum value (16 seconds) and initializes the global vari­

ables used ~ other timer routines. It is called from the R4 dispatcher 

once after a triad starts up. 

163 



START.R4.TIMER(I). This procedure is called by the R4 dispatcher 

just before activating an R4 applications task. It disables all inter-

rupts, sets the interval timer to I, clears timer interrupt and sets 

timer flags R4.TIMER.ARMED and R4.TIMER.ON to TRUE. 

STOP.R4.TIMER. This procedure is called by the R4 dispatcher just 

after completion of an R4 applications 'task. It sets the interval timer 

to 16 seconds, clears timer interrupt, sets timer flags R4.TIMER.ARMED 

and R4.TlMER.ON to FALSE and restores the interrupt mask to that saved by 

START.R4.TIMER. 

START.R3.TlMER (I). This procedure is called by the R3 dispatcher 

just before starting an R3 applications task. It saves the current 

interrupt mask, disables all interrupts and sets R3.TIMER.ON to TRUE. 

If the interval timer is not already loaded with a useful value 

(R4 frame interrupt time) then it is loaded with I and appropriate timer 

flags are set after clearing the timer interrupt. If, however, the timer 

is already armed for the next R4 frame then the shorter of I and time to 

next R4 frame is loaded and appropriate flags set in cache. 

STOP.R3.TlMER. This procedure is called by the R3 dispatcher just 

. 
after completing an R3 applications task. It restores the interval timer 

to its status when START.R3.TIMER routine was called. For example, if 

the timer was not armed with anything at that time then it is set to 16 

seconds. If it was armed for R4 frame time then the time remaining to 

the start of the next R4 frame is loaded in the timer. The mask is 

restored to R3 dispatcher status. 

" 

164 



START.R1.TIMER (I). This procedure is called by the R1 dispatcher 

just before starting an R1 applications task. Its functions are identi­

cal to that of START.R3.TIMER. 

STOP.R1.TIMER. This procedure is called by the R1 dispatcher just 

after completing an R1 applications task. Its functions are identical to 

that of STOP.R3.TIMER. 

HOLD.R3.R1.TIMERS. This procedure is called by the R4 dispatcher 

upon entry. If the timer is loaded with either the R3 or the R1 applica­

tions task time limi t then the time left for the task is saved. The 

interval timer, in any case, is set to 16 seconds and timer interrupt 

cleared. 

HOLD.R1.TIMER. This procedure is called by the R3 dispatcher upon 

entry. If the R1 applications task timer is running, it is halted and 

time left for the R1 task is saved. If this triad is R4 responsible and 

the interval timer is not already armed with the R4 frame time then it is 

loaded with the R4 frame time. 

RELEASE.R3.R1.TIMERS. This procedure is called by the R4 dis-

pate her just before exit. The R3 or R1 task timers that were frozen upon 

entry by the R4 dispatcher are released by this routine. In addition, if 

the R4 frame timer is running, the interval timer is loaded with the time 

left to the next R4 frame. 

RELEASE.R1.TIMER. This procedure is called by the R3 dispatcher 

just before exit. It releases the R1 task timer if it was running upon 

entry. 

165 



TIMER.INT.HANDLER. This procedure is entered in response to a 

timer interrupt. It penda the R4 process in the PSD chain if it is an R4 

frame interrupt. The type of interrupt is ascertained by the timer flags 

which are set at the time the interval timer is armed. If the interrupt 

is caused by an application task exceeding its allotted time then that 

task is purged from the PSD chain by calling PURGE.APSD procedure. 

PURGE.APSD. This procedure is called by the TIMER. INT. HANDLER. 

It removes from the PSD chain the process pointed to by the RESUME.PNTR 

of the active process. This is done simply by changing the RESUME.PNTR 

of the active PSD. 

3.7.4 Miscellaneous Primitives 

There are five functions collected together under this category. 

These are described in the following. 

(1 ) LOCK (X) • This procedure locks a word, X, in system memory. 

It does this by storing the triad id in the three least significant bits 

of X, provided X was unlocked, that is, it was zero. If X is already 

locked by another triad, then this procedure stores the triad id in the 

next 3 bits and the EXEC.LEVEL of the 'requesting triad in the next two 

bits. If another triad is already waiting for X to become available, 

this triad puts in a request in bits 8 to 12. (Figure 3-54 shows the 

structure of the lock word.) Having put in a lock request, it waits for 

an unlock message in IPC register O. When the bit in IPC RO correspond-

ing to EXEC.LEVEL is set, then x is ava"ilable. (See discussion below in 

UNLOCK). Figure 3-55 shows the N-S diagram of the lock procedure. 

166 



15 14 13 12 11 10 9 8 7 654 3 2 1 o 

LEVEL 10 OF 2ND REQSTIN TRIAD 10 OF TRIAD 10 OF 
U NUS E 0 OF 20 TR REQSTING TR LEVEL REQSTING TR LOCKING TRIAD 

Figure 3-54. Lock word structure. 

167 



(2) UNLOCK (X). This procedure unlocks word X in system memory 

by clearing its triad id from the low order 3 bits of X. If another 

triad is waiting for X, it sends its IPC register 0 unlock message and 

also shifts X right 3 bits thereby locking X for the waiting triad. The 

unlock message is really a bit being set in IPC RO corresponding to the 

EXEC.LEVEL. That is, if the lock request was made at level 2 the bit 2 

in IPC RO will be set to 1. The lock procedure waits for the unlock 

message by continually checking this bit to see if it is set. Since a 

triad can request a resource at R1 or R3 level, be interrupted and re­

quest another resource at another level, it is necessary to make sure 

that unlock messages at lower levels are not lost at higher levels. 

Therefore a copy of IPC RO for each task is kept in system memory. When 

it is necessary to send an unlock message to a triad, a copy of its IPC 

RO is read from system memory, appropriate bit set in it, the updated 

word written back to system memory and finally the same word is sent to 

the triad. This, in a way, OR • s the ~present unlock message with any 

previously pending UNLOCK messages. The lock routine similarly clears 

only one bit from the system memory copy of its IPC RO, the bit that 

corresponds to its requesting level. Figures 3-56 and 3-57 show the 

structure of the lock word X before and after being unlocked. 

3-58 shows N-S diagram of UNLOCK. 

Figure 

(3 ) SET.BIT (VALUE, BIT.NO, WORD). This procedure sets bi t 

BIT. NO in the system memory address WORD to VALUE in one unbroken bus 

transaction. The word is read from system memory with the bus being 

hogged, the BIT.NO bit is set to VALUE, the word written back to system 

168 



DISABLE INTERRUPTS WHILE BUS IS BEING HOGGED. 
HOG BUS. 
TEMP VARIABLE LOCKED = FALSE. (X IS NOT YET LOCKED BY THIS TRIAD. ) 
READ X (WORD TO BE LOCKED) FROM SYSTEM MEMORY. STORE IT~IN TEMP.X. 

IS X UNLOCKED ( = 0 )? 

YES NO 

X IS AVAILABLE. IS X ALREADY LOCKED BY THIS TRIAD? 
LOCK X BY STORING ( LOW ORDER 3 BITS OF X = TRIAD.ID) 
TRIAD ID IN LOW 
ORDER 3 BITS OF X YES NO 
LOCKED = TRUE. . 
(X IS NOW LOCKED) LOCKED= TRUE IS ANOTHER TRIAD WAITING FOR X? 

YES NO 

STORE TRIAD ID & STORE TRIAD ID 
LEVEL ILl IN BITS & ILl IN BITS 
8-12 OF TEMP.X. 3-7 OF TEMP.X. 

WRITE TEMP.X IN X. 
RELEASE BUS. 
ENABLE INTERRUPTS. 

IS X LOCKED BY THIS TRIAD? ( LOCKED = TRUE?) 

YES NO 

WHILE NOT LOCKED (I.E. DO UNTIL LOCKED) 
NIL 

IS THERE AN UNLOCK MESSAGE? (BIT IN IPC REGO SET?) 

YES NO 

DISABLE ALL INTERRUPTS. NIL 
HOG BUS. 
READ SYSTEM MEMORY COpy OF IPC REGO. 
IANDI BIT CORRESPONDING TO LEVEL ILl TO ZERO. 
WRITE IPC REGO OF THE SELF TRIAD. 
RELEASE BUS. 
LOCKED = TRUE. 
ENABLE INTERRUPTS. 
X NOW LOCKED BY THIS TRIAD. 

Figure 3-55. N-S diagram of lock. 

169 



15 14 13 12 11 10 9 8 7 6 5, 4 3 2 1 o 

LEVEL ID OF 2ND REQSTIN TRIAD ID OF TRIAD ID OF 
UNUSED OF 2D TR REQSTING TR LEVEL REQSTING TR LOCKING TRIAD 

Figure 3-56. Lock word before being unlocked. 

15 14 13 12 11 10 9 8 7 654 3 2 1 o 

LEVEL TRIAD ID OF TRIAD ID OF 
UNUSED 0 0 0 0 0 OF 2 TR 2ND TRIAD 1ST REQST TR 

Figure 3-57. Lock word after being unlocked. 

DISABLE INTERRUPTS WHILE BUS IS BEING HOGGED. 
HOG BUS. 
READ X (WORD TO BE UNLOCKED) FROM SYSTEM MEMORY. STORE IT IN TEMP.X. 
SHIFT RIGHT TEMP.X BY 3 BITS. 

IS ANOTHER TRIAD WAITING FOR X? (TEMP.X-,= O?) 

YES NO 

OBTAIN LOCK REQUEST LEVEL FROM X. SEND WAITING TRIAD'S IPC RO 
UNLOCK MESSAGE. (SET ONE BIT CORRESPONDING TO LEVEL IN RO) • NIL 
GET RID OF 2 LEVEL BITS FROM TEMP.X. 

WRITE TEMP.X IN X. '. 

RELEASE BUS. . 

ENABLE INTERRUPTS. : .. 
.. 

Figure 3-58. N-S di~gram of unlock. 
" 

170·· 



memory and the bus is then released. 

procedure. 

Interrupts are masked in this 

(4 ) IPC.INT.HANDLER. This procedure handles IPC interrupts. 

Writing to IPC registers 2 and 3 causes an interrupt. Presently only R2 

is used by the Executive. IPC interrupts are used for three purposes. 

( a) PEND R4 PSD: This is signalled by setting bit 0 of IPC R2. 

(b) PEND RESTART PSD: This is signalled by setting bit 1 of IPC 

R2. 

(c) HALT: This is signalled by setting bit 2 of IPC R2. The 

last one is provided only for debugging purposes. 

Since one or more interrupts could be pending when the IPC R2 is 

written to cause another IPC interrupt, a copy of IPC. R2 is kept in 

system memory. The IPC.INT.HANDLER clears this to zero and responds to 

all the pending interrupts as indicated in IPC.R2. 

(5 ) KICK (TRIAD.TRACKER). This procedure examines the kick 

field (bits 8 - 11) of the argument (TRIAD.TRACKER). It sends an "Pend 

R4" IPC interrupt to a triad whose bit is set in the kick field. It then 

resets that bit indicating that triad has been kicked. To send the IPC 

message, acopy of IPC.R2 of the target triad is read from system memory. 

The "Pend R4" bit is set in this word, the updated word written back into 

system memory and also into IPC R2 of the target triad. 

"hogged" during this operation. 

171 

The bus is 





CHAPTER 4 

FACILITIES SOFTWARE 

On the ground, the FTMP is supported by a test adapter and a 

PDP-11. This chapter describes the ground support software resident in 

the PDP-11. 

4.1 CTA 

The test adapter is a front panel-like keyboard interface to the 

the FTMP. It can be connected to an LRU through the processor region 

transfer bus. At the same time, the "test adapter can also be connected 

to the PDP-11 on the Unibus. A program on the PDP-11, called CTA (Col­

lins Test Adapter program), provides on any PDP-11 terminal all the 

functions that are available from the test adapter keyboard. These 

functions or commands relate to the processor and the RAM of the master 

LRU, that is, the LRU to which the test adapter is connected. 

Specifically, these commands are Halt, Run, Reset, List, and set. The 

functions performed by these commands are self-explanatory. 

Since the test adapter does not have access to the FTMP system 

bus, it can not access any device that is on the system bus but not on 

the processor transfer bus. Therefore it can not directly access the 

173 



system memory, system control registers, I/O port registers, etc. CTA, 

however, can be used to access the system bus devices indirectly as 

described in the following. 

A cooperator program, COOP, is loaded from the PDP-11 into the 

master LRU cache. !Load l is one of the functions performed by CTA. CTA 

sends device access request to COOP which performs the operation and 

returns the results if any to CTA. The exact protocol is as follows. 

Four words in cache RAM (2001~2005) are reserved for CTA-COOP 

communication as shown below. 

2001 

2002 

2003 

2004 

Command 

Address High 

Address Low 

Data 

There are 3 commands. Read, Write, and Resume. The first two are 

used to read or write a system bus device. The last command, resume, 

instructs the COOP process to resume the next process in the PSD chain. 

Only one word 1s transferred to/from a system bus device in one transac­

tion between CTA and COOP. This communication, however, is transparent 

to the user. Mnemonic commands are provided to access all the relevant 

registers etc. in the FTMP. The FTMP system bus addresses of these 

registers have been programmed in CTA. The commands and their functions 

are as follows: 

MLIST page offset num: This command is used to list on the termi­

nal Inurn l number of words from system memory starting at address as 

defined ~ the page and the offset. This multiword transaction is broken 

up into 1 word transactions ~ CTA. 

174 



~ page offset = data: This is used to set a system memory 

location whose address is defined by page and offset to ldata l • 

~ n, m = abcd: This sets control register m of LRU n to abcd. 

PE n = (x,y,z): This enables LRU n on P buses x, y, and z by 

writing into the two BGU registers of LRU n. There are similar commands, 

(RE, TE, and CE) to enable an LRU on R, T, and C buses. 

PS n = (x,y,z): This writes into the P select register of LRU n 

to listen to buses x, y, and z. There are similar commands (RS, TS and 

CS) to select R, T, and C bus sets. 

MRR n = abed: This sets memory relocation register (MRR) of LRU n 

to abcd. 

HOG: The master LRU Ihogsl the system bus next time it does a bus 

transaction. 

UNHOG: The master LRU releases the system bus. 

RTC: This command is used to read the FTMP Real Time Clock. 

LOAD file: This command is used to load an absolute load module 

from the PDP-11 into the FTMP cache and the system memory. 

4.2 PROM programmer 

A program called PROM is available on the PDP-11 to program the 

FTMP PROMls. Each LRU in the FTMP has an Bk PROM card which contains B 

"2716" PROMls. The hardware to program all PROMls on such a card is 

attached to the PDP-11 Unibus. The PROM program listens to the following 

commands. 

LOAD file: This is used to load the PROM section of an FTMP abse-

lute load module into the internal buffer of the program. A letter at 

175 



the beginning of each record in the load module indicates whether that 

record is destined for the PROM, RAM, or the system memory. 

EDIT: This invokes a simple edi tor which can be used to examine 

or alter the load file in the buffer. 

READ: This transfers the contents of the PROM into the internal 

buffer. 

INIT: This sets the internal buffer to all '1' s which is the 

state of an unprogrammed PROM. 

PROGRAM: This programs the PROM with the contents of the internal 

buffer. 

COMPARE: This compares the PROM contents with the buffer contents 

and lists any differences found. 

Typical programming time is about 40 milliseconds per word or 

about 6 minutes for the full 8k board. 

4.3 Fault Injector Software (FIS) 

The fault injector software (FIS) package resident on the PDP-l1 

provides commands at a PDP-ll terminal to perform all the functions 

necessary to inject faults into LRU 3 of the FTMP and observe the 

results. 

The fault injection hardware is attached to the PDP-l1 Unibus on 

one end. It consists of six cards, A, B, C, D, E, and F, each of which 

can be interfaced to 8 pins of an IC package on the FTMP. Signals, simu­

lating faults, can be injected on any combination of these 48 pins as 

directed by FIS commands. The results, that is, fault'detection, identi­

fication, recovery times etc., are transmitted from the FTMP to FIS on a 

176 



1553 bus. This I/O function in the FTMP is performed at R4 frequency in 

the R4 dispatcher prolog. 

The FIS commands and their functions are as follows: 

DEFINE Unn M: This command defines an M pin IC package whose 

location on the circuit board is Unn. 

MAP n Am t: This maps pin n of the device defined in the previous 

command into pin m of board A of the fault injector. 

device pins are mapped to t-1 subsequent A board pins. 

t-1 subsequent 

DESCRIBE n abcd: This defines the fault (abcd) to be injected on 

pin n of the device. Part of the fault description tells FIS whether the 

fault should be injected as input to the device pin or as output of the 

device pin and into the corresponding socket pin. 

ENABLE n: This selects pin n of device for fault injection, when 

a fault is actually injected next time. 

DISABLE n: This deletes pin n of device for fault injection, when 

a fault is actually injected next time. 

EXEC: This injects the fau1t(s) as defined by the previous com­

mands. The fault is asserted either until FTMP has recovered from the 

fault or 10 seconds whichever happens first. 

AUTO n: This command repeats the EXEC function n times. However, 

before injecting a fault a 'GET READY' command is sent by FIS to the 

FTMP. The FTMP in response to this command repairs LRU 3 subuni ts and 

brings them on-line in acti ve s ta te • A' READY' signal is sent back by 

the FTMP to FIS at this point so that the fault may now be injected in 

LRU 3. (See Section 3.5.2 for a detailed discussion of the FIS-FTMP 

177 



communication protocol). After each event, the results received from the 

FTMP are recorded. At the end of the run the collected results can be 

displayed in various histogram formats. 

4.4 CAPS Simulator 

This simulator which runs on thePDP-11 in an interactive mode was 

used to debug the FTMP software prior to the hardware delivery. 

The CAPS simulator basically provides a uniprocessor environment. 

Some of the multiprocessor aspects of the FTMP are also simulated in this 

package. Specifically, a single CAPS-6 processor, 12k cache memory and 

48k system memory is simulated. The simulated processor includes the 

CAPS-6 instruction set, interval timer and power on clear, illegal op­

code, timer and IPC interrupts. In addition to one processor and cache, 

system and control registers of other 11 LRU's are also simulated. These 

include the EGU's, Error Latches, SCU registers and the Real Time Clock. 

The System Bus Access (SBA) contro1 registers are availab1e only in the 

main LRU, that is, the one with the processor and the cache. 

Breakpoint, single instruction step and normal execution modes are 

provided to facilitate software debugging. The CAPS control register 

contents, unlike in the FTMP, can also be displayed. These include TOS, 

LENV, SPCR, etc. The Real Time Clock and the interval timer can also be 

frozen at a breakpoint unlike in the FTMP. The state of the simulator 

which includes the processor, cache and system memory contents can be 

saved in the PDP-11 during any simulator run. Several such states can be 

saved subject to storage availability on the PDP-11 disk. The simulator 

178 



can be initialized either with a new load file or with a previously saved 

snapshot of the simulator. 

The simulator operates at approximately one fifth the speed of the 

CAPS processor. 

4.5 Miscellaneous Facilities Software Packages 

There is a TSO link that connects PDP-11 to the Amdahl 470 Time-

share option (TSO) network. A TSO program in the PDP-11 supports the 

link. Using this software package any PDP-11 terminal can be transferred 

into a TSO terminal. In addition, any files from the Amdahl can be 

downloaded into the PDP-11 using the TSO link. This facility is used to 

transfer FTMP load modules from the Amdahl where they are created to the 

PDP-11 from where they are loaded into the FTMP. 

There is a 1553 emulator card support software called M15. M15 is 

similar to CTA. It provides commands at a PDP-11 terminal to control 

1553 emulators. Programs can be loaded and run in the emulators using 

commands similar to the CTA commands. 

The 1553 emulator software consists of two microcode programs. 

one supports FTMP-1553-RS232 communication while the other supports 

FTMP-1553-PDP11 communication. Their functions are as follows. 

The RS232 interface is used to display FTMP status and other FTMP 

information on an HP terminal and transmit operator commands typed on the 

FTMP console back to the FTMP. The emulator microcode that supports 

these functions receives input from the console through a UART. It sends 

179 



the consol .. inpllt to the ,,"l'MP when requested to do as by an I/O driver 

(TTY) in thC' "'TMP. It receives display data destined for the console 

from the £o"rMP and transmits it to the console at 4800 baud. Internal 

buffers are maintained in the emulator for both the input and the out­

put. The details of the communication protocol between the microcode and 

the FTMP have already been described in Section 3.6. 

The other 1553 emulator microcode package is used to emulate a 

1553 remote terminal with 32 sub-addresses. This code communicates with 

an I/O driver (SENSOR.IO) in the FTMP. It transmits aircraft sensors, 

navigation and guidance data, FIS commands etc. to the FTMP when request­

ed by SENSOR.IO. This information is obtained by the microcode from the 

PDP-11 memory through DMA. It also receives actuator commands and data 

destined for FIS from the FTMP and places them in the PDP-11 buffer areas 

through DMA. 

Finally, there is a PCL-11 driver in the PDP-11 to communicate 

with the 707 simulation running in the dual VAX-11 computers. The PCL-11 

is a high speed parallel data link between the VAX 1 , VAX 2 , and the 

PDP-11. This link is used to transmit sensor, actuator, navigation, and 

guidance information between the 707 simulation and the PDP-11 buffers 

used by the emulator microcode. 

180 -



CHAPTER 5 

ACCEPTANCE TEST/DIAGNOSTIC SOFTWARE 

A set of acceptance test programs was written at Collins Avionics 

and at CSDL to verify the FTMP hardware operation prior to the delivery 

of the hardware to CSDL. These programs have since been modified and 

expanded to extend their scope to more areas of the hardware. Basically, 

each of these diagnostic programs runs in a stand-alone mode. The Kernel 

program which is resident in the PROM of each LRU has provisions to start 

up a program in the processor cache memory or to load the cache from the 

system memory and then start up that program. 

discussion of Kernel). 

( See Section 3.2 for a 

Typically, the LRU under test is enabled on all the P, T, and C 

buses by inserting the shorting plug into it. Appropriate test program 

is loaded into its cache RAM or the system memory if several LRU's are to 

participate in the test. In the latter case, each LRU under test in' turn 

is enabled on all P and T buses and its CPU control register R3 is set to 

2. Each processor that is so started copies system memory locations 

(2005-2007 and 2010-3FDF) into corresponding cache memory locations and 

goes into a wait loop until register R3 is cleared. Locations 2005-2007 

contain the TOS, STKLM, and SPCR of the diagnostic program. Each 

181 



processor then starts executing this program when its control register R3 

is cleared to zero. 

Individual command lists have been written to set up the system 

correctly for each diagnostic test. These command lists are executed 

from CTA (see Section 4.1) in an interactive mode. The command lists 

prompt the operator to set up any cache memory locations, control regis­

ters, etc. that are dependent on the slot(s) under test and to remove the 

master plug, if necessary. The results of the diagnostic tests are shown 

on the screen and/or on the test adapter display windows which are also 

setup by the operator to display the addresses of interest for each test. 

Following is a brief description of each of the diagnostic 

programs. 

S. 1 LRU Diagnostics 

This is one of the most comprehensi ve FTMP diagnostic programs. 

It runs in one LRU and checks just about all LRU components except the 

cache and the. processor. A PDP-11 command file LRUDIAG.CMD can be used 

to load and start this program in any LRU. The command file prompts the 

operator to input the slot ID of the LRU under test. 

The LRU diagnostic program calls a number of procedures to test 

various LRU components. First of all, INIT is called to initialize 

various parameters including the LRU ID. Next, XMITS is called to con­

figure the LRU to transmit on all 5 bus sets. The Real-Time Clock (RTC) 

is the first item to be checked. Two procedures RTC1 and RTC2 are called 

to write and read the RTC while the operator checks the waveform. Then 

182 



RTC3 is called which reads the RTC and displays it in the test adapter 

windows. RTC3 checks the clock frequency against the interval timer. It 

verifies that each RTC bit toggles. It also verifies certain read/write 

features of the RTC. For example, RTC should not count until its high 

word is written into after a low word write. Also when the low word is 

read the high word at the time should be latched. 

The next procedure to be called is BOX ID. This program verifies 

that the LRU responds to its LRU ID and only to its LRU ID. To do this 

CPU control register R~ in all the LRU's is written over the system bus 

and the self R~ is read over the transfer bus to verify that R<jl is as 

expected. If all the tests so far are successful, the operator is 

prompted to remove the shorting plug. 

DISABLE 1 is then called. This procedure disables the LRU on one 

bus line at a time and verifies that the proper bus line is disabled. 

The next procedure is XMIT3 which configures the LRU to transmit and 

receive on the default 3 buses. Following this configuration ERRLATCH is 

called. This procedure clears all error latches by reading them once. 

It then reads them again to verify that they did clear. 

The next procedure to be called is BUSERR. It simulates errors on 

each of 20 bus lines by transmitting on appropriate bus sets. The ex-

pected errors are verified by reading the error latches. The next proce-

dure, RTC4, tests the arm/disarm bit of the RTC. The Real-Time Clock 

should respond to write requests all the time but to read requests only 

if it is armed. The next procedure, MRR1, sets the memory relocation 

register (MRR) to zero and verifies system memory read/write operations. 

183 



The next test checks the system memory operation. A procedure MEMDIAG 

writes 0, FFFF and address to each location in the 16k system memory 

contained in the LRU under test. Read/write operations are also conduct­

ed across page boundaries to see that they are terminated correctly. The 

next procedure, MRR2, sets the MRR to all possible relocation values and 

verifies that the memory responds only to the relocated address space. 

The next LRU component to be tested is the IPC (Inter-Processor 

Communication) register set. A procedure, IPC, verifies the IPC register 

operation by writing to them on the system bus and reading them back on 

the processor transfer bus. Registers 2 and 3 are also checked to verify 

that writing to them generates IPC interrupts. 

The next procedure, 10, checks the operation of the I/O port in 

the LRU. The 32-word FIFO in the I/O port is loaded with data and the 

command register is loaded with a 'transmit 32 word' command. 

word is checked to verify that there were no transmit errors. 

function of the port is similarly verified. 

Status 

Receive 

The last test is performed by SBC. This procedure checks the 

operation of the system bus controller. Various error conditions such as 

page boundary crossing etc. are simulated and status register checked to 

verify that the condition was detected. BuS hog operation, effect of 

static priority or bus poll, etc. are also checked. 

If the LRU passes all the tests a word "A1 LRU ID" is displayed in 

one of the test adapter windows. If it fails any test, the program is 

terminated and "2BAD" is displayed. 

184 



5.2 Opcode Diagnostics 

A procedure, OPPROG, tests all instructions in the CAPS-6 proces-

sor except those related to the interrupt system. Each instruction is 

executed with opcode on even and odd byte boundary and for all hardware 

stack conditions. If the processor passes all tests "A 1A 1" is display-

ed. If not, "2BAD" is displayed. The procedure OPPROG is based on a 

table lookup strategy. A data set, OPDATA, contains initial and final 

stack conditions and expected results for each instruction execution. 

This table occupies more than 4k bytes. 

5.3 Interrupt Diagnostics 

Interrupts and interrupt related instructions are checked by a 

program called INTPROG. This program verifies POC, INTRTN, HALT, ASNMSK, 

REFMSK, SWPMSK, Interval Timer interrupt, PM, and PI fault interrupts. 

The mapper is also checked to verify correct mapping operation as well as 

correct read/write of the mapper itself. INTPROG uses tables setup in 

the data set INTDATA. A successful test is terminated by "A 1A 1" being 

displayed on the test adapter. "2BAD" is displayed if any of the tests 

was a failure. 

5.4 Cache Memory Diagnostics 

The cache RAM is tested by a procedure called CMEMDIAG. There are 

two versions of this program, low and high. The low version is loaded in 

the high part of cache and tests the lower half of the memory. The high 

version tests the higher half. Several tests are performed. Each 

185 



location is written with its address and read back to verify the opera­

tion. Following this test various patterns, such as 100100100 "" are 

written throughout the memory. The patterns are varied to 01001001 ••• , 

001001001 ••• , etc. and their complement. These tests should discover any 

stuck-at-O, stuck-at-1 and 'slowly dying' bits, that is, bits that change 

when surrounded by all l' s or all 0' s. 

should also be uncovered by these tests. 

stuck address and data lines 

5.5 Synchronization and Multiprocessing Diagnostics 

The diagnostic programs described so far have been designed to run 

in a single LRU. A procedure, SYNC, checks the ability of processors to 

synchronize themselves to each other and for several triads to compete 

for the system bus. 

The SYNC program clears all interrupts, resets the interval timer 

and initializes SBA Control register. It then goes through a synchroni-

zation procedure as described in Section 3.3. Once three processor 

members of the triad have been synchronized, the error latches are clear­

ed by reading them. Following this, all 48 error latches from 12 LRU's 

are read once again and written to the 'system memory after being reduced 

to 4 words. 12 error la tches of each type (p , R, T, and C) are OR' d 

together to form an error word for that type of bus. The interval timer 

is then armed to go off in 8 seconds. During that time the Real-Time 

Clock is read and written into the system memory. Eight seconds later, a 

timer interrupt is generated as a result of which Kernel transfers con­

trol to the timer interrupt handling routine. 

186 



The timer interrupt handler reads 48 error latches, converts them 

to 4 error words as described before and writes them to another system 

memory location. PSD (Process State Descripter) of the interrupted 

process, that is, the main program is also saved in the system memory. 

(See Section 3.2 for a description of Kernel and PSD). The interrupt 

mask is then changed to allow IPC interrupts and an IPC interrupt is 

caused by writing IPC register R2 over the system bus. The Kernel trans­

fers control to the IPC interrupt handling routine. 

The IPC interrupt handler is similar to the timer interrupt hand­

ler. It reads, condenses, and writes the error latches to system memory 

and it also saves the timer PSD in the system memory. Four seconds la­

ter, as timed by the interval timer, it' Resumes' thereby returning 

control to the timer interrupt handler. That process, in turn, waits 4 

seconds and -Resumes the main program after setting the interval timer to 

go off in 8 seconds. This process repeats every 24 seconds. 

The error words, as recorded by the three processes, can be exa­

mined in the system memory to reveal any bus errors. If the processors 

can synchronize after a power on reset and stay synchronized through 

timer and IPC interrupts, the error words should stay clear. If they are 

not, various PSD' s can be examined to determine the exact value of the 

instruction counter (SPCR) at which point each processor received the 

timer/IPC interrupt. 

There are three command files, SYNC1.CMD, SYNC2. CMD and 

SYNC3.CMD. They start up one, two, and three processor triads with the 

SYNC program, respecti vely • The SYNC program writes error words and 

187 



PSD' s in a system memory location indexed by triad 10. That is, in a 

multiprocessor situation, each triad saves its results in a different 

system memory location. 

The SYNC program thus verifies processor synchronization, bus 

arbitration logic and timer and IPC interrupts in a multiprocessor mode. 

5.6 Clock Diagnostics 

A procedure, CINMUX, tests all paths through C bus inmuxes of all 

LRU's present and all possible clock quads. 

First of all, the program determines which LRU it is running on by 

writing to the CPU control register R~ of all the LRU's on the system bus 

and then reading its own register on the transfer bus. It then enables 

itself on all the buses and prompts the operator to remove the shorting 

plug. Once that is done, it determines which slots are actually popu-

lated with LRU's by reading their C error latches. 

From amongst the LRU's present, four are chosen to form an initial 

clock quad. This clock quad is enabled to transmit on all possible three 

and four C bus combinations. In the former case, one of the four clock 

elements is not enabled on any C bus. The error latches are cleared 

after each clock reconfiguration and after a wait of 50 milliseconds they 

are reread and compared to expected values. If no disagreement is found 

the clocks are reconfigured to the next bus combination. 

combinations are tested for each clock quad. 

Forty bus 

This process is repeated for all possible clock quads that can be 

formed from the LRU's present. The test continues as long as no errors 

188 



or unexpected errors are found. The program halts and displays the four 

clock elements and their bus assignments if an unexpected error is 

discovered. 

189 



This Page Intentionally left Blank 



CHAPTER 6 

APPLICATIONS SOFTWARE 

The FTMP applications software consists of three major segments, 

console software, flight control, and navigation. These are described in 

the following three sections. 

6.1 Console Software 

The FTMP console is used to monitor the FTMP status and to input 

operator commands to the FTMP. The console is an HP terminal which is 

driven by the FTMP through a 1553 bus and a 1553-RS232 interface. (See 

Sections 3.6 and 4.5 for the details of the interface). 

There are four different displays. These are as follows. 

STATUS This display is the default system display. It can be 

invoked by the console command STATUS. This display shows the status of 

each processor, system memory, and bus line in the FTMP. Each processor 

and system memory module as identified by the slot number (0 to B) may be 

in one of three states, active, spare, or failed. For active units, the 

triad number is also shown. Each bus identified by the line number (1 to 

5) and type (P, R, T, or C) is also shown to be active (A), spare (S) or 

failed (F). In addition, the four members of the clock quad are shown by 

191 



their slot numbers. The time of day is shown in all the displays. 

Operator commands are echoed on the bottom line of the screen. The 

status display is shown in Figure 6.1. 

BUS ASSIGNMENTS This display shows the buses on which each LRU is 

enabled to transmi t and the bus set selected by each LRU to receive. 

This display is invoked by the command BUS. The bus display is shown in 

Figure 6.2. 

FAILURE LOG This display shows the time of day (in hours, minutes 

and seconds) of failure for all the failed units in the system. A fail­

ure reason code accompanies the failure time. This display is invoked by 

the command LOG. The log display is shown in Figure 6.3. 

TRANSIENT ERROR LOG This display shows the transient fault-index 

for each uni t in the FTMP. It is invoked by the command TRLOG. The 

transient log display is shown in Figure 6.4. 

INPUT/OUTPUT This display shows the status of the 1553 I/O ports 

in the FTMP. Throuqh these ports, the FTMP interfaces with the display 

console, the fault injector, the PDP-11/60, and the aircraft simulation 

facili ty. The I/O display shows the ports through which these devices 

are being accessed at any given time. It is invoked by the command 10. 

A diagram of the I/O display is shown in Figure 6.5. 

AUTOPILOT STATUS This display shows the status of the simulated 

aircraft in terms of altitude, airspeed, heading, attitude, and attitude 

rate (pitch, roll, and yaw rates). It also shows the autopilot/flight 

director mode of operation and the pilot inputs to the autopilot and the 

192 



I-' 
\0 
W 

Figure 6-1. System Status Display. 



f-I 
~ 
J:;. 

Figure 6-2. LRU Bus Assignment Display. 



195 



196 

i .< ... 

.' , 
.f 

~ 

.: 
~ • 



197 

. . >. 

"' r-I 
0. 
III 

-.-I 
o 
III 
:l 
4J 

"' 4J 
en 
4J 
~ 
o 
Po. 

o ....... 
H 



output commands generated by the autopilot. This display is invoked by 

the command APFDS. It is shown in Figure 6.6. 

The console commands accepted by the FTMP, in addition, to the 

four display commands just described, are as follows. 

FAIL Pn This command is used to fail processor n. The display; 

program in the FTMP does this by resetting the processor. 

FAIL Mn Memory n can be failed by changing its MRR to 1E. 

RESTORE P l,m,n... Processors 1, m, n etc. may be repaired using 

this command. Their status in the system configuration tables is chang~d 

from 'failed' to 'spare'. Also, if the associated memory and/or clock in 

tha t LRU are marked fai led they are res to red to ' spare' condi tion ~ Th~ 

fault-indices of these units are reset to their respective base values. 

RESTORE m l,m,n ••• This command is used to repair several 

memories. 

clocks. 

RESTORE c l,m,n ••• 

P 
R 

This command is used to repair several 

RESTORE BUS T n This command is used to repair line n of P, R, 
C 

T. or C bus. 

CHANGE PORT N This command is used to change the I/O port config~ 

uration through which external devices are being accessed. PDP.-l1/60 

interface ports can he changed from 0 .to 1 and vice versa and disp1ay 

conso1e ports can .be changed from 8 to A and vice versa. 

REFRESH Each display has two components, background, and fore-

ground. -The background is the part that does not change such as titles, 

198 



\!) 
\!) 

Figure 6-6. Autopilot/Flight Director Status Display. 



PCickground enhancements, etc. The foreground is the system configuration 

information. This command is used to update the foreground of the cur­

rel1-t display. Normally, only the time of day is refreshed constantly. 

Other foreground information is not changed unless there is a change in 

the syste~ configuration. 

TIME HR: MIN: SEC This command is used to set the time of day to 

JiR, MIN and SEC. The display program sets a double word BASE.TIME in 

oystem memory such that the commanded time equals BASE.TlME + Real Time 

Clp~~, There is a TIME applications program that computes the current 

time py adding BASE.TlME to the Real Time Clock and stores this value in 

a d01,lble word TIME.NOW in the system memory. TIME.NOW represents the 

t;:ime of day Qased on a 24-hour clock in terms of quarter millisecond 

units~ l;t has the same least count as the Real Time Clock. It is con-

verted to hour, minute, second format by the display program and shown on 

the console. 

RESTART System configuration tables are reinitialized and the 

system is restarted. 

The display program runs as a privileged R1 rate group applica-

~ions task. It has two major sections, input and output. The input 

The output section processes operator commands typed on the console. 

s~ction formats display into ASCII character strings. Two circular-

bu,ffers in the system memory are used to store the input and output 

qharacters. These are IN.BUFF and OUT.BUFF, respectively. IN. BUFF can' 

hold 512 characters while OUT.BUFF can hold 2048 characters. The actual 

I/O transactions between the FTMP and the 1553 emulator are performed' by' 

200 



an I/O driver TTY which is detailed in Section 3.6. The display program 

retrieves characters from IN.BUFF and inserts characters in OUT.BUFF 

independent of TTY which simultaneously may fill IN.BUFF and empty 

OUT.BUFF. To accomplish this, two sets of pointers are used, IN.BUFF.IN 

and IN.BUFF.OUT for IN.BUFF and OUT.BUFF.IN and OUT.BUFF.OUT· for 

OUT.BUFF. 

To display a character on the screen, it is necessary that the 

cursor be in the required position, that is the column and row where the 

character is to be displayed. If it is not, it is moved to the correct 

row and column by an absolute or a relative cursor move command. Such 

commands are composed of several ASCII control characters. Control 

characters are also used to enhance display background. The background 

can be made half bright, inverse video, etc. Two character sets are 

available on the HP terminal, a standard alpha-numeric set and a line 

drawing set. Both are used in the FTMP displays. Field definition 

characters are used to switch between the two character sets. 

The output section of the display program generates cursor posi­

tioning commands, field definition control characters and display 

characters and places these in the circular output buffer. The input 

section empties characters from the input buffer for the command proces­

sor . and also places them in the output buffer with appropriate cursor 

positioning commands. This ensures that characters typed on the terminal 

are echoed back (and thus appear on the screen) on the bottom line which 

is reserved for operator commands. Pointers in the system memory are 

201 



used to store the actual cursor position on the screen and the next echo 

column. The echoing function is handled by a procedure called IOECHO. 

To relieve the main display prog'ram, which incidentally is in the 

library FTMP.AED(DISPLAY), from detailed cursor positioning, ASCII char­

acter conversion and buffer management tasks a set of basic output primi-

tives has been written. These primi ti ves are in the library 

FTMP.AED(OUTPUT). These routines position cursor as required, format 

ASCII character strings, place characters in the output buffer and update 

buffer pointers. Following is a brief description of these routines. 

CR, LF, CRLF These routines perform the functions of carriage 

return, line feed, and carriage return-line feed, respectively. CR moves 

the cursor to column a if no 'virtual screen' is defined. However, a 

~irtual screen may be defined by using routines ROWand MARGIN. In that 

base, the cursor is moved to the column where the virtual screen begins. 

CLEAR SCREEN This routine clears the screen and moves the cursor 

to column a and row 0, that is, the upper left hand corner of the screen~ 

HOME This routine moves the cursor to the upper left hand corner 

of the real screen or virtual screen if one is defined. 

ROW(M) This routine defines the top of the virtual screen to be 

M. 

MARGIN(N) This routine defines the left hand margin of the screen 

to be N. 

INCR.COL(M) This routine moves the cursor by M columns. M may be· 

positive or negative. 

202 



INCR.ROW(N) This routine moves the cursor by N rows. N may be 

positive or negative. 

OUT.HEX.CHAR(I) This routine converts hexadecimal number in the 

least significant 4 bits of I into its ASCII representation and displays 

this character at the present cursor position. 

OUT.2HEX.CHAR(I) This routine is similar to the previous one. It 

displays two hexadecimal numbers contained in the least significant byte 

of I. 

OUT.4HEX.CHAR(I) This routine displays four hexadecimal numbers 

contained in I. 

OUT.CHAR(I) This routine displays the ASCII character contained 

in the lower byte of I. 

OUT.2CHAR(I) This routine displays 2 characters contained in I. 

OUT.CNTL.CHAR(I) This routine transmits the control character in 

the low byte of I to the terminal. Since this is a control character the 

cursor position is not changed. 

OUT.2CNTL.CHAR(I) This routine transmits 2 control characters to 

the terminal. 

OUT.MSG(P) 

pointed to by P. 

This routine displays a string of ASCII characters 

There are other routines that process the input from the console. 

These are as follows. 

GET.LINE This routine checks to see if there is any input from 

the terminal. Terminal input is not processed until the input line is 

203 



termina ted by a carriage return. If such an input line exists, this 

procedure obtains it from appropriate buffers in the system memory. 

HEX.INPUT(B) This integer routine scans the input line for hexa­

decimal number. It returns the number, if found, as the procedure value 

and the argument B is set to true. If the next character in the input 

stream is not a valid hexadecimal number, B is set to false. 

COMPARE(P) This boolean procedure compares the input stream with 

a character string pointed to by P. The procedure value is set to true 

if a match is found. 

SKIP.FIELD(B) This routine scans the input stream and positions a 

cursor or pointer at the next character after skipping a field. Fields 

are separated by spaces, periods, commas or colons. B is set to true if 

end of line is reached. 

6.2 Flight Control Software 

The flight control system programmed on the FTMP is a totally 

automatic flight control system (AFCS). It is patterned after the Lock­

heed L-1011 Tristar avionic flight control system. It provides automatic 

aircraft control from take-off to touch-down. The flight control soft­

ware can be divided into two major parts, autopilot flight director 

system (APFDS) and auto land • 

subsections. 

These are described in the following two 

204 



6.2.1 APFDS 

The autopilot/flight director can be used by the pilot to provide 

him assistance in varying degrees. This ranges from basic stability 

augmentation to completely automatic flight control. The s tabi li ty 

augmentation system (SAS) provides artificial pitch and roll damping when 

the autopilot is engaged. In addition, yaw damping is provided at all 

times. The yaw SAS also commands rudder to coordinate turns and provides 

runway alignment and rollout during auto land operations. 

The autopilot may be engaged in one of several modes. If the 

pilot wishes to maneuver the aircraft with the help of the autopilot, it 

may be engaged in attitude hold/control wheel steering (CWS) mode. In 

this mode, the autopilot holds a constant pitch and roll attitude and the 

pilot's pitch and roll stick inputs are interpreted as rate commands to 

change the aircraft attitude. 

For the climb and descent phases of flight, two different modes of 

operation are available. These are the vertical speed hold and Mach 

hold. Altitude hold is available for the cruise flight phase. During 

cruise, altitude or Mach hold may be engaged. 

For directional guidance and control, a heading hold mode is also 

available. Heading hold may be engaged in conjunction with any of the 

other autopilot modes. The implementation details of various APFDS modes 

are described below. 

CWS Figures 6-7 and 6-8 show the pitch and roll loops of the CWS 

mode, respectively. 

205 



PITCH 
STICK 
INPUT 

PITCH 

°a------------------------------------~ 

· ~------------------~ 

· "'c 
. ROLL 
STICK 
INPUT 

Figure 6-7. CWS - Pitch loop. 

ROLL 

"'a------------------------------------~ 

· q,a------------------..... 

Figure 6-8. CWS - Roll loop. 

206 



In the pitch loop, the pilot's pitch stick input is interpreted as 

pitch rate command. This input is passed through a stick shaping filter 

to provide a dead zone around the neutral stick position and it is 

squared thereafter to provide the pilot rapid response. This reshaped 

stick command is integrated to obtain the desired pitch angle. This is 

compared to the actual pitch angle of the aircraft to generate an error 

signal. The error signal is amplified through a gain to provide the 

basic elevator command. This command is' modified slightly for two rea­

sons. First, a negative feedback through pitch rate is used to provide 

damping. Second, the pilot's stick input is added to the elevator com­

mand for rapid response. 

The roll loop is identical to the pitch loop. Instead of pitch 

angle and rate, roll angle and rate are used to provide an aileron 

command. 

In order to provide a smooth transition from manual flying mode 

(autopilot not engaged) to autopilot mode, the pitch and roll loops run 

open loop when the autopilot is not engaged. This ensures that the 

control surface positions will not change abruptly at the instant the 

autopilot is engaged. The CWS program runs as a privileged R4 applica­

tions task. It obtains the required sensor values from a sensor buffer 

area in the system memory and places the actuator commands in an actuator 

buffer area, also in the system memory. The actual sensor/effector I/O 

is performed by an I/O driver in the R4 dispatcher prolog. 

explained in Section 3.6. 

207 

This is 



LATERAL SAS Figure 6-9 shows a block diagram of the lateral 

stability augmentation system. This program runs as an R3 rate group 

privileged task. The pilot's yaw input (rudder pedals) is passed through 

stick shaping and compared to the side slip angle to generate an error 

signal. A wash-out based on yaw rate is added to the error signal. The 

final error signal is amplified to produce the rudder command. This 

program is run all the time whether the autopilot is engaged or not. It 

provides basic stability augmentation and turn coordination. 

ALTITUDE HOLD Figure 6-10 shows a block diagram of the altitude 

hold mode of the autopilot. This program runs as an R1 rate group privi­

leged task. An elevator command is produced in response to an error in 

the altitude. Rate of change of altitude and the pitch rate are also fed 

back to provide smooth altitude capture and damping. A constant altitude 

is maintained by varying the aircraft pitch attitude which in turn varies 

the airspeed since the throttle position is not moved. 

MACH HOLD In this mode of the autopilot, shown in Figure 6-", a 

constant Mach number is maintained by changing the aircraft pitch atti­

tude which in turn results in a change in al ti tude since the throttle 

position is not moved. An error signal generated by a deviation from the 

reference Mach number is amplified and fed back on the elevator command. 

Rate of change of airspeed and pitch rate are also fed back for smooth 

M~ch capture and damping. This task runs at R1 frequency. 

VERTICAL SPEED HOLD In this mode, shown in Figure 6-12, the 

vertical speed is held constant by controlling the aircraft pitch atti­

tude. An error signal produced by a deviation from the reference verti-

208 



rc------1 
(

PI LOT'S YAW) L.......:... ...... 
INPUT 

p--------------~ 

r ________ ..... 0.5s 1-_________ --1 

8 0.5 s + 1 

Figure 6-9. Lateral SASe 

h-----I 

hr---------~~ 

. 
h------1 

. 
~-------------------------~M 

Figure 6-10. Altitude hold. 

209 



.u-----I~ 

U ref = ¢ --------.w 

U ____ -I~ 

· ~--------------------~~ 

Figure 6-11. Mach hold. 

· ha-------------~ 

· ~-------------------------~~ 

Figure 6-12. Vertical speed hold. 

210 



cal speed is used to command the elevator. pitch rate feedback is used 

for damping. The vertical speed is held constant at the expense of the 

airspeed. This task runs at R1 frequency. 

HEADING HOLD This mode is shown in Figure 6-13. A deviation from 

the reference heading is used to produce a bank angle which is fed as 

input to the CWS roll loop. This task runs at R1 frequency. 

6.2.2 Auto land 

Autoland may be used to do a completely automatic landing, includ­

ing approach, flare, touch-down, and roll-out. The approach is made by 

capturing the ILS (Instrument Landing System) signals. Localizer signal 

is tracked for lateral guidance while the glides lope signal is followed 

to maintain the correct glide path. A constant airspeed may optionally 

be maintained if the autothrottle mode of the auto land is engaged. A 

brief description of each of these modes follows. 

AUTOTHROTTLE Figure 6-14 shows a block diagram of this mode. A 

deviation from the reference airspeed produces an error signal that is 

amplified and converted into a throttle command. Acceleration feedback 

is used for damping. This task, as all other autoland tasks, runs as a 

privileged R4 rate group applications program. 

GLIDESLOPE Figure 6-15 shows the transfer function used to 

produce the glide slope. The glide slope deviation signal is used to 

produce a pitch angle command which is fed to the CWS pitch loop. 

FLARE This mode, shown in Figure 6-16, is automatically engaged 

at a radio al ti tude of 15 feet. The glide slope mode is disengaged at 

211 



~------------------------------~~ 

Ta------------------------------____ ~ 

Figure 6-13. Heading hold. 

212 



· ~----------------~ 

Uc -~----------------------~------------~ 

Ua----------------~ 
(change in air speed) 

Figure 6-14. Autoland - Airspeed. 

'Y c - 0 -------------------------------'~ 

'Ya---------------------------______ ~ 
(GS DEVIATION) 

Figure 6-15. Autoland-Gl!de slope. 

213 

t--.... T 



ha·--------------~ 

. 
~----------------------------------------~ 

Figure 6-16. Autoland-flare. 

214 



this point. The attitude above the runway and the rate of descent are 

used to produce a pitch angle command which is fed as input to the CWS 

pitch loop. The object here is to reduce the rate of descent to zero 

just when altitude reaches zero. 

LOCALIZER The lateral auto land mode is shown in Figure 6-17. 

This is used to track the runway centerline by following the localizer 

deviation siqnal. A yaw rate is produced as the output of this loop 

which is fed to the lateral 8AS loop. This same mode is used for VOR 

tracking although the gains are slightly different in the VOR mode. 

215 



"r -</l----------------., 

,,---------------------------------~ 

G = 4G 
1VOR 1 LOC 

(LOC/VOR DEVIATION) G
1 

.. f(range) 

Figure 6-17. Autoland - Lateral. 

216 



6.3 FTMP Core Software Summary 

Figure 6-18 shows a memory map of the FTMP load module produced by 

the CAPS link editor. The load module consists of all of the Executive, 

~pplication, and Self-Test software described in the preceding chapters. 

Each program listed in the memory map is compiled and assembled 

independently to produce a relocatable object code. All of these object 

codes are then linked together by the link editor to produce an absolute 

load module. For each program the memory map shows three pairs of hexa­

decimal addresses under the headings of Counter 0, Counter 1, and Counter 

2. Counter 1 shows the virtual starting and ending address of the 

executable code. Counter 0 shows the real starting and ending address of 

the static read/write area (work area) for the program, and Counter 2 

shows the real starting and ending addresses of the read only data 

(constants used by the program). 

For example, the code for the R4 task dispatcher 'DISPR4' occupies 

the virtual address space BF4 to F[1S. It uses three constants which 

reside at BO to B2, and it uses two statically allocated variables that 

reside at 2407 and 2408. A procedure may also use a dynamically allo-

ca ted work area. This area is temporarily allocated on the stack when 

the procedure is invoked and released when the procedure retires. 

The virtual address space for the code area is unity mapped into 

the 8K processor PROM for the address space 0 to 1FFF. Most of the 

frequently used Executive routines occupy this address spa"ce. That is, 

these routines are permanently loaded into the PROM "of each processor. 

Referencing Figure 6-18 once again, these routines are listed under the 

217 



Module 

REGS 
KERNEL 
DOlT 
CHFA 
NTIMERS 
CACHE 
PEND 
SERVICE 
RESTART 
GPROCS 
READEL 
READPRTC 
CLRALLEL 
TA 
PFAULT 
NDISPRl 
NDISPR3 
DISPR4 
IDLE 
OUTPUT 
TTY 
NI01553 
RECONF 
SWAPCMND 
TIME 

SCC 
SELFTEST 
RCVTEST 
XHITTEST 
POLLTEST 
CLKTEST 
CHECKSUM 
VOTER 
DISPLAY 
READALL 
CONCOM 
SWAPLRUS 
B707 
NAPFDS 
FLOAT 
TASKR43 
TASKR32 
TASKR33 
TABLES 

Counter 0 Counter 1 Counter 2 

2000 23D7 

23D8 23E8 
23E9 23EE 

23EF 2406 

2407 2408 

2409 2484 

2500 257A 

2700 271C 

2700 2700 
2600 2600 
2600 2600 
0000 OEA3 

SEGMENT PROM 

0100 01FA 
01FB 0212 
0213 021E 
021F 0448 

0449 045B 
045C 054C 
054D 076A 
076B 0898 
0899 08B8 
08B9 08F8 
08F9 0917 
0918 0984 

·0985 09FF 
OAOO OB07 
OB08 OBF3 
OBF4 OE75 
OE76 OE96 
OE97 1474 
1475 1626 
1627 1730 
173E 1961 
1962 lE23 
1E24 lE47 

0000 009F 

OOAO OOAO 

OOAl OOAA 
OOAB OOAC 

OOAD OOAD 

OOAE OOAE 
OOAF OOAF 
OOBO 00B2 

00B3 00C4 
00C5 00C9 
OOCA OOCD 
OOCE OOCF 
0000 0005 
0006 0006 

SEGMENT MOOO 

2800 3C35 
3C57 3DIB 
3D22 3E45 
3E46 3F59 
3F5A 4018 
4019 40B4 
40B5 40E5 
40E6 40F5 
40F6 5562 
5702 5800 
580E 64F4 
64F7 686F 
6873 6968 
6969 6CD6 
6027 6E30 
6E31 6E39 
6E3A 6E42 
6E43 6E4B 

3C36 3C56 
3DIC 3021 

5563 5701 

64F5 64F6 
6870 6872 

6CD7 6026 

Comments 

Cache PROM Segment 

Hardware register definitions 
Context switch routine 

)ImPlements AED 'DOlT' Facility 

Interval & Real-Time Clock Routines 
Cache Memory Globals 
Process Pend Routine 
System Memory, and I/O Access Routines 
System Bootstrap Routine 
General Procedures (Lock, Unlock etc.) 

1 Error Latch Read & Clear Routines 

Test Adapter Interface 
Page Fault Handler 

'lRl. R3 & R4 Task Dispatchers 

Idle Process 

} ",nput/outPu,; Handlers 

Configuration co~mand Generator 
Spares Cycling Command Generator 
Time of Day 

System Memory Segment 

System Configuration Controller 

System Self-Test Programs 

Console Display Routine 
Configuration Command Processor 
Spares Cycling Command Processor 
Boeing 707 Cockpit Display Interface 
~utoPilot/Fli9ht Director 
Floating Point Arithmetic Routines 

} ~ummY Applications Tasks 

Shared Data Resident in System Memory 

Figure 6-18. FTMP Load Module Memory Map. 

218 



segment PROM. Examples of some of these Executive procedures include the 

context switch routine (KERNEL), system bootstrap routine (RESTART), 

routines to access system memory, I/O registers, real-~ime clock 

(SERVICE), task dispatchers for the three ,rate groups, (NDISPR1, NDISPR3, 

DISPR4), routines to read error latches (READEL, READPRTC, CLRALLEL), 

input/output handlers (OUTPUT, TTY, NI01553) and procedures to cycle 

spares (SWAPCMD) and carry out system reconfiguration commands (RECONF). 

The next 2K of virtual address space (2000-27FF) is unity mapped 

into the processor RAM address space 2000-27FF. This area is used for 

stacks, Process State Descriptors (PSDs), and system globals. 

6-19 shows the relationship between various FTMP address spaces. 

Figure 

The rest of the FTMP load module is located in the virtual address 

space 2800-6E4B. It is loaded in the same physical addresses of the 

shared memory as well. Most of the system configuration controller, 

self-test programs, autopilot and autoland applications software, and the 

shared data is loaded in the system memory. Since processors can execute 

code only from their respective cache memories, programs located in the 

system memory must first be read into the cache RAM before they can be 

executed. A mapper table in each processor maps virtual address space to 

physical address space and also indicates whether a given page (256 

words) is loaded in the physical memory, that is, the cache RAM. If the 

required instruction is not present in the cache memory, a page fault 

interrupt is generated. The page fault handler then reads in the needed 

page from the system memory into the cache memory. 

219 



0 
CACHE MEMORY 

PROM 

8 k . 

~ 
STACKS, PSP'S, 
SYSTEM GLOBA LS 

16 k 

1---.----
RAM 

VIRTUAL MEMORY SYSTEM MEMORY 
0 

UJTY 

0 
SHARED DATA 

....- MAPPED 

10 k 10 k 

~ 
SHARED CODE 

PAGED 

32 k 
32 k 

48 k 

64 k 

Figure 6-19. FTMPaddress spaces 

220 



The load module is slightly different when the faults are being 

inserted into the FTMP. The normal system configuration control program, 

sec, is replaced by FSee, which is designed to handle the special fault 

insertion set-up. 

221 



CHAPTER 7 

SUPPORT SOFTwARE 

The FTMP software is written either in a high-level language 

called AED or in the CAPS assembly-level language. There are no facili­

ties on the FTMP itself to compile or assemble these programs. The 

source programs must be converted into the CAPS machine language on one 

of the mainframe computers such as IBM 360/370, UNIVAC 1108, or Amdahl 

470. At CSDL the required support software has been installed on an 

Amdahl 470!V8. 

There is an AED cross-compiler that is used to compile and assem­

ble AED source programs to produce re1ocatab1e object code modules. The 

AED source programs reside in a partitioned data set PDPl160.FTMP.AED. 

The object code modules are placed by the compiler in a partitioned 

library PDPl160.FTMP.COBJ. In addition, the compiled output is printed 

and an archival copy placed in a partitioned list file PDPl160.FTMP.LIST. 

There is a CAPS cross-assembler that assembles source programs 

written in the CAPS assembly language and produces a relocatable object 

code module. The CAPS source programs reside in the partitioned data set 

PDPl160.FTMP.ASM. The object code and list files are stored in the same 

libraries used by the cross-compiler. 

222 



Various relocatable object modules can be linked together using 

the cross-linker to produce an absolute load module. The load modules 

are stored on the Amdahl in a library PDP1160.FTMP.LOAD. Link files are 

stored in PDP1160.FTMP.LINK while the list output of the linker is stored 

in PDP1160.FTMP.LINKLIST. 

There is also a host compiler for AED that compiles AED source 

programs into the 470 executable machine language. The host compiler is 

mainly used to compile the AED cross-compiler, cross-assembler and 

cross-linker all of which are written in AED. 

The standard collins linkage editor has been modified for the FTMP 

use. The modified linker accepts three different directives to produce 

three different types of records in the load module. These are as fol-

lows. 

SEGMENT PROM This directive is used to direct the linker output 

to the FTMP PROM memory. The linker prefaces all records produced after 

this segment with the letter P. Since the PROM address space is 0 to 

1FFF, the linker flags any code that is outside this address space. The 

PROM programmer software package extracts only the P records of the FTMP 

load modules. 

SEGMENT RAM The linker prefaces records produced after this 

directive with R and checks the addresses for the range 2000 to 3FFF. 

SEGMENT Mnnn This directive is used to direct the linker output 

to the FTMP system memory. The linker prefaces these records with the 

letter S. The loader on thePDP-11 examines the first letter of each 

record and loads it in the cache or the system memory depending upon the 

223 



type of record. Code nnn in the directive is used to relocate the load 

module to a system memory address that is different from the virtual 

memory address space in which the load module is to be run. If nnn is 

zero, the system memory address and the· virtual memory address are the 

same. If it is not zero, the object code is m.oved from its virtual 

address space by nnn pages. This may be a positive or a negative off­

set. Figure 6-19 shows the relationship between various FTMP address 

spaces. 

The commands to invoke the cross-compiler, assembler and linker on 

the TSO are contained in the partitioned library 'POP1160.FTMP.CMD.CLIST' 

and are as follows. 

CAEOC name This command invokes the AED cross-compiler. The AEO 

source program 'userid.FTMP.AED(name), is compiled on-line and a listing 

is produced in the fil~ 'userid.FTMP.LIST(name)'. Compilation errors are 

also displayed on the terminal. If the user has changed his prefix to 10 

other than his own, the source and list files are accessed from the 

prefix 10 library. 

CAEOCA name This command is similar to CAEDC. It invokes the AEO 

cross-compiler. If the compilation does not produce an error code of 

severity higher than 2, the cross-assembler is invoked. The assembler 

produces a relocatable object code file iprefix id.FTMP.COBJ(name) '. 

CASM name This command invokes the cross-assembler. The CAPS 

assembly language source program 'prefix id.FTMP.ASM(name)' is assembled 

on-line. The assembler produces a relocatable object module 'prefix 

id. FTMP.COBJ (name) , and a list file 'prefix id.FTMP.LIST(name) '. 

224 



~ name This command invokes the cross-linker. The linker direc­

tives are obtained from the data set 'prefix id.FTMP.LINK(name)' and the 

object code libraries referenced in the directives are obtained from 'prefix 

id.FTMP.COBJ'. The linker produces an absolute load module 'prefix 

id. FTMP. LOAD (name) , and a list file 'prefix id.FTMP.LINKLIST(name)'. 

All of the above commands may be used to submit batch jobs on the 

Amdahl by using the keyword BATCH. 

225 



REFERENCE 

1. Nassi, I., and B. Shneiderman, "Flowchart Techniques for Struc­

tured Programming," SIGPLAN Notices, August 1973. 

226 



I 2. Government Accession No. 1. Report No. 

NASA CR-l66072 
4. Title and Subtitle 

DEVELOPMENT AND EVALUATION OF A FAULT-TOLERANT 
MULTIPROCESSOR (FTMP) COMPUTER 
Volume II - FTMP Software 

7. Author(s) 

J. H. Lala and T. B. Sm! th III 

9. Performing Organization Name and Address 

The Charles Stark Draper Laboratory, Inc. 
555 Technology Square 
Cambridge, Massachusetts 02139 

12. Sponsoring Agency Name and Address 

National Aeronautics and Space Administration 
Washington, DC 20546 

15. Supplementary Notes 

Langley Technical Minitor: Charles W. Meissner, Jr. 
Final Report 

16. Abstract 

3. Recipient's Catalog No .. 

5. Report Date 

May 1983 
6. Performing Organization Code 

8. Performing Organization Report No. 

CSDL-R-1601 

10. Work Unit No. 

11. Contract or Grant No. 
NASl-15336 

13. Type of Report and Period Covered 

Contractor Report 

14. Sponsoring Agency Code 

This report is Volume II of a four-volume report on the Fault-Tolerant 
Multiprocessor (FTMP) project. It covers in detail the software developed for 
the FTMP. 

The FTMP Executive is a timer-interrupt driven dispatcher that schedules 
iterative tasks which run at 3.125, 12.5, and 25 Hz. Major tasks which run under 
the Executive include System Configuration Control, Flight Control, and Display. 
The Flight Control task includes Autopilot and Autoland functions for a jet 
transport aircraft. System Displays include status displays of all hardware 
elements (processors, memories, I/O ports, buses), failure log displays showing 
transient and hard faults, and an Autopilot display. 

All software is in a higher order language: (AED an ALGOL derivative). The 
executive is a fully distributed general purpose executive which automatically 
balances the load among available processor triads. Provisions for graceful 
performance degradation under processing over~oad are an integral part of the 
scheduling algorithms. 

17. Key Words (Suggested by Author(s)) 

Interaction Consistency 
Multiprocessor 
Distributed Executive 
Reconfigurable 

18. Distribution Statement 

Synchronous 
Fault-Tolerant 

Interrupt Driven Executive 

19. Security Oassif. (of this report) 

Unclassified 
20. Security Classif. (of this page) 

Unclassified 

~stribution 

Subject Category 62 

21. No. of Pages 

234 
22. Price 

Available: NASA's Industrial Applications Centers 



End of Document 


