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CHAPTER 1

INTRODUCTION

This report 1s Volume III of a multi-volume report on the Fault-
Tolerant Multiprocessor (FTMP) project sponsored by the Langley Research
Center of the National Aeronautics and Space Administration under
Contract NAS1-15336. The major topic covered by this volume 1s the test
and evaluation of the FTMP. A prerequisite for understanding this report
is some knowledge of the FTMP architecture and 1ts pranciples of opera-
tion described in Volume I and the FTMP Executive software described in
Volume II.

The reliability, performance, and availability of the FTMP have
been modeled extensively (1,2). A number of assumptions were made about
various PFTMP characteristics to arrive at these models. Some of these
assumptions, such as mean time between failures of a line replaceable
unit (LRU) can only be verified by fielding the equipment and observing
1ts fallure rate 1n 1ts real operating environment. Other assumptions,
though, are much more easily verified in a laboratory environment.
Examples of these are the mean and distribution of the time to recover
from faults and the resiliency to single point failures. FTMP response

to faults can be observed and measured much more accurately under




controlled laboratory conditions rather than in the field. This 1s one
of the motivating factors that led to a series of experiments in which
the FTMP was subjected to numerous artificially created faults while
operating routinely in a simulated aircraft environment and 1ts response
in each case was observed and recorded.

Apart from verifying modeling assumptions, there are a number of
other important reasons for experimental test and evaluation. These 1n-
clude expanding validation envelope, building confidence in the system,
revealing any weaknesses in the architectural concepts and/or their exe-
cution in hardware and software. Other benefits of the test and evalua-
tion exercise include a general stressing and shake-out of the hardware
as well as software, in particular, the fault detection hardware and the
fault identification and system configuration control software. The
results of these experiments, therefore, not only include hard data such
as fault detection and identification times but a number of intangibles
as well, These are discussed in Chapter 4.

The goal of the fault-injection experiments was to inject at least
stuck-at-0 and stuck-at-1 class of faults on every circuit pin of one LRU
and measure the FTMP response. It will bé recalled here that all ten
LRUs in the FTMP are identical to each other in hardware. In addition,
due to the symmetric architecture of the multiprocessor and the Execu-
tive, the functions performed by one LRU over a period of time are no
different from those performed by any other LRU that i1s operational and
active, Therefore, one can be fairly confident 1n assuming that the

results obtained by subjecting only one out of ten LRUs 1in the system to




faults are representative of what would be observed i1f the faults were
distributed amongst all ten hardware units. The choice of stuck-at class
of faults was necessitated by limited time and resources rather than any
deficiency 1in the experimental set-up. The fault injector, to be de-
scribed in the next chapter, is in fact fully capable of generating and
injecting a wide variety of faults including externally supplied sig-
nals. The fault injector can simultaneously produce 48 fault signals,
each of which could conceivably be applied to a different circuit pin
simultaneously. Once again, due to the previously mentioned limitations
and the astronomically high combinations of multiple faults (even just
double faults) as well as the extremely low probability of such events
ever happening in real life, it was decided to limit the experiments to a
single fault at a time.

The FTMP response was measured in terms of fault detection, isola-
tion, and recovery times. Identity of the faulty unit, as determined by
the multiprocessor, was also recorded.

It was determined early in the experiments that once the fault had
been detected 1t took a deterministic amount of time to identify the
faulty unit and to reconfigure the system such that the faulty unit was
no longer active. The fault detection time, on the other hand, was found
to be quite variable for a given fault on a given pin., This variation
was dependent on when the fault was injected with respect to the internal
FTMP frames. To reflect this variation i1in the experimental data as well
as to gain a measure of repeatability of FTMP performance, each fault on
each pin was repeated five times. The moment at which each fault was in-

serted was randomized with respect to the basic FTMP software cycle.




The next chapter describes the customized fault-injection hardware

and software and the experimental set-up. Results of the experiments are

discussed in Chapter 3 and the last chapter summarizes the conclusions.




CHAPTER 2

EXPERIMENTAL TECHNIQUES

2.1 Overall Experimental Set-Up

To inject faults into the FTMP, a device called the fault injector
(FI) was designed and built at CSDL. The fault injector interfaces with
the FTMP on one end and with the PDP-11/60 Unibus on the other end. The
number and type of faults and the time of their insertion are controlled
by Fault-Injection Software (FIS) that is resident in the PDP computer.
The PDP-11 and the FTMP are linked together by a MIL-STD 1553 bus. This
data bus 1s used by the Fault-Injection Software to communicate with the
System Configuration Control (SCC) task in the FPTMP. This then makes the
experimental set-up a closed loop system in which the executor, that is,
the FIS, and the victim, that is, the FTMP, are in constant touch with
each other. This, as shall be seen later, makes it possible to automate
the fault-injection process and to collect data that otherwise would not
be possible to acquire.

Figure 1 shows a block diagram of the experimental set-up. The
victim LRU 1s in the upper right hand corner of the FTMP cabinet. This
1s LRU 3. Access to the electronic components in this unit 1s provided

by opening the swing down door on the FTMP cabinet, This exposes the LRU
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circuit boards which may then be extended for fault insertion. Faults
are normally injected on one pin at a time. To insert faults, control-
lable DIP extenders or implants (part of the fault injector) are plugged
into the DIP socket. Each implant accepts the DIP pins 1t replaced and
contains circuitry which can interrupt and/or reconnect each DIP pin and
each incident signal line from the socket. Six implants, each of which
handles 8 DIP pins, are provided. Thus up to 48 pins on one DIP or on a
combination of DIPs may be set up for fault injection at a given time.
The standard circuit boards in the FTMP are multi-layer printed circuit
boards on which the DIPs have been soldered. However, to facilitate
removal of DIPs for fault injection, one complete set of circuit boards
for one LRU has been furnished with DIP sockets.

The 48 implant pins of the fault injector are individually addres-
sable by the PDP-11. Each pin appears as a Unibus address to the fault-
injection software. The type of fault to be produced at any pin is
controlled by writing appropriate data to the Unibus address correspond-
ing to this pin. Once a fault or faults have been defined, they can be
'‘enabled,' that 1is, inserted into the victim by writing to another Unibus
address. The fault injector hardware listens to this address space,
decodes the data, and produces the fault that 1is called for. It also
enables or clears the fault when appropriate data is written to the
enable/clear address.

It is possible to produce signals other than simply stuck-at class
of faults. Faults that are boolean functions of signals on other pins

can be generated. This can be used to simulate faults which are rather




unlikely but which have been known to have happened., For example, it 1s
possible to turn a NAND gate into a NOR gate. But the main utility of
this capability lies in being able to inject faults into tristate sig-
nals. For example, the data pins of a random access memory have signals
that are either inputs to or outputs from the memory depending on whether
memory is being written to or read from. To inject a fault into such a
device pin, the direction of the fault signal should be correct in order
to avoid any possible damage to the device. Such a signal can be pro-
duced by generating the fault as a function of other signals on the
device that determine the direction of the data such as read/write and
chip enable signals on the RAM DIP.

The fault injection software has been written to facilitate auto-
matic fault 1injection by providing commands that are used to define the
victim device, map its pins into implant pins, define type of fault for
each pin, and enable and clear faults. The FIS can execute a string of
such commands, making 1t possible to go through a number of faults auto-
matically once the victim device has been moved to the implants physic-
ally. A second condition necessary for automatic fault injection is some
form of communication between FIS and the FTMP to indicate whether the
FTMP is ready to accept a new fault. Messages between FIS and the
multiprocessor are exchanged over a 1553 data bus. A modified version of
the system configuration control program, called the FSCC, 1s responsible
on the FTMP side for this protocol. Messages from FSCC are sent through
I/0 port O or 1 over the 1553 bus to a 1553 remote terminal simulator.

The RT DMAs the messages into the PDP-11 memory, which then can be




accessed by the FIS program. The same data path is used 1in reverse to
send messages from FIS to FSCC. Value of the FTMP real-time clock at the
time of fault detection, identification, and recovery is recorded in the
FTMP and sent to FIS. Since the time of fault injection is known to FIS,
the difference between the times of fault detection and injection
constitutes the time taken to detect the fault. This along with the
identification and reconfiguration times and their sum are recorded in

the PDP-11 for later analysis.

The fault injector hardware, fault injector software, and FSCC are

described in the next three subsections.

2.2 Fault Injector Hardware

A functional block diagram of the fault injector is shown in Fig-
ure 2, The heart of the fault injector is a pair of FETs that is inter-
posed between the device pin and the socket pin. By turning the FETs on,
a direct connection is established between the device and the socket.
This is the normal situation when no fault 1s being injected on the pin.
The device-~socket connection can be severed by turning the FETs off. Now
any desired signal may be applied to the device or the socket pin, which-
ever pin has the input signal (see Figure 3). A choice of eight signals
is provided, one of which may be selected by multiplexer M1 for the
device pin and by multiplexer M2 for the socket pin, as shown in Figure
2. A set of 48 FET and mux pairs are provided, one palr for each victim
pin. This allows one to extend up to 48 pins on one DIP or a combination

of DIPs. The choice of faults for each circuit pin is as follows.
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1. Socket/Device Signal: This provides the original signal to
the victim pin. That 1s, no fault is ainjected,

2. Mux A: This signal is the output of the multiplexer A as
shown in Figure 2, The inputs to the multiplexer are the 48 signals from
the 48 pins that can be extended with the FETs. That is, a signal from
any circuit pin or gate may be used as the fault or input signal for the
victim pin.

3. Mux B: This multiplexer has the same function as Mux A.

4. Mux C: This multiplexer also has the same function as Mux A.

5. f(AB): This signal is a boolean function of two signals, the
outputs of multiplexers A anQ/B. Any one of sixteen possible boolean
functions may be specified.

6. F(aA,B,C): This is a boolean function of £{A,B) and the output
of Mux C. Any one of sixteen possible boolean functions may be speci-
fied.

7. Ground: This provides the stuck-at-0 fault.

8. EXT: In addition to these seven choices, an externally
generated signal may be used as a fault.

Each of the above eight signals may also be inverted before being
applied to the victim pin, thus providing a choice of sixteen faults.
The choice of faults thus includes stuck-at-1 and 'complemented signal'
type of faults.

Multiplexers A, B, and C and the boolean function generators
provide an extremely powerful capability to generate any type of fault.

For example, certain faults in integrated circuits can change a NAND gate

12




into a NOR gate. It is possible with this fault injector to simulate
such a fault by extending all the input and output pins of the target
gate with the FETs, generating the required boolean function using inputs
from the gate inputs and replacing the gate output with this signal. The
main utility of this powerful capability, however, lies in the ability to
inject faults on tristate signal lines. The direction of the fault can
be made a function of other signals on the device, signals that determine
the state of the tristate pin. It is thus possible to inject faults into
the data pins of memory chips and other tristate devices,

The fault injector hardware is physically packaged as shown 1in
Figure 4. The FET pairs are mounted on an implant segment. Two sizes of
implants are provided: 4 pin extenders and 8 pin extenders. An 8 pin
implant has 16 FETs mounted on it and can extend one side of a 16 pin
DIP. Dummy extenders that simply connect socket and device pins without
going through a FET are also provided. These are used to extend those
device pins that are too sensitive to sustain the capacitance and/or time
delay of an intervening FET.

In any event, the FET implants are connected to multiplexer boards
through a flat ribbon cable. As mentioned earlier, the fault injector
has the capability of extending 48 device pins. Signal on each of these
pins is controlled by a dedicated pair of multiplexers M1 and M2 (see
Fiqure 2). Thus there are a total of 48 pairs of muxes. These are
packaged on six multiplexer boards as shown in Figure 4. Each board
controls 8 pins. One 8 pin implant or two 4 pin implants may be con-

nected to each board. The six boards, labeled A, B, C, D, E, and F, are

13
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identical multiwire boards. Each of them also contains one sixth of the
multiplexers MA, MB, and MC. That 1s, each of the three 48:1 muxes (A,
B, and C) is logically partitioned into six 8:1 muxes. Since a board
handles 8 pins, a signal from these eight pins can be selected through
the 8:1 mux (A, B, or C) on that board. The outputs of six logical parts
of each 48:1 mux are OR'ed and distributed to all six circuit cards via
the backplane. All 48 signals are then made available to each board.
Each board also has its own copy of the three boolean function generators
shown in Figure 2, Functions f£(aA,B), F(A,B,C), and Ss(a,B,C) can be
produced on any board. These signals, along with outputs of muxes Ma,
MB, and MC form inputs to the muxes M! and M2.

Last, but not least, is the selection and control of FETs,
multiplexers and boolean function generators, and enabling and clearing
of faults. The fault injector has been designed such that it can be
addressed as a unibus device by a PDP-11 or VAX-11 computer. The data
written to the unibus address space of the fault injector is used to
perform the selection and control functions. As shown in Figure 4, the
backplane of the multiplexer boards is connected by four flat-ribbon
cables to a control and unibus interface card., This is a double-heaght
wire-wrap board that can be plugged into the PDP-11 unibus. It has the
standard unibus protocol and address decoding circuitry. The fault
injector occupies the address space 764600-764777 (octal). This address
space 1s mapped as shown in Table 1.

Circuitry controlling signals on each of the 48 pins (muxes M1,

M2, and FETs) is addressed individually (addresses 764600 to 764736).
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Table 1. Fault Injector Address Space

Address Mux
764xxx Board Pin
600-616 A 1 to 8
620-636 B 1 to 8
640-656 (o] 1 to 8
660-676 D 1 to 8
700-716 E 1 to 8
720-736 F 1 to 8
740 MUX A
742 MUX B
744 MUX C
746 Boolean Function Select
752 Execute/Clear Fault
750 and UNUSED
754-7717

Data written to these addresses selects one of eight inputs to mux 1 or 2
and controls the point of fault insertion {(device or socket) by choosing
mux M1 or M2, This 1s a static operation. That is, the data written to
these addresses is latched in the fault injector. The type and direction
of fault signal is thus determined, but the signal is not applied to the
victim yet. To actually break the device-socket connection and inject

the fault signal, one must write to Execute/Clear address 764752.
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Writing a "0001" to the address enables the chosen multiplexer M1 or M2
on the chosen pin as well as turns the pair of FETs on that pin off.
Faults on all the previously "enabled" ping are asserted simultaneously.
The most significant bit of the fault selection data word determines if a
pPin is enabled., Writing a "0002" to the Execute/Clear address disables
the muxes and turns the FETs on, thus clearing the fault condition.

Bits 0-3 of the data word select the type of fault going to the
device pin, bits 4-7 select the fault going to the socket pin, and bits
8~11 determine the direction of the fault (to device or to socket) as

shown below in Figure 5.

15 14 13 12 1 10 9 8 7 6 5 4 3 2 10
EN/
DIS 0 0 1 X Y zZ

Figure 5. Fault Description Word

Bit 15 enables/disables the pin. A pin must be enabled before a fault
defined on it can be asserted. Bit 15 must be 1 for the pin to be en-
abled. Bits 12, 13, and 14 should always be as shown in Figure 5.

If fault direction field is 0, the fault as determined by data
bits Y is sent to socket pin and data bits Z are ignored. If X is 8, the
fault as determined by Z is sent to device pin and Y is ignored. 1In ad-
dition to 0 and 8, there are fourteen other values that can be assigned
to X. Fault direction selected for these values of X is explained later

in this section.
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Table 2. Fault Type Selection

Y/2 Fault Signal

0 Inverted Signal
1 F(A,B,C)
A
B
C
£(a,B)
1
EXT
Original Signal

F(a,B,C)

al w| »|

£(a,B)

M oH O Q W oY 0w 0o NS0 ! s W N

EXT

Y and Z select the fault signal as shown in Table 2, If Y/Z2 is 8,
the original signal i1s passed through the multiplexer unchanged. Stuck-
at-1 and 0 faults can be generated by a value of 6 and "E," respective-
ly. The signal can be inverted if ¥Y/Z is 0. Other more complex faults
can be chosen as outputs of multiplexers A, B, C or a boolean function of
their outputs (Y/Z = 1 to 5, 9 to "D").

If a multiplexer A, B, or C output is either used directly as a

fault or as input to a boolean function generator, it is necessary to
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select the multiplexer source. This is done by writing to the unibus
address of the multiplexer. Data written to multiplexer address 1is

interpreted as shown 1in Figure 6.

15 6 5 4 3 2 1 0

NOT USED BOARD PIN

Figure 6. Mux A, B, C Selection Word

Bits 3, 4, 5 select one of six boards A to F. Bits 0, 1, 2 select one of

eight pins on that board as the mux output. These are shown in Table 3,

Table 3. Mux A, B, C Source Selection

Data Bits Board Bits Pin
345 Selected 012 Selected

OV wWwN =
MEOOw >
NoOUMd WN = O
0NV S WN =

If a boolean function such as £(a,B) or F(A,B,C) is chosen as the

I

desired fault, then one must also define the boolean function by writing
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to function select address 764746 (octal). The data written to thas

address 1s 1nterpreted as shown in Figure 7,

15 12 11 8 7 4 3 0

Unused F(f,c) S(f,c) £(a,B)

Figure 7. Boolean Function Generator Data Word

Bits 0-3 are used to select one of sixteen boolean functions of signals A
and B. Bits 4-7 are used to select F(A,B,C), which 1s one of sixteen
boolean functions of £(A,B) and C. Bits 8-11 are used to select
s(A,B,C), which 1s also one of sixteen boolean functions of f£(A,B) and
C. The sixteen possible boolean functions of two variables are shown 1in
Table 4.

As noted earlier, the fault direction (to device or to socket) is
controlled by a 4-bit field X as shown in Figure 5. X can assume one of
16 possible values, These are interpreted as shown in Table 5,

If the fault direction signal chosen by X is high the fault is as-
serted on a socket pin. If 1t 1s low, the fault 1s asserted on a device
pin.

For X equal to O the fault direction signal 1s high and the fault
is sent to socket. For X equal to 8 the fault 1s applied to device. The
fault direction i1n these two cases 1s static. For other values of X the
fault would be dynamically applied to the socket or device pin depending

upon whether the chosen signal i1s high or low, respectively. The signals
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Table 4. Boolean Functions of Two Variables

Data Boolean Function of A, B
0 ¢
1 A.B
2 AB
3 B
4 AB
5 A
6 A+ B
7 A+ B
8 AB
9 A+ B
10 A
11 A+B
12 B
13 A+ B
14 A+ B
15 1

that can be used for direction control are the outputs of multiplexers A,
B, C, or their boolean functions f(A,B), S(A,B,C) and their complements.
This allows one to dynamically control fault direction on tristate pins.
As explained earlier, fields Y and Z in the fault description word
determine the type of fault to be applied to socket and device pins,
respectively (see Figqure 5). When X is equal to ¢ or 8 only one of these

two fields (Y when X is 0 and Z when X is 8) need be defined. However,
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Table 5. Fault Direction Control

Fault Direction

>

0 TO SOCKET

1 s(a,B,C)

woon
w| >

>
al

£(a,B)
NOT USED
NOT USED
TO DEVICE
s(a,B,C)
A

B

C

£(a,B)
NOT USED
NOT USED

LT < I w B SR + < B — B Ve IR o < IR N B )N

both Y and Z must be defined when x is not O or 8. But Y and Z need not
be the same. That is, different faults can be applied to socket and
device pins. In fact, by an appropriate choice of Y and Z a fault can be
applied 1n one direction while the original signal is passed through un-
changed in the other direction. One may, for example, wish to insert a
fault in a data pin of a memory chip only when data is being read out but
not when data is being written into the memory. This cah be done by

selecting a fault direction signal that is high during the memory read
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cycle. The fault selected by Y would be applied to the socket pin during
the read cycle. By choosing Z to be 8, correct data would be written to
the memory during memory write cycle since Z = 8 passes the ariginal sig-
nal to the device pin. . ’

Multiplexer output selection and boolean function definition are
static functions. Data written to these addresses is latched 1in the
fault injector.

It should be mentioned here that the fault injector is a 'write-
only' device. State of the fault injector cannot be determined by read-
ing its address space.

It is not necessary to remember various addresses of the fault
injector since the fault injector software maintains these tables as a
data base. FIS provides appropriate commands to define fault types and
select mux outputs. The next subsection describes the fault injection

software.

2.3 Fault Injection Software

The fault injection software (FIS) package resident on the PDP-11
provides commands at a PDP-11 terminal to perform all the functions
necessary to inject faults into LRU 3 of the FTMP and observe and record
the results. The FIS program is invoked by the command FIS. Valid FIS

commands and their functions are as follows:

DEFINE Unn M: This command defines an M pin IC package whose
location on the FTMP circuit board is Unn. Last package so defined

becomes the 'active' package.
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MAP n AM £: This maps pin n of the active package into pin m of
the multiplexer board A of the fault injector. 2~1 subsequent device
pins are mapped to £-1 subsequent board A pins. Device pins may be
similarly mapped into pins of boards B, C, D, E, and F by substituting
the appropriate letter in place of A in this command. This mapping
allows one to reference device pins directly 1n subsequent commands.
This mapping is stored as one of the FIS data bases.

DESCRIBE n abcd: This command defines the fault (abcd) to be
injected into pin n of the active package. abcd is a 16-bit hexadecimal
number that defines the fault as shown earlier in Figure 5 and Table 2.
No mnemonics are provided to define the fault type and one must consult
this table to create the fault selection data word. The FIS program
converts the device pin number into the implant address wusing the
previously defined pin mapping data base and the fault injector address
data base. The data word abcd is then written to this unibus address.
The data is latched in the fault injector hardware but the selected fault
is not yet asserted.

SELECT Packagename: Subsequent MAP, DESCRIBE, and ENABLE commands
refer to the selected package.

MUX n Unn m: This command is used to select pin m of package Unn
as the output of the multiplexer A, B, br C depending on whether n is 1,
2 or 3., Valid values for m are 1 to 48. The FIS program maps the
package pin in question into a board and pin number and formats an
appropriate data word as defined in Fiéure 6 and Table 3 of the previous
section, This data word is then written to the unibus address

corresponding to the selected multiplexer.

I
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IFUNC abcd: Thas command 1s used to select the boolean function.
One must consult Figure 7 and Table 4 to construct the function select
word abcd. This command simply writes this word into the function select
address.

ENABLE n: This enables or selects pin n of the active package. A
pin must be enabled before a fault can be asserted on it. The FIS
program enables the pin by writing the fault selection data word
{previously defined for this pin) OR'ed into "8000" (hex), that is, with
the enable/disable bit turned on. It will be recalled here that the
fault injector hardware 1s a 'write-only' device. Therefore, a shadow of
all faults previously defined by Describe commands 1s maintained as an
FIS data base.

DISABLE n: This disables or deletes pin n of the active package.
This is done by writing the fault selection data word previously defined
for this pin with the enable/disable bit turned off.

DUMP: This command is used to dump on the terminal the fault
description, mapping and enable/disable status of each of the 48 pins of
the fault injector.

EXEC: This command actually 1njects or asserts faults on those
pins that have been enabled. This is done by writing 1 to the
Execute/Clear address. Ten seconds later the fault condition is cleared
by wraiting 2 to the same address.

AUTO n: This command repeats the EXEC function n times. However,
before 1njecting a fault, a 'Get Ready' command 1s sent by FIS to FSCC
program in the FTMP. The system configuration controller in response to

the command checks the status of LRU 3 and brings it on-line if they are
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not already active. An 'I am Ready' signal 1s sent back by FSCC to FIS.
The FIS program walts for a random time between O and 999 msec before
inserting the fault. This allows the fault insertion time to be suffi-
ciently randomized with respect to the FSCC task which 1s also respon-
sible for detecting faults in the FTMP.

OUTPUT filename: This command saves the results of the fault
injection experiments 1in the specified file. The results consist of
fault detection, 1isolation, and reconfiguration times and the total
recovery time, that 1s, the sum of the FDIR tames.

The core of the FIS program 1s written in FORTRAN IV PLUS. It
uses the line parser provided by the RSX-11M operating system to inter-
pret the commands described above, Once a valid command has been identi-
fied, appropriate subroutines are called to perform the required func-
tion. This may involve updating 1its data base such as that required by
DEFINE and MAP commands or it may require computing a unibus address by
consulting its data base and writing data to this address. An assembly
language subroutine actually does the I/0. The FIS program also communi-
cates with the FSCC task in FTMP 1in response to the AUTO command. The
FIS-FSCC protocol 1s described in the next section.

EXIT: This command is used to exit from FIS program.

2.4 FscCC

FSCC 15 a version of the System Configuration Control (SCC) task
in the FTMP that has specifically been modified to work with the FIS
program in the PDP-11., It 1s assumed here that the reader is familiar
with the contents of Volume II which describes the basic SCC program in

detail.
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There are two major differences between SCC and FSCC. First, FSCC
does not cycle spare processors, memories, or buses into active state.
It maintains a fixed system configuration under normal circumstances. Of
course, if it detects a fault 1t would try to identify the faulty unit
and reconfiqure it out of the system. Second, by communicating with FIS
it ensures that the victim LRU, that is, LRU 3, is active before FIS
ingerts a fault into one of the LRU pins. The FSCC-FIS protocol works as
follows:

When FIS is ready to inject a fault, it sends a 'Get Ready'
message or command word to FSCC. FSCC looks at this word in its normal
mode. If it is true, the FSCC state is changed to 'Reconfigure' and the
reconfiguration state is initialized to 13. Recall that SCC state 13
corresponds to cycling spare units. In FSCC spares are not cycled.
Instead in this state the status of processor 3 and memory 3 is checked.
If they are failed, they are repaired by changing their status in the
system confiquration tables. The reconfiguration state is changed to 100
so that on the subsequent FSCC pass the spare units, viz. processor and
memory 3, can be assigned to shadow active triads. If the units were not
failed, the state is changed to 14. 1In this state, swap commands are
issued to swap processor and memory 3 into active members of their parent
triads. The state is changed to 15, Also, a signal called ‘Acknowledge
Get Ready' is sent to FIS acknowledging that the Get Ready command has
been received and acted upon by FSCC. FIS then clears Get Ready.
Clearing the command prevents FSCC from needlessly checking the status of

LRU 3 repeatedly. FSCC stays in state 15 until swap commands have been
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executed. It then sends an 'I am Ready' message to FIS indicating that
LRU 3 components have been repaired and are in the active state. The
detect, identify and reconfiguration times are simultaneously cleared to
zero. FSCC then resumes its normal state. In this state it reads error
latches and does fault detection.

After receiving the 'I am Ready' message, FIS waits for a random
length of time that is uniformly distributed between 0 and 999 milli-
seconds. This corresponds to between 0 and 3 cycles of the FSCC task.
This random wait assures that the fault is not always injected at the
same time with respect to execution of the fault detection program in the
FTMP.

When FSCC detects the fault it notes the value of the FTMP Real
Time Clock. The clock values at the instant of fault identification and
system reconfiguration are also recorded. FSCC thus has all the
information to compute the time intervals between fault detection and
fault identification as well as that between identification and system
recovery. The identification and recovery time intervals can be computed
with an accuracy equal to the least count of the Real Time Clock which is
1/4 millisecond. However, FSCC can not compute the fault detection time
since it does not know when the fault was injected. To compute detection
time, the PFTMP time base, that is, the Real Time Clock, is sent to FIS
every R4 frame. Typically, R4 rate dgroup iteration period is 40
milliseconds. Therefore the FIS program knows the FTMP time of fault
injection to within 40 milliseconds. Although this biases the detection

time on the average 20 milliseconds (towards higher values), as will be
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seen in the next section, this is not a significant amount of error in
the overall detection time distribution. At any rate, the Real Time
Clock is sent to FIS every R4 frame. The value of the RT Clock at the
time the fault is detected, identified, and recovered 1s also sent to
FIS. FIS then computes the detection, identification, and recovery time
intervals and records them in a file,

The fault condition is cleared as soon as the FTMP has recovered
from the fault. FIS keeps track of FTMP's progress in recovering from
the fault by monitoring the FDIR times being sent to it. Recall that
these locations are cleared to zero before a fault is injected.
Therefore as each of these words assumes a non-zero value 1t shows FTMP's
progress through various stages of system recovery. To assure that there
is no deadlock in the FSCC-FIS protocol, a number of t;me-out conditions
are provided. If after a predetermined time the FTMP has not detected
the fault, the fault signal is removed and the FIS program proceeds to
the next command 1line. Similar timeouts are provided for the
1dentification and recovery phases. The length of these timeouts can be
chosen when the FIS program is initially invoked.

The block of data exchanged between FIS and FSCC is as shown in
Table 6. Note that the Real Time Clock as well as all other time values
are two 16-bit words.

With the exception of cycling of spares and the changes in the

system configuration controller described here, the rest of the software

being executed by the machine while undergoing fault injection is that
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Table 6., FIS-FSCC Data Exchange Block

Data No. Words

FIS to FSCC

Get Ready 1

FSCC to FIS

Real Time Clock 2
Detect Time 2
Identify Time 2
Recover Time 2
Faulty Unait 1
Reason Code 1
Ack. Get Ready 1
I am Ready 1

described in Volume II of this report. This consists of the Executive,

Self-Test programs, console display, autopilot and other applications
code that normally runs on the FTMP.

The next chapter describes the results of the fault injection

experiments,
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CHAPTER 3

RESULTS

3.1 General Observations

Faults were injected in pins of eight circuit boards, These
boards are CPU Data Path, CPU Control Path, Processor Read Only Memory,
Processor Cache Controller, Bus Guardian Unit (A), Bus Interface
(Transmit Bus), Bus Interface (Poll and Clock Buses), and System Bus
Controller. Although the overall process of physically setting up each
device for fault injection, selecting 'safe' pins as targets, running the
experiments and acquiring data was quite tedious and time-consuming, it
went rather smoothly. There were some minor diffsbcultles encountered
with some devices and circuit boards, but once past the initial learning
curve these were overcome quickly. One of the irritating factors was the
extreme sensitivity of some devices to being extended on an Jimplant.
Parent module of such a device would not function correctly in the
presence of an intervening pair of FETs and would be discarded by the
system immediately. One obviously had the choice of ignoring that device
for the purposes of fault injection and moving on to another circuit. 1In
fact, since the correct functioning of the parent module apparently is so

dependent upon that device, it is evident that a fault in the target
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device would be detected immediately. One may therefore not worry too
mach about not being able to subject such a sensitive circuit to artifi-
cially created faults. However, as 1t turns out the sensitivity of a
device to being extended through FETs is usually limited to one or two
pins only. Once these pins have been identified (a rather tedious
procedure), they can be extended with dummy implants while the remaining
pins on that package can be extended through FETs. This procedure was
followed for most of the sensitive packages. Since no data was acquired
on sensitive pins, these pins are not included in the data analysis.

Some packages were only marginally unhappy over being extended.
That is, LRU 3 would work correctly with such a device moved to an
implant most of the time but not all the time. The result was that the
unit would occasionally be declared failed by the FTMP even before a
fault was injected. This obviously produced negative fault detection
time. This, however, happened very infrequently and the results
presented here, of course, exclude negative detection times.

One other practical problem that prevented subjecting some boards
to fault injection was the extreme caution required in handling CMOS
circuit devices. The memory chips on processor cache RAM and system
memory boards are all CMOS type.

A few faults were injected in the cache RAM board but soon the
socketed circuit board stopped working, most 1likely due to inadequate
care exercised in removing and inserting CMOS memory chips. The cache
RAM and the two system memory cards i1n each LRU are all identical and
only one socketed circuit board was provided for all three. No useful

data was acquired for any of the three applications of this card. The
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two BGU cards also contain a lot of CMOS circuitry. Only 294 faults were
injected in the BGU card before it too ceased to operate correctly.

Despite all the practical problems encountered, over 20,000 faults
were injected into LRU 3 of the FTMP and the results recorded. Most of
the faults were concentrated in the processor region of the LRU, the CPU
data and control cards, the cache controller, and the PROM. However, a
number of faults (over a thousand) were also injected into the error
detection and masking circuitry as well as redundancy management hard-
ware. The hardware voters, disagreement detectors, error decode ROM, and
error latches for the Poll, Transmit, and Clock buses were subjected to
faults as were enable/disable discretes in the Bus Guardian Unit. Parts
of the System Bus Controller were also targeted for fault insertion.

Of the 21,055 faults injected in the FTMP, 17,418 were detected.
That is, 3,637 or 17.3 percent of the faults went undetected. Although
these results would seem to imply that the fault detection coverage in
the FTMP is only 0.83, this is not necessarily so. For, to convert the
fraction of faults undetected directly into lack of coverage 1s not
correct. One must exclude from this total those undetected faults that
'do not matter.' There are a number of faults that obviously belong to
this class. For instance, 1f only three gates from a quad NAND package
are actually used on a card, whether the fourth unused gate operates
correctly or not is quite irrelevant. Faults in this gate would not be
detected but do not contribute to lack of coverage. Unused gates are
easy to trace. Unused signals, on the other hand, are not. Faults on

these signal pins would also go undetected but once again do not really
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affect coverage. The CAPS-6 processor microcodf in the FTMP, for
example, does not utilize all the outputs of the AMD;901 Arithmetic Logic
Unit (ALU). This can be ascertained only by an exhaustive search of each
and every microinstruction to make sure that the output in question is
not looked at. Such a study is outside the scope of this project.
Approximately 80 percent of all undetected faults, or about 3,000 faults,
were either on unused gates or on signals that are always low or always
high under normal circumstances. Of the remaining 20 percent undetected
faults, a few were analyzed in depth and were all found to belong to the
'don't care' class. Since each pin fault is repeated five times, the
number of pins in question is about 60. However, a much more thorough
analysis of all the undetected faults is required before a definitive

statement can be made about fault detection coverage. Further discussion

here is limited only to the faults that were detected.

3.2 Average and Maximum Times

As mentioned earlier, 17,418 faults were detected., All of these
faults were 1dentified correctly and the system successfully recovered
from each of these faults by purging the faulty module and replacing it
with a spare or gracefully downgrading the system when no spare was
available. Based on these results one could conceivably argue that the
fault identification and recovery coverages are each one hundred percent
as far as the detected faults are concerned. It is, of course, not
possible to extrapolate this perfect record for faults that were not
detected and for LRU pins that were not subjected to faults during these
experiments. As mentioned earlier, detection, identification, and

reconfiguration times were computed for each fault. The three phases of
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recovery were also summed to give the total recovery time for each
fault. These results are summarized in Tables 7 and 8. The first of
these tables lists the average detection, identification,
reconfiguration, and total recovery time in milliseconds for each of the
eight cards. The last column in this table shows the average FDIR times
for all 17,418 faults. Table 8 shows the maximum times recorded in each
category for each card, also shown in milliseconds,

There are certain obvious conclusions that can be drawn from
figures in these tables. Let us start with the last phase of the recov-
ery procedure first, that is, system reconfiguration phase. This phase
begins as soon as the identity of the faulty module is known. At thas
point in time, the System Configuration Control (SCC) task is being
executed., It will be recalled here that this task runs at the lowest
frequency or R1 rate group (3.125 Hz). It passes the 1identity of the
faulty unit on to the R4 dispatcher. The R4 dispatcher running at 25 Hz
issues appropriate reconfiguration commands 1in its prolog to remove the
faulty unit from the system. The reconfiguration phase is complete as
soon as the faulty unit is replaced with a spare or the system gracefully
degraded in the absence of a spare. The average reconfiguration time as
seen in Table 7 is between 46 (SBC) and 113 (PROM) milliseconds depending
upon the type of card. That is, on the average it takes between two and
three R4 frames to reconfigure the system. The average reconfiguration
time for all the faults is 82 msecs or two passes of R4 dispatcher. The
overall average is weighed heavily by the processor region which was the

subject of most faults. The average reconfiguration times for the
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Table 7. Average Times (Milliseconds)
BOARD CPUD CPUC PROM CC BGUA BIT BIPC SBC ALL ALL EXCEPT BGUA
# FAULTS DETECTED|7266 4761 783 | 3508 294 214 235 357 17418 17124
DETECT| 312 349 589 314 36554 1920 1361 678 988 378
IDENT 82 99 59 59 133 147 229 263 88 88
AVERAGE
TIME
RECONF| 80 83 13 88 47 53 A 46 82 82
TOTAL 474 532 763 462 36735 2121 1662 988 1160 549
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Table 8. Maximum Times (Milliseconds)
BOARD CPUD CPUC PROM CcC BGUA BIT BIPC SBC ALL
# FAULTS 7266 4761 783 3508 294 214 235 357 17418
DETECT 9137 15817 21614 8122 118437 11592 4818 17056 118437
IDENT 1009 780 810 1204 993 813 931 1625 1625
MAXIMUM
TIME
RECONF 289 190 242 546 115 198 243 195 546
TOTAL 9223 16231 21757 8182 118843 11707 4887 17604 118843




processor region are higher than all others, though the variation from
card to card 1s quite small. The maximum reconfiguration times are also
higher for the processor region (CPUC, CPUD, CC, and PROM) than all
others, as seen i1n Table 7. How long 1t takes to replace a faulty module
with a spare 1s, of course, dependent on the instantaneous system
confiquration. For instance, 1f the triad containing the failed
processor 1s being shadowed by a spare processor the reconfiguration will
be done simply by swapping failed and shadow processors on the bus
lines. This takes only one pass of R4 dispatcher. On the other hand, 1f
the spare is shadowing another triad it would be necessary to retire the
target triad and synchronize spare with the target triad members. This
obviously takes much 1longer since the target triad must complete all
tasks 1n progress before retiring. In any event, the reconfiguration
process 1s deterministic and bounded. The maximum time 1n the table, 546
msecs (CC), corresponds to the scenario just described.

The recovery phase just preceding system reconfiguration is fault
identification. This phase begins as soon as a fault 1s detected. This
happens 1n the SCC task. It terminates as soon as the fault source ais
located. This also happens i1n the SCC task. The interval between these
two events 1s the fault identification time. Faults may be identified
simultaneously with their detection in some cases. This usually occurs
when a self-test program uncovers the fault. Since diagnostic programs
know which region 1s being tested, they can usually identify the faulty
module immediately. In other cases several reconfigurations may be

required to sort out the fault symptoms. The average identification time
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1s seen to vary from 59 (PROM and CC) to 263 (SBC) milliseconds with the
system-wide average being 88 milliseconds. Since one R1 frame 1s 320
milliseconds, it may be concluded that most faults are identified
immediately. 1Indeed the average time for the processor region cards is
between 59 and 99 milliseconds. This is because symptoms of a failed
processor appear on two buses simultaneously, the Poll bus and the
Transmit bus. In most cases this combination is uniquely associated with
only a single processor in the system. Most processor faults are there-
fore i1dentified immediately. The question may therefore be asked as to
why 1t even takes 60 to 90 milliseconds to look up the bus assignment
tables. Actually it does not really take that long to consult the appro-
priate data base in the shared memory. What happens in fact is that the
SCC task of being the lowest priority i1s interrupted by higher priority
tasks. It will be recalled here that the R4 rate group tasks are
executed eight times and that the R3 rate group tasks are executed four
times for every iteration of R1 tasks (SCC). Hence the identification
program can be interrupted many times between start and finish. The
identification time is measured as the total elapsed time and not as the
length of time the program is active. This is, of course, as 1t should
be.

The maximum identification times are seen to vary between 780
(cPUC) and 1625 (SBC) milliseconds with the maximum for the processor
region being 1204. This parameter, like the reconfiguration time, 1is
deterministic and bounded. The worst case scenario here 1s a fault on a

bus that has four memory units enabled on it. If the bus itself 1is
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faulty, it would take four diagnostic reconfigurations to isolate the bus
from all other suspects. This translates into five passes of the SCC
program and corresponds to the maximum time observed during the course of
the experiments.

The fault detection phase is what starts the recovery process.
This is more complex than other parts of the recovery procedure. Once a
fault is uncovered, the ensuing processes are quite mechanical. The un-
covering of a fault is, however, considerably more involved. Clock for
the detection phase starts ticking as soon as the fault is injected under
the command of the fault injection software running in the PDP 11/60.
Faults are usually manifested as disagreements on one or more buses.
These are recorded in error latches which are read by SCC every 320
milliseconds. The detection phase terminates when SCC digests error
latch outputs and determines that they indicate an ‘'unexpected' bus
error. Recall that some bus errors may always exist such as those on an
unused clock bus or on a failed bus and so on. In any event, this time
interval is the detection time. As explained in Chapter 2, the time of
fault injection is not known to SCC and 1s known to Fault Injection Soft-
ware as the most recent value of the FTMP Real Time Clock which 1is sent
to FIS every 40 milliseconds. Therefore the fault detection time as
recorded in the experiments 1s higher than the real value anywhere from O
to 40 milliseconds or an average of 20 milliseconds. The average detec-
tion time for all the faults from Table 6 is seen to be 988 milli-

seconds. Therefore, the error is only about 2 percent.
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The average detection time is seen to vary from 312 milliseconds
for the CPU data card to over 36 seconds for the BGU card. Now if a
fault manifested 1itself as an error on the bus soon after it was
injected, the detection time would mostly consist of latency in reading
error latches. Since error latches are read every 320 milliseconds on
the average, this latency should only be 160 milliseconds. The average
fault detection time for the processor region is around 300 milliseconds
for the CPUD, CPUC and cache controller cards and 589 milliseconds for
the PROM card. This implies that on the average there is considerable
latency between fault injection and error manifestation. This is mostly
due to the fact that not all parts of the processor region hardware are
being used all the time. This is quite obviously true of the Read Only
Memory. There 1s a considerable fraction of the PROM that contains
programs that are invoked only when an error is detected. Faults in this
region of the memory would not be uncovered until another fault manifests
itself. The PROM 1s therefore tested pericdically by a check-sum
program. The average latency of half a second in uncovering PROM faults
is simply a reflection of how frequently the check-sum program is
executed. The maximum detection time for PROM faults is over 21 seconds
and is a direct function of the repetition rate of the self-test program.

The average detection times for BIT, BIPC, and SBC cards are much
higher than those for the processor region because faults in the bus
interface cards were concentrated mainly in the error detection and
masking hardware. Faults 1n most of this region would not manifest

themselves as bus errors under routine operation. Some faults in the
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voter circuitry, for instance, are highly latent since the voter output
1s the same as its inputs as long as the three inputs are the same. Such
a fault can only be uncovered by feeding disagreeing input streams to the
voter, This is done by a self-test program. It 1s seen that only 200 to
300 faults were injected in the bus interface cards. All of these faults
were purposefully concentrated in the error detection region to uncover
any weaknesses in this area since the correct functioning of the FTMP is
so critically dependent upon this hardware. The results ,for these cards
are therefore biased towards higher values. When the remaining random
logic on these cards is subjected to faults, the averages would tend to
move down because faults in the random logic would be uncovered by
routine operation without self-test programs.

Finally, it is quite evident from Tables 7 and 8 that the average
as well as the maximum detection times for the Bus Guardian Unit are an
order of magnitude higher than even those for the error detection
circuitry. There is a reason for this which is as follows. The BGU card
contains the redundancy management hardware. Faults were injected in the
enable/disable discretes that control whether a unit is enabled or
disabled on a bus. Some of these faults such as the ones that disable a
unit from its active bus would be detected immediately by routine opera-
tion since a single BGU can disable a unit by itself and a lack of trans-
mission from a unit would immediately cause errors on that bus. But most
other faults such as those that enable a unit on other buses or disable a
unit from buses on which it is not supposed to transmit anyway would only

be detected either by a self-test program that exercises these discretes
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or over the long term by routine system reconfiguration. No self-test
programs have been written for the Bus Guardian Unit. Therefore almost
all BGU faults were uncovered by the rotation of processors and memories
on different buses and by swapping of active and spare buses. While the
self-test programs complete a cycle every 13 seconds, complete cycling of
all spares takes 6 minutes, This 1s why maximum detection time fof/BGU
faults 1s almost 2 minutes. It would be even higher 1f the timeout limit
for these experiments was 1increased beyond 2 minutes. Faults that may
have been detected with a higher time-out limit are treated in the data
analysis as undetected faults,

The high detection times for BGU faults have a tremendous impact
on the system-wide average. Table 7 shows that overall average detection
time 1s 988 milliseconds, or about one second. If the average were
computed for all except BGU faults, it would be only 378 milliseconds.
The BGU fault detection times can be reduced by an order of magnitude by
writing diagnostic programs for it.

It should be mentioned here for the sake of clarity that although
routine system reconfiquration was suppressed for faults on all other
cards to facilitate a reasonable FIS-SCC protocol, it was allowed for the
BGU card since this was the only way of detecting BGU faults and it did
not interfere with the protocol in this case.

The sum of times for the three phases constitutes the total recov-
ery time. This is the time from the moment the fault 1s injected to the
point in time when the system has completely recovered. Times for the
three recovery phases were summed for each fault and then the sums were
averaged over all faults for each card. These averages are shown in

Table 6 under the heading 'TOTAL.' The total average recovery time for a
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card should obviously equal the sum of the average time for detection,
identification, and reconfiguration phases. In other words, average of
the sums should equal sum of the averages. This 1s true for all cards to
within 1-2 milliseconds which is the truncation error. The maximum total
recovery time for a card, on the other hand, is not necessarily the sum
of the maximums for individual phases since maximum detection time need
not necessarily be for a fault that also takes maximum time to be identi-
fied. The maximum recovery time is therefore simply the maximum of all
sums.

It is quite evident from data presented in Tables 7 and 8 and from
the discussion so far that the recovery time is dominated by the detec-
tion time for each card as well as for the system as a whole. Even the
processor region, which seems to react the fastest to faults, about 65
percent of recovery time is spent uncovering a fault. Therefore recovery
time characteristics are very much like those of the detection time. 1In
particular, if the average recovery time is computed for all faults
except the BGU, it is found to be 549 milliseconds or about a half second
compared to about a second if it 1s averaged over all the faults. The
meaning of this is quite clear. FTMP response to faults can be improved
twofold simply by writing a few diagnostic programs.

When the FTMP reliability was computed, it was assumed that the
R4, R3, and R1 rate groups would execute at 40, 20, and 5 Hz rather than
25, 12.5, and 3.125 Hz used in the experiments. The fault injection data
presented so far shows a strong correlation between detection, identifi-

cation, and reconfigquration times and the execution frequencies of SCC,
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R4 dispatcher, and self-test programs. It may be concluded, therefore,
that the average recovery time could be reduced by 37.5 percent by
increasing repetition rates to original goals.

The two changes suggested here would bring the average recovery
time down to 343 milliseconds which is quite close to the value (250
msecs) assumed 1n reliability models,

Of course, what affects the actual reliability i1s not only the

average recovery time but also its distribution and the LRU mean time

between failures (MTBF). These are discussed next.

3.3 Frequency Distributions

The fault injection data was analyzed to compute probability
density function (pdf) of detection, identification, reconfiguration, and
total recovery times for each card separately and for the total ensemble
of 17,418 faults. Estimates of pdf's are plotted as histograms in
Fiqures 8 to 62,

A few comments regarding the organization and plotting of data are
in order here. These figures are organized by cards in the same order as
the numerical results in Tables 7 and 8. Figures 8 to 13 are for the CPU
data card, 14 to 18 for the CPU control card, 19 to 25 for the PROM card,
and so on. A different scale is used for each parameter to show as much
detail as possible. All identification time histograms use a bucket size
of 100 milliseconds, and all reconfiguration plots use a bucket size of
50 milliseconds. A common scale for all detection time distributions that

accommodated maximum detection times and yet showed the details was not

as easy to choose. Detection times for most cards are therefore plotted
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two times for most cards. For instance, Figure 8 shows this variable for
CPUD using a bucket size of 1 second. This scale allows the maximum
detection time (9.1 seconds for this card) to be accommodated. But since
98 percent of all faults are uncovered within a second, a lot of informa-
tion is lost. Therefore this same data is replotted in Figure 9 using a
bucket size of 100 milliseconds. All detection times longer than a
second are lumped together at the end of the plot. This figure shows in
much greater detail the distribution of 98 percent of detection times.
Finally, the total recovery time is also plotted several times for each
card using different scales. For example, Figures 12 and 13 show the
probability density function of this variable for CPUD with scales of 1
second and 0.1 second, respectively. The contents of Figures 8-62 will
be discussed next.

It may be observed that there is a great variation in pdf's of
detection, identification, and reconfiquration times. But there is not
much variation amongst cards for any given parameter. For instance,
identification time probability density function for CPUD (Figure 10) is
very similar to that for PROM (Figure 21) or BGU (Figure 34). But it is
quite different from the detection time pdf for the same card (Figures 8,
9). Characteristics of pdf's for each of the four parameters in general
rather than for each card will therefore be discussed next. Exceptions
where appropriate will be pointed out.

Probability density functions of detection +time reveal the

complexity of the detection phase. Over 95 percent of the faults for
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almost all the cards are detected within 600 milliseconds or two RI1
frames. For CPU data (Figures 8, 9) and control cards (Figures 14, 15),
this figure rises to almost 99 percent. The latency in reading error
latches varies from 0 to 340 milliseconds (one R1 frame) depending on
when the fault was injected with respect to the beginning of the SCC
task. Evidently, not all faults manifest themselves as bus errors right
away. For instance, about 20 percent of the faults injected in the CPU
data card are uncovered between 400 and 600 milliseconds. Evidently it
took these faults between 100 to 300 msecs to cause erroneous data to
appear on the buses. But these faults are uncovered by routine programs.

Beyond this initial impulse, there is a long tail in the detection
time pdf that goes out to about 20 seconds. This corresponds to faults
that are only uncovered by self-test programs. The fraction of faults
that falls under this long tail is only about 2 to 4 percent for the
processor region cards (CPUD - Figure 8, CPUC - Figqure 14, PROM - Figure
20, Cache Controller - Figure 27). For the bus interface cards this
figure 1s much higher, as seen in pdf plots for BIT (Figure 37), BIPC
(Figure 41), and SBC (Figure 48). This is due to the fact that faults on
these boards were deliberately concentrated into error detection and
masking circuitry. Most of these faults require self-test programs to be
uncovered. There is a lot of other random logic on these boards that was
not subjected to faults, and it is most likely that faults into these
circuits would be detected by routine program execution. As can be seen
from the number of faults injected into each board, the processor region

cards have been much more thoroughly tested than the bus interface and
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control cards. {Only about 1,000 out of 21,000 were injected into the
latter.) If they were tested as completely as the processor region,
their detection time distribution would tend to be closer to that for the
processor region.

The detection time pdf for BGU (Figures 32, 33) 1s totally differ-
ent from all others with a very high number of faults being detected
between 40 and 50 seconds and the maximum going out to 2 minutes. This,
as explained earlier, is due to the fact that BGU faults were detected by
normal system reconfigquation, a complete cycle of which takes 6 minutes.
Self-test programs for this part of the FTMP would decrease the BGU
detection times by an order of magnitude.

Detection time pdf for all 17,418 faults is shown in Figqures 53
and 54. About 96 percent of all faults are detected in 600 milliseconds
or less. The detection time distribution for all faults except the BGU
faults shown in Figures 59 and 60 looks very much the same. The only
difference appears 1n the average detection time, which drops from 988 to
only 378 milliseconds. This latter figure 1s more representative of what
may be expected as the FTMP response 1f a reasonable set of diagnostic
programs had been completed.

The next parameter 1is the 1identification time. As discussed
earlier in this chapter, fault identification is a deterministic phase of
the recovery procedure. For a given pin fault and a given system config-
uration one can say with certainty as to how many passes of identifica-
tion program are required to isolate the faulty unit. This 1s borne out

by the probability density functions for identification time. As seen
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in Figure 10, about 85 percent of CPUD faults are identified between 0
and 100 milliseconds. Most of the remaining faults are identified
between 300 and 400 milliseconds. It will be recalled here that the
identification program runs every 320 milliseconds. what this pdf
implies is that 85 percent of the faults are identified during first pass
of the program and the remaining ones are identified after one diagnostic
reconfiguration during the second pass. The identification time pdf is
very similar for other cards as well with impulses of decreasing
magnitudes at times corresponding to 1, 2, 3, and 4 passes of the SCC
program, This density function for all the faults is shown in Figure 55.

The last recovery phase, system reconfiguration, is also deter-
ministic in nature. For a given faulty module and a given system config-
uration, a fixed amount of time is required to replace the faulty
module., Reconfiguration time pdf for all the faults is shown in Figure
56. It is seen that almost all the faulty modules are removed within 200
milliseconds.,

Figure 57 shows the pdf of the total recovery time (sum of detect,
identify, and reconfigqure) for all the faults. The FTMP recovers from
almost 95 percent of the faults within a second. Figure 58 shows the
exploded view of the distribution from 0 to 1 second. If the BGU faults
were excluded from the ensemble, which is reasonable to do since no
self-test programs were written for 1t, the resulting distribution
appears as shown 1n Figures 61 and 62. This appears almost totally
1dentical to the pdf with BGU faults with the only exception being the

average total recovery time. This is seen to drop from 1.16 to
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0.549 second. In any event, the density function of the recovery time
does not appear to be exponential as assumed in reliability modeling. As
seen in Figure 62, it may be characterized as Gaussian density function
from 0 to 1 second with an asymmetric tail going out to about 22
seconds. wWhether this pdf is better or worse than the exponential
pdf from the viewpoint of its impact on system reliability can only be
determined through mathematical modeling. However, it is encouraging to
note that a very high fraction of all incidences (about 95 percent) lie
in a narrow time band around the average value. This can only have a

favorable impact on the system reliability.

3.4 Actual Failures

The mean time between failures of an LRU was assumed in the
reliability models to be 2,600 hours. Based on the observed failure rate
during a course of 18 months of routine FTMP operation, the LRU MTBF can
be estimated to be at least 10,000 hours. Over 130,000 LRU operating
hours were accumulated during this time and only 12 failures were
observed. Of course, this experience has been obtained in a laboratory
environment which is not subject to the temperature variations and shock
and vibration induced by turbulence and landings and take-offs. In that
regard the laboratory environment is certainly more benign. However, the
equipment was subjected to substantial power cycling much more than might
be expected in the field. Also, the electronic components were going
through their burn-in period during which they are known to have a higher
failure rate. In fact, almost all the failures observed can be attrib-

uted to burn-in.
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Two types of components accounted for almost all the failures.,
One was the Harris random access memory chip. There were four RAM chip
failures. The second component that failed was a new 1553 LSI chip., Six
of these failures were observed. In addition, two diodes 1in two LRU
power converters failed, shorting two power buses together although they
did not impact LRU or system operation.

Finally, an actual single point fault occured in one LRU that
resulted in a total system failure. The faulty component was a voltage
requlator in the recharging circuit for the battery that provides LRU
backup power. This backup battery power is used to hold the contents of
the CMOS circuitry, including the configuration control registers in the
BGUs, 1in the absence of the primary power,

Wwhen the voltage requlator failed the output voltage of the backup
power going to the BGU registers exceeded the safe high 1limit. Thas
caused the LRU enable registers in both BGU cards to behave erratically
and enabled the subject LRU on multiple system buses simultaneously,
This, in turn, made the system bus useless leading to the system failure.

This failure mode which is basically a common failure mode of the
two bus guardian units was not overlooked in the specification process.
As a matter of fact, anticipating such common failure modes the FTMP
design specification called for undervoltage and overvoltage protection
circuits on individual BGU cards. Unfortunately, during detailed circuit
level design of the bus guardian units the overvoltage protection cir-
cuitry was omitted from the design. This omission was not caught during

subsequent design reviews.
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CHAPTER 4

SUMMARY AND CONCLUSIONS

A total of 21,055 pin level faults were 1injected into the FTMP.
Of these, 17418, or 83 percent, were detected. Of the 3,637 undetected
faults at least 80 percent were estimated to be on unused gates and
pins. A few of the remaining undetected faults were analyzed and found
to belong to the 'don't care' class. Further analysis of undetected
faults is required to arrive at a definitive detection coverage value,
Identification and reconfiguration coverages, on the other hand, were
found to be perfect for the detected faults. The system i1dentified all
detected faults correctly and successfully recovered in each case.

The total time to recover from a fault was dominated by time spent
in the detection phase. Time to identify a fault and reconfigure the
system was found to be deterministic and bounded, as expected. Average
identification and reconfiguration times were found to be 88 and 82
milliseconds, respectively. Total recovery time averaged over all 17,418
faults was found to be 1.16 second although it would be only 549 milli-
seconds if BGU faults were excluded. In the absence of BGU self-test
programs, which was the case here, BGU faults were solely uncovered by

very low frequency routine system reconfigurations.
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The daistribution of the total recovery time does not appear to be
exponential, However, 1t 1s encouraging to note that over 95 percent of
all faults are recovered from in a second or less,

In addition to this hard data, a number of very important though
intangible results were obtained as well. The hardware and software, in
general, and the fault detection hardware and the fault identification
and system configuration control software, in particular, performed
extremely well under the stress of thousands of faults. 1In a sense the
FTMP architecture, the hardware, and the software have been validated
informally.

The test and evaluation experiments, their positive results, and
the 100 percent availability of the FTMP during 13,000 hours of routine
operation at the Draper Laboratory have all substantially bolstered
confidence in the FTMP concept as well as 1ts realization in hardware and

software.
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