
NASA Contractor Report 166073
NASA-CR-166073
19850022395

DEVELOPMENT AND EVALUATION
OF A FAULT-TOLERANT
MULTIPROCESSOR (FTMP) COMPUTER
Volume III
FTMP Test and Evaluation

Jaynarayan H. Lala and T. Basil Smith, '"

THE CHARLES STARK DRAPER LABORATORY, INC.
555 Technology Square
Cambridge, Massachusetts 02139

CONTRACT NAS1-15336
MAY 1983

RPR-EARLY·DOMESTIC_DISSEMINATION
-- -- - -- '::4

Because of Its significant early commercial potential, this Information,
tWhlch...ba~~ been developed under a U.S. Gover!lr1}ent"P1O'§tam, Is
being disseminated within the United States In··aavance of general
publication. This InfOrmation-l may be~du·pllcated and used by the
recipient with the express IImltatfon that)t not be published. Release
of this Information to.9lher domestic parties by the reclp.lent shall be
made subject to theSe limitations. Foreign release may be made only
with prior JjASA approval and appropriate export licenses. This
legend shBli be marked on any reproduction of this Information In
whole or in part.

Review for general release May, 1985

NI\SI\
National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665

111
NF02248

ll~!lfiR~ cnpv
, __ c p ~ '! 1983

LANGLEY RESEARCH CENTER
LIBRARY, NASA

HA~~?'Tot~. YIRGItl'A

FOREWORD

This report was authored by Dr. Jaynarayan H. Lala. Dr. T. Basil
Smith was the project engineer. Mr. Charles Meisner was the NASA
technical monitor for the period January-December 1982, and Mr. Nicholas
Murray was the technical monitor from August 1978 to December 1981.
Following are some of the people who contributed to the success of this
project.

Draper Laboratory

Dr. Albert Hopkins
Mr. Jack McKenna
Ms. Linda Alger
Mr. Kevin Koch
Mr. Alan Wimmergren
Mr. Robert Scott
Mr. Joseph Marino
Mr. David Hauger
Mr. Mario Santarell1

Collins Avionics

Mr. Ron Coffin
Mr. Charles Schulz

i

N <J5- 3D707#-

~\~~

This Page Intentionally Left Blank

Chapter

2

3

TABLE OF CONTENTS

INTRODUCTION ..
EXPERIMENTAL TECHNIQUES •••••••••••••••••••••••••••••••••••

2.1

2.2

2.3

2.4

Overall Experimental Set-Up
Fault InJector Hardware

Fault Injection Software

..............................
.............................

FTMP System Configuration Controller •••••••••••••••••

RESULTS ...
General Observations
Average and Maximum Times

5

5

9

23

26

31

31

34

3.1

3.2

3.3

3.4

Frequency Distributions •••••••••••••••••••••••••••••• 45

Actual Fa~lures ••••••••••••••••••••••••••••••••••••••• 105

4 SUMMARY AND CONCLUSIONS ••••••••••••••••••••••••••••••••••• 107

REFERElICES •• , 09

iii

Figure

1

2

3

4

5

6

7

8-13

14-18

19-25

26-31

32-36

37-40

41-46

47-52

53-58

59-62

LIST OF FIGURES

Fault Injection Experimental Set-up

Fault Injector Logical Organization

......................

......................
Insertion of FETs between Socket and Device
Fault Injector Hardware ••••••••••••••••••••••••••••••••••

Fault Description Word ••••••••••••••••••••••••••••••••••••

Mux A, B, C Selection Word ••••••••••••••••••••••••••••••••

Boolean Function Generator Data Word •••••••••••••••••••••

6

10

11

14

17

19

20

CPUD Frequency Distributions ••••••••••••••••••••••••••••• 46

CPUC Frequency Distributions ••••••••••••••••••••••••••••• 52

PROM Frequency Distributions ••••••••••••••••••••••••••••• 57

Cache Controller Frequency Distributions ••••••••••••••••• 64

BGUA Frequency Distributions ••••••••••••••••••••••••••••• 70

BIT Frequency Distributions •••••••••••••••••••••••••••••• 75

BIPC Frequency Distributions ••••••••••••••••••••••••••••• 79

SBC Frequency Distributions •••••••••••••••••••••••••••••• 85

All Faults Frequency Distributions ••••••••••••••••••••••• 91

All (Except BGU) Faults Frequency Distributions •••••••••• 97

iv

Table

2

3

4

5

6

7

8

LIST OF TABLES

Fault Injector Address Space ·
Fault Type Selection ••

Mux A, B, C Source Selection ·
Boolean Functions of Two Words
Fault Direction Control ••••••••••••••••••••••••••••••••••••• •

FIS-FSCC Data Exchange Block ·
Average FDIR Times

Maximum FDIR Times

..

..

v

Page

16

18

19

21

22

30

36

37

CHAPTER 1

INTRODUCTION

This report ~s Volume III of a mult~-volume report on the Fault­

Tolerant Mult~processor (FTMP) proJect sponsored by the Langley Research

Center of the National Aeronaut~cs and Space Adm~nistrat~on under

Contract NAS1-15336. The maJor top~c covered by th~s volume ~s the test

and evaluation of the FTMP. A prerequ~site for understand~ng this report

is some knowledge of the FTMP arch~tecture and ~ts pr~nc~ples of opera­

tion descr~bed in Volume I and the FTMP Execut~ve software descr~bed ~n

Volume II.

The reliabil~ty, performance, and ava~lab~l~ty of the FTMP have

been modeled extensively (1,2). A number of assumptions were made about

various FTMP characteristics to arr~ve at these models. Some of these

assumpt~ons, such as mean t~me between fa~lures of a ll.ne replaceable

un~t (LRU) can only be ver~f~ed by f~elding the equ~pment and observing

~ts fa~lure rate ~n ~ts real operating env~ronment. Other assumpt~ons,

though, are much more eas~ly ver~fied in a laboratory environment.

Examples of these are the mean and d~str~but~on of the t~me to recover

from faults and the res~l1ency to s1ngle p01nt fa1lures. FTMP response

to faults can be observed and measured much more accurately under

controlled laboratory cond1t10ns rather than 1n the f1eld. Th1S 1S one

of the motivating factors that led to a ser1es of exper1ments 1n wh1ch

the FTMP was subjected to numerous artific1ally created faults while

operating rout1nely 1n a s1mulated aircraft environment and 1tS response

in each case was observed and recorded.

Apart from verifying modeling assumptions, there are a number of

other important reasons for experimental test and evaluat1on. These 1n­

clude expanding val1dat1on envelope, building confidence in the system,

revealing any weaknesses in the architectural concepts and/or their exe­

cution in hardware and software. Other benefits of the test and evalua­

tion exerC1se include a general stressing and shake-out of the hardware

as well as software, in particular, the fault detection hardware and the

fault identification and system configurat10n control software. The

results of these experiments, therefore, not only include hard data such

as fault detect10n and identificat10n times but a number of intang1bles

as well. These are discussed in Chapter 4.

The goal of the fault-injection experiments was to inJect at least

stuck-at-O and stuck-at-1 class of faults on every C1rcu1t p1n of one LRU

and measure the FTMP response. It will be recalled here that all ten

LRUs in the FTMP are 1dentical to each other in hardware. In addition,

due to the symmetr1c architecture of the mult1processor and the Execu­

tive, the functions performed by one LRU over a per10d of t1me are no

different from those performed by any other LRU that 1S operational and

active. Therefore, one can be fairly conf1dent 1n assuming that the

results obtained by subjecting only one out of ten LRUs 1n the system to

2

faults are representatl.ve of what would be observed l.f the faults were

dl.stributed amongst all ten hardware units. The choice of stuck-at class

of faults was necessl.tated by ll.ml.ted tl.me and resources rather than any

deficiency l.n the experimental set-up. The fault l.n]ector, to be de-

scribed in the next chapter, is in fact fully capable of generatl.ng and

injecting a wide variety of faults including externally supplied sig-

nals. The fault l.n]ector can sl.multaneously produce 48 fault signals,

each of which could concel. vably be applied to a different circuit pin

sl.multaneously. Once again, due to the previously mentioned ll.mitations

and the astronomically hl.gh combinations of multl.ple faults (even just

double faults) as well as the extremely low probability of such events

ever happening in real life, it was decided to limit the experiments to a

sl.ngle fault at a tl.me.

The FTMP response was measured in terms of fault detection, isola-

tion, and recovery times. Identity of the faulty unl.t, as determl.ned by

the multl.processor, was also recorded.

It was determl.ned early in the experl.ments that once the fault had

been detected l.t took a determl.nl.stl.c amount of time to identl.fy the

faulty unit and to reconfl.gure the system such that the faulty unl.t was

no longer actl.ve. The fault detectl.on time, on the other hand, was found

to be qUl.te varl.able for a gl.ven fault on a given pl.n. This variation

was dependent on when the fault was injected with respect to the internal

FTMP frames. To reflect this variation l.n the experimental data as well

as to gain a measure of repeatabl.lity of FTMP performance, each fault on

each pl.n was repeated fl.ve times. The moment at whl.ch each fault was in­

serted was randomized with respect to the basic FTMP software cycle.

3

The next chapter descr1bes the customized fault-1njection hardware

and software and the exper1mental set-up. Results of the exper1ments are

discussed in Chapter 3 and the last chapter summarizes the conclus1ons.

4

CHAPTER 2

EXPERIMENTAL TECHNIQUES

2.1 Overall Experimental set-up

To inject faults 1nto the FTMP, a device called the fault inJector

(FI) was designed and built at CSDL. The fault inJector interfaces with

the FTMP on one end and with the PDP-11/60 Un1bus on the other end. The

number and type of faults and the time of their insertion are controlled

by Fault-InJection Software (FIS) that is res1dent 1n the PDP computer.

The PDP-11 and the FTMP are linked together by a MIL-STD 1553 bus. This

data bus 1S used by the Fault-InJect10n Software to commun1cate w1th the

System Conf1guration Control (SCC) task in the FTMP. This then makes the

exper1mental set-up a closed loop system in which the executor, that is,

the FIS, and the v1ct1m, that is, the FTMP, are 1n constant touch W1th

each other. Th1s, as shall be seen later, makes it poss1ble to automate

the fault-injection process and to collect data that otherwise would not

be poss1ble to acquire.

F1gure 1 shows a block diagram of the experimental set-up. The

v1ctim LRU 1S 1n the upper r1ght hand corner of the FTMP cab1net. This

1S LRU 3. Access to the electronic components 1n th1S unit 1S prov1ded

by opening the swing down door on the FTMP cabinet. Th1s exposes the LRU

5

DMA 1553
1553

--- RT
-yyTTTnTT"n"

0 1 2 Bus

PDP-ll/60 4 5 6

8 A

(j\

U U U

'----- ~--~-- -- -- --- ---- -- -- -- --- -_._-

Fl.gure 1. Fault In]ectl.on Experimental Set-Up

't

3

7

u

I\\.

Vl.ctl.m
e

~~
Fault

InJector

-

circuit boards wh1ch may then be extended for fault 1nsert10n. Faults

are normally 1n]ected on one p1n at a t1me. To 1nsert faults, control­

lable DIP extenders or 1mplants (part of the fault 1n]ector) are plugged

into the DIP socket. Each 1mplant accepts the DIP pins 1t replaced and

contains circu1try wh1ch can 1nterrupt and/or reconnect each DIP p1n and

each incident signal 11ne from the socket. S1X implants, each of which

handles 8 DIP pins, are provided. Thus up to 48 p1ns on one DIP or on a

combination of DIPs may be set up for fault inJection at a given t1me.

The standard C1rcu1t boards 1n the FTMP are mult1-layer pr1nted C1rcu1t

boards on which the DIPs have been soldered. However, to facilitate

removal of DIPs for fault 1n]ection, one complete set of circuit boards

for one LRU has been furnished with DIP sockets.

The 48 1mplant p1ns of the fault 1n]ector are 1nd1vidually addres­

sable by the PDP-11. Each p1n appears as a Unibus address to the fault-

1n]ection software. The type of fault to be produced at any pin is

controlled by wr1ting appropriate data to the Unibus address correspond-

1ng to th1s pin. Once a fault or faults have been def1ned, they can be

'enabled,' that 1S, inserted into the vict1m by wr1t1ng to another Unibus

address. The fault 1njector hardware 11stens to th1s address space,

decodes the data, and produces the fault that 15 called for. It also

enables or clears the fault when appropr1ate data is wr1tten to the

enable/clear address.

It is possible to produce signals other than S1mply stuck-at class

of faults. Faults that are boolean functions of s1gnals on other pins

can be generated. Th1S can be used to s1mulate faults wh1ch are rather

7

unlikely but which have been known to have happened. For example, it 1S

possible to turn a NAND gate 1nto a NOR gate. But the ma1n utility of

this capabil1ty lies in being able to 1n]ect faults 1nto tr1state sig­

nals. For example, the data pins of a random access memory have s1gnals

that are either inputs to or outputs from the memory depend1ng on whether

memory is being written to or read from. To inJect a fault into such a

dev1ce pin, the direction of the fault signal should be correct 1n order

to avoid any possible damage to the device. Such a signal can be pro­

duced by generating the fault as a funct10n of other s1gnals on the

device that determine the direction of the data such as read/write and

ch1p enable s1gnals on the RAM DIP.

The fault injection software has been written to facil1tate auto­

matic fault 1n]ection by providing commands that are used to define the

victim device, map its pins into implant pins, def1ne type of fault for

each pin, and enable and clear faults. The FIS can execute a string of

such commands, mak1ng 1t possible to go through a number of faults auto­

matically once the victim device has been moved to the implants physic­

ally. A second condition necessary for automatic fault injection is some

form of communicat10n between FIS and the FTMP to indicate whether the

FTMP is ready to accept a new fault. Messages between FIS and the

multiprocessor are exchanged over a 1553 data bus. A modified verS10n of

the system conf1gurat10n control program, called the FSCC, 1S respons1ble

on the FTMP side for th1s protocol. Messages from FSCC are sent through

I/O port 0 or 1 over the 1553 bus to a- 1553 remote term1nal s1mula tor.

The RT DMAs the messages into the PDP-11 memory, Wh1Ch then can be

8

accessed by the FIS program. The same data path is used ~n reverse to

send messages from FIS to FSCC. value of the FTMP real-t~me clock at the

time of fault detection, ident~f~cation, and recovery is recorded ~n the

FTMP and sent to FIS. Since the time of fault ~njection is known to FIS,

the d~fference between the times of fault detect~on and inJect~on

constitutes the time taken to detect the fault. This along with the

identification and reconfiguration times and their sum are recorded in

the PDP-11 for later analysis.

The fault inJector hardware, fault ~nJector software, and FSCC are

described in the next three subsections.

2.2 Fault Injector Hardware

A funct~onal block diagram of the fault ~nJector ~s shown in F~g-

ure 2. The heart of the fault injector is a pair of FETs that is ~nter-

posed between the device pin and the socket pin. By turn~ng the FETs on,

a direct connection is established between the device and the socket.

This is the normal situation when no fault ~s be~ng inJected on the p~n.

The device-socket connection can be severed by turning the FETs off. Now

any desired signal may be appl~ed to the dev~ce or the socket pin, wh~ch-

ever pin has the input s~gnal (see Figure 3). A cho~ce of eight s~gnals

is provided, one of which may be selected by multl.plexer M1 for the

dev~ce pin and by multiplexer M2 for the socket pin, as shown in Figure

,
2. A set of 48 FET and mux pa~rs are prov~ded, one pa~r for each victim

pin. This allows one to extend up to 48 pl.ns on one DIP or a combinatl.on

of DIPs. The choice of faults for each Cl.rCUl.t pin is as follows.

9

X 48 (8 ON EACH IMPLANT) ,---------1

TO DEVICE I
PIN

L
I
T T

I

I
- - - -1

TO SOCKET
PIN

1--+----8~1~--P<- -~ --c------
II

X 48 I Ml A A 8: 1

(8 ON EACH I ~ ~ M2
CARD) f~AB) f(AB

b
r---4~~

I FNABC) F(ABC

I ..--- ~X¥ ~~T .:.-' - ... I
I ,

DATAl ~
D(O:3,15) D(4:7,15) 'I

1 FAULT TYPE AND DIRECTION CONTROL I

S(ABC) I -""'--____________ ---' I
1- _______ - _________________ I

t--_1. ~8:1 X 1 (ONE SIXTH ON EACH CARD)

I I A
MAI--r--.- r _X_ Li2tiE ON E~CH C~R~ __ ,

IVI~1 I
I J I B F 1------4'-+- flAB)

t---...-t~8 : 1

I B I
I l\1B I
I ',/ S(ABC) ~

'---...-t~8 : l.---+M; B F r
I It--~I~-~---*~~-~~=_--~ ~--~-~-~7"1 UD(4:7) ~D(8:11) I l,1C I v 1- ____________ J

nD(O: 3)

BF

F1gure 2. Fault InJector Log1cal Organ1zat1on

10

FET
IMPLANT

DEVICE

SOCKET

SIGNAL TO/FROM PACKAGE

DIRECT
CONNECTION
CONTROL

SIGNAL TO/FROM SOCKET

Figure 3. Insertion of FETs between Socket and Dev~ce

11

1. Socket/Dev1ce Signal: Th1S provides the or1g1nal s1gnal to

the victim pin. That 1S, no fault is 1n]ected.

2. Mux A: This signal is the output of the multiplexer A as

shown in Figure 2. The 1nputs to the multiplexer are the 48 s1gnals from

the 48 pins that can be extended w1th the FETs. That is, a s1gnal from

any circuit pin or gate may be used as the fault or input signal for the

victim pin.

3. Mux B: This mult1plexer has the same function as Mux A.

4. Mux C: This mult1plexer also has the same function as Mux A.

5. f(AB): This signal is a boolean function of two signals, the

outputs of multiplexers A and B.
-"

Anyone of sixteen possible boolean

functions may be specified.

6. F(A,B,C): This is a boolean function of f(A,B) and the output

of Mux C. Anyone of sixteen possible boolean functions may be speci-

fied.

7. Ground: Th1S provides the stuck-at-O fault.

8. EXT: In addition to these seven choices, an externally

generated signal may be used as a fault.

Each of the above eight s1gnals may also be 1nverted before be1ng

applied to the victim pin, thus prov1ding a choice of sixteen faults.

The choice of faults thus includes stuck-at-1 and 'complemented s1gnal'

type of faults.

Multiplexers A, B, and C and the boolean funct10n generators

provide an extremely powerful capability to generate any type of fault.

For example, certain faults in 1ntegrated circu1ts can change a NAND gate

12

~nto a NOR gate. It is possible Wl.th this fault ~njector to s~mulate

such a fault by extending all the input and output pins of the target

gate with the FETs, generating the required boolean function using ~nputs

from the gate inputs and replacing the gate output w~th th~s s~gnal. The

ma~n utility of this powerful capability, however, l~es in the ab~l~ty to

inject faults on tristate s~gnal l~nes. The direction of the fault can

be made a funct~on of other sl.gnals on the device, signals that determine

the state of the tristate pin. It is thus possible to inject faults l.nto

the data pl.ns of memory chips and other tr~state devices.

The fault injector hardware is physically packaged as shown l.n

Figure 4. The FET pa~rs are mounted on an implant segment. TWO s~zes of

implants are provided: 4 pl.n extenders and 8 p~n extenders. An 8 pin

implant has 16 FETs mounted on it and can extend one side of a 16 pin

DIP. Dummy extenders that simply connect socket and dev~ce p~ns without

go~ng through a FET are also provided. These are used to extend those

device pins that are too sensitive to sustain the capacitance and/or time

delay of an interven~ng FET.

In any event, the FET implants are connected to multiplexer boards

through a flat ribbon cable. As mentioned earl~er, the fault injector

has the capabil~ty of extending 48 device pins. Signal on each of these

pins is controlled by a dedicated pair of multiplexers M1 and M2 (see

Figure 2). Thus there are a total of 48 pairs of muxes.

packaged on six mUltiplexer boards as shown in Figure 4.

These are

Each board

controls 8 pins. One 8 pin implant or two 4 pin implants may be con­

nected to each board. The six boards, labeled A, B, C, 0, E, and F, are

13

IMPLANT
SEGMENTS

IMPLANT
SEGMENTS
(EACH HANDLES 8 PINS)

~ TO MULTIPLEXER BOARD

CONTROL & UNIBUS
INTERFACE TO VAX 11/750

F1gure 4. Fault InJector Hardware

14

~ TO MULTIPLEXER
Y BOARD

VICTIM
DEVICE

identical multiwire boards. Each of them also contains one sixth of the

multiplexers MA, ME, and MC. That ~s, each of the three 48:1 muxes (A,

B, and C) is logically partitioned ~nto six 8:1 muxes. Since a board

handles 8 pins, a signal from these eight pins can be selected through

the 8:1 mux (A, B, or C) on that board. The outputs of six logical parts

of each 48:1 mux are OR'ed and distributed to all six circuit cards via

the backplane. All 48 s~gnals are then made ava~lable to each board.

Each board also has its own copy of the three boolean function generators

shown in Figure 2. Functions f(A,B), F(A,B,C), and S (A,B,C) can be

produced on any board. These signals, along with outputs of muxes MA,

MB, and MC form inputs to the muxes M1 and M2.

Last, but not least, is the selection and control of FETs,

multiplexers and boolean function generators, and enabling and clearing

of faults. The fault ~njector has been designed such that it can be

addressed as a unibus dev~ce by a PDP-11 or VAX-11 computer. The data

written to the unibus address space of the fault inJector is used to

perform the selection and control functions. As shown in F~gure 4, the

backplane of the multiplexer boards is connected by four flat-ribbon

cables to a control and unibus interface card. This is a double-he~ght

wire-wrap board that can be plugged into the PDP-11 unibus. It has the

standard unibus protocol and address decoding circuitry. The fault

injector occupies the address space 764600-764777 (octal). This address

space 1S mapped as shown in Table 1.

Circuitry controlling signals on each of the 48 pins (muxes M1,

M2, and FETs) is addressed indiv~dually (addresses 764600 to 764736).

15

Table 1. Fault Injector Address Space

Address Mux
764xxx Board Pin

600-616 A 1 to 8
620-636 B 1 to 8
640-656 C 1 to 8
660-676 D 1 to 8
700-716 E 1 to 8
720-736 F 1 to 8

740 MUX A
742 MUX B

744 MUX C
746 Boolean Functl.on Select

752 Execute/Clear Fault

750 and UNUSED
754-777

Data written to these addresses selects one of el.ght inputs to mux 1 or 2

and controls the pOl.nt of fault l.nsertl.on (devl.ce or socket) by choosing

mux M1 or M2. This l.S a statl.C operatl.on. That is, the data wrl.tten to

these addresses is latched l.n the fault l.n]ector. The type and dl.rection

of fault signal is thus determined, but the signal is not applied to the

victim yet. To actually break the device-socket connection and inJect

the fault signal, one must write to Execute/Clear address 764752.

16

writing a "0001" to the address enables the chosen multiplexer Ml or M2

on the chosen pin as well as turns the pair of FETs on that pin off.

Faults on all the previously "enabled" pins are asserted simultaneously.

The most significant bit of the fault selection data word determines if a

pin is enabled. Wri ting a "0002" to the Execute/Clear address disables

the muxes and turns the FETs on, thus clearing the fault condition.

Bits 0-3 of the data word select the type of fault going to the

device pin, bits 4-7 select the fault going to the socket pin, and bits

8-11 determine the direction of the fault (to device or to socket) as

shown below in Figure 5.

15 14 13 12 11 10 9 8 765 4 3 2 1 0

o o 1 x y z

Figure 5. Fault Description Word

Bit 15 enables/disables the pin. A pin must be enabled before a fault

defined on it can be asserted. Bit 15 must be 1 for the pin to be en­

abled. Bits 12, 13, and 14 should always be as shown in Figure 5.

If fault direction field is 0, the fault as determined by data

bits Y is sent to socket pin and data bits Z are ignored. If X is 8, the

fault as determined by Z is sent to device pin and Y is ignored. In ad­

dition to 0 and 8, there are fourteen other values that can be assigned

to X. Fault direction selected for these values of X is explained later

in this section.

17

Table 2. Fault Type Select10n

Y/Z Fault Signal

0 Inverted Signal

1 F(A,B,C)

2 A

3 B

4 C

5 f(A,B)

6 1

7 EXT

8 Or1ginal Signal

9 F(A,B,C)
-

A A
-

B B
-

C C

0 f(A,B)

E 0
--F EXT

,

Y and Z select the fault signal as shown in Table 2. If Y/Z is 8,

the orig1nal signal 1S passed through the mult1plexer unchanged. Stuck-

at-1 and 0 faults can be generated by a value of 6 and "E," respective-

ly. The s1gnal can be 1nverted if Y/Z is o. Other more complex faults

can be chosen as outputs of mult1plexers A, B, C or a boolean function of

their outputs (Y/Z .. 1 to 5, 9 to "0").

If a multiplexer A, B, or C output is either used directly as a

fault or as input to a boolean function generator, it is necessary to

18

select the multiplexer source. This is done by writing to the unibus

address of the multiplexer. Data written to multiplexer address 1.S

interpreted as shown 1.n Figure 6.

15 6 5 4 3 2 o

[NOT USED PIN

Figure 6. Mux A, B, C Select1.on Word

Bits 3, 4, 5 select one of six boards A to F. Bits 0, 1, 2 select one of

eight p1.ns on that board as the mux output. These are shown in Table 3.

Table 3. Mux A, B, C Source Selection

Data Bits Board Bits Pin
345 Selected o 1 2 Selected

1 A 0 1
2 B 1 2
3 C 2 3
4 D 3 4
5 E 4 5
6 F 5 6

6 7
7 8

If a boolean function such as f(A,B) or F(A,B,C) is chosen as the
,---

desired fault, then one must also def1.ne the boolean function by writing

19

to functl.on select address 764746 (octal). The data wrl. tten to thl.s

address l.S l.nterpreted as shown l.n Fl.gure 7.

15 12 11 8 7 4 3 o

[Unused F(f,c) S(f,c) f(A,B)

Fl.gure 7. Boolean Function Generator Data Word

Bl.ts 0-3 are used to select one of Sl.xteen boolean functions of signals A

and B. Bits 4-7 are used to select F(A,B,C), whl.ch l.S one of sixteen

boolean functl.ons of f(A,B) and C. Bl.ts 8-11 are used to select

S(A,B,C), whl.ch l.8 also one of Sl.xteen boolean functl.ons of f(A,B) and

C. The sl.xteen possl.ble boolean functl.ons of two varl.ables are shown l.n

Table 4.

As noted earll.er, the fault dl.rectl.on (to devl.ce or to socket) l.S

controlled by a 4-bl.t fl.eld X as shown in Fl.gure 5. X can assume one of

16 posSl.ble values. These are l.nterpreted as shown l.n Table 5.

If the fault dl.rectl.on signal chosen by X is hl.gh the fault l.S as-

serted on a socket pl.n. If l.t l.S low, the fault l.S asserted on a devl.ce

pl.n.

For X equal to 0 the fault dl.rectl.on sl.gnal l.S hl.gh and the fault

is sent to socket. For X equal to 8 the fault l.S appll.ed to devl.ce. The

fault dl.rectl.on l.n these two cases l.S statl.c. For other values of X the

fault would be dynaml.cally appll.ed to the socket or devl.ce pl.n dependl.ng

upon whether the chosen signal l.S hl.gh or low, respectl.vely. The sl.gnals

20

•

Table 4. Boolean Functions of Two Variables

Data Boolean Function of A, B

0 ~
- -

1 A • B
-

2 AB
-3 B
-

4 AB
-

5 A

6 A + B
- -

7 A+ B

8 AB

9 A+ B

10 A
-

11 A + B

12 B
-13 A + B

14 A + B

15 1

that can be used for direction control are the outputs of mult1plexers A,

B, C, or their boolean functions f(A,B), S(A,B,C) and their complements.

This allows one to dynamically control fault direction on tristate pins.

As explained earlier, fields Y and Z in the fault description word

determine the type of fault to be applied to socket and device pins,

respectively (see Figure 5). When X is equal to ~ or 8 only one of these

two fields (y when X is 0 and Z when X is 8) need be defined. However,

21

Table 5. Fault Direction control

X Fault Direction

0 TO SOCKET

1 S(A,B,C)

-2 A

-
3 B

-
4 C

5 f(A,B)

6 NOT USED

7 NOT USED

8 TO DEVICE

9 S(A,B,C)

A A

B B

C C

D f(A,B)

E NOT USED

F NOT USED

both Y and Z must be defined when x is not 0 or 8. But Y and Z need not

be the same. 'I'hat is, different faults can be applied to socket and

device pins. In fact, by an appropriate choice of Y and Z a fault can be

appl1ed 1n one direction while the original s1gnal is passed through un-

changed in the other direction. One may, for example, wish to insert a

fault in a data pin of a memory chip only when data is be1ng read out but

not when data is be1ng written into the memory. This can be done by

selecting a fault direction signal that is high dur1ng the memory read

22

cycle. The fault selected by Y would be applied to the socket pin during

the read cycle. By choosing Z to be 8, correct data would be written to

the memory dur1ng memory write cycle since z = 8 passes the Qriginal s1g­

nal to the device pin.

Multiplexer output selection and boolean function def1n1t10n are

static functions.

fault injector.

Data written to these addresses is latched 1n the

It should be mentioned here that the fault injector is a 'write-

only' device. state of the fault injector cannot be determined by read­

ing its address space.

It is not necessary to remember various addresses of the fault

injector since the fault injector software mainta1ns these tables as a

data base. FIS prov1des appropriate commands to define fault types and

select mux outputs.

software.

The next sUbsection describes the fault injection

2.3 Fault Injection Software

The fault injection software (FIS) package resident on the PDP-ll

prov1des commands at a PDP-ll terminal to perform all the funct10ns

necessary to inject faults into LRU 3 of the FTMP and observe and record

the results. The FIS program is invoked by the command FIS. Valid FIS

commands and the1r functions are as follows:

DEFINE Unn M: This command defines an M pin Ie package whose

location on the FTMP circuit board is Unn. Last package so defined

becomes the 'active' package.

23

HAP n AM t: This maps pin n of the act1ve package into pin m of

the multiplexer board A of the fault inJector. R.-1 subsequent device

pins are mapped to R.-1 subsequent board A p1ns. Dev1ce pins may be

similarly mapped into pins of boards B, C, D, E, and F by subst1tuting

the appropriate letter in place of A in th1s command. This mapping

allows one to reference device pins directly 1n subsequent commands.

This mapping is stored as one of the FIS data bases.

DESCRIBE n abcd: This command defines the fault (abcd) to be

injected into pin n of the active package. abcd is a 16-bit hexadec1mal

number that defines the fault as shown earlier in Figure 5 and Table 2.

No mnemonics are provided to define the fault type and one must consult

this table to create the fault selection data word. The FIS program

converts the device pin number into the implant address using the

previously defined pin mapping data base and the fault inJector address

data base. The data word abcd is then written to th1s unibus address.

The data is latched in the fault injector hardware but the selected fault

is not yet asserted.

SELECT Packagename: Subsequent MAP, DESCRIBE, and ENABLE commands

refer to the selected package.

MUX n Unn m: This command is used to select p1n m of package Unn
,

as the output of the multiplexer A, B, or C depending on whether n is 1,

2 or 3. Valid values for mare 1 to 48. The FIS program maps the

package pin in question into a board and pin number and formats an

appropriate data word as defined in Figure 6 and Table 3 of the previous

section. This data word is then written to the un1bus address

corresponding to the selected multiplexer.

24

FUNC abcd: Th1S command 1S used to select the boolean function.

One must consult F1gure 7 and Table 4 to construct the function select

word abcd. This command s1mply wr1tes th1s word 1nto the function select

address.

ENABLE n: Th1S enables or selects p1n n of the act1ve package. A

pin must be enabled before a fault can be asserted on it. The FIS

program enables the p1n by writ1ng the fault select10n data word

(previously def1ned for this p1n) DR'ed 1nto "8000" (hex), that is, w1th

the enable/d1sable bit turned on. It w111 be recalled here that the

fault inJector hardware 1S a 'write-only' dev1ce. Therefore, a shadow of

all faults prev10usly def1ned by Descr1be commands 1S mainta1ned as an

FIS data base.

DISABLE n: Th1S d1sables or deletes p1n n of the active package.

This is done by writ1ng the fault select10n data word previously defined

for this pin W1th the enable/d1sable b1t turned off.

DUMP: This command is used to dump on the terminal the fault

description, mapping and enable/d1sable status of each of the 48 p1ns of

the fault 1n]ector.

EXEC: This command actually 1n]ects or asserts faults on those

p1ns that have been enabled. This is done by wr1ting to the

Execute/Clear address. Ten seconds later the fault condit10n is cleared

by wr1ting 2 to the same address.

AUTO n: This command repeats the EXEC funct10n n times. However,

before 1n]ect1ng a fault, a 'Get Ready' command 1S sent by FIS to FSCC

program 1n the FTMP. The system conf1guration controller 1n response to

the command checks the status of LRU 3 and br1ngs it on-line if they are

25

not already active. An 'I am Ready' s1gnal 1S sent back by FSCC to FIS.

The FIS program wa1 ts for a random time between 0 and 999 msec before

inserting the fault. Th1S allows the fault insert10n t1me to be suff1~

c1ently random1zed with respect to the FSCC task wh1ch 1S also respon­

s1ble for detecting faults 1n the FTMP.

OUTPUT filename: This command saves the results of the fault

1n]ect10n exper1ments 1n the spec1f1ed f11e. The results consist of

fault detection, 1solation, and reconf1gurat1on t1mes and the total

recovery time, that 1S, the sum of the FDIR t1mes.

The core of the FIS program 1S wr1tten 1n FORTRAN IV PLUS. It

uses the l1ne parser prov1ded by the RSX-11M operat1ng system to inter­

pret the commands descr1bed above. Once a valid command has been identi­

fied, appropr1ate subrout1nes are called to perform the required func­

t10n. Th1S may involve updat1ng 1ts data base such as that requ1red by

DEFINE and MAP commands or it may requ1re comput1ng a un1bus address by

consult1ng its data base and wr1ting data to th1s address. An assembly

language subrout1ne actually does the I/O. The FIS program also commun1-

cates W1th the FSCC task in FTMP 1n response to the AUTO command. The

FIS-FSCC protocol 1S described 1n the next sect1on.

EXIT: Th1S command is used to exit from FIS program.

2.4 FSCC

FSCC 1S a verS10n of the System Configurat10n Control (SCC) task

in the FTMP that has specifically been mod1f1ed to work W1 th the FIS

program 1n the PDP-11. It 1S assumed here that the reader is fam1l1ar

W1 th the contents of Volume II Wh1Ch descr1bes the basic SCC program in

detail.

26

~ere are two major differences between SCC and FSCC. First, FSCC

does not cycle spare processors, memories, or buses into active state.

It maintains a fixed system configuration under normal circumstances. Of

course, if it detects a fault l.t would try to identify the faulty unit

and reconfigure it out of the system. Second, by communicatl.ng Wl.th FIS

it ensures that the victim LRU, that is, LRU 3, is active before FIS

inserts a fault l.nto one of the LRU pl.ns. The FSCC-FIS protocol works as

follows:

When FIS is ready to inject a fault, it sends a 'Get Ready'

message or command word to FSCC. FSCC looks at thl.s word in its normal

mode. If it is true, the FSCC state is changed to 'Reconfigure' and the

reconfiguration state is initialized to 13. Recall that SCC state 13

corresponds to cycling spare units. In FSCC spares are not cycled.

Instead in this state the status of processor 3 and memory 3 is checked.

If they are failed, they are repaired by changing their status in the

system configuration tables. The reconfl.guratl.on state is changed to 100

so that on the subsequent FSCC pass the spare units, viz. processor and

memory 3, can be assigned to shadow active triads. If the units were not

failed, the state is changed to 14. In this state, swap commands are

issued to swap processor and memory 3 into active members of their parent

triads. The state is changed to 15. Also, a signal called 'Acknowledge

Get Ready' is sent to FIS acknowledging that the Get Ready command has

been received and acted upon by FSCC. FIS then clears Get Ready.

Clearing the command prevents FSCC from needlessly checking the status of

LRU 3 repeatedly. FSCC stays in state 15 until swap commands have been

27

executed. It then sends an 'I am Ready' message to FIS indicating that

LRU 3 components have been repaired and are in the active state. The

detect, identify and reconfiguration times are simultaneously cleared to

zero. FSCC then resumes its normal state. In this state it reads error

latches and does fault detect~on.

After receiving the 'I am Ready' message, FIS waits for a random

length of time that is uniformly distr~buted between 0 and 999 m~lli­

seconds. This corresponds to between 0 and 3 cycles of the FSCC task.

This random wait assures that the fault is not always inJected at the

same time with respect to execution of the fault detection program in the

FTMP.

When FSCC detects the fault it notes the value of the FTMP Real

Time Clock. The clock values at the ~nstant of fault ident~f~cation and

system reconfigurat~on are also recorded. FSCC thus has all the

information to compute the time intervals between fault detection and

fault identification as well as that between ident~fication and system

recovery. The identificat~on and recovery time intervals can be computed

with an accuracy equal to the least count of the Real Time Clock wh~ch is

1/4 mill~second. However, FSCC can not compute the fault detect~on time

since it does not know when the fault was injected. To compute detection

time, the FTMP time base, that is, the Real Time Clock, is sent to FIS

every R4 frame. Typically, R4 rate group iteration period is 40

milliseconds. Therefore the FIS program knows the FTMP time of fault

injection to within 40 milliseconds. Although this b~ases the detection

time on the average 20 m~lliseconds (towards h~gher values), as w~ll be

28

seen in the next section, this is not a significant amount of error in

the overall detection tl.me distributl.on. At any rate, the Real Time

Clock is sent to FIS every R4 frame. The value of the RT Clock at the

time the fault is detected, l.dentified, and recovered l.S also sent to

FIS. FIS then computes the detection, identificatl.on, and recovery tl.me

intervals and records them in a file.

The fault condition is cleared as soon as the FTMP has recovered

from the fault. FIS keeps track of FTMP's progress in recovering from

the fault by monitorl.ng the FDIR tl.mes being sent to it. Recall that

these locations are cleared to zero before a fault is injected.

Therefore as each of these words assumes a non-zero value l.t shows FTMP's

progress through various stages of system recovery. To assure that there . ,
is no deadlock in the FSCC-FIS protocol, a number of tl.me-out condl.tl.ons

are provl.ded. If after a predetermined time the FTMP has not detected

the fault, the fault signal is removed and the FIS program proceeds to

the next command line. Sl.milar timeouts are provided for the

l.dentl.fication and recovery phases. The length of these timeouts can be

chosen when the FIS program is inl.tially invoked.

The block of data exchanged between FIS and FSCC is as shown l.n

Table 6. Note that the Real Time Clock as well as all other time values

are two 16-bit words.

wi th the exceptl.on of cycll.ng of spares and the changes in the

system configuration contro11er descr1bed here, the rest of the software

being executed by the machine while undergoing fault injectl.on is that

29

Table 6. FIS-FSCC Data Exchange Block

Data No. Words

FIS to FSCC

Get Ready 1

FSCC to FIS

Real Time Clock 2

Detect Time 2

Identify Time 2

Recover T1me 2

Faulty Un1t ,
Reason Code ,
Ack. Get Ready ,
I am Ready 1

described in Volume II of th1S report. This cons1sts of the Execut1ve,

Self-Test programs, console d1splay, autop1lot and other appl1cat10ns

code that normally runs on the FTMP.

The next chapter descr1bes the results of the fault 1n)ect1on

experl.ments.

30

CHAPTER 3

RESULTS

3.1 General Observat~ons

Faults were injected in pins of eight circu~t boards. These

boards are CPU Data Path, CPU Control Path, Processor Read Only Memory,

Processor Cache Controller, Bus Guard~an Unit (A), Bus Interface

(Transmit Bus), Bus Interface (Poll and Clock Buses), and System Bus

Controller. Although the overall process of physically sett~ng up each

device for fault injection, selecting 'safe' pins as targets, running the

experiments and acquiring data was quite ted~ous and time-consum~ng, it

went rather smoothly. There were some minor dif£iIcul t~es encountered

w~th some devices and c~rcu~t boards, but once past the in~tial learn~ng

curve these were overcome quickly. One of the irritating factors was the

J

extreme sensi ti vi ty of some devices to be~ng extended on an implant.

Parent module of such a device would not function correctly in the

presence of an interven~ng pair of FETs and would be discarded by the

system immediately. One obv~ously had the choice of ~gnoring that device

for the purposes of fault inJection and moving on to another circu~t. In

fact, since the correct functioning of the parent module apparently is so

dependent upon that dev~ce, it is ev~dent that a fault in the target

31

device would be detected immediately. One may therefore not worry too

much about not being able to subJect such a sensit~ve circuit to artifi-

cially created faults. However, as ~ t turns out the sens~ t~ vi ty of a

device to being extended through FETS is usually l~mited to one or two

pins only. Once these pins have been identified (a rather tedious

procedure), they can be extended with dummy implants while the remaining

pins on that package can be extended through FETS. This procedure was

followed for most of the sensitive packages. S~nce no data was acquired

on sens~tive pins, these pins are not included in the data analys~s.

Some packages were only marginally unhappy over being extended.

That is, LRU 3 would work correctly with such a device moved to an

implant most of the time but not all the time. The result was that the

unit would occasionally be declared failed by the FTMP even before a

fault was injected. 'Ibis obviously produced negative fault detection

time. Th~s, however, happened very infrequently and the results

presented here, of course, exclude negat~ve detect~on times.

One other practical problem that prevented subJecting some boards

to fault injection was the extreme caution required in handling CMOS

c~rcui t devices. The memory chips on processor cache RAM and system

memory boards are all CMOS type.

A few faults were ~nJected in the cache RAM board but soon the

socketed circuit board stopped working, most likely due to ~nadequate

care exercised in removing and inserting CMOS memory chips. The cache

RAM and the two system memory cards ~n each LRU are all identical and

only one socketed circuit board was provided for all three. No useful

data was acquired for any of the three applications of this card. 'Ibe

32

two EGU cards also contain a lot of CMOS circuitry. Only 294 faults were

injected in the EGU card before it too ceased to operate correctly.

Despite all the practical problems encountered, over 20,000 faults

were injected into LRU 3 of the FTMP and the results recorded. Most of

the faults were concentrated in the processor region of the LRU, the CPU

data and control cards, the cache controller, and the PROM. However, a

number of faults (over a thousand) were also injected into the error

detection and masking circuitry as well as redundancy management hard­

ware. The hardware voters, disagreement detectors, error decode ROM, and

error latches for the Poll, Transmit, and Clock buses were subjected to

faults as were enable/disable discretes in the Bus Guardian Unit. Parts

of the System Bus Controller were also targeted for fault insertion.

Of the 21,055 faults inJected in the FTMP, 17,418 were detected.

That is, 3,637 or 17.3 percent of the faults went undetected. Although

these results would seem to 1mply that the fault detection coverage in

the FTMP is only 0.83, this is not necessarily so. For, to convert the

fraction of faults undetected directly into lack of coverage 1S not

correct. One must exclude from this total those undetected faults that

I do not matter. I There are a number of faults that obv10usly belong to

this class. For 1nstance, 1f only three gates from a quad NAND package

are actually used on a card, whether the fourth unused gate operates

correctly or not is quite irrelevant. Faults in this gate would not be

detected but do not contribute to lack of coverage. Unused gates are

easy to trace. Unused signals, on the other hand, are not. Faults on

these signal pins would also go undetected but once again do not really

33

affect coverage. The CAPS- 6 processor microcode in the FTMP, for
J~

t

example, does not ut~lize all the outputs of the AMD2901 Ar~thmet~c Logic

Un~t (ALU). This can be ascertained only by an exhaust~ve search of each

and every microinstruction to make sure that the output in question is

not looked at. Such a study is outs~de the scope of this proJect.

Approximately 80 percent of all undetected faults, or about 3,000 faults,

were either on unused gates or on signals that are always low or always

high under normal circumstances. Of the remaining 20 percent undetected

faults, a few were analyzed in depth and were all found to belong to the

'don't care' class. Since each pin fault is repeated five times, the

number of pins in question is about 60. However, a much more thorough

analysis of all the undetected faults is required before a definitive

statement can be made about fault detection coverage. Further d~scussion

here is limited only to the faults that were detected.

3.2 Average and Maximum Times

As mentioned earlier, 17,418 faults were detected. All of these

faults were ~dentified correctly and the system successfully recovered

from each of these faults by purging the faulty module and replac~ng it

with a spare or gracefully downgrad~ng the system when no spare was

available. Based on these results one could conce~vably argue that the

fault identification and recovery coverages are each one hundred percent

as far as the detected faults are concerned. It is, of course, not

possible to extrapolate this perfect record for faults that were not

detected and for LRU p~ns that were not sUbJected to faults during these

experiments. As mentioned earlier, detection, identification, and

reconfiguration times were computed for each fault. The three phases of

34

recovery were also summed to gl. ve the total recovery time for each

fault. These results are summarized in Tables 7 and 8. The first of

these tables lists the average detectl.on, identificatl.on,

reconfiguration, and total recovery time l.n milliseconds for each of the

eight cards. The last column in this table shows the average FDIR tl.mes

for all 17,418 faults. Table 8 shows the maximum times recorded in each

category for each card, also shown l.n milliseconds.

There are certain obvious conclusions that can be drawn from

figures in these tables. Let us start with the last phase of the recov­

ery procedure first, that is, system reconfiguration phase. This phase

begins as soon as the identity of the faulty module is known. At thl.S

point in time, the System Configuration Control (SCC) task is being

executed. It will be recalled here that this task runs at the lowest

frequency or R1 rate group (3.125 HZ). It passes the l.denti ty of the

faulty unit on to the R4 dispatcher. The R4 dispatcher running at 25 Hz

issues appropriate reconfiguration commands l.n its prolog to remove the

faulty un~t from the system. The reconf~gurat~on phase is complete as

soon as the faulty unit is replaced with a spare or the system gracefully

degraded in the absence of a spare. The average reconfiguration tl.me as

seen in Table 7 is between 46 (SBC) and 113 (PROM) milliseconds depending

upon the type of card. That is, on the average it takes between two and

three R4 frames to reconfigure the system. The average reconfiguration

t~me for all the faults is 82 msecs or two passes of R4 d~spatcher. The

overall average is weighed heavily by the processor region which was the

subject of most faults. The average reconf~guration times for the

35

W
0'1

BOARD

FAULTS DETECTED

DETECT

IDENT
AVERAGE

TIME

RECONF

TOTAL

CPUD CPUC

7266 4761

312 349

82 99

80 83

474 532

Table 7. Average Times (Mil11seconds)

PROM CC BGUA BIT BIPC SBC ALL ALL EXCEPT BGUA
I

783 3508 294 214 235 357 17418 17124

I

589 314 36554 1920 1361 678 988 378 I

59 59 133 147 229 263 88 88

I

113 88 47 53 71 46 82 82 ,

I

I

763 462 36735 2121 1662 988 1160 549

--- ---- ------- -------

IN
-.J

BOARD

FAULTS

MAXIMUM
TIME

CPUD

7266

DETECT 9137

IDENT 1009

RECONF 289

TOTAL 9223

Table 8. Maximum Times (Milliseconds)

CPUC PROM CC BGUA BIT

4761 783 3508 294 214

15817 21614 8122 118437 11592

780 810 1204 993 813

190 242 546 115 198

16231 21757 8182 118843 11707

BIPC SBC ALL

235 357 17418

4818 17056 118437

931 1625 1625

243 195 546

4887 17604 118843

processor regl.on are hl.gher than all others, though the variatl.on from

card to card l.S quite small. The rna Xl. mum reconfl.guratl.on tl.mes are also

higher for the processor regl.on (CPUC, CPUD, CC, and PROM) than all

others, as seen l.n Table 7. How long l.t takes to replace a faulty module

with a spare l.S, of course, dependent on the l.nstantaneous system

configuratl.on. For instance, l.f the trl.ad containl.ng the fal.led

processor l.S bel.ng shadowed by a spare processor the reconfl.guratl.on will

be done simply by swapping failed and shadow processors on the bus

lines. This takes only one pass of R4 dl.spatcher. On the other hand, l.f

the spare l.S shadowing another trl.ad it would be necessary to retire the

target triad and synchronl.ze spare wl.th the target triad members. This

obvl.ously takes much longer Sl.nce the target trl.ad must complete all

tasks l.n progress before retl.rl.ng. In any event, the reconfl.guratl.on

process l.S determl.nl.stl.c and bounded. The rna Xl. mum tl.me l.n the table, 546

msecs (CC), corresponds to the scenarl.O Just descrl.bed.

The recovery phase just precedl.ng system reconfl.guratl.on l.S fault

identl.ficatl.on. This phase begins as soon as a fault l.S detected. Thl.s

happens l.n the SCC task. It terminates as soon as the fault source l.S

located. Thl.s also happens l.n the SCC task. The l.nterval between these

two events l.S the fault identifl.catl.on tl.me. Faults may be identifl.ed

sl.multaneously with their detection l.n some cases. Thl.s usually occurs

when a self-test program uncovers the fault. Sl.nce diagnostl.c programs

know whl.ch regl.on l.S bel.ng tested, they can usually l.dentl.fy the faulty

module l.mmedl.ately. In other cases several reconfigurations may be

required to sort out the fault symptoms. The average l.dentl.fl.catl.on tl.me

38

15 seen to vary from 59 (PROM and CC) to 263 (SBC) mill~seconds with the

system-wide average being 88 ml.lll.seconds. Sl.nce one R1 frame l.S 320

milliseconds, it may be concluded that most faults are identifl.ed

immediately. Indeed the average tl.me for the processor region cards is

between 59 and 99 ml.lliseconds. This is because symptoms of a failed

processor appear on two buses simultaneously, the Poll bus and the

Transml.t bus. In most cases thl.S combination is uniquely associated wl.th

only a single processor in the system. Most processor faults are there­

fore l.dentified immedl.ately. The question may therefore be asked as to

why l.t even takes 60 to 90 ml.lliseconds to look up the bus assignment

tables. Actually it does not really take that long to consult the appro­

priate data base in the shared memory. what happens in fact is that the

SCC task of being the lowest priority ~s l.nterrupted by h~gher priority

tasks. It will be recalled here that the R4 rate group tasks are

executed eight times and that the R3 rate group tasks are executed four

times for every iteration of R1 tasks (SCC). Hence the identification

program can be interrupted many times between start and f~nish. The

identification tl.me is measured as the total elapsed time and not as the

length of time the program is active. This is, of course, as ~t should

be.

The maximum identl.fication tl.mes are seen to vary between 780

(CPUC) and 1625 (SBC) milliseconds with the maximum for the processor

region being 1 204. This parameter, like the reconfiguration tl.me, 1.S

deterministic and bounded. The worst case scenario here l.S a fault on a

bus that has four memory unl.ts enabled on it. If the bus itself l.S

39

faulty, it would take four diagnostic reconfigurations to isolate the bus

from all other suspects. Thl.s translates l.nto five passes of the SCC

program and corresponds to the maXl.mum tl.me observed during the course of

the experiments.

The fault detectl.on phase is what starts the recovery process.

This is more complex than other parts 6f the recovery procedure. Once a

fault is uncovered, the ensuing processes are qUl.te mechanl.cal. The un­

covering of a fault is, however, considerably more involved. Clock for

the detection phase starts tl.cking as soon as the fault l.S inJected under

the command of the fault injection software running in the PDP 11/60.

Faults are usually manl.fested as dl.sagreements on one or more buses.

These are recorded l.n error latches which are read by SCC every 320

milliseconds. The detection phase terminates when SCC diges ts error

latch outputs and determines that they indicate an 'unexpected' bus

error. Recall that some bus errors may always exist such as those on an

unused clock bus or on a failed bus and so on. In any event, this tl.me

interval is the detection time. As explained l.n Chapter 2, the tl.me of

fault injection is not known to SCC and l.S known to Fault Injectl.on Soft­

ware as the most recent value of the FTMP Real Time Clock which l.S sent

to FIS every 40 milliseconds. Therefore the fault detection time as

recorded in the experiments l.S higher than the real value anywhere from 0

to 40 milliseconds or an average of 20 milll.seconds. The average detec­

tion time for all the faults from Table 6 is seen to be 988 ml.lli­

seconds. Therefore, the error is only about 2 percent.

40

The average detection time is seen to vary from 312 milliseconds

for the CPU data card to over 36 seconds for the BGU card. Now if a

fault mam.fested 1tself as an error on the bus soon after it was

injected, the detect10n t1me would mostly consist of latency in read1ng

error latches. S1nce error latches are read every 320 m1lliseconds on

the average, this latency should only be 160 milliseconds. The average

fault detect10n time for the processor region is around 300 mill1seconds

for the CPUD, CPUC and cache controller cards and 589 milliseconds for

the PROM card. This implies that on the average there is considerable

latency between fault 1njection and error man1festat10n. Th1S is mostly

due to the fact that not all parts of the processor reg10n hardware are

being used all the time. This is quite obviously true of the Read Only

Memory. There 1S a considerable fraction of the PROM that contains

programs that are invoked only when an error is detected. Faults in this

reg10n of the memory would not be uncovered unt11 another fault man1fests

itself. The PROM 1S therefore tested per10dically by a check-sum

program. The average latency of half a second 1n uncover1ng PROM faults

is s1mply a reflection of how frequently the check-sum program is

executed. The maximum detection time for PROM faults is over 21 seconds

and is a direct function of the repetit10n rate of the self-test program.

The average detection t1mes for BIT, BIPC, and SBC cards are much

higher than those for the processor region because faults in the bus

interface cards were concentrated mainly 1n the error detect10n and

masking hardware. Faults 1n most of th1s reg10n would not manifest

themselves as bus errors under routine operat10n. Some faults in the

41

voter circuitry, for instance, are highly latent since the voter output

1S the same as its inputs as long as the three inputs are the same. Such

a fault can only be uncovered by feed1ng d1sagreeing input streams to the

voter. This is done by a self-test program. It 1S seen that only 200 to

300 faults were 1n]ected 1n the bus 1nterface cards. All of these faults

were purposefully concentrated in the error detection region to uncover

any weaknesses in this area since the correct functioning of the FTMP is

so critically dependent upon this hardware. The results Ifor these cards

are therefore b1ased towards higher values. When the remaining random

logic on these cards is subjected to faults, the averages would tend to

move down because faults in the random log1c would be uncovered by

routine operation without self-test programs.

Finally, it is quite evident from Tables 7 and 8 that the average

as well as the maximum detection times for the Bus Guardian Unit are an

order of magnitude higher than even those for the error detection

circuitry. There is a reason for this which is as follows. The BGU card

conta1ns the redundancy management hardware. Faults were injected in the

enable/disable discretes that control whether a unit is enabled or

disabled on a bus. Some of these faults such as the ones that d1sable a

unit from its active bus would be detected immediately by routine opera­

tion since a single BGU can disable a unit by itself and a lack of trans­

mission from a unit would immediately cause errors on that bus. But most

other faults such as those that enable a un1t on other buses or disable a

unit from buses on wh1ch it is not supposed to transm1t anyway would only

be detected either by a self-test program that exerC1ses these d1scretes

42

or over the long term by routine system reconfigurat10n. No self-test

programs have been written for the Bus Guard1an Un1t. Therefore almost

all BGU faults were uncovered by the rotat10n of processors and memor1es

on d1fferent buses and by swapp1ng of act1ve and spare buses. Wh1le the

self-test programs complete a cycle every 13 seconds, complete cycling of

(

all spares takes 6 m1nutes. Th1S 15 why max1mum detect10n t1me for BGU

faults 1S almost 2 minutes. It would be even h1gher 1f the t1meout 11m1t

for these exper1ments was 1ncreased beyond 2 m1nutes. Faults that may

have been detected w1th a h1gher t1me-out 11m1t are treated 1n the data

analys1s as undetected faults.

The h1gh detect10n t1mes for BGU faults have a tremendous 1mpact

on the system-wide average. Table 7 shows that overall average detection

t1me 1S 988 m1111seconds, or about one second. If the average were

computed for all except BGU faults, it would be only 378 m11liseconds.

The BGU fault detection t1mes can be reduced by an order of magn1tude by

writing d1agnostic programs for 1t.

It should be ment10ned here for the sake of clar1ty that although

routine system reconfiguration was suppressed for faults on all other

cards to facil1tate a reasonable FIS-SCC protocol, it was allowed for the

BGU card since th1s was the only way of detecting BGU faults and 1t did

not interfere with the protocol in th1s case.

The sum of times for the three phases constitutes the total recov-

ery time. This is the time from the moment the fault 1S 1njected to the

point 1.n t1me when the system has completely recovered. Times for the

three recovery phases were summed for each fault and then the sums were

averaged over all faults for each card. These averages are shown in

Table 6 under the heading 'TOTAL.' The total average recovery t1me for a
43

card should obviously equal the sum of the average time for detection,

identification, and reconfiguration phases. In other words, average of

the sums should equal sum of the averages. This 1S true for all cards to

within 1-2 milliseconds which is the truncation error. The maximum total

recovery time for a card, on the other hand, is not necessarily the sum

of the maximums for individual phases since maximum detection time need

not necessarily be for a fault that also takes maximum time to be identi­

fied. The maximum recovery time is therefore simply the maximum of all

sums.

It is quite evident from data presented 1n Tables 7 and 8 and from

the discussion so far that the recovery time is dominated by the detec­

tion time for each card as well as for the system as a whole. Even the

processor region, which seems to react the fastest to faults, about 65

percent of recovery time is spent uncovering a fault. Therefore recovery

time characteristics are very much like those of the detection time. In

particular, if the average recovery time is computed for all faults

except the BGU, it is found to be 549 mill1seconds or about a half second

compared to about a second if it 1S averaged over all the faults. The

meaning of this is quite clear. FTMP response to faults can be improved

twofold simply by writing a few diagnostic programs.

When the FTMP reliability was computed, it was assumed that the

R4, R3, and R1 rate groups would execute at 40, 20, and 5 Hz rather than

25, 12.5, and 3.125 Hz used in the experiments. The fault injection data

presented so far shows a strong correlation between detection, identifi­

cation, and reconfiguration times and the execut10n frequencies of sec,

44

~ dispatcher, and self-test programs. It may be concluded, therefore,

that the average recovery time could be reduced by 37.5 percent by

increasing repet1tion rates to or1ginal goals.

The two changes suggested here would br1ng the average recovery

time down to 343 m1lliseconds wh1ch is qU1te close to the value (250

msecs) assumed 1n reliabil1ty models.

Of course, what affects the actual reliab111ty 1S not only the

average recovery time but also its d1stribution and the LRU mean time

between fa1lures (MTBF). These are d1scussed next.

3.3 Frequency Distribut10ns

The fault inJection data was analyzed to compute probability

dens1ty function (pdf) of detect10n, 1dentification, reconf1gurat10n, and

total recovery times for each card separately and for the total ensemble

of 1 7,41 8 faul ts •

F1gures 8 to 62.

Estimates of pdf's are plotted as h1stograms 1n

A few comments regarding the organ1zat10n and plott1ng of data are

in order here. These figures are organized by cards in the same order as

the numerical results in Tables 7 and 8. Figures 8 to 13 are for the CPU

data card, 14 to 18 for the CPU control card, 19 to 25 for the PROM card,

and so on. A d1fferent scale is used for each parameter to show as much

detail as possible. All identificat10n time histograms use a bucket size

of 100 milliseconds, and all reconfigurat10n plots use a bucket S1ze of

50 m11liseconds. A common scale for all detection time distr1but10ns that

accommodated maX1mum detect10n t1mes and yet showed the deta1ls was not

as easy to choose. Detection times for most cards are therefore plotted

45

o
o .
o
~-f---"'"

o
o

o
o

o
o

CARD: CPU DFiTR
~ FAULTS: 7256

AVERRGE: 312
MAXIMUM: 9137

15:32:53 11/18/82

O~I-----r----~I ----.----.----.----.-----.----.----.1----.----.----,
o 1000 2000 3000 IlOOO :~OO 6000 iOOO 8000 90JO 10::100 11000 12000

CET~CT I ON TINE IMSEC)

Figure 8

46

o
o · o
::r

o
o · C\J
(T')

o
o

W •
~R;
IT
f­
Z
Wo
Wo
0: •

-

-

-

w tD -
CL -

o
o

co

o
o
·

-

01

a

CARD: CPU DRTn
FAULTS: 7266

AVERRGE: 312
MAXIMUM: 9137

I

I

100 200 300 ijOO 5j::l 500

15:32:58 11/18/82

I

700 800 900 1000 1100 10000

[clcCT I ON TIME It-1SEC)

Figure 9

47

o
o · o
o

o
o · o
co

o
° LLJ •

c..:>~
a:
f­
Z
Wo
Uo
a: .
W o
CL.:l'

o
o
o
N

o
o
· o

-

-

-

-

-

o 100

CARD: CPU DATA

** FAULTS: 7266
AVERAGE: 82
MAXIMUM: 1009

I I

200 300 YOO

I

500

I

600

09·54:30 11/19/82

I I I I I I

700 800 900 1000 1100 1200

ID~NTIFICATION TIME !MSEC)

Fl.gure 10

48

o
o · o
IJ)

o
o · o
:::r

o
o

W •
t.:)~
a:
I­
Z
Wo
Uo
0::.
W o
o...C\J

o
o ·

-

-

-

-

o --
o
o
· o
o

I

50

CARD: CPU DATA
.. FAULTS: 7266

AVERAGE: 80
MAXIMUM: 289

I
I I I I I

09:Sij:30 11/19/82

I I I I I I

100 150 200 250 300 350 ijOO ij50 500 550 600

RECONFIGUAATION TIME (MSEC)

Figure 11

49

o
o
o
0_
-1--.....,

o
o

~-co

o
o

W •
C)~­
a:
I­
Z
Wo
Uo
0: •
W~­o..::J'

o
o

o
o

CARD: CPU DATR
*' FAULTS: 7266

AVERAGE: 11711
MAXIMUM: 9223

09:5ij:30 11/19/82

.~--~==4---~--~--~--~--~--~--~--~--~~ o I I I I I r 1 1 -, 1 , I

o 1000 2000 3000 ijOOO 5000 6000 7000 8000 9000 100001100012000

TOTAL RECOVERI T I ME IMSEC)

F~gure 12

50

o
o
lJ')

C\J

o
o ·

-

o ,-
C\J

o
o

'-
W'
C)~
0:
I­
Z
Wo
Uo
CC •

'-W o
0....

....

C)

C'I

· lJ')

C)
C)

· o

-

o 100

CARD: CPU DAT=1
FAULTS: 7266

AVERAGE: 474
MAXIMUM: 9223

I

I I I I

200 300 YOO 500

I

600

09:5~:30 11/19/82

I J

I
I I I I I

700 800 900 1000 1100 10000

TD-AL RECOVERY TIME 1M SEC)

Figure 13

51

o
o

o
o
01

o

CRrD: CPU C~~-:-~C;L

= FAULTS: 4751
AVERAGE: 349
MAXIMUM: 15817

1

1 COO 2000 3:JOO ~GJJ 5:JO

Figure 14

52

15:25:27 11/18/82

1

~CJu 7020 SCOO 9:J00 1 :::0 1; OJO 1 c:uu

o
o
· o

:::r

o
o
f\J
('l")

o
o

W •
t.:)~
a:
f­
Z
LJ o
Uo
0:: •
W~
(L

o
o ·

-

-

-

-

-co

o
o
· 01

o
1

100

CARD: CPU CD~7RaL

** FRULTS: ~761

AVERRGE: 349
MAXIMUM: 15817

t

,
~ I

2;)0 SOD !tOO 5:0 s:o
I

700 600

15:25:27 11/1B/E2

9:lD

~E7EC7I(jN TZ',E (:-1~=:C)

Fl.gure 15

53

o
o
o
o

o
o .
o
co

-

-

'-

o
o
o
N

o
C)

o

-

-

a
I

100

CARO~ CPU CONTROL
** FAULTS: 4761

AVERAGE: 99
NAXIMUM: 780

I I I

2DO 300 qOO 503

I I

600 700

15:26:27 11/18/82

I I I I l
800 900 1000 llCD 1200

IOENTlrErllIIJN TIME (~lSECJ

F~gure 16

54

o
o

o
o

o
a

Cl
o

CARD: CPU CDNT:=lDL
*= FAULTS: Y751

AVERAGE: 83
MAXIMUM: 190

15:26:27 11/18/82

O~'~--~----~----~==~----~----'----'----'-----'----'----~---'
o 50 100 ISO 2CQ 3,:)0 S50 5JO 550 5:J0

Figure 17

55

C)
C)

C)
C)

W •
t.:)~­
a:
l­
Z
L:J C)
UC)

cc: •
W o -
(LN

CARD: CPU CC;:~T;:JL

FRULTS: ~701

AVERAGE: 532
!'1AX HH..J11: 16231

15:25:27 11/18/52

~~I~--_+-I--~-----'----'I-----'----'----'----'-----+----'-----'--~
o 100 200 300 ijOO SCJ 60;) iCO SuO 9C::I 10::10 1100 163CO

Fl.gure 18

56

o
o

W •
~~­
a:
I­
Z
Wo
Uo
0: •
W o -
O-~

o
o

CARD: PROM
** FAULTS: 783

AVERAGE: 589
MAXIMUM: 21614

15:ijO:27 11/18/82

O~----~I===TI====~I----~Ir----r----~I--~I----~I-----Ir----r-I--~I----~1

o 2000 ijOOO 6000 8Ce;) 10ceo 12000 gOOO 16000 18000 20000 22COO 2ijOOO

DETECT ION TIME IhSEC)

Fl.gure 19

57

o
o · o
o '--
o
o · '-o
(XJ

·
~-

~-

o
o · o
N

o
o · o

-

I ,

CARD: PROM
** FAULTS: 783

AVERAGE: 589
MAXIMUM: 2161LJ

,

I I I I - I

10:00:07 11/19/82

.

I I I I I

o 200 1100 600 800 1000 1200 11100 1600 1800 2000 2200 22000

DETECTION TIME (MSEC)

Figure 20

58

o
o

o
o

o
o

o

CARD: PROM
.. FAULTS: 783

AVERAGE: S9
MAXIMUM: 810

10:00:07 11/19/82

o I I
o~--~~---~I---F=I===~I---4I----'I----~I-----I~---'-I---r-I---~I--~1

o 100 200 300 qOO 500 600 700 BOO 900 1000 1100 1200

IDENTIFICATION TIME IMSEC)

Fl.gure 21

59

o
o · o
o '--
o
o · o '-to

o
o

'-
W·
t!)~
a:

'-

I­
Z
Wo
Uo a: .
W O
a...:::I'

o
c · C
N

o
o · c

-

o
,

50

•

CARD: PROM
.. FAULTS: 783

AVERAGE: 113
MAXIMUM: 242

I I I
I
I I

10:00:07 11/19/82

I , I I I I

100 150 200 250 300 350 ijOO ij50 500 550 600

RECONFIGURATION TIME IMSEC)

F1gure 22

60

o
o .
o
0_ -
o
o

o
o

W·
t.=)~-
a:
I­
z
Wo
Uo
a: .
w o -a..::r

o
o

o
o

CARD: PROM
• FAULTS: 783

AVERAGE: 763
MAXIMUM: 21757

10:00:07 11/19/82

.+---~~==~-----~~~~--~-----~~-----~-----~~ o I , I I I I I I I I I I

o 2000 qOOO 6000 8000 10000 12000 1 qOOO 16000 18000 20000 22000 2qOOO

TOTAL RECOVER. TIME 1M SEC)

Figure 23

61

o
o .
o
~-

o
o

o
o

W •
C)~­
CI
~
Z
Wo
Uo
0: •
W o -
o....::J'

CARD: PRClM
** FAULTS: 783

AVERAGE: 763
MAXIMUM: 21757

15:ijS:ij8 11/18/82

g I I
O~--~,----~,---~,--~,----~,====~,---.-,--~,~--~,----~,---~,==~,

o 200 qOO 600 800 1000 1200 lQOO 1600 1800 2000 2200 22000

TClTAL P.ECClVERY T I ME (MSEC)

Figure 24

62

o
o

o
If)

o
o

-

'-o
::I"

o
o

W •
'-l:)~

a:
I­
Z
Wo
Uo
a: .
W O

a... N

o
o .

-

o --
o
o
o

a
I

100

CARD: PROM
.. FAULTS: 783

AVERAGE: 763
MAXIMUM: 21757

I
I I I I

200 300 ~OO 500

15:ij5:ij8 11/18/82

I
I I I I I

600 700 800 900 1COO 1100 22000

TOTAL RECOVER, TIME IMSEC)

F1gure 25

63

o
a

a
o
01

o leoo

ChRD: CFtCHE C:::,iROLLER
tt FAULTS: 3508

RVERAGE: 314
~i rl X I M UN: 8 1 22

Fl.gure 26

64

7C:.JO

15: 13:110 1./16/82

11:-J:) ,---"'\
.:.::::. '

o
o

o
o

W •
t:>~­
a:
I­
:z
Wo
Uo
c:: .
W~-
0-

o
o
00-I-_...J

CARD: CACHE CONTROLLER
.. FAULTS: 3508

AVERAGE: 314
MAXIMUM: 8122

I

16:08:ij7 11/18/82

o I I
~~----r-,---~,--~,----~,~---r-,---~,--~,----~lr----r-,---~,---;,----"

a 100 200 300 qOO sao 600 700 800 900 1000 1100 8200

DETECT! ON T I ME IMSEC)

Figure 27

65

o
o

o
o
......

o
o .

-

'-o
(X)

o
o

W •
'-C)~

CC
I­
Z
Wo
Uo
0:: •
W o
(L::r

o
o .
o
(\J

o
o
o

-

-

o 100

CARD: CACHE CONTROLLER
., FAULTS: 3508

AVERAGE: 59
MAXIMUM: 1204

/

I I I

200 sea ~O'J 500 6:::!0

15: 13:l!O 11/18/82

I I I I I I

7:)0 BOO 9C:l lC'CO jlC::

I DENT I F EAT I:N T I ~~E !:1SECl

Fl.gure 28

66

o
o · o
o -
o
o
o
CD

o
o

W •
L:)~
a:
I­
Z
Wo
Uo
a: .
W O
a...:::r'

o
o · o
N

o
o · o

-

-

-

-

-

o
I

50

CARD: CACHE CONTROLLER
.. FAULTS: 3508

AVERAGE: 88
MAXIMUM: 5146

I I I I I I

100 150 200 250 300 350 1:00

15:13:ijO 11/18/82

I I I I

~so 5JO 550 6:0

AECONF I GlJRFlTI ON T H1E (I~SEC)

Figure 29

67

o
o .
o
~-

o
o

o
o

CARD: CACHE CONTROLLER
** FAULTS: 3508

AVERAGE: 462
MAXIMUM: 8182

15:13:110 11/18/82

o

~4---~1----4!----~1----~1----~1----~1---'-1--~----~--~--~1r---~1
a 1000 2000 3000 IOGOO 5000 60:)0 7COO 8GOO 9000 i OCOO 11 COO 1200:)

TuTAL RECLi\'ER'(T H:E IM=ECl

Figure 30

68

e
e · e
::J'

e
e ·

-

C\J '-CT')

:-

e
e

W •
t:)~
a:

'-

I­
Z
We
Uo
a: .
W~
a...

o
o · to

o
o · o

-

o

CARD: CACHE CONTROLLER
.. FAULTS: 3508

16:08:ij7 11/18/82

AVERAGE: 462
MAXIMUM: 8182

J I
l

I
I I I I I I I , I I

100 200 300 1100 500 600 700 800 900 1000 1100 8200

TOTAL RECOVERY TIME (MSEC)

Fl.gure 31

69

C)
C) .
C)
If)

o
o

-

'-o
::I"

o
o

W •
'-C)~

a:
I­
Z
Wo
Uo
0: •
W O

a.... N

C)

o
o
.-I

o
o
o

-

-

I

CARD: 6GUA
FAULTS: 294

AVERAGE: 36554
MAXIMUM: 116437

I I I I

I
I

15:00:31 11/18/82

I I I I I I

o looeo 20000 30000 ltCOOO sc-ooo 50~OO 7CO::') 80aoo SOOOO 1:l0jCO 112000 1~::;:::O

DETECT WN TI ME (I~SEC)

F~gure 32

70

o
o · to '-N

e
o · o '-
N

o
o

W •
C)~
a:

'-
I­
Z
We
UO
a: .
We '-
0....

.....

e
o
· If')

o
e · e

-

I

CARD: 8GUA
** FAULTS: 29L!

I

I

AVERAGE: 3655~

~lAXIMUM: 1181437

I
I
I

15:00:31 11/18/82

I I I I I I

o 5000 10000 15000 2:1000 25C:O 30000 35000 1i0000 '45000 50000 55000 12000:;

DETECT I ON iI I~E (MSEC)

Figure 33

71

o
o · o
o

o
o · o
CD

o
o ·

-

-

-

-

o -N

o
o · o

o 100

CARD: BGUA
u FAULTS: 294

AVERAGE: 133
MAXIMUM: 993

I I I

200 300 ~OO

I
I I I

530 600 700

15:00:31 11/18/82

, , , I ,
eco 900 1000 1100 1200

ID~NTIFICATI(jN TIIiE (MSEC)

F1gure 34

72

o
o .
o
~-

o
o

o
o

W· L')g-
a: 1---.
~

Z
I.J.J o
Uo
a: .
W o -
0...:1'

o
o

o
o

CARD: BGUA
.. FAULTS: 294

AVERAGE: 47
MAXIMUM: 11S

15:00:31 11/18/82

04-----�r----r----r-�---.----.-�---.----.-�---~1--~1----·,----'1----~1

o 50 1 CO 1 SO 200 250 3CO 350 qDO l!50 500 550 600

R E C Cit': F ! G L! ~ R T I Cl N T HI E If-'l SEC)

F1gure 35

73

o
o

o
If)

o
o .
° ::r

o
o

-

-

'-
W·
C)~
IT
I­
Z
Wo
Uo
0: •

'-W o
a....

N

o
o .
o

o
o

o

-

I

CARD: BGUA
tt FAULTS: 291.1

AVERAGE: 36735
MAX H1UM: 11 B6~3

I I

I I I I

I
I

15:00:31 11/18/82

I I I I I I

o 10000 20000 3C:OO ltro:o :%JU SOOC3 700::0 eoooo 90000 100000 110000 12:::lJ

TlrML ;::EC(j\ ERr T H:E 111SECl

Figure 36

74

0
0 · 0
0

o
o · o
(D

o
o

W •
C)~
a:
I­
Z
Wo
Wo
a: .
W o
0-:1'

o
o · o
N

o
o

CARD: BIT 15:22:29 11/18/82

*' FAULTS: 21t!
AVERAGE: 1920
MAXIMUM: 11592

oj�----~----I~---r----~I====~--~----~----r----+----+----+--~

o 1000 2000 3000 11000 S::10 6000 7000 80~0 9000 10000 11000 120CQ

Figure 37

75

o
o · o
o '-......

o
o · '-° ro

o
o

W •
'-~~

CC
I­
Z
Wo
uo
a: .
W O
a...:::r

-

o
Cl

· o
C\J

o
o
Cl

-

a
I ,

CARD: BIT
** FRULTS: 21!.!

,

AVERRGE: II.! 7
MAXIMUM: 813

, I
I
I

100 200 300 YO:! 5:0

15:22:29 11/15/82

n
I I I I I I I

630 700 600 50:! 1300 1:00 12:0

IOE .. T!i=i:R"jICjN TIME IMSECl

Figure 38

76

e
e · e
e -....

e
e · e -CO

e
e

W •
c.:J55
CI
I­
Z
We
Ue
a: .
We
a...::I'

o
e ·

-

-

o -C\I

o
CJ · CJ

a
I I

so

CARD: BIT
** FAULTS: 214

AVERAGE: 53
MAXIMUM: 198

I I I

100 1 SO 200

I

250

15:22:29 11/18/82

I I I I I I I

sea 350 1400 ~5~ 500 550 600

RECONF I GURAT IC;:~ TI ME (MS~C)

F~gure 39

77

o
o · o :-
lJ')

o
o ·

~-o
:::2'

· '-

'-

o
o · o

o
o
·

-

01 I I

CAAD: BIT
• FAULTS: 21Y

AVERAGE: 2121
MAXIMUM: 11707

I

I I I
n
I I I

15:22:29 11/18/82

I I I
I I I I

o 1000 2000 3000 qOOO 5CJO 6GOO 7000 6000 9000 10000 11000 12000

TOTRL ~ECOVERT TIME (MSEC)

Figure 40

78

o
o
· o

o '-.....

o
o · '-CJ
co

'-

:-

CJ
CJ · CJ
N

CJ
CJ

CJ

-

I

-

I

CRRD: BIPC
** FAULTS: 225

AVERRGE: 1361
MAXI:1Ut1: 14818

I I I I I

15:18:88 11/15/82

I I I I I I

a 1000 2000 3000 liCCa 5(;::) 5:::0 7:JO 80:)0 sooa loao:) 11000 12000

Figure 41

79

C)
C)

· C)
C) -......

C)
C)

· :-C)

co

C)
C)

W •
'-C)~

0:
I­
Z
Wc)

Uc)

0: •
wc)

o....::::t'

C)
C)

c)

C\J

c)
c)

· o

-

-

o
I

500

CARD: B IPC
** FAULTS: 235

AVERAGE: 1361
MAXIMm1: L!BIB

I I I I

16:11:26 11/18/82

I I I I

1000 1500 2000 2500 3000 3500 11000 11500 5000 5500 6000

DETECT I CiN T I ME (MSECl

F1gure 42

80

Q

Q .
'-Q

If)

Q

Q

:-Q
::r

'-

:-

o
o
o '--
o
o
o

o
I I

100

CRRD: 8IPC
;; FAULTS: 235

AVERRGE: 229
MAXIMUM: 931

I I I

200 30J

t

I I

: :::1

15:18:08 11/18/82

I I I I I I

70:1 800 lCCO 1100 1200

IQE',T:=I::HICtJ TII1E ':'1SECl

Fl.gure 43

81

CARD: BI?C
;; FRULTS: 235

AoJERRGE: 71
MRXIMUH: 243

I

15:18:03 11/18/92

g I
O~I-----r----~I----~--~====~---,,----r----.---~----.---~~--~

o SO 100 150 200 300 ~so ~:JO t:50 50Q 550 S2J

Figure 44

82

!

o
o
o
o

o
o
o
co

CJ
o

W' C)::g
a:
I­
Z
Wo
Uo
a: .
W o
c....::I'

o
CJ

-

-

-

-

o
N -

CJ
CJ

CJ I

CARD: 8IPC
;t FAULTS: 235

AVERAGE: 1652
MRXIMUI1: 14887

I
I I I I I

15:18:CB 11118/82

I I I I I I

o 1000 20UO 3000 ~OOO ::00 6000 7000 8COO 9000 IG~OO 11000 12JOO

TClT=!L ?'~CClVERI T I ME (f'l.SEC)

Figure 45

83

o
o

o
o -
o
o .

-

'-o
(0

o
o

W· (.9g '-
a:
I­
Z
Wo
Uo
a: .
W O
(L::r

'-

o
o
o
C\J

o
o .
o

-

a 500

CARD: SIPC
FAULTS: 235

AVERAGE: 1662
MAXIMUM: 4887

r
I I I I

16: 11:25 11/18/82

I I I I I

1000 1500 200(J 2500 3000 3500 11000 t:500 5000 5500 600::1

TCTAL RECOVERY TIME IMSEC)

F1gure 46

84

o
o

o
o

o
o

o
o

CARD: SSC
** FAULTS: 357

AVERAGE: 678
MAX I MUM: 17056

15:ij9:38 11/18/82

.~--~r---~--~I~---F====~---r----r----r----T---~----~--~ o I I I I I I I I I I I I

o 1000 2000 3000 11000 5000 6000 7000 8000 9000 10000 11000 17100

DETECT! ON T I ME (MSECl

F1gure 47

85

o
o

a
a

CARD: SSC
.. FAULTS: 357

AVERAGE: 678
MAX I MUM: 17056

15:~9:38 11/18/82

'4---~--~==~==~==~==~--~--~--~--~--~~ a I I I I I I I I I I J I

o 500 100015002000250030003500 qOOO Q500 5000 550017100

DETECT ION T II':E (MSECl

Figure 48

86

o
o · o
If') .-

o
o · :-o
::r

o
o

W •
:-C)~

a:
f­
z
LU o
Uo
a: .

:-Wo
(LN

o
o · o
.-.

o
o
· o

-

o

CARD: SSC 15:ij9:38 11/18/82

I

** FAULTS: 357
AVERAGE: 263
MAXIMUM: 1625

I
I I I I

I I J
I I ! I

100 200 300 QOO 500 600 700 800 900

I D::NT I F I CAT! ON TINE (MSEC)

F1gure 49

87

I ,
I I I

1000 1100 1700

o
o

o
o .
0...,
(0

o
o

o

CARD: sse
** FAULTS: 357

AVERAGE: 46
MAXIMUM: 195

15:ij9:38 11/18/82

01
04---~1----,1----~,----~1----~--~----~1---~1---,-1---,r---~1~--'1

o 50 100 150 200 250 300 350 YOO Y50 500 550 600

RECJ~~ I GUPAT I C1~ T I ME (MSEC)

Figure 50

88

0
0 .
0
0_

o
o .
~-l---""

o
o

W'
~~­
a:
I­
z
Wo
Uo
0: •
w o -a..:r

o
o

0
0 .
0

0

I

1000

CARD: SSC 10:03:02 11/19/82
FAULTS: 357

AVERAGE: 988
MAXIMUM: 176DLJ

I
I I I I I I I I I I I

2000 3000 ijOOO 5000 6000 7000 8000 9000 10000 11000 17700

TOTAL RECOVERY TIME (MSEC)

Figure 51

89

o
o

o
o .
~-::t'

o
o

W •
C)~­
a:
I­
z
Wo
Uo
a: .
W o -
o...C\J

o
o
C)

o
I

500

CARD: SSC
tt FAULTS: 357

AVERAGE: 988
MAX I MUM: 17604

I
I I

I
! I

1000 1500 2000 2500

I

3000

15:ij9:3B 11/1B/82

I I I I I I

3500 I!OOO 1!500 5000 5500 17700

TOTAL RECOVERY TIME (MSEC)

Figure 52

90

o
o

o
C)

CARD: ALL
** FAULTS: 17418

AVERAGE: 988
MAXIMUM: 118437

15:54:00 11/18/82

.+---~==~--~--~--~--~--~--~~~~---4==~ Cl I I I I I I I I I I I I

o 1000 2000 3000 II 000 50eo 6000 7000 8000 9000 10000 11000 120000

DETECT ION T I ME (MSEC)

F~gure 53

91

Q

Q

I-IJ)

C\J

Q

Q · J_ Q
C\J

· '-

· 1-

CJ
Q

,-
U"I

o
CJ ,
o

o
I I

100

CARD: FILL
;$ FAULTS: 17l!18

AVERRGE: 988
MAXIMUM: 118l!37

1

I - I I I

200 330 l!00 SOD

I
I

600

15:5ij:OO 11/18/82

I I I I I I

700 800 900 1000 1100 12:;000

DE~5:CTiwN TIME (MSECl

Figure 54

92

D
D · D
D '. -
D
o · D '-co

'-

'-

D
o · o '.
N

D
o · o

o

CARD: ALL 15:5ij:OO 11/18/82

j

u FAULTS: 17418
AVERAGE: 88
MAXIMUM: 1625

I I I I I I I

100 200 300 YOO 500 600 700 600 900

I DENT I F I CAT! ON T H1E !l1SEC)

Figure 55

93

I I I

1000 1100 1700

o
o
o
o

o
o

-

'-o
to

o
o

W •
'-c...:J~

a:
I­
:z::
Wo
Uo
a: .
W O
(L::J'

o
o .
o
N

o
o

o

-

-

o
I

50

CARD: ALL
FAULTS: 17l!18

AVERAGE: 82
MAXIMUM: 546

I
I I I I

100 150 200 250

I

300

15:5ij:OO 11/18/82

I I I I I I

350 1100 1150 500 550 600

RECClNF I GURAT I ON T !tiE (MSEC)

Figure 56

94

o
o

o
o

C)

o

CARD: ALL
** FAULTS: 17418

AVERAGE: 1160
MAXIMUr1: 11SE:J3

lS:Sij:OO 11/18/82

.+---~~--~--~--~~--~--~--~~~~==~ o I I I I I I I I I I I

o 1000 2000 3000 lIoeo 50CJ 6000 7000 eooo 9000 1000011000120000

Tt:TR~ RECOVERY TIME (MSECl

Fl.gure 57

95

o
o · o
::r ~-

o
o · J_ N
(I")

o
o · w

C)~
a:

-

I­
:z
Wo
Uo

· '-a:(!) w_
a....

CI
CI · ,-
co

o
CI

CI

o
I I I

CARD: ALL
FAUL.TS: 17418

AVERAGE: 1160
MAX It-IUM: 118843

I

I I I I

100 200 300 t:oo 50::1 so::!

15:54:00 11/18/82

I
l

~
I I I I I -,

700 800 900 1000 1100 120000

TOTAL ii~CrJV~RI TIME 1M SEC)

Figure 58

96

o
o
o
0_

o
o .
0_
C\!

o
o

1---,

CARD: ALL EXCEPT BGUA
** FAUL TS: 1712L!

AVERAGE: 378
MAXIMUM: 21614

15:01:ij6 11/20/82

O~----J~===~I---'----'I~---I~---'----'----'I-----r-I--~----~--~
1000 2000 3000 1,I0CO SO:J 6000 7000 eo~o soeo o 10:00 t·

:. . -

Figure 59

97

o
o

:-

o
o · C\J '-(1")

o
o

W •
C)~
a:

-
I­
Z
Wo
Uo
a: .
WID '-
CL

......

o
o
· to

o
o
· o

,

-

o
I

CARD: ALL EXCEPT BGUA
** FAUL TS: 17124

AVERAGE: 378
MAXIMUM: 21614

I

I
I I I I I

100 200 300 1,100 SOD 600

15:01:ij6 11/20/82

I
I I I I I I

700 SCD 900 IC03 1100 21i[0

DE TEe T I J ~~ T It 1 E (:'1 SEC)

Figure 60

98

o
o
o
~-

o
o

W •
t.:)~­
CI
I­
Z
Wo
UO
0: •
w o -
0-:3'

o
o

o
o

CARD: ALL EXCEPT BGUA
** FAULTS: 17124

AVERAGE: 549
MAX H1UM: 21757

15:06:33 11/20/82

O~----r-'---+-I---'I----'I----~' ----.-,---.,----',-----.-,---.-'---.1----'1
o 1000 2000 3000 11000 5:00 6~00 7000 8000 9000 lOO~O 11000 21800

TOTRL RECOVERY TI~E (MSEC)

Figure 61

99

o
o · o
:::!"

:-

o
o · C\J '-(I""J

o
o

W •
t.:)R;
a:

-

,-

I­
Z
Wo
Uo
CC •
W~
a...

o
o · '-co

o
o .
o

o

CARD: ALL EXCEPT BGUA
FAULTS: 1712~

AVERAGE: 5~9

MAXIMUM: 21757

I

I I I I I

~

I

100 200 300 ijOO 500 eoo 700

15:06:33 11/20/82

I I I
I I I I I

BOO 900 1000 1100 21800

TeliRl RECOVERY TIME £t1SEC)

Figure 62

100

two times for most cards. For ~nstance, Figure 8 shows this variable for

CPUD using a bucket size of 1 second. This scale allows the maximum

detection t~me (9.1 seconds for th~s card) to be accommodated. But since

98 percent of all faults are uncovered within a second, a lot of informa­

tion is lost. Therefore th~s same data is replotted ~n F~gure 9 using a

bucket size of 100 milliseconds. All detection times longer than a

second are lumped together at the end of the plot. This figure shows in

much greater detail the distribution of 98 percent of detection times.

Finally, the total recovery time is also plotted several times for each

card using different scales. For example, Figures 12 and 13 show the

probability density function of this variable for CPUD with scales of 1

second and 0.1 second, respectively. The contents of Figures 8-62 will

be discussed next.

It may be observed that there is a great variat~on in pdf's of

detection, ident~f~cation, and reconfigurat~on t~mes. But there is not

much variation amongst cards for any given parameter. For ins tance,

identification t~me probabil~ty density function for CPUD (F~gure 10) ~s

very similar to that for PROM (Figure 21) or EGU (F~gure 34). But it ~s

quite d~fferent from the detection time pdf for the same card (Figures 8,

9). Characteristics of pdf's for each of the four parameters in general

rather than for each card will therefore be discussed next. Exceptions

where appropriate will be pointed out.

Probability density functions of detection time reveal the

complexi ty of the detection phase. Over 95 percent of the faults for

101

almost all the cards are detected wi thin 600 milliseconds or two R1

frames. For CPU data (Figures 8, 9) and control cards (Figures 14, 15),

this figure rises to almost 99 percent. The latency in reading error

latches varies from 0 to 340 milliseconds (one R1 frame) depending on

when the fault was injected with respect to the beg~nning of the SCC

task. Evidently, not all faults manifest themselves as bus errors right

away. For instance, about 20 percent of the faults injected in the CPU

data card are uncovered between 400 and 600 milliseconds. Evidently it

took these faults ~tween 100 to 300 msecs to cause erroneous data to

appear on the buses. But these faults are uncovered by routine programs.

Beyond this initial impulse, there is a long tail in the detection

time pdf that goes out to about 20 seconds. This corresponds to faults

that are only uncovered by self-test programs. The fraction of faults

that falls under this long tail is only about 2 to 4 percent for the

processor reg~on cards (CPUD - Figure 8, CPUC - Figure 14, PROM - Figure

20, Cache Controller - Figure 27). For the bus ~nterface cards this

f~gure ~s much higher, as seen in pdf plots for BIT (F~gure 37), BIPC

(Figure 41), and SBC (Figure 48). This is due to the fact that faults on

these boards were deliberately concentrated into error detection and

masking circu~try. Most of these faults requ~re self-test programs to be

uncovered. There is a lot of other random logic on these boards that was

not subjected to faults, and it is most likely that faults into these

circuits would be detected by routine program execution. As can be seen

from the number of faults inJected into each board, the processor region

cards have been much more thoroughly tested than the bus interface and

102

amtrol cards. (Only about 1,000 out of 21,000 were inJected 1.nto the

latter.) If they were tested as completely as the processor region,

their detection t1.me d1.stribution would tend to be closer to that for the

processor region.

The detection time pdf for BGU (Figures 32, 33) 1.S totally d1.ffer­

ent from all others with a very high number of faults being detected

between 40 and 50 seconds and the maximum going out to 2 minutes. Th1.s,

as expla1.ned earlier, is due to the fact that BGU faults were detected by

normal system reconfiguat1.on, a complete cycle of wh1.ch takes 6 m1.nutes.

Self-test programs for th1.s part of the FTMP would decrease the BGU

detection t1.mes by an order of magnitude.

Detection time pdf for all 17,418 faults is shown 1.n Figures 53

and 54. About 96 percent of all faults are detected in 600 mill1.seconds

or less. The detection time distribution for all faults except the BGU

faults shown in F1.gures 59 and 60 looks very much the same. The only

d1.fference appears 1.n the average detect1.on time, which drops from 988 to

only 378 m1.ll1.seconds. This latter f1.gure 1.S more representat1.ve of what

may be expected as the FTMP response 1.f a reasonable set of d1.agnost1.c

programs had been completed.

The next parameter 1.S the 1.dent1.f1.cation t1.me. As discussed

earlier in th1.s chapter, fault 1.dent1.fication is a determ1.n1.st1.c phase of

the recovery procedure. For a g1.ven pin fault and a given system config­

urat1.on one can say with certa1.nty as to how many passes of 1.dent1.fica­

tion program are required to isolate the faulty un1.t. Th1.S 1.S borne out

by the probability density funct1.ons for ident1.f1.cation t1.me. As seen

103

~ Figure 10, about 85 percent of CPUD faults are identified between 0

and 100 ml.lliseconds. Most of the remaining faults are identified

between 300 and 400 milliseconds. It will be recalled here that the

identification program runs every 320 milliseconds. Wha t this pdf

implies is that 85 percent of the faults are identified during fl.rst pass

of the program and the remaining ones are identified after one diagnostic

reconfiguratl.on during the second pass. The identifl.cation time pdf is

very similar for other cards as well with impulses of decreasing

magnitudes at times corresponding to 1, 2, 3, and 4 passes of the SCC

program. This density function for all the faults is shown in Figure 55.

The last recovery phase, system reconfiguratl.on, is also deter­

ml.nistl.c in nature. For a given faulty module and a given system config­

uration, a fixed amount of time is requ1red to replace the faulty

module. Reconfiguration time pdf for all the faults is shown in Figure

56. It is seen that almost all the faulty modules are removed w1thin 200

milliseconds.

Figure 57 shows the pdf of the total recovery t1me (sum of detect,

identify, and reconfigure) for all the faults. The FTMP recovers from

almost 95 percent of the faults w1th1n a second. Figure 58 shows the

exploded view of the distribution from 0 to 1 second. If the EGU faults

were excluded from the ensemble, which is reasonable to do S1nce no

self-test programs were written for 1t, the result1ng distribut10n

appears as shown 1n Figures 61 and 62. Th1s appears almost totally

1dent1cal to the pdf w1th EGU faults w1th the only exception being the

average total recovery time. This is seen to drop from 1 .16 to

104

0.549 second. In any event, the density function of the recovery time

does not appear to be exponential as assumed in reliability modeling. As

seen in Figure 62, it may be characterized as Gaussian density function

from 0 to 1 second with an asymmetric tail going out to about 22

seconds. Whether this pdf is better or worse than the exponential

pdf from the viewpoint of its impact on system reliability can only be

determ1ned through mathematical modeling. However, it is encourag1ng to

note that a very high fraction of all incidences (about 95 percent) lie

in a narrow time band around the average value.

favorable impact on the system reliability.

3.4 Actual Failures

This can only have a

The mean time between failures of an LRU was assumed in the

reliability models to be 2,600 hours. Based on the observed failure rate

during a course of 18 months of routine FTMP operat1on, the LRU MTBF can

be estimated to be at least 10,000 hours. Over 130,000 LRU operating

hours were accumulated during this time and only 12 failures were

observed. Of course, this experience has been obtained in a laboratory

environment which is not subject to the temperature variations and shock

and vibrat10n induced by turbulence and landings and take-offs. In that

regard the laboratory environment is certainly more benign. However, the

equipment was subjected to substantial power cycling much more than might

be expected in the field. Also, the electronic components were going

through their burn-in period during which they are known to have a higher

failure rate. In fact, almost all the failures observed can be attrib­

uted to burn-in.

105

Two types of components accounted for almost all the fal.lures.

One was the Harrl.s random access memory chip. There were four RAM chl.p

failures. The second component that fal.led was a new 1553 LSI chip. Six

of these fal.lures were observed. In addi tl.on, two dl.odes l.n two LRU

power converters fal.led, shortl.ng two power buses together although they

dl.d not l.mpact LRU or system operation.

Finally, an actual single pOl.nt fault occured l.n one LRU that

resulted in a total system failure. The faulty component was a voltage

regulator in the rechargl.ng cl.rcuit for the battery that provl.des LRU

backup power. This backup battery power is used to hold the contents of

the CMOS cl.rcuitry, includl.ng the configuration control registers in the

BGUs, l.n the absence of the primary power.

When the voltage regulator failed the output voltage of the backup

power going to the BGU registers exceeded the safe high limit. Thl.s

caused the LRU enable registers in both BGU cards to behave erratically

and enabled the subject LRU on multiple system buses simultaneously.

Thl.s, in turn, made the system bus useless leadl.ng to the system failure.

This fal.lure mode which is basically a common failure mode of the

two bus guardian units was not overlooked in the specifl.catl.on process.

As a matter of fact, antl.cl.pating such common failure modes the FTMP

design specl.fication called for undervoltage and overvoltage protectl.on

circuits on individual BGU cards. Unfortunately, during detailed cl.rcuit

level design of the bus guardian units the overvoltage protectl.on cir­

cUl.try was omitted from the design. This omission was not caught durl.ng

subsequent desl.gn reviews.

106

CHAPTER 4

SUMMARY AND CONCLUSIONS

A total of 21,055 pl.n level faults were l.njected l.nto the FTMP.

Of these, 17418, or 83 percent, were detected. Of the 3,637 undetected

faults at least 80 percent were estl.mated to be on unused gates and

pins. A few of the remal.nl.ng undetected faults were analyzed and found

to be long to the ' don't care' class. Further analysis of undetected

faults is requl.red to arrive at a defl.nitive detection coverage value.

Identl.fl.catl.on and reconfl.guration coverages, on the other hand, were

found to be perfect for the detected faults. The system l.dentl.fl.ed all

detected faults correctly and successfully recovered in each case.

The total tl.me to recover from a fault was doml.nated by tl.me spent

in the detection phase. Time to identl.fy a fault and reconfl.gure the

system was found to be deterministic and bounded, as expected. Average

identifl.cation and reconfiguration times were found to be 88 and 82

milll.seconds, respectively. Total recovery tl.me averaged over all 17,418

faults was found to be 1.16 second although l.t would be only 549 ml.lll.-

seconds if BGU faults were excluded. In the absence of BGU self-test

programs, which was the case here, BGU faults were solely uncovered by

very low frequency routine system reconfl.guratl.ons.

107

)

~e d1stribution of the total recovery t1me does not appear to be

exponential. However, 1t 1S encouraging to note that over 95 percent of

all faults are recovered from in a second or less.

In addition to this hard data, a number of very important though

1ntangible results were obtained as well. The hardware and software, in

general, and the fault detection hardware and the fault identification

and system configuration control software, 1n particular, performed

extremely well under the stress of thousands of faults. In a sense the

FTMP arch1tecture, the hardware, and the software have been validated

1nformally.

The test and evaluation experiments, their positive results, and

the 100 percent availability of the FTMP dur1ng 13,000 hours of routine

operation at the Draper Laboratory have all substantially bolstered

conf1dence in the FTMP concept as well as 1ts realization 1n hardware and

software.

108

LIST OF REFERENCES

1. Lala, J.H., and C.J. Smith, "Performance and Fconomy of a Fault­

Tolerant Mult1processor," Proceed1ngs of the National Computer

Conference, Vol. 48, New York, NY, June 1979.

2. Hopk1ns, A.L., T.B. Smith, and J.H. Lala, "FTMP - A Highly Rel1-

able Fault-Tolerant Mult1processor for A1rcraft," Proceedings of

the IEEE, Vol. 66, No. 10, October 1978.

,

109

1 Report No Government AccessIon No

NASA CR-l66073

4 TItle and SubtItle
DEVELOPMENT AND EVALUATION OF A FAULT-TOLERANT
MULTIPROCESSOR (FTMP) COMPUTER

Volume III - FTMP Test and Evaluat10n
7 Authorlsl

J. H. Lala and T. B. Smith III

9 Performing Organtzatlon Name and Address

The Charles Stark Draper Laboratory, Inc.
555 Technology Square
Cambridge, Massachusetts 02139

12 Sponsoring Agency Name and Address

Nat10nal Aeronaut1cs and Space Adm1nistrat10n
Wash1ngton, DC 20546

15 Supplementary Notes

Langley Techn1cal Mon1tor: Charles W. Me1ssner, Jr.
F1nal Report

16 Abstract

3. RecIpient's Catalog No

5 Report Date
May 1983

6 PerformIng OrganIzatIon Code

8 Performing OrganizatIon Report No

CSDL-R-1602
10 Work Untt No

11 Contract or Grant No

NASl-15336
13 Type of Report and PerIod Covered

Contractor Report

14 Sponsoring Agency Code

This report 1S Volume III of a four-volume final report on the Fault-Tolerant
Mult1processor (FTMP) proJect. It covers 1n deta11 the exper1mental test and
evaluat10n of the FTMP. Ma)or ob)ect1ves of th1s exerC1se 1nclude expand1ng
val1dat10n envelope, bU11ding confidence 1n the system, revealing any weaknesses
1n the arch1tectural concepts and 1n their execution 1n hardware and software,
and 1n general, stress1ng the hardware and software.

To this end, p1n-level faults were inJected 1nto one LRU of the FTMP and the
FTMP response was measured 1n terms of fault detect10n, 1solat1on, and recovery
t1mes. A total of 21,055 'stuck-at-O', 'stuck-at-l' and '1nvert-s1gnal' faults
were 1n)ected 1n the CPU, memory, bus interface c1rcuits, Bus Guardian Un1ts, and
voters and error latches. Of these, 17,418 were detected. At least 80 percent
of undetected faults are est1mated to be on unused p1ns. The multiprocessor
1dent1f1ed all detected faults correctly and recovered successfully 1n each case.
Total recovery t1ffie for all faults averaged a 11ttle over one second. Th1S can be
reduced to half a second by 1ncluding appropr1ate self-tests.

17 Key Words (Suggested by Authorlsll

Fault-Tolerance
Mult1processor
Synchronous
Reconf1gurable
Fault In)ect10n

19 Security aasslf (of thlsreportl

Unclass1f1ed

18 DIstributIon Statement

~ Distribution

Subject Category 62

20 Security Classlf (of thIS pagel

Unclass1f1ed

21 No of Pages

115

22 Pl'lce

Available: NASA's Industrial Applications Centers

End of Document

