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CHAPTER 1 

INTRODUCTION 

This report ~s Volume III of a mult~-volume report on the Fault­

Tolerant Mult~processor (FTMP) proJect sponsored by the Langley Research 

Center of the National Aeronaut~cs and Space Adm~nistrat~on under 

Contract NAS1-15336. The maJor top~c covered by th~s volume ~s the test 

and evaluation of the FTMP. A prerequ~site for understand~ng this report 

is some knowledge of the FTMP arch~tecture and ~ts pr~nc~ples of opera­

tion descr~bed in Volume I and the FTMP Execut~ve software descr~bed ~n 

Volume II. 

The reliabil~ty, performance, and ava~lab~l~ty of the FTMP have 

been modeled extensively (1,2). A number of assumptions were made about 

various FTMP characteristics to arr~ve at these models. Some of these 

assumpt~ons, such as mean t~me between fa~lures of a ll.ne replaceable 

un~t (LRU) can only be ver~f~ed by f~elding the equ~pment and observing 

~ts fa~lure rate ~n ~ts real operating env~ronment. Other assumpt~ons, 

though, are much more eas~ly ver~fied in a laboratory environment. 

Examples of these are the mean and d~str~but~on of the t~me to recover 

from faults and the res~l1ency to s1ngle p01nt fa1lures. FTMP response 

to faults can be observed and measured much more accurately under 



controlled laboratory cond1t10ns rather than 1n the f1eld. Th1S 1S one 

of the motivating factors that led to a ser1es of exper1ments 1n wh1ch 

the FTMP was subjected to numerous artific1ally created faults while 

operating rout1nely 1n a s1mulated aircraft environment and 1tS response 

in each case was observed and recorded. 

Apart from verifying modeling assumptions, there are a number of 

other important reasons for experimental test and evaluat1on. These 1n­

clude expanding val1dat1on envelope, building confidence in the system, 

revealing any weaknesses in the architectural concepts and/or their exe­

cution in hardware and software. Other benefits of the test and evalua­

tion exerC1se include a general stressing and shake-out of the hardware 

as well as software, in particular, the fault detection hardware and the 

fault identification and system configurat10n control software. The 

results of these experiments, therefore, not only include hard data such 

as fault detect10n and identificat10n times but a number of intang1bles 

as well. These are discussed in Chapter 4. 

The goal of the fault-injection experiments was to inJect at least 

stuck-at-O and stuck-at-1 class of faults on every C1rcu1t p1n of one LRU 

and measure the FTMP response. It will be recalled here that all ten 

LRUs in the FTMP are 1dentical to each other in hardware. In addition, 

due to the symmetr1c architecture of the mult1processor and the Execu­

tive, the functions performed by one LRU over a per10d of t1me are no 

different from those performed by any other LRU that 1S operational and 

active. Therefore, one can be fairly conf1dent 1n assuming that the 

results obtained by subjecting only one out of ten LRUs 1n the system to 
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faults are representatl.ve of what would be observed l.f the faults were 

dl.stributed amongst all ten hardware units. The choice of stuck-at class 

of faults was necessl.tated by ll.ml.ted tl.me and resources rather than any 

deficiency l.n the experimental set-up. The fault l.n]ector, to be de-

scribed in the next chapter, is in fact fully capable of generatl.ng and 

injecting a wide variety of faults including externally supplied sig-

nals. The fault l.n]ector can sl.multaneously produce 48 fault signals, 

each of which could concel. vably be applied to a different circuit pin 

sl.multaneously. Once again, due to the previously mentioned ll.mitations 

and the astronomically hl.gh combinations of multl.ple faults (even just 

double faults) as well as the extremely low probability of such events 

ever happening in real life, it was decided to limit the experiments to a 

sl.ngle fault at a tl.me. 

The FTMP response was measured in terms of fault detection, isola-

tion, and recovery times. Identity of the faulty unl.t, as determl.ned by 

the multl.processor, was also recorded. 

It was determl.ned early in the experl.ments that once the fault had 

been detected l.t took a determl.nl.stl.c amount of time to identl.fy the 

faulty unit and to reconfl.gure the system such that the faulty unl.t was 

no longer actl.ve. The fault detectl.on time, on the other hand, was found 

to be qUl.te varl.able for a gl.ven fault on a given pl.n. This variation 

was dependent on when the fault was injected with respect to the internal 

FTMP frames. To reflect this variation l.n the experimental data as well 

as to gain a measure of repeatabl.lity of FTMP performance, each fault on 

each pl.n was repeated fl.ve times. The moment at whl.ch each fault was in­

serted was randomized with respect to the basic FTMP software cycle. 
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The next chapter descr1bes the customized fault-1njection hardware 

and software and the exper1mental set-up. Results of the exper1ments are 

discussed in Chapter 3 and the last chapter summarizes the conclus1ons. 
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CHAPTER 2 

EXPERIMENTAL TECHNIQUES 

2.1 Overall Experimental set-up 

To inject faults 1nto the FTMP, a device called the fault inJector 

(FI) was designed and built at CSDL. The fault inJector interfaces with 

the FTMP on one end and with the PDP-11/60 Un1bus on the other end. The 

number and type of faults and the time of their insertion are controlled 

by Fault-InJection Software (FIS) that is res1dent 1n the PDP computer. 

The PDP-11 and the FTMP are linked together by a MIL-STD 1553 bus. This 

data bus 1S used by the Fault-InJect10n Software to commun1cate w1th the 

System Conf1guration Control (SCC) task in the FTMP. This then makes the 

exper1mental set-up a closed loop system in which the executor, that is, 

the FIS, and the v1ct1m, that is, the FTMP, are 1n constant touch W1th 

each other. Th1s, as shall be seen later, makes it poss1ble to automate 

the fault-injection process and to collect data that otherwise would not 

be poss1ble to acquire. 

F1gure 1 shows a block diagram of the experimental set-up. The 

v1ctim LRU 1S 1n the upper r1ght hand corner of the FTMP cab1net. This 

1S LRU 3. Access to the electronic components 1n th1S unit 1S prov1ded 

by opening the swing down door on the FTMP cabinet. Th1s exposes the LRU 
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circuit boards wh1ch may then be extended for fault 1nsert10n. Faults 

are normally 1n]ected on one p1n at a t1me. To 1nsert faults, control­

lable DIP extenders or 1mplants (part of the fault 1n]ector) are plugged 

into the DIP socket. Each 1mplant accepts the DIP pins 1t replaced and 

contains circu1try wh1ch can 1nterrupt and/or reconnect each DIP p1n and 

each incident signal 11ne from the socket. S1X implants, each of which 

handles 8 DIP pins, are provided. Thus up to 48 p1ns on one DIP or on a 

combination of DIPs may be set up for fault inJection at a given t1me. 

The standard C1rcu1t boards 1n the FTMP are mult1-layer pr1nted C1rcu1t 

boards on which the DIPs have been soldered. However, to facilitate 

removal of DIPs for fault 1n]ection, one complete set of circuit boards 

for one LRU has been furnished with DIP sockets. 

The 48 1mplant p1ns of the fault 1n]ector are 1nd1vidually addres­

sable by the PDP-11. Each p1n appears as a Unibus address to the fault-

1n]ection software. The type of fault to be produced at any pin is 

controlled by wr1ting appropriate data to the Unibus address correspond-

1ng to th1s pin. Once a fault or faults have been def1ned, they can be 

'enabled,' that 1S, inserted into the vict1m by wr1t1ng to another Unibus 

address. The fault 1njector hardware 11stens to th1s address space, 

decodes the data, and produces the fault that 15 called for. It also 

enables or clears the fault when appropr1ate data is wr1tten to the 

enable/clear address. 

It is possible to produce signals other than S1mply stuck-at class 

of faults. Faults that are boolean functions of s1gnals on other pins 

can be generated. Th1S can be used to s1mulate faults wh1ch are rather 
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unlikely but which have been known to have happened. For example, it 1S 

possible to turn a NAND gate 1nto a NOR gate. But the ma1n utility of 

this capabil1ty lies in being able to 1n]ect faults 1nto tr1state sig­

nals. For example, the data pins of a random access memory have s1gnals 

that are either inputs to or outputs from the memory depend1ng on whether 

memory is being written to or read from. To inJect a fault into such a 

dev1ce pin, the direction of the fault signal should be correct 1n order 

to avoid any possible damage to the device. Such a signal can be pro­

duced by generating the fault as a funct10n of other s1gnals on the 

device that determine the direction of the data such as read/write and 

ch1p enable s1gnals on the RAM DIP. 

The fault injection software has been written to facil1tate auto­

matic fault 1n]ection by providing commands that are used to define the 

victim device, map its pins into implant pins, def1ne type of fault for 

each pin, and enable and clear faults. The FIS can execute a string of 

such commands, mak1ng 1t possible to go through a number of faults auto­

matically once the victim device has been moved to the implants physic­

ally. A second condition necessary for automatic fault injection is some 

form of communicat10n between FIS and the FTMP to indicate whether the 

FTMP is ready to accept a new fault. Messages between FIS and the 

multiprocessor are exchanged over a 1553 data bus. A modified verS10n of 

the system conf1gurat10n control program, called the FSCC, 1S respons1ble 

on the FTMP side for th1s protocol. Messages from FSCC are sent through 

I/O port 0 or 1 over the 1553 bus to a- 1553 remote term1nal s1mula tor. 

The RT DMAs the messages into the PDP-11 memory, Wh1Ch then can be 
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accessed by the FIS program. The same data path is used ~n reverse to 

send messages from FIS to FSCC. value of the FTMP real-t~me clock at the 

time of fault detection, ident~f~cation, and recovery is recorded ~n the 

FTMP and sent to FIS. Since the time of fault ~njection is known to FIS, 

the d~fference between the times of fault detect~on and inJect~on 

constitutes the time taken to detect the fault. This along with the 

identification and reconfiguration times and their sum are recorded in 

the PDP-11 for later analysis. 

The fault inJector hardware, fault ~nJector software, and FSCC are 

described in the next three subsections. 

2.2 Fault Injector Hardware 

A funct~onal block diagram of the fault ~nJector ~s shown in F~g-

ure 2. The heart of the fault injector is a pair of FETs that is ~nter-

posed between the device pin and the socket pin. By turn~ng the FETs on, 

a direct connection is established between the device and the socket. 

This is the normal situation when no fault ~s be~ng inJected on the p~n. 

The device-socket connection can be severed by turning the FETs off. Now 

any desired signal may be appl~ed to the dev~ce or the socket pin, wh~ch-

ever pin has the input s~gnal (see Figure 3). A cho~ce of eight s~gnals 

is provided, one of which may be selected by multl.plexer M1 for the 

dev~ce pin and by multiplexer M2 for the socket pin, as shown in Figure 

, 
2. A set of 48 FET and mux pa~rs are prov~ded, one pa~r for each victim 

pin. This allows one to extend up to 48 pl.ns on one DIP or a combinatl.on 

of DIPs. The choice of faults for each Cl.rCUl.t pin is as follows. 
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1. Socket/Dev1ce Signal: Th1S provides the or1g1nal s1gnal to 

the victim pin. That 1S, no fault is 1n]ected. 

2. Mux A: This signal is the output of the multiplexer A as 

shown in Figure 2. The 1nputs to the multiplexer are the 48 s1gnals from 

the 48 pins that can be extended w1th the FETs. That is, a s1gnal from 

any circuit pin or gate may be used as the fault or input signal for the 

victim pin. 

3. Mux B: This mult1plexer has the same function as Mux A. 

4. Mux C: This mult1plexer also has the same function as Mux A. 

5. f(AB): This signal is a boolean function of two signals, the 

outputs of multiplexers A and B. 
-" 

Anyone of sixteen possible boolean 

functions may be specified. 

6. F(A,B,C): This is a boolean function of f(A,B) and the output 

of Mux C. Anyone of sixteen possible boolean functions may be speci-

fied. 

7. Ground: Th1S provides the stuck-at-O fault. 

8. EXT: In addition to these seven choices, an externally 

generated signal may be used as a fault. 

Each of the above eight s1gnals may also be 1nverted before be1ng 

applied to the victim pin, thus prov1ding a choice of sixteen faults. 

The choice of faults thus includes stuck-at-1 and 'complemented s1gnal' 

type of faults. 

Multiplexers A, B, and C and the boolean funct10n generators 

provide an extremely powerful capability to generate any type of fault. 

For example, certain faults in 1ntegrated circu1ts can change a NAND gate 
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~nto a NOR gate. It is possible Wl.th this fault ~njector to s~mulate 

such a fault by extending all the input and output pins of the target 

gate with the FETs, generating the required boolean function using ~nputs 

from the gate inputs and replacing the gate output w~th th~s s~gnal. The 

ma~n utility of this powerful capability, however, l~es in the ab~l~ty to 

inject faults on tristate s~gnal l~nes. The direction of the fault can 

be made a funct~on of other sl.gnals on the device, signals that determine 

the state of the tristate pin. It is thus possible to inject faults l.nto 

the data pl.ns of memory chips and other tr~state devices. 

The fault injector hardware is physically packaged as shown l.n 

Figure 4. The FET pa~rs are mounted on an implant segment. TWO s~zes of 

implants are provided: 4 pl.n extenders and 8 p~n extenders. An 8 pin 

implant has 16 FETs mounted on it and can extend one side of a 16 pin 

DIP. Dummy extenders that simply connect socket and dev~ce p~ns without 

go~ng through a FET are also provided. These are used to extend those 

device pins that are too sensitive to sustain the capacitance and/or time 

delay of an interven~ng FET. 

In any event, the FET implants are connected to multiplexer boards 

through a flat ribbon cable. As mentioned earl~er, the fault injector 

has the capabil~ty of extending 48 device pins. Signal on each of these 

pins is controlled by a dedicated pair of multiplexers M1 and M2 (see 

Figure 2). Thus there are a total of 48 pairs of muxes. 

packaged on six mUltiplexer boards as shown in Figure 4. 

These are 

Each board 

controls 8 pins. One 8 pin implant or two 4 pin implants may be con­

nected to each board. The six boards, labeled A, B, C, 0, E, and F, are 
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identical multiwire boards. Each of them also contains one sixth of the 

multiplexers MA, ME, and MC. That ~s, each of the three 48:1 muxes (A, 

B, and C) is logically partitioned ~nto six 8:1 muxes. Since a board 

handles 8 pins, a signal from these eight pins can be selected through 

the 8:1 mux (A, B, or C) on that board. The outputs of six logical parts 

of each 48:1 mux are OR'ed and distributed to all six circuit cards via 

the backplane. All 48 s~gnals are then made ava~lable to each board. 

Each board also has its own copy of the three boolean function generators 

shown in Figure 2. Functions f(A,B), F(A,B,C), and S (A,B,C) can be 

produced on any board. These signals, along with outputs of muxes MA, 

MB, and MC form inputs to the muxes M1 and M2. 

Last, but not least, is the selection and control of FETs, 

multiplexers and boolean function generators, and enabling and clearing 

of faults. The fault ~njector has been designed such that it can be 

addressed as a unibus dev~ce by a PDP-11 or VAX-11 computer. The data 

written to the unibus address space of the fault inJector is used to 

perform the selection and control functions. As shown in F~gure 4, the 

backplane of the multiplexer boards is connected by four flat-ribbon 

cables to a control and unibus interface card. This is a double-he~ght 

wire-wrap board that can be plugged into the PDP-11 unibus. It has the 

standard unibus protocol and address decoding circuitry. The fault 

injector occupies the address space 764600-764777 (octal). This address 

space 1S mapped as shown in Table 1. 

Circuitry controlling signals on each of the 48 pins (muxes M1, 

M2, and FETs) is addressed indiv~dually (addresses 764600 to 764736). 
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Table 1. Fault Injector Address Space 

Address Mux 
764xxx Board Pin 

600-616 A 1 to 8 
620-636 B 1 to 8 
640-656 C 1 to 8 
660-676 D 1 to 8 
700-716 E 1 to 8 
720-736 F 1 to 8 

740 MUX A 
742 MUX B 

744 MUX C 
746 Boolean Functl.on Select 

752 Execute/Clear Fault 

750 and UNUSED 
754-777 

Data written to these addresses selects one of el.ght inputs to mux 1 or 2 

and controls the pOl.nt of fault l.nsertl.on (devl.ce or socket) by choosing 

mux M1 or M2. This l.S a statl.C operatl.on. That is, the data wrl.tten to 

these addresses is latched l.n the fault l.n]ector. The type and dl.rection 

of fault signal is thus determined, but the signal is not applied to the 

victim yet. To actually break the device-socket connection and inJect 

the fault signal, one must write to Execute/Clear address 764752. 
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writing a "0001" to the address enables the chosen multiplexer Ml or M2 

on the chosen pin as well as turns the pair of FETs on that pin off. 

Faults on all the previously "enabled" pins are asserted simultaneously. 

The most significant bit of the fault selection data word determines if a 

pin is enabled. Wri ting a "0002" to the Execute/Clear address disables 

the muxes and turns the FETs on, thus clearing the fault condition. 

Bits 0-3 of the data word select the type of fault going to the 

device pin, bits 4-7 select the fault going to the socket pin, and bits 

8-11 determine the direction of the fault (to device or to socket) as 

shown below in Figure 5. 

15 14 13 12 11 10 9 8 765 4 3 2 1 0 

o o 1 x y z 

Figure 5. Fault Description Word 

Bit 15 enables/disables the pin. A pin must be enabled before a fault 

defined on it can be asserted. Bit 15 must be 1 for the pin to be en­

abled. Bits 12, 13, and 14 should always be as shown in Figure 5. 

If fault direction field is 0, the fault as determined by data 

bits Y is sent to socket pin and data bits Z are ignored. If X is 8, the 

fault as determined by Z is sent to device pin and Y is ignored. In ad­

dition to 0 and 8, there are fourteen other values that can be assigned 

to X. Fault direction selected for these values of X is explained later 

in this section. 
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Table 2. Fault Type Select10n 

Y/Z Fault Signal 

0 Inverted Signal 

1 F(A,B,C) 

2 A 

3 B 

4 C 

5 f(A,B) 

6 1 

7 EXT 

8 Or1ginal Signal 

9 F(A,B,C) 
-

A A 
-

B B 
-

C C 

0 f(A,B) 

E 0 
--F EXT 

, 

Y and Z select the fault signal as shown in Table 2. If Y/Z is 8, 

the orig1nal signal 1S passed through the mult1plexer unchanged. Stuck-

at-1 and 0 faults can be generated by a value of 6 and "E," respective-

ly. The s1gnal can be 1nverted if Y/Z is o. Other more complex faults 

can be chosen as outputs of mult1plexers A, B, C or a boolean function of 

their outputs (Y/Z .. 1 to 5, 9 to "0"). 

If a multiplexer A, B, or C output is either used directly as a 

fault or as input to a boolean function generator, it is necessary to 
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select the multiplexer source. This is done by writing to the unibus 

address of the multiplexer. Data written to multiplexer address 1.S 

interpreted as shown 1.n Figure 6. 

15 6 5 4 3 2 o 

[ NOT USED PIN 

Figure 6. Mux A, B, C Select1.on Word 

Bits 3, 4, 5 select one of six boards A to F. Bits 0, 1, 2 select one of 

eight p1.ns on that board as the mux output. These are shown in Table 3. 

Table 3. Mux A, B, C Source Selection 

Data Bits Board Bits Pin 
345 Selected o 1 2 Selected 

1 A 0 1 
2 B 1 2 
3 C 2 3 
4 D 3 4 
5 E 4 5 
6 F 5 6 

6 7 
7 8 

If a boolean function such as f(A,B) or F(A,B,C) is chosen as the 
,---

desired fault, then one must also def1.ne the boolean function by writing 
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to functl.on select address 764746 (octal). The data wrl. tten to thl.s 

address l.S l.nterpreted as shown l.n Fl.gure 7. 

15 12 11 8 7 4 3 o 

[ Unused F(f,c) S(f,c) f(A,B) 

Fl.gure 7. Boolean Function Generator Data Word 

Bl.ts 0-3 are used to select one of Sl.xteen boolean functions of signals A 

and B. Bits 4-7 are used to select F(A,B,C), whl.ch l.S one of sixteen 

boolean functl.ons of f(A,B) and C. Bl.ts 8-11 are used to select 

S(A,B,C), whl.ch l.8 also one of Sl.xteen boolean functl.ons of f(A,B) and 

C. The sl.xteen possl.ble boolean functl.ons of two varl.ables are shown l.n 

Table 4. 

As noted earll.er, the fault dl.rectl.on (to devl.ce or to socket) l.S 

controlled by a 4-bl.t fl.eld X as shown in Fl.gure 5. X can assume one of 

16 posSl.ble values. These are l.nterpreted as shown l.n Table 5. 

If the fault dl.rectl.on signal chosen by X is hl.gh the fault l.S as-

serted on a socket pl.n. If l.t l.S low, the fault l.S asserted on a devl.ce 

pl.n. 

For X equal to 0 the fault dl.rectl.on sl.gnal l.S hl.gh and the fault 

is sent to socket. For X equal to 8 the fault l.S appll.ed to devl.ce. The 

fault dl.rectl.on l.n these two cases l.S statl.c. For other values of X the 

fault would be dynaml.cally appll.ed to the socket or devl.ce pl.n dependl.ng 

upon whether the chosen signal l.S hl.gh or low, respectl.vely. The sl.gnals 
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Table 4. Boolean Functions of Two Variables 

Data Boolean Function of A, B 

0 ~ 
- -

1 A • B 
-

2 AB 
-3 B 
-

4 AB 
-

5 A 

6 A + B 
- -

7 A+ B 

8 AB 

9 A+ B 

10 A 
-

11 A + B 

12 B 
-13 A + B 

14 A + B 

15 1 

that can be used for direction control are the outputs of mult1plexers A, 

B, C, or their boolean functions f(A,B), S(A,B,C) and their complements. 

This allows one to dynamically control fault direction on tristate pins. 

As explained earlier, fields Y and Z in the fault description word 

determine the type of fault to be applied to socket and device pins, 

respectively (see Figure 5). When X is equal to ~ or 8 only one of these 

two fields (y when X is 0 and Z when X is 8) need be defined. However, 
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Table 5. Fault Direction control 

X Fault Direction 

0 TO SOCKET 

1 S(A,B,C) 

-2 A 

-
3 B 

-
4 C 

5 f(A,B) 

6 NOT USED 

7 NOT USED 

8 TO DEVICE 

9 S(A,B,C) 

A A 

B B 

C C 

D f(A,B) 

E NOT USED 

F NOT USED 

both Y and Z must be defined when x is not 0 or 8. But Y and Z need not 

be the same. 'I'hat is, different faults can be applied to socket and 

device pins. In fact, by an appropriate choice of Y and Z a fault can be 

appl1ed 1n one direction while the original s1gnal is passed through un-

changed in the other direction. One may, for example, wish to insert a 

fault in a data pin of a memory chip only when data is be1ng read out but 

not when data is be1ng written into the memory. This can be done by 

selecting a fault direction signal that is high dur1ng the memory read 
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cycle. The fault selected by Y would be applied to the socket pin during 

the read cycle. By choosing Z to be 8, correct data would be written to 

the memory dur1ng memory write cycle since z = 8 passes the Qriginal s1g­

nal to the device pin. 

Multiplexer output selection and boolean function def1n1t10n are 

static functions. 

fault injector. 

Data written to these addresses is latched 1n the 

It should be mentioned here that the fault injector is a 'write-

only' device. state of the fault injector cannot be determined by read­

ing its address space. 

It is not necessary to remember various addresses of the fault 

injector since the fault injector software mainta1ns these tables as a 

data base. FIS prov1des appropriate commands to define fault types and 

select mux outputs. 

software. 

The next sUbsection describes the fault injection 

2.3 Fault Injection Software 

The fault injection software (FIS) package resident on the PDP-ll 

prov1des commands at a PDP-ll terminal to perform all the funct10ns 

necessary to inject faults into LRU 3 of the FTMP and observe and record 

the results. The FIS program is invoked by the command FIS. Valid FIS 

commands and the1r functions are as follows: 

DEFINE Unn M: This command defines an M pin Ie package whose 

location on the FTMP circuit board is Unn. Last package so defined 

becomes the 'active' package. 
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HAP n AM t: This maps pin n of the act1ve package into pin m of 

the multiplexer board A of the fault inJector. R.-1 subsequent device 

pins are mapped to R.-1 subsequent board A p1ns. Dev1ce pins may be 

similarly mapped into pins of boards B, C, D, E, and F by subst1tuting 

the appropriate letter in place of A in th1s command. This mapping 

allows one to reference device pins directly 1n subsequent commands. 

This mapping is stored as one of the FIS data bases. 

DESCRIBE n abcd: This command defines the fault (abcd) to be 

injected into pin n of the active package. abcd is a 16-bit hexadec1mal 

number that defines the fault as shown earlier in Figure 5 and Table 2. 

No mnemonics are provided to define the fault type and one must consult 

this table to create the fault selection data word. The FIS program 

converts the device pin number into the implant address using the 

previously defined pin mapping data base and the fault inJector address 

data base. The data word abcd is then written to th1s unibus address. 

The data is latched in the fault injector hardware but the selected fault 

is not yet asserted. 

SELECT Packagename: Subsequent MAP, DESCRIBE, and ENABLE commands 

refer to the selected package. 

MUX n Unn m: This command is used to select p1n m of package Unn 
, 

as the output of the multiplexer A, B, or C depending on whether n is 1, 

2 or 3. Valid values for mare 1 to 48. The FIS program maps the 

package pin in question into a board and pin number and formats an 

appropriate data word as defined in Figure 6 and Table 3 of the previous 

section. This data word is then written to the un1bus address 

corresponding to the selected multiplexer. 
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FUNC abcd: Th1S command 1S used to select the boolean function. 

One must consult F1gure 7 and Table 4 to construct the function select 

word abcd. This command s1mply wr1tes th1s word 1nto the function select 

address. 

ENABLE n: Th1S enables or selects p1n n of the act1ve package. A 

pin must be enabled before a fault can be asserted on it. The FIS 

program enables the p1n by writ1ng the fault select10n data word 

(previously def1ned for this p1n) DR'ed 1nto "8000" (hex), that is, w1th 

the enable/d1sable bit turned on. It w111 be recalled here that the 

fault inJector hardware 1S a 'write-only' dev1ce. Therefore, a shadow of 

all faults prev10usly def1ned by Descr1be commands 1S mainta1ned as an 

FIS data base. 

DISABLE n: Th1S d1sables or deletes p1n n of the active package. 

This is done by writ1ng the fault select10n data word previously defined 

for this pin W1th the enable/d1sable b1t turned off. 

DUMP: This command is used to dump on the terminal the fault 

description, mapping and enable/d1sable status of each of the 48 p1ns of 

the fault 1n]ector. 

EXEC: This command actually 1n]ects or asserts faults on those 

p1ns that have been enabled. This is done by wr1ting to the 

Execute/Clear address. Ten seconds later the fault condit10n is cleared 

by wr1ting 2 to the same address. 

AUTO n: This command repeats the EXEC funct10n n times. However, 

before 1n]ect1ng a fault, a 'Get Ready' command 1S sent by FIS to FSCC 

program 1n the FTMP. The system conf1guration controller 1n response to 

the command checks the status of LRU 3 and br1ngs it on-line if they are 
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not already active. An 'I am Ready' s1gnal 1S sent back by FSCC to FIS. 

The FIS program wa1 ts for a random time between 0 and 999 msec before 

inserting the fault. Th1S allows the fault insert10n t1me to be suff1~ 

c1ently random1zed with respect to the FSCC task wh1ch 1S also respon­

s1ble for detecting faults 1n the FTMP. 

OUTPUT filename: This command saves the results of the fault 

1n]ect10n exper1ments 1n the spec1f1ed f11e. The results consist of 

fault detection, 1solation, and reconf1gurat1on t1mes and the total 

recovery time, that 1S, the sum of the FDIR t1mes. 

The core of the FIS program 1S wr1tten 1n FORTRAN IV PLUS. It 

uses the l1ne parser prov1ded by the RSX-11M operat1ng system to inter­

pret the commands descr1bed above. Once a valid command has been identi­

fied, appropr1ate subrout1nes are called to perform the required func­

t10n. Th1S may involve updat1ng 1ts data base such as that requ1red by 

DEFINE and MAP commands or it may requ1re comput1ng a un1bus address by 

consult1ng its data base and wr1ting data to th1s address. An assembly 

language subrout1ne actually does the I/O. The FIS program also commun1-

cates W1th the FSCC task in FTMP 1n response to the AUTO command. The 

FIS-FSCC protocol 1S described 1n the next sect1on. 

EXIT: Th1S command is used to exit from FIS program. 

2.4 FSCC 

FSCC 1S a verS10n of the System Configurat10n Control (SCC) task 

in the FTMP that has specifically been mod1f1ed to work W1 th the FIS 

program 1n the PDP-11. It 1S assumed here that the reader is fam1l1ar 

W1 th the contents of Volume II Wh1Ch descr1bes the basic SCC program in 

detail. 
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~ere are two major differences between SCC and FSCC. First, FSCC 

does not cycle spare processors, memories, or buses into active state. 

It maintains a fixed system configuration under normal circumstances. Of 

course, if it detects a fault l.t would try to identify the faulty unit 

and reconfigure it out of the system. Second, by communicatl.ng Wl.th FIS 

it ensures that the victim LRU, that is, LRU 3, is active before FIS 

inserts a fault l.nto one of the LRU pl.ns. The FSCC-FIS protocol works as 

follows: 

When FIS is ready to inject a fault, it sends a 'Get Ready' 

message or command word to FSCC. FSCC looks at thl.s word in its normal 

mode. If it is true, the FSCC state is changed to 'Reconfigure' and the 

reconfiguration state is initialized to 13. Recall that SCC state 13 

corresponds to cycling spare units. In FSCC spares are not cycled. 

Instead in this state the status of processor 3 and memory 3 is checked. 

If they are failed, they are repaired by changing their status in the 

system configuration tables. The reconfl.guratl.on state is changed to 100 

so that on the subsequent FSCC pass the spare units, viz. processor and 

memory 3, can be assigned to shadow active triads. If the units were not 

failed, the state is changed to 14. In this state, swap commands are 

issued to swap processor and memory 3 into active members of their parent 

triads. The state is changed to 15. Also, a signal called 'Acknowledge 

Get Ready' is sent to FIS acknowledging that the Get Ready command has 

been received and acted upon by FSCC. FIS then clears Get Ready. 

Clearing the command prevents FSCC from needlessly checking the status of 

LRU 3 repeatedly. FSCC stays in state 15 until swap commands have been 
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executed. It then sends an 'I am Ready' message to FIS indicating that 

LRU 3 components have been repaired and are in the active state. The 

detect, identify and reconfiguration times are simultaneously cleared to 

zero. FSCC then resumes its normal state. In this state it reads error 

latches and does fault detect~on. 

After receiving the 'I am Ready' message, FIS waits for a random 

length of time that is uniformly distr~buted between 0 and 999 m~lli­

seconds. This corresponds to between 0 and 3 cycles of the FSCC task. 

This random wait assures that the fault is not always inJected at the 

same time with respect to execution of the fault detection program in the 

FTMP. 

When FSCC detects the fault it notes the value of the FTMP Real 

Time Clock. The clock values at the ~nstant of fault ident~f~cation and 

system reconfigurat~on are also recorded. FSCC thus has all the 

information to compute the time intervals between fault detection and 

fault identification as well as that between ident~fication and system 

recovery. The identificat~on and recovery time intervals can be computed 

with an accuracy equal to the least count of the Real Time Clock wh~ch is 

1/4 mill~second. However, FSCC can not compute the fault detect~on time 

since it does not know when the fault was injected. To compute detection 

time, the FTMP time base, that is, the Real Time Clock, is sent to FIS 

every R4 frame. Typically, R4 rate group iteration period is 40 

milliseconds. Therefore the FIS program knows the FTMP time of fault 

injection to within 40 milliseconds. Although this b~ases the detection 

time on the average 20 m~lliseconds (towards h~gher values), as w~ll be 
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seen in the next section, this is not a significant amount of error in 

the overall detection tl.me distributl.on. At any rate, the Real Time 

Clock is sent to FIS every R4 frame. The value of the RT Clock at the 

time the fault is detected, l.dentified, and recovered l.S also sent to 

FIS. FIS then computes the detection, identificatl.on, and recovery tl.me 

intervals and records them in a file. 

The fault condition is cleared as soon as the FTMP has recovered 

from the fault. FIS keeps track of FTMP's progress in recovering from 

the fault by monitorl.ng the FDIR tl.mes being sent to it. Recall that 

these locations are cleared to zero before a fault is injected. 

Therefore as each of these words assumes a non-zero value l.t shows FTMP's 

progress through various stages of system recovery. To assure that there . , 
is no deadlock in the FSCC-FIS protocol, a number of tl.me-out condl.tl.ons 

are provl.ded. If after a predetermined time the FTMP has not detected 

the fault, the fault signal is removed and the FIS program proceeds to 

the next command line. Sl.milar timeouts are provided for the 

l.dentl.fication and recovery phases. The length of these timeouts can be 

chosen when the FIS program is inl.tially invoked. 

The block of data exchanged between FIS and FSCC is as shown l.n 

Table 6. Note that the Real Time Clock as well as all other time values 

are two 16-bit words. 

wi th the exceptl.on of cycll.ng of spares and the changes in the 

system configuration contro11er descr1bed here, the rest of the software 

being executed by the machine while undergoing fault injectl.on is that 
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Table 6. FIS-FSCC Data Exchange Block 

Data No. Words 

FIS to FSCC 

Get Ready 1 

FSCC to FIS 

Real Time Clock 2 

Detect Time 2 

Identify Time 2 

Recover T1me 2 

Faulty Un1t , 
Reason Code , 
Ack. Get Ready , 
I am Ready 1 

described in Volume II of th1S report. This cons1sts of the Execut1ve, 

Self-Test programs, console d1splay, autop1lot and other appl1cat10ns 

code that normally runs on the FTMP. 

The next chapter descr1bes the results of the fault 1n)ect1on 

experl.ments. 
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CHAPTER 3 

RESULTS 

3.1 General Observat~ons 

Faults were injected in pins of eight circu~t boards. These 

boards are CPU Data Path, CPU Control Path, Processor Read Only Memory, 

Processor Cache Controller, Bus Guard~an Unit (A), Bus Interface 

(Transmit Bus), Bus Interface (Poll and Clock Buses), and System Bus 

Controller. Although the overall process of physically sett~ng up each 

device for fault injection, selecting 'safe' pins as targets, running the 

experiments and acquiring data was quite ted~ous and time-consum~ng, it 

went rather smoothly. There were some minor dif£iIcul t~es encountered 

w~th some devices and c~rcu~t boards, but once past the in~tial learn~ng 

curve these were overcome quickly. One of the irritating factors was the 

J 

extreme sensi ti vi ty of some devices to be~ng extended on an implant. 

Parent module of such a device would not function correctly in the 

presence of an interven~ng pair of FETs and would be discarded by the 

system immediately. One obv~ously had the choice of ~gnoring that device 

for the purposes of fault inJection and moving on to another circu~t. In 

fact, since the correct functioning of the parent module apparently is so 

dependent upon that dev~ce, it is ev~dent that a fault in the target 
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device would be detected immediately. One may therefore not worry too 

much about not being able to subJect such a sensit~ve circuit to artifi-

cially created faults. However, as ~ t turns out the sens~ t~ vi ty of a 

device to being extended through FETS is usually l~mited to one or two 

pins only. Once these pins have been identified (a rather tedious 

procedure), they can be extended with dummy implants while the remaining 

pins on that package can be extended through FETS. This procedure was 

followed for most of the sensitive packages. S~nce no data was acquired 

on sens~tive pins, these pins are not included in the data analys~s. 

Some packages were only marginally unhappy over being extended. 

That is, LRU 3 would work correctly with such a device moved to an 

implant most of the time but not all the time. The result was that the 

unit would occasionally be declared failed by the FTMP even before a 

fault was injected. 'Ibis obviously produced negative fault detection 

time. Th~s, however, happened very infrequently and the results 

presented here, of course, exclude negat~ve detect~on times. 

One other practical problem that prevented subJecting some boards 

to fault injection was the extreme caution required in handling CMOS 

c~rcui t devices. The memory chips on processor cache RAM and system 

memory boards are all CMOS type. 

A few faults were ~nJected in the cache RAM board but soon the 

socketed circuit board stopped working, most likely due to ~nadequate 

care exercised in removing and inserting CMOS memory chips. The cache 

RAM and the two system memory cards ~n each LRU are all identical and 

only one socketed circuit board was provided for all three. No useful 

data was acquired for any of the three applications of this card. 'Ibe 
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two EGU cards also contain a lot of CMOS circuitry. Only 294 faults were 

injected in the EGU card before it too ceased to operate correctly. 

Despite all the practical problems encountered, over 20,000 faults 

were injected into LRU 3 of the FTMP and the results recorded. Most of 

the faults were concentrated in the processor region of the LRU, the CPU 

data and control cards, the cache controller, and the PROM. However, a 

number of faults (over a thousand) were also injected into the error 

detection and masking circuitry as well as redundancy management hard­

ware. The hardware voters, disagreement detectors, error decode ROM, and 

error latches for the Poll, Transmit, and Clock buses were subjected to 

faults as were enable/disable discretes in the Bus Guardian Unit. Parts 

of the System Bus Controller were also targeted for fault insertion. 

Of the 21,055 faults inJected in the FTMP, 17,418 were detected. 

That is, 3,637 or 17.3 percent of the faults went undetected. Although 

these results would seem to 1mply that the fault detection coverage in 

the FTMP is only 0.83, this is not necessarily so. For, to convert the 

fraction of faults undetected directly into lack of coverage 1S not 

correct. One must exclude from this total those undetected faults that 

I do not matter. I There are a number of faults that obv10usly belong to 

this class. For 1nstance, 1f only three gates from a quad NAND package 

are actually used on a card, whether the fourth unused gate operates 

correctly or not is quite irrelevant. Faults in this gate would not be 

detected but do not contribute to lack of coverage. Unused gates are 

easy to trace. Unused signals, on the other hand, are not. Faults on 

these signal pins would also go undetected but once again do not really 
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affect coverage. The CAPS- 6 processor microcode in the FTMP, for 
J~ 

t 

example, does not ut~lize all the outputs of the AMD2901 Ar~thmet~c Logic 

Un~t (ALU). This can be ascertained only by an exhaust~ve search of each 

and every microinstruction to make sure that the output in question is 

not looked at. Such a study is outs~de the scope of this proJect. 

Approximately 80 percent of all undetected faults, or about 3,000 faults, 

were either on unused gates or on signals that are always low or always 

high under normal circumstances. Of the remaining 20 percent undetected 

faults, a few were analyzed in depth and were all found to belong to the 

'don't care' class. Since each pin fault is repeated five times, the 

number of pins in question is about 60. However, a much more thorough 

analysis of all the undetected faults is required before a definitive 

statement can be made about fault detection coverage. Further d~scussion 

here is limited only to the faults that were detected. 

3.2 Average and Maximum Times 

As mentioned earlier, 17,418 faults were detected. All of these 

faults were ~dentified correctly and the system successfully recovered 

from each of these faults by purging the faulty module and replac~ng it 

with a spare or gracefully downgrad~ng the system when no spare was 

available. Based on these results one could conce~vably argue that the 

fault identification and recovery coverages are each one hundred percent 

as far as the detected faults are concerned. It is, of course, not 

possible to extrapolate this perfect record for faults that were not 

detected and for LRU p~ns that were not sUbJected to faults during these 

experiments. As mentioned earlier, detection, identification, and 

reconfiguration times were computed for each fault. The three phases of 
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recovery were also summed to gl. ve the total recovery time for each 

fault. These results are summarized in Tables 7 and 8. The first of 

these tables lists the average detectl.on, identificatl.on, 

reconfiguration, and total recovery time l.n milliseconds for each of the 

eight cards. The last column in this table shows the average FDIR tl.mes 

for all 17,418 faults. Table 8 shows the maximum times recorded in each 

category for each card, also shown l.n milliseconds. 

There are certain obvious conclusions that can be drawn from 

figures in these tables. Let us start with the last phase of the recov­

ery procedure first, that is, system reconfiguration phase. This phase 

begins as soon as the identity of the faulty module is known. At thl.S 

point in time, the System Configuration Control (SCC) task is being 

executed. It will be recalled here that this task runs at the lowest 

frequency or R1 rate group (3.125 HZ). It passes the l.denti ty of the 

faulty unit on to the R4 dispatcher. The R4 dispatcher running at 25 Hz 

issues appropriate reconfiguration commands l.n its prolog to remove the 

faulty un~t from the system. The reconf~gurat~on phase is complete as 

soon as the faulty unit is replaced with a spare or the system gracefully 

degraded in the absence of a spare. The average reconfiguration tl.me as 

seen in Table 7 is between 46 (SBC) and 113 (PROM) milliseconds depending 

upon the type of card. That is, on the average it takes between two and 

three R4 frames to reconfigure the system. The average reconfiguration 

t~me for all the faults is 82 msecs or two passes of R4 d~spatcher. The 

overall average is weighed heavily by the processor region which was the 

subject of most faults. The average reconf~guration times for the 
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W 
0'1 

BOARD 

# FAULTS DETECTED 

DETECT 

IDENT 
AVERAGE 

TIME 

RECONF 

TOTAL 

CPUD CPUC 

7266 4761 

312 349 

82 99 

80 83 

474 532 

Table 7. Average Times (Mil11seconds) 

PROM CC BGUA BIT BIPC SBC ALL ALL EXCEPT BGUA 
I 

783 3508 294 214 235 357 17418 17124 

I 

589 314 36554 1920 1361 678 988 378 I 

59 59 133 147 229 263 88 88 

I 

113 88 47 53 71 46 82 82 , 

I 

I 

763 462 36735 2121 1662 988 1160 549 

--- ---- ------- -------



IN 
-.J 

BOARD 

# FAULTS 

MAXIMUM 
TIME 

CPUD 

7266 

DETECT 9137 

IDENT 1009 

RECONF 289 

TOTAL 9223 

Table 8. Maximum Times (Milliseconds) 

CPUC PROM CC BGUA BIT 

4761 783 3508 294 214 

15817 21614 8122 118437 11592 

780 810 1204 993 813 

190 242 546 115 198 

16231 21757 8182 118843 11707 

BIPC SBC ALL 

235 357 17418 

4818 17056 118437 

931 1625 1625 

243 195 546 

4887 17604 118843 



processor regl.on are hl.gher than all others, though the variatl.on from 

card to card l.S quite small. The rna Xl. mum reconfl.guratl.on tl.mes are also 

higher for the processor regl.on (CPUC, CPUD, CC, and PROM) than all 

others, as seen l.n Table 7. How long l.t takes to replace a faulty module 

with a spare l.S, of course, dependent on the l.nstantaneous system 

configuratl.on. For instance, l.f the trl.ad containl.ng the fal.led 

processor l.S bel.ng shadowed by a spare processor the reconfl.guratl.on will 

be done simply by swapping failed and shadow processors on the bus 

lines. This takes only one pass of R4 dl.spatcher. On the other hand, l.f 

the spare l.S shadowing another trl.ad it would be necessary to retire the 

target triad and synchronl.ze spare wl.th the target triad members. This 

obvl.ously takes much longer Sl.nce the target trl.ad must complete all 

tasks l.n progress before retl.rl.ng. In any event, the reconfl.guratl.on 

process l.S determl.nl.stl.c and bounded. The rna Xl. mum tl.me l.n the table, 546 

msecs (CC), corresponds to the scenarl.O Just descrl.bed. 

The recovery phase just precedl.ng system reconfl.guratl.on l.S fault 

identl.ficatl.on. This phase begins as soon as a fault l.S detected. Thl.s 

happens l.n the SCC task. It terminates as soon as the fault source l.S 

located. Thl.s also happens l.n the SCC task. The l.nterval between these 

two events l.S the fault identifl.catl.on tl.me. Faults may be identifl.ed 

sl.multaneously with their detection l.n some cases. Thl.s usually occurs 

when a self-test program uncovers the fault. Sl.nce diagnostl.c programs 

know whl.ch regl.on l.S bel.ng tested, they can usually l.dentl.fy the faulty 

module l.mmedl.ately. In other cases several reconfigurations may be 

required to sort out the fault symptoms. The average l.dentl.fl.catl.on tl.me 

38 



15 seen to vary from 59 (PROM and CC) to 263 (SBC) mill~seconds with the 

system-wide average being 88 ml.lll.seconds. Sl.nce one R1 frame l.S 320 

milliseconds, it may be concluded that most faults are identifl.ed 

immediately. Indeed the average tl.me for the processor region cards is 

between 59 and 99 ml.lliseconds. This is because symptoms of a failed 

processor appear on two buses simultaneously, the Poll bus and the 

Transml.t bus. In most cases thl.S combination is uniquely associated wl.th 

only a single processor in the system. Most processor faults are there­

fore l.dentified immedl.ately. The question may therefore be asked as to 

why l.t even takes 60 to 90 ml.lliseconds to look up the bus assignment 

tables. Actually it does not really take that long to consult the appro­

priate data base in the shared memory. what happens in fact is that the 

SCC task of being the lowest priority ~s l.nterrupted by h~gher priority 

tasks. It will be recalled here that the R4 rate group tasks are 

executed eight times and that the R3 rate group tasks are executed four 

times for every iteration of R1 tasks (SCC). Hence the identification 

program can be interrupted many times between start and f~nish. The 

identification tl.me is measured as the total elapsed time and not as the 

length of time the program is active. This is, of course, as ~t should 

be. 

The maximum identl.fication tl.mes are seen to vary between 780 

(CPUC) and 1625 (SBC) milliseconds with the maximum for the processor 

region being 1 204. This parameter, like the reconfiguration tl.me, 1.S 

deterministic and bounded. The worst case scenario here l.S a fault on a 

bus that has four memory unl.ts enabled on it. If the bus itself l.S 
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faulty, it would take four diagnostic reconfigurations to isolate the bus 

from all other suspects. Thl.s translates l.nto five passes of the SCC 

program and corresponds to the maXl.mum tl.me observed during the course of 

the experiments. 

The fault detectl.on phase is what starts the recovery process. 

This is more complex than other parts 6f the recovery procedure. Once a 

fault is uncovered, the ensuing processes are qUl.te mechanl.cal. The un­

covering of a fault is, however, considerably more involved. Clock for 

the detection phase starts tl.cking as soon as the fault l.S inJected under 

the command of the fault injection software running in the PDP 11/60. 

Faults are usually manl.fested as dl.sagreements on one or more buses. 

These are recorded l.n error latches which are read by SCC every 320 

milliseconds. The detection phase terminates when SCC diges ts error 

latch outputs and determines that they indicate an 'unexpected' bus 

error. Recall that some bus errors may always exist such as those on an 

unused clock bus or on a failed bus and so on. In any event, this tl.me 

interval is the detection time. As explained l.n Chapter 2, the tl.me of 

fault injection is not known to SCC and l.S known to Fault Injectl.on Soft­

ware as the most recent value of the FTMP Real Time Clock which l.S sent 

to FIS every 40 milliseconds. Therefore the fault detection time as 

recorded in the experiments l.S higher than the real value anywhere from 0 

to 40 milliseconds or an average of 20 milll.seconds. The average detec­

tion time for all the faults from Table 6 is seen to be 988 ml.lli­

seconds. Therefore, the error is only about 2 percent. 
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The average detection time is seen to vary from 312 milliseconds 

for the CPU data card to over 36 seconds for the BGU card. Now if a 

fault mam.fested 1tself as an error on the bus soon after it was 

injected, the detect10n t1me would mostly consist of latency in read1ng 

error latches. S1nce error latches are read every 320 m1lliseconds on 

the average, this latency should only be 160 milliseconds. The average 

fault detect10n time for the processor region is around 300 mill1seconds 

for the CPUD, CPUC and cache controller cards and 589 milliseconds for 

the PROM card. This implies that on the average there is considerable 

latency between fault 1njection and error man1festat10n. Th1S is mostly 

due to the fact that not all parts of the processor reg10n hardware are 

being used all the time. This is quite obviously true of the Read Only 

Memory. There 1S a considerable fraction of the PROM that contains 

programs that are invoked only when an error is detected. Faults in this 

reg10n of the memory would not be uncovered unt11 another fault man1fests 

itself. The PROM 1S therefore tested per10dically by a check-sum 

program. The average latency of half a second 1n uncover1ng PROM faults 

is s1mply a reflection of how frequently the check-sum program is 

executed. The maximum detection time for PROM faults is over 21 seconds 

and is a direct function of the repetit10n rate of the self-test program. 

The average detection t1mes for BIT, BIPC, and SBC cards are much 

higher than those for the processor region because faults in the bus 

interface cards were concentrated mainly 1n the error detect10n and 

masking hardware. Faults 1n most of th1s reg10n would not manifest 

themselves as bus errors under routine operat10n. Some faults in the 
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voter circuitry, for instance, are highly latent since the voter output 

1S the same as its inputs as long as the three inputs are the same. Such 

a fault can only be uncovered by feed1ng d1sagreeing input streams to the 

voter. This is done by a self-test program. It 1S seen that only 200 to 

300 faults were 1n]ected 1n the bus 1nterface cards. All of these faults 

were purposefully concentrated in the error detection region to uncover 

any weaknesses in this area since the correct functioning of the FTMP is 

so critically dependent upon this hardware. The results Ifor these cards 

are therefore b1ased towards higher values. When the remaining random 

logic on these cards is subjected to faults, the averages would tend to 

move down because faults in the random log1c would be uncovered by 

routine operation without self-test programs. 

Finally, it is quite evident from Tables 7 and 8 that the average 

as well as the maximum detection times for the Bus Guardian Unit are an 

order of magnitude higher than even those for the error detection 

circuitry. There is a reason for this which is as follows. The BGU card 

conta1ns the redundancy management hardware. Faults were injected in the 

enable/disable discretes that control whether a unit is enabled or 

disabled on a bus. Some of these faults such as the ones that d1sable a 

unit from its active bus would be detected immediately by routine opera­

tion since a single BGU can disable a unit by itself and a lack of trans­

mission from a unit would immediately cause errors on that bus. But most 

other faults such as those that enable a un1t on other buses or disable a 

unit from buses on wh1ch it is not supposed to transm1t anyway would only 

be detected either by a self-test program that exerC1ses these d1scretes 
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or over the long term by routine system reconfigurat10n. No self-test 

programs have been written for the Bus Guard1an Un1t. Therefore almost 

all BGU faults were uncovered by the rotat10n of processors and memor1es 

on d1fferent buses and by swapp1ng of act1ve and spare buses. Wh1le the 

self-test programs complete a cycle every 13 seconds, complete cycling of 

( 

all spares takes 6 m1nutes. Th1S 15 why max1mum detect10n t1me for BGU 

faults 1S almost 2 minutes. It would be even h1gher 1f the t1meout 11m1t 

for these exper1ments was 1ncreased beyond 2 m1nutes. Faults that may 

have been detected w1th a h1gher t1me-out 11m1t are treated 1n the data 

analys1s as undetected faults. 

The h1gh detect10n t1mes for BGU faults have a tremendous 1mpact 

on the system-wide average. Table 7 shows that overall average detection 

t1me 1S 988 m1111seconds, or about one second. If the average were 

computed for all except BGU faults, it would be only 378 m11liseconds. 

The BGU fault detection t1mes can be reduced by an order of magn1tude by 

writing d1agnostic programs for 1t. 

It should be ment10ned here for the sake of clar1ty that although 

routine system reconfiguration was suppressed for faults on all other 

cards to facil1tate a reasonable FIS-SCC protocol, it was allowed for the 

BGU card since th1s was the only way of detecting BGU faults and 1t did 

not interfere with the protocol in th1s case. 

The sum of times for the three phases constitutes the total recov-

ery time. This is the time from the moment the fault 1S 1njected to the 

point 1.n t1me when the system has completely recovered. Times for the 

three recovery phases were summed for each fault and then the sums were 

averaged over all faults for each card. These averages are shown in 

Table 6 under the heading 'TOTAL.' The total average recovery t1me for a 
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card should obviously equal the sum of the average time for detection, 

identification, and reconfiguration phases. In other words, average of 

the sums should equal sum of the averages. This 1S true for all cards to 

within 1-2 milliseconds which is the truncation error. The maximum total 

recovery time for a card, on the other hand, is not necessarily the sum 

of the maximums for individual phases since maximum detection time need 

not necessarily be for a fault that also takes maximum time to be identi­

fied. The maximum recovery time is therefore simply the maximum of all 

sums. 

It is quite evident from data presented 1n Tables 7 and 8 and from 

the discussion so far that the recovery time is dominated by the detec­

tion time for each card as well as for the system as a whole. Even the 

processor region, which seems to react the fastest to faults, about 65 

percent of recovery time is spent uncovering a fault. Therefore recovery 

time characteristics are very much like those of the detection time. In 

particular, if the average recovery time is computed for all faults 

except the BGU, it is found to be 549 mill1seconds or about a half second 

compared to about a second if it 1S averaged over all the faults. The 

meaning of this is quite clear. FTMP response to faults can be improved 

twofold simply by writing a few diagnostic programs. 

When the FTMP reliability was computed, it was assumed that the 

R4, R3, and R1 rate groups would execute at 40, 20, and 5 Hz rather than 

25, 12.5, and 3.125 Hz used in the experiments. The fault injection data 

presented so far shows a strong correlation between detection, identifi­

cation, and reconfiguration times and the execut10n frequencies of sec, 
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~ dispatcher, and self-test programs. It may be concluded, therefore, 

that the average recovery time could be reduced by 37.5 percent by 

increasing repet1tion rates to or1ginal goals. 

The two changes suggested here would br1ng the average recovery 

time down to 343 m1lliseconds wh1ch is qU1te close to the value (250 

msecs) assumed 1n reliabil1ty models. 

Of course, what affects the actual reliab111ty 1S not only the 

average recovery time but also its d1stribution and the LRU mean time 

between fa1lures (MTBF). These are d1scussed next. 

3.3 Frequency Distribut10ns 

The fault inJection data was analyzed to compute probability 

dens1ty function (pdf) of detect10n, 1dentification, reconf1gurat10n, and 

total recovery times for each card separately and for the total ensemble 

of 1 7,41 8 faul ts • 

F1gures 8 to 62. 

Estimates of pdf's are plotted as h1stograms 1n 

A few comments regarding the organ1zat10n and plott1ng of data are 

in order here. These figures are organized by cards in the same order as 

the numerical results in Tables 7 and 8. Figures 8 to 13 are for the CPU 

data card, 14 to 18 for the CPU control card, 19 to 25 for the PROM card, 

and so on. A d1fferent scale is used for each parameter to show as much 

detail as possible. All identificat10n time histograms use a bucket size 

of 100 milliseconds, and all reconfigurat10n plots use a bucket S1ze of 

50 m11liseconds. A common scale for all detection time distr1but10ns that 

accommodated maX1mum detect10n t1mes and yet showed the deta1ls was not 

as easy to choose. Detection times for most cards are therefore plotted 
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two times for most cards. For ~nstance, Figure 8 shows this variable for 

CPUD using a bucket size of 1 second. This scale allows the maximum 

detection t~me (9.1 seconds for th~s card) to be accommodated. But since 

98 percent of all faults are uncovered within a second, a lot of informa­

tion is lost. Therefore th~s same data is replotted ~n F~gure 9 using a 

bucket size of 100 milliseconds. All detection times longer than a 

second are lumped together at the end of the plot. This figure shows in 

much greater detail the distribution of 98 percent of detection times. 

Finally, the total recovery time is also plotted several times for each 

card using different scales. For example, Figures 12 and 13 show the 

probability density function of this variable for CPUD with scales of 1 

second and 0.1 second, respectively. The contents of Figures 8-62 will 

be discussed next. 

It may be observed that there is a great variat~on in pdf's of 

detection, ident~f~cation, and reconfigurat~on t~mes. But there is not 

much variation amongst cards for any given parameter. For ins tance, 

identification t~me probabil~ty density function for CPUD (F~gure 10) ~s 

very similar to that for PROM (Figure 21) or EGU (F~gure 34). But it ~s 

quite d~fferent from the detection time pdf for the same card (Figures 8, 

9). Characteristics of pdf's for each of the four parameters in general 

rather than for each card will therefore be discussed next. Exceptions 

where appropriate will be pointed out. 

Probability density functions of detection time reveal the 

complexi ty of the detection phase. Over 95 percent of the faults for 
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almost all the cards are detected wi thin 600 milliseconds or two R1 

frames. For CPU data (Figures 8, 9) and control cards (Figures 14, 15), 

this figure rises to almost 99 percent. The latency in reading error 

latches varies from 0 to 340 milliseconds (one R1 frame) depending on 

when the fault was injected with respect to the beg~nning of the SCC 

task. Evidently, not all faults manifest themselves as bus errors right 

away. For instance, about 20 percent of the faults injected in the CPU 

data card are uncovered between 400 and 600 milliseconds. Evidently it 

took these faults ~tween 100 to 300 msecs to cause erroneous data to 

appear on the buses. But these faults are uncovered by routine programs. 

Beyond this initial impulse, there is a long tail in the detection 

time pdf that goes out to about 20 seconds. This corresponds to faults 

that are only uncovered by self-test programs. The fraction of faults 

that falls under this long tail is only about 2 to 4 percent for the 

processor reg~on cards (CPUD - Figure 8, CPUC - Figure 14, PROM - Figure 

20, Cache Controller - Figure 27). For the bus ~nterface cards this 

f~gure ~s much higher, as seen in pdf plots for BIT (F~gure 37), BIPC 

(Figure 41), and SBC (Figure 48). This is due to the fact that faults on 

these boards were deliberately concentrated into error detection and 

masking circu~try. Most of these faults requ~re self-test programs to be 

uncovered. There is a lot of other random logic on these boards that was 

not subjected to faults, and it is most likely that faults into these 

circuits would be detected by routine program execution. As can be seen 

from the number of faults inJected into each board, the processor region 

cards have been much more thoroughly tested than the bus interface and 
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amtrol cards. (Only about 1,000 out of 21,000 were inJected 1.nto the 

latter. ) If they were tested as completely as the processor region, 

their detection t1.me d1.stribution would tend to be closer to that for the 

processor region. 

The detection time pdf for BGU (Figures 32, 33) 1.S totally d1.ffer­

ent from all others with a very high number of faults being detected 

between 40 and 50 seconds and the maximum going out to 2 minutes. Th1.s, 

as expla1.ned earlier, is due to the fact that BGU faults were detected by 

normal system reconfiguat1.on, a complete cycle of wh1.ch takes 6 m1.nutes. 

Self-test programs for th1.s part of the FTMP would decrease the BGU 

detection t1.mes by an order of magnitude. 

Detection time pdf for all 17,418 faults is shown 1.n Figures 53 

and 54. About 96 percent of all faults are detected in 600 mill1.seconds 

or less. The detection time distribution for all faults except the BGU 

faults shown in F1.gures 59 and 60 looks very much the same. The only 

d1.fference appears 1.n the average detect1.on time, which drops from 988 to 

only 378 m1.ll1.seconds. This latter f1.gure 1.S more representat1.ve of what 

may be expected as the FTMP response 1.f a reasonable set of d1.agnost1.c 

programs had been completed. 

The next parameter 1.S the 1.dent1.f1.cation t1.me. As discussed 

earlier in th1.s chapter, fault 1.dent1.fication is a determ1.n1.st1.c phase of 

the recovery procedure. For a g1.ven pin fault and a given system config­

urat1.on one can say with certa1.nty as to how many passes of 1.dent1.fica­

tion program are required to isolate the faulty un1.t. Th1.S 1.S borne out 

by the probability density funct1.ons for ident1.f1.cation t1.me. As seen 
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~ Figure 10, about 85 percent of CPUD faults are identified between 0 

and 100 ml.lliseconds. Most of the remaining faults are identified 

between 300 and 400 milliseconds. It will be recalled here that the 

identification program runs every 320 milliseconds. Wha t this pdf 

implies is that 85 percent of the faults are identified during fl.rst pass 

of the program and the remaining ones are identified after one diagnostic 

reconfiguratl.on during the second pass. The identifl.cation time pdf is 

very similar for other cards as well with impulses of decreasing 

magnitudes at times corresponding to 1, 2, 3, and 4 passes of the SCC 

program. This density function for all the faults is shown in Figure 55. 

The last recovery phase, system reconfiguratl.on, is also deter­

ml.nistl.c in nature. For a given faulty module and a given system config­

uration, a fixed amount of time is requ1red to replace the faulty 

module. Reconfiguration time pdf for all the faults is shown in Figure 

56. It is seen that almost all the faulty modules are removed w1thin 200 

milliseconds. 

Figure 57 shows the pdf of the total recovery t1me (sum of detect, 

identify, and reconfigure) for all the faults. The FTMP recovers from 

almost 95 percent of the faults w1th1n a second. Figure 58 shows the 

exploded view of the distribution from 0 to 1 second. If the EGU faults 

were excluded from the ensemble, which is reasonable to do S1nce no 

self-test programs were written for 1t, the result1ng distribut10n 

appears as shown 1n Figures 61 and 62. Th1s appears almost totally 

1dent1cal to the pdf w1th EGU faults w1th the only exception being the 

average total recovery time. This is seen to drop from 1 .16 to 
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0.549 second. In any event, the density function of the recovery time 

does not appear to be exponential as assumed in reliability modeling. As 

seen in Figure 62, it may be characterized as Gaussian density function 

from 0 to 1 second with an asymmetric tail going out to about 22 

seconds. Whether this pdf is better or worse than the exponential 

pdf from the viewpoint of its impact on system reliability can only be 

determ1ned through mathematical modeling. However, it is encourag1ng to 

note that a very high fraction of all incidences (about 95 percent) lie 

in a narrow time band around the average value. 

favorable impact on the system reliability. 

3.4 Actual Failures 

This can only have a 

The mean time between failures of an LRU was assumed in the 

reliability models to be 2,600 hours. Based on the observed failure rate 

during a course of 18 months of routine FTMP operat1on, the LRU MTBF can 

be estimated to be at least 10,000 hours. Over 130,000 LRU operating 

hours were accumulated during this time and only 12 failures were 

observed. Of course, this experience has been obtained in a laboratory 

environment which is not subject to the temperature variations and shock 

and vibrat10n induced by turbulence and landings and take-offs. In that 

regard the laboratory environment is certainly more benign. However, the 

equipment was subjected to substantial power cycling much more than might 

be expected in the field. Also, the electronic components were going 

through their burn-in period during which they are known to have a higher 

failure rate. In fact, almost all the failures observed can be attrib­

uted to burn-in. 
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Two types of components accounted for almost all the fal.lures. 

One was the Harrl.s random access memory chip. There were four RAM chl.p 

failures. The second component that fal.led was a new 1553 LSI chip. Six 

of these fal.lures were observed. In addi tl.on, two dl.odes l.n two LRU 

power converters fal.led, shortl.ng two power buses together although they 

dl.d not l.mpact LRU or system operation. 

Finally, an actual single pOl.nt fault occured l.n one LRU that 

resulted in a total system failure. The faulty component was a voltage 

regulator in the rechargl.ng cl.rcuit for the battery that provl.des LRU 

backup power. This backup battery power is used to hold the contents of 

the CMOS cl.rcuitry, includl.ng the configuration control registers in the 

BGUs, l.n the absence of the primary power. 

When the voltage regulator failed the output voltage of the backup 

power going to the BGU registers exceeded the safe high limit. Thl.s 

caused the LRU enable registers in both BGU cards to behave erratically 

and enabled the subject LRU on multiple system buses simultaneously. 

Thl.s, in turn, made the system bus useless leadl.ng to the system failure. 

This fal.lure mode which is basically a common failure mode of the 

two bus guardian units was not overlooked in the specifl.catl.on process. 

As a matter of fact, antl.cl.pating such common failure modes the FTMP 

design specl.fication called for undervoltage and overvoltage protectl.on 

circuits on individual BGU cards. Unfortunately, during detailed cl.rcuit 

level design of the bus guardian units the overvoltage protectl.on cir­

cUl.try was omitted from the design. This omission was not caught durl.ng 

subsequent desl.gn reviews. 
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CHAPTER 4 

SUMMARY AND CONCLUSIONS 

A total of 21,055 pl.n level faults were l.njected l.nto the FTMP. 

Of these, 17418, or 83 percent, were detected. Of the 3,637 undetected 

faults at least 80 percent were estl.mated to be on unused gates and 

pins. A few of the remal.nl.ng undetected faults were analyzed and found 

to be long to the ' don't care' class. Further analysis of undetected 

faults is requl.red to arrive at a defl.nitive detection coverage value. 

Identl.fl.catl.on and reconfl.guration coverages, on the other hand, were 

found to be perfect for the detected faults. The system l.dentl.fl.ed all 

detected faults correctly and successfully recovered in each case. 

The total tl.me to recover from a fault was doml.nated by tl.me spent 

in the detection phase. Time to identl.fy a fault and reconfl.gure the 

system was found to be deterministic and bounded, as expected. Average 

identifl.cation and reconfiguration times were found to be 88 and 82 

milll.seconds, respectively. Total recovery tl.me averaged over all 17,418 

faults was found to be 1.16 second although l.t would be only 549 ml.lll.-

seconds if BGU faults were excluded. In the absence of BGU self-test 

programs, which was the case here, BGU faults were solely uncovered by 

very low frequency routine system reconfl.guratl.ons. 
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~e d1stribution of the total recovery t1me does not appear to be 

exponential. However, 1t 1S encouraging to note that over 95 percent of 

all faults are recovered from in a second or less. 

In addition to this hard data, a number of very important though 

1ntangible results were obtained as well. The hardware and software, in 

general, and the fault detection hardware and the fault identification 

and system configuration control software, 1n particular, performed 

extremely well under the stress of thousands of faults. In a sense the 

FTMP arch1tecture, the hardware, and the software have been validated 

1nformally. 

The test and evaluation experiments, their positive results, and 

the 100 percent availability of the FTMP dur1ng 13,000 hours of routine 

operation at the Draper Laboratory have all substantially bolstered 

conf1dence in the FTMP concept as well as 1ts realization 1n hardware and 

software. 
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