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Abstract 

The paper considers characteristics of the resource structure found 
1n the operating system as a mechanism for classifying distributed 
computer systems. Since the operating system resources, themselves, 
are too diversified to provide a consistent classification, the author 
examines the structure upon which resources are built and shared. 0/5 
resources must run concurrently and determinately. The underlying 
structure to accomplish this is the indivisibility or atomic activity 
provided by the 0/5 kernel and data structure. The location and 
control character of this indivisibility provides the taxonomy for 
separating uniprocessors, computer networks, network computers (fully 
distributed processing systems or decentralized computers) and 
algorithm and/or data-control multiprocessors. 

The taxonomy is important because it divides machines into a 
classification that is relevant or important to the client (user of the 
machine) and not the hardware architect. It also defines the character 
of the kernel 0/5 structure needed for future computer systems. For 
example, based upon the kernel analysis, it is apparent that computer 
networks are easy to develop from uniprocessors in a value-added 
fashion, but that true network computers are not yet available because 
development by extending computer network operating systems is not 
practical. The paper also discusses in detail what constitutes an 
operating system for a fully distributed processor. 
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1 Introduction 

There have been many promis~s made about the capabilities of 
distributed computer systems--new featu~es like increased computing 
power, greater reliability, more flexible user .environment--which will 
usher in a new computing era. Papers and propo$als, espousing large 
numbers of computers operating in parallel doing millions of operations 
per second (MIPS), can be found throughout the literature [1, 2]. The 
low-cost microprocessor and local area network technology have 
stimulated many configuration and systems proposals . 

• 
More recently, a degree of realism has been injected on this 

euphoric scene. For example, Allchin and McKendry state [3] "It is not 
clear, however, that current techriology is able to realize these 
advantages. Without advances in methodologies for constructing 
distributed systems, we are faced with a situation in which we are 
likely to see less, not more, improvements in these areas." Jensen 
echos a similar theme in describing and justifying the ARCHONS project 
[ 4 J • 

The most popular form of distributed system found today is largely 
an evolution or a simple adaptation of the uniprocessor technology 
(centralized computer) with a value-added network system. To quote 
Jensen [4], "A network normally is supplied with a so-called "network 
operating system" which tends to be simply the collection of network 
server utilities. Historically, it has been constrained to be a guest 
of the local operating system." He then supports McKendry's arguments 
with " Evolution is generally appropriate as a primary mode of computer 
(and other) system developmenti but it should be performed with much 
careful thought. Almost all work on "distributed" systems in general, 
and "distributed"/network operating systems in particular, has been 
evolutionary to an extreme ... most of the resource management concepts 
have been simple adaptations of centralized ones, burdened by 
inappropria~e and even counter-productive artifacts." 

In this paper we examine the structure of distributed computer 
systems bas~d upon the features that can be supported by the operating 
system. Since almost all operating systems differ, we look for the 
commonality which will allow classification--the character, scope and 
location of the structure which supports the construction of the 
operating·system resources. This, in turn, allows distinct. and 
reasonable sepa~ability among distribut~d computer systems. It also 
permits the establishment of classes as seen by the operating system 
client or user. Since the operating system provides the shared 
resources which the client uses to build useful problem solving 
structures on the computer system, the taxonomy addresses fundamental 
issues of interest to the client by dealing with the basic character of 
the computer resources. 

The taxonomy also addresses the problems concerning evolution and 
better methodology noted above. It demonstrates why new methodologies 
are needed, and why the present evolutionary nature of distributed 
systems supports mostly loosely coupled networks. To accomplish these, 
the paper first reviews present computer taxonomies. Based upon one 
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taxonomy, it considers operating system issues like communication 
activity, latency of information, resource management, etc., 
illustrating problems of each as a mechanism for classification. The 
paper then introduces the concept of indivisibility (atomic structure) 
and where and how it is implemented for use by the operating system. 
Based upon indivisible features, distributed systems are classified 
into four categories: uniprocessors, computer networks, network 
computers, and algorithmic-data control processors. The paper 
concludes with some general observations resulting from the taxonomy. 

2 Taxonomies for Distributed Systems 

Various taxonomies exist for classifying distributed computers 
systems; many are based upon topology, switching capability, etc.,[5]. 
Wittie examines network structure to look at features like delay, 
connectivity, critical failure points, etc., [6]. Others have 
classified distributed computers according to the layers, like the ISO 
standard seven layer model [7]. Alternative to layering, one can 
examine distributed computers based upon global issues like naming, 
error control, etc. [8]. In the future, when concepts for these 
global"qualities are better established, comparision between methods 
for mechanization based upon issues and system performance will be 
necessary [9]. 

Flynn [101, in his classification of computer architectures, 
identified single- and multiple-instruction-stream, 
multiple-data-stream (SIMD and MIMD, respectively) computers as those 
in which single or multiple instruction sequences operate 
simultaneously on different sets of data. A network of computers is an 
MIMD computer built from independent, asynchronously executing, coupled 
processing elements. This classification correlates more closely with 
the type of problem which the distributed system can handle, so we will 
look more closely at MIMD based taxonomies. 

A review of some other computer-communication system classification 
schemes is found in the IEEE Network Tutorial [111. Classifications 
include functional view, designer's view, manager's view, etc. The 
functional view is closest to the interests of this paper; it divides 
systems into remote-access networks (RAN), value-added networks (VAN), 
and mission-oriented networks (MON). However, the discriminating and 
distinguishing characteristics of each are only briefly sketched. 

Wittie and Van Tilborg [12] carry the functional classification of 
MIMD machines further by defining three categories: 

1. Computer networks -- independent computers somewhat 
arbitrarily connected to each other. Generally, a common 
network communication protocol connects "each" host to a 
subnetwork of interhost communication facilities. Hence, the 
computer network embodies the characteristics of the network 
operating system. This category includes RAN and VAN groups, 
above. Examples of computer networks include ARPANET [14], 
CSNET [15], office automation systems [16], etc. 
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2. Multiprocessors The property that characterizes this type 
of computer is the inclusion of a single physical address 
space that can be directly accessed by all of the cpu's. 
Usually, all of the cpu's use the same instruction set 
architecture and execute the same operating system. Exa~ples 
include CM* [17], X-TREE [18], FEM [19], etc. 

3. Network computer -- a spedies of compact computer network 
specialized to facilitate closer cooperation among processing 
elements. A variety of interconnnection structures have been 
proposed for network computers including cubes, hypercubes, 
trees, rings, bus clusters, etc., in order to control this 
closer cooperation [6]. A cohesive operating system joins the 
nodes into a coordinated computing machine. The MON group, 
above, fits best here. 

The taxonomies above, classify computers physically by the 
mechanization of their communications structure, primarily distance, 
and hence, intuitively by the speed at which they are able to 
communicate. This, in turn, implies their ability to coordinate their 
activity so distributed computers should have the follOWing operational 
features: {*} 

1. comp~ter networks have local control, accessed resources, 
loosely ~oupled, node autonomy; 

2. multiprocessors have global control, transparent resources, 
tightly coupled, no node autonomy; 

3. network computers have local-global control, shared resources, 
closely coupled, shared autonomy. 

The taxonomy above, while generally clear in the large, does not 
resolve many issues. First, all systems are divided based upon their 
ability to communicate. Since communication rates are increasing 
rapidly (optical rates of 2 Gbits/sec. are on the near horizon [20]), 
a new network system with an optical, bus may really be faster than an 
old shared-memory multiprocessor. Second, all of the definitive 
adjectives above are relative. It is not clear that these features 
automatically accrue as a result of just closer physical coupling. 
Finally, some machines like CM* have shared "memory, but based on their 
use, they exhibit properties more in keeping with compute~ 'networks. 
Typically, even sha~ed memory systems allot a large segment of each 
memory to a local processor. When large quantities of memory must be 
shared between a number of computers, processing power falls off 
rapidly. Thus, these machines must be as careful about placement of 
data and programs as network systems. It becomes further clouded when 

{*} Gligor [13] carries functional classification further by 
considering multiprocesso~s. mu~tiprbces~ors With. local memory, 
distributed storage, central (peripheral)netwbrks, (decentraliZed) 
computer networks, and internetworking. This further detail does 
not provide additional discrimination of the operational features. 
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the communications control features are examined, since systems in all 
three categories use message passing. Hence, while these systems look 
different to the builder or hardware architect, they look the same or 
similar to the user. 

Clearly then, it becomes difficult to separate MIMD systems based 
upon the physical structure and speed of their communication system, 
especially when related to the class of problems which each can solve. 
The environment we wish to create in the network computer is distinctly 
different from that of the computer network: it is characterized by a 
multiplicity of resources, physical distribution, unity of control, 
network transparency where desired, reliability through replication or 
similarity of resources, and component autonomy. This according to 
Enslow [21] is the Fully Distributed Processing System (FOPS); hence, 
the goal of the FOPS, the client's view of Wittie's network computer 
and Jensen's decentralized computer are synonomous. 

3 Operating System Issues 

Since the client's view of a computer is generally based upon the 
resources provided to him by the operating system [22], it should be 
interesting to examine the characteristics of distributed co~puters 
based upon their operating system. As noted by Wittie [12], "Achieving 
the goals of parallel computing, machine extensibility and 
fault-tolerance now depends more upon the availability of suitable 
operating systems than it does on the construction of network hardware, 
... " He attributes this observation to Siework in 1975 [23]. Even 
though the features of the operating system were recognized to be 
critical to parallel computing in the mid 70's, they have still not 
been satifactorily addressed. Joseph, et al. [24] in 1984 notes that 
allowing a single user program to run distributedly on different 
processors requires mechanisms not supported by operating systems. 

Difficult practical and theoretical decisions concerning 
decomposition, distribution, and synchronization of tasks; parallel 
applications languages; communication system protocols; scheduling and 
sharing of resources: concurrency control; detection and control of 
deadlock and recovery from hardware and software failure exist for 
distributed operating systems. While one could possibly separate 
computational systems based upon some combinations of the above 
factors, their distinguishing features might be more difficult to 
discern than the taxonomy based upon physical coupling of communication 
systems. To illustrate, we will examine a few of the factors in 
greater detail. 

One separating feature might be based upon decision making 
techniques. Both Wittie [12] and Jensen [4] examine this issue, noting 
that resource allocation is difficult for a number of reasons: 

1. the network computer nodes do not know where to find a 
particular resource; 
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2. the data structure for global management of resources becomes 
too extensive to fit upon one machine; 

3. the level of communication activity to share all information 
would exceed the system capacity; 

4. the communication delays playa substantial roll; by the time 
the information gets to the proper node, it probably does not 
reflect the true situation; 

5. the failure of a network computer node must be handled in such 
a manner that processing can continue; 

6. the decision making system is much more complex in order to 
compensate for factors 4 and 5. 

Jensen dwells upon the sixth aspect of the problem in much greater 
detail. In examining resource management, he comments [4] 
"Unfortunately, operating systems as presently conceived are highly and 
inherently central in several critical aspects. Perhaps most 
importantly, they are based upon some very strong premise about time; 
e.g., that communication delays due to physical dispersal within the 
operating system are practically negligible with respect to the rate at 
which the system state changes (note that the same effect can occur on 
a single VLSIC/VHSIC chip). This leads to the presumption that it is 
possible (and even cost effective) for all processes to share as 
complete and coherent a view of the system as may be desired (e.g., 
that a single ordering of events can be established}." Jensen also 
eludes to point 5, the failure problem, noting that both information 
latency and failure are mainly considered (up to now) in the context of 
shared memory systems. 

Decision making is separated into logical and physical factors. 
Jensen further states that logical decision making concepts are needed 
for decentralized computing, implying that this is a primary reason why 
"distributed" and network operating systems are so disparate. "He 
proposes concepts like multilateral management noting that 
decentralization must be founded upon it; "not for instance on the more 
common theme of resource or functional partitioning." Hence, decisions 
must be based at least upon "team" effort or even more decentralized 
upon some form of partitioned competence or disparity of information 
with the activity eventually converging to a single consensus decision. 
"But the region of primary interest to us in the multidimensional space 
of logical decentralization is where each global decision is made 
multilaterally by a group of peers through negotiation, compromise and 
consensus." 

While the above concepts make nice philosophy, we do not feel that 
all network computer operating system resource allocation must be based 
upon concepts like group and consensus decisions; that is, we do not 
feel that this activity constitutes a discriminator for taxonomy 
purposes. We note that such schemes may create additional problems; 
for example, "If you want nothing done, give it to a committee." 
Hence, distributed systems will make some resource decisions based upon 
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limited, imperfect knowledge in an arbitrary and capricious manner, 
uainq the philoaophy that sometimes it is better to do something, 
hopefully useful, than just to talk about it. Therefore, decision 
making while nice is not necessary for network computers. {*} 

The fourth factor above, inaccurate and insufficient information, as 
a distinguishing difference between decentralized and centralized or 
network operating systems is harder to dispel. We present two 
arguments which illustrate that this feature is not a discriminator 
either~ First, on the surface the situation that a central operating 
system can gather lots of useful and coherent information to make 
perfect decisions, appears to be reasonable. Practically, they don't. 
Optimal decisions on resource allocation are many times NP~hard and 
operating systems can't take the time (like peer decisions) because 
this would permit less useful work of the client to proceed. Hence, 
they attempt to make reasonable and consistent. decisions to provide 
correctness preservation for the resource and some useful brdering of 
events that will allow the clients to proceed and the O/S to recover in 
case of failure or error. Furthermore, optimization is goal related. 
Changing the goals may change completely the decision making scheme 
and~ hence, the information required by the operating system. Since 
O/S functionality is usually decided long before the complete utility 
of the computer, optimum goals are not known. 

Second, with regard to the timeliness of information, both Jensen 
and Wittie dwell upon the communication delay in the network as being a 
large factor in differentiating distributed operating systems from 
their centralized or network counterparts. (Jensen, however, notes 
correctly that delay may be a factor in closely coupled systems like a 
VHSIC chip.) To be precise, information delay and lack of singular 
global ordering occur in all computer systems, including uniprocessors. 
For example, disc access and resultant DMA to main memory takes 
considerable time and may occur in an almost infinite variety of 
ordering with respect to CPU instruction execution; the operation is 
completely under control of the local backplane access, priority, and 
structuring mechanisms. Delay that occurs during the completion of the 
DMA event may cause operating system problems. For example, failure 
may not be known to the operating system until it checks the status 
register. This may cause it to abort previously made decisions. 
Delays and ordering in any modern computer cannot be completely 
controlled Qy the operating system. In fact, different backplanes 
impose radically different timings with regard to information exchange 
and orderings, yet the operating system provides a completely 
consistent abstract view to the client. Hence, when examining the fine 
detail, uniprocessors exhibit many characteristics equivalent to 
distributed systems. In fact, what is a backplane but a communication 
system between distributed (albeit, special purpose) processors. 

{*} We do not mean to imply by these statements that negotiated 
decision making is nb~ an important and fruitful topic for research 
in distributed systems. We support and endorse Jensen's ARCHONS 
program; we state only that the concept does not discriminate 
between classes of distributed systems. 
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Although the primary goal of the operating system should be resource 
management, we disagree with the previous referenced work [4, 12J "that 
decentralized systems differ from centralized ones because of the 
inherent communications delays or the logical features of decision 
making. In fact, the primary distinction between computer network and 
network computer operating systems is not anyone or a combination of 
factors listed or discussed previously. However, we do agree with the 
conclusion that they are distinct and with Jensen's [4] and McKendry's 
[3] conclusion that evolutionary development from computer network to 
network computer is inappropriate and ill advised. In fact, we ~ 
strengthen that argument to show that it is not practical and probably 
not feasible. 

4 Indivisibility Concept In Operating Systems. 

As noted previously all operating systems must cope with the 
ordering and delay problems. These problems may exist because the 
resource is hardware related and not under control of the operating 
system or software related, occurring because of the structure created 
and used by the operating system. This problem is related to 
concurrent processing, in that the CPU should do other useful work 
until an event takes place. Coffman and Denning [22], ~n discussing 
operating system theory, note: 

1. the desire for efficient utilization of the equipment leads to 
the widespread use of concurrency among the central machine 
and its peripheral devices; 

2. the desire to share information and communicate among the 
existing programs; and 

3. operating systems are thought of as a control program that 
coordinates various concurrent activity. 

To implement concurrency, the concept of processes or tasks have 
been defined. In parallel processing, more than one process may be 
observed between initiation and termination stage, and even in a 
uniprocessor, more than one program may be progressing simultaneously. 
For example, one program may be utilizing the CPU, a second suspended 
awaiting an event, and a third running on an 1/0 channel. Hence, all 
modern computers operate concurrently. To differentiate between 
computer systems, we examine the mechanisms they use to control that 
concurrency. 

A process to run correctly must be determinate [22]; i.e., its 
termination state must be a result of its initial state and inputs, not 
a result of the speed or schedule under which it runs. In order to 
accomplish determinacy, processes must employ indivisibility or 
atomicity in its critical activities. Indivisibility, in the context 
of the operating system, causes services to perform determinately. For 
example, to guarantee correctness, an operating system handler may 
block (synchronize) any entry which rewrites the device memory control 
structure (memory mapped 1/0) until after the scheduled interrupt has 
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taken place and may then place the processor in an uninterruptable mode 
until the handler completes some critical activity, like a check for 
errors, resetting the I/O controller variables, etc. A software 
service, like a queue or stack, may have data and code controlled 
through mutual exclusion or synchronization structures to guarantee two 
clients are not given the same data space. 

Fundamentally, each O/S resource may require a unique form of 
indivisibility, While the mechanization of indivisibility varies 
widely among architectures and O/S implementation, its scope, the 
location where its support is found and who controls progress is 
identifiable, First, indivisibility is found in the 
hardware-firmware-software that supports or underlies the operating 
system, usually called the kernel. Also, it can be found as data 
structure in the operating system itself. In addition to scope, 
thread-of-control, the control characteristic of the indivisibility 
implemented by the O/S and its kernel, is important. We will use the 
scope and control character of this indivisibility to develop a new 
taxonomy for distributed computer systems and show that it is a useful 
tool in analyzing the capabilities exhibited by various computer 
systems. 

Before we discuss the indivisibility features incorporated in 
operating systems, we need to consider the manner in which resources 
can be viewed. We adopt Allchin's concept of abstract and concrete 
[25] (closely related to Jensen's logical and physical [4]). Resources 
maintain two views: abstract, the view presented to the client for his 
request/response operations; and, concrete, the view more closely 
related to the need to maintain the resource (more closely related to 
the physical). The abstract view should provide a consistent, useful 
service to the client, and the concrete view should control the 
internal state of the resource to maintain consistency and recover from 
failures. If a failure should occur, the client should understand the 
cause of the failure (if related to his activity) and the resultant 
state of the resource. Obviously, certain resources can present 
differing views to differing classes of clients and be combined to 
provide a higher level of service to clients. 

5 Structures for Distributed Computers Related to Their Operating 
Systems 

In Figure 1, we show the four classes of distributed computer 
systems we intend to consider. All four of the systems show 
concurrency and indivisibility (atomic activity) and hence, should be 
considered for inclusion in our taxonomy. 

5.1 Uniprocessor 

Figure la} illustrates the structure of the uniprocessor; while not 
strictly considered a distributed system, it provides many features 
which clients desire a computer to possess in present and future 
machinery. For example, multi-user capability is supplied by an O/S 
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that is capable of regulating and sharing its resources so that each 
user preceives that he has full control of the machine. 

Let us examine the uniprocessor indivisibility characteristics. 
First, at the physical level, architecture may support DMA, test and 
set, interrupts, hardware exceptions, software traps, virtual memory 
traps, etc. At the kernel level, support may exist for concurrent 
process control including context switching, critical section control, 
synchronization with P & V operations, etc. While the details of the 
indivisible structure are not important, the scope and thread-of­
control characteristics provided for resource sharing are related to a 
single CPU only. To state differently, a single processor deals with 
indivisibility structures local to its environment. For example, only 
one processor responds to interrupts. At the abstract resource level, 
the uniprocessor provides for storage of information in the form of 
files, starting and stopping tasks, etc. with certain characteristics 
based upon indivisible data structures (e.g. file directory) created, 
processed and stored at the operating system level. Thread-of-control 
to deal with these resource structures is based in a single processor. 
In both cases the system indivisibility is related to a single 
processor activity only. Based upon this finding, we classify this 
computer as a uniprocessor. 

5.2 Computer Network 

Figure 1b) illustrates the computer network system where the local 
0/5 is augmented with a network in a valued-added fashion, as noted 
above. These combine to form the basic network operating system. 
Here, the client preceives himself to be connected to a single node but 
with the capability to access other nodes. 

Let us examine the computer network indivisibility characteristics. 
Since resources like storage, hardware interrupts, etc. are tied to a 
particular machine, local or single processor indivisibil~ty exists 
similar to that of the uniprocessor. The network firmware provides 
additional indivisibility through the transmittal or receipt of 
information. While the nature of this information structure varies, 
the physical structure is usually based upon a block of information 
(I/Q buffers) and controlled similar to other 110 channel information 
at the local level. No additional structure is added to the kernel to 
support the communication system. 

At the abstract resource level, the 0/5 provides a communications 
resource in addition to all the resources provided by it as a 
uniprocessor. These resources vary but recently standardization of 
protocol structure [26] is being implemented to enable compatible 
communication across a wide variety of machines. Protocols deal with 
the message structure of the communications system. 

The communications system may contain a number of interesting 
thread-of-control features some of which provide indivisibility across 
nodes. The characteristics of the routing system are particularly 
interesting. In some networks routing is controlled locally with some 
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information for routing decisions supplied either locally or globally. 
In others~ routing is strictly global e.g., controller-in-charge (IEEE 
488)· [27]. The controller-in-charge is an example of non-local 
indivisibility structure in that another CPU has access to and control 
of information structures which influence the local machines progress 
or scheduling of its resources. Globally supplied ~buting tables may 
or may not exhibit non-local indivisibility depending upon how the 
information supplied globally is synchronized with its local use. 

Another interesting communications system structure handles the 
acceptance and flow between machines. The acknowledge protocol has 
non-local indivisibility; i.e., the acknowledge processing on one CPU 
controls the utilization of resources (buffers) on another CPU. 
Mechanisms to enable choking control or r~routing when buffers or 
channels get overloaded are related examples [33]. 

Another example involving more than one computer and structures 
other than the communication thread-of-control is the IPC structure for 
remote procedure call (RPC) [29]. Here, RPC basically causes 
processing to begin on another machine. Philosophically, locus of 
control for the program progression is transferred to the new machine; 
it is not normally shared between machines. Also, data sharing is 
implemented on a call-by-value and call-by-value-return because there 
is usually no way for the operating system to control the 
indivisibility necessary to organize call~by-reference variable 
con~rol. Hence, we would classify the RPC as a local indivisible 
structure. Using a surrogate program [30] to implement the control 
further divides the processing into local controls.on each machine. 
However, the communication structure may still maintain non-local 
indivisibility with its acknowledge and/or time-out structure. 

Finally, consider the example of a distributed database [31]. Here 
atomic activity based upon transaction indivisibility exists. Data 
structures on different machines are clearly involved when locks are 
obtained and maintained on all data accessed in the transaction; two 
phase commit [31] involves structure and control across machines. 
Hence, a distributed data base implemented by the operating system is 
clearly a non-local indivisible activity. However, most distributed 
databases are im~lemented at the client level [36]. 

With this clearer picture of what constitutes indivisibility 
features,· we can return to consideration of the computer network. We 
define the computer network to have local indivisibility structures for 
all its resources except the communication system which has non-local 
indivisibility. A computer network does not have distributed O/S 
indivisibility structure for any acti.vity other than the communication 
system. 

It is precisely for this reason that network operating systems can 
be created in an add-on fashion. In fact, they can have their 
communication system indivisibility features incorporated in separate 
computers like the Interface Message Processor (IMP) for ARPANET [7]. 
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5.3 Network Computer 

The next category of computer system is shown in Figure 1c). Here 
the operating system is still local. However, it supports ~ client who 
sees the system ~s an FDPS [21], network computer [12] or decentralized 
computer [4]. 

Since our claim is t~at we can classify the computational system by 
the indivisibility structure in the O/S and the kernel support, let us 
examine the system structure for the network computer. While it would 
be most desirable to do so by examining existing examples, Jensen [4] 
comments "Presently, ARCHONS appears to be essentially alone in 
stressing unif;cation at the operating system level .... The only 
popular alter~ative to conventional centralized computers is computer 
networks." Joseph, et ale [241 also cites the lack of available 
commercial operating systems that distribute program parts. Thus, we 
have to examine proposed syste~s. 

We first note that, like the previous systems, local indivisibility 
exists. Second, like the computer network, network control structures 
must be present alt~ough they may be implemented differently. The 
additional feature required for network computing is indivisibility 
control structure at t~e ker~el and O/S level ~hich implements generic 
distributed activity~ Such features, proposed by McKendry and Allchin 
for CLOUDS [3, 25] and by Jensen for ARCHONS [4, 34], are based upon a 
generic atomic trans~ction system. 

In CLOUDS the basic structure is the object. It supports many 
different kinds of concurrency control. It also supports atomic 
transaction protocol such as Begin ~ction, ,Commit, Abort, and End 
Action, and recovery based upon volatile and permanent storage. The 
kernel provides the underlying data and procedure structures to support 
transaction activity across the network. As a result, the network 
communication handling must exLst at the O/S kernel level, a distinct 
change from the computer network operating system. Fundamentally, the 
object and action structure supports the construction of truly 
distributed information resources. 

Similar structure exists in ARCHONS;" this suggests that an 
atomic transaction facility for use by the O/S ... " [4]. With such a 
facility, resource structures that are truly distributed can' be 
implemented and provided to the clients. The clients may preceive the 
abstract resource as transparent, generic to the total system or as 
existing over a group of processors which, by virtue of their physical 
or logical information resources, are able to provide the service. 
Both CLOUDS and ARCHONS are engaged in implementing the support for 
distributed transactions at the kernel level. 

Thus, in our taxonomy, network computers, decentralized computing 
and the Fully Distributed Processing Systems are synonymous and 
identified by the fact that their operating system kernel supports 
control for distributed information. Hopefully, in the future, 
hardware, software and firmware developers will find newer and better 
methods fo~ implementing transaction and other indivisibility structure 
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across computer system networks so that the next generation of 
computers can have more efficient distributed resources. 

5.4 Multiprocessor -- Algorithm - Data-Coupled Computers 

Figure ld) illustrates the final computer which we have called the 
algorithmic or data coupled computer. This computer, like the 
multiprocessor in Wittie's taxonomy, has many local cpu's operating in 
parallel. However, by careful examination of the figure, we see that 
it is structurally identical to the uniprocessor since both the 
operating system and the client view it as a single system, albeit, 
constructed somewhat differently from the uniprocessor. The operating 
system may preceive the computer as having local support for a global 
operating system plus a truly global operating system controlling the 
resources. The client may preceive that certain processors do certain 
kinds of processing substantially better than others, but he still 
communicates with the O/S as an integrated set of resources. Note, 
there is no distinction yet from a uniprocessor which may have a 
central cpu, another cpu controlling the disk, another controlling the 
terminal, etc., all connected to a backplane with shared memory, memory 
mapped I/O, DMA, etc. 

The distinction from a uniprocessor must be found in the 
indivisibility provided in the system. Like the uniprocessor, local 
indivisibility exists at each node and depending upon the type of 
information exchange, communication system indivisibility. In 
addition, algorithmic or data-control indivisible structures, based 
upon the operations being performed or the manner in which the data is 
supplied to the individual processors, is what gives the algorithmic 
processor its unique characteristic. For example, the CDC Star 
(actually an SIMD example) is a vector machine in that vector 
operations can be executed. By specifying vector structures (address 
and length) in calling a vector instruction, mutiple operations are 
performed (e.g. vector addition) indivisibly upon the complete data 
structures. Alternatively, a machine that implements correlation or 
neighborhood processing, like the MPP [32] or FEM [19], respectively, 
transfers data to its immediate neighbor processors in a prescribed 
fashion between operations, again, in an indivisible fashion. Note, it 
is this kind of indivisibility which differentiates the algorithm or 
data-coupled computer from the computer architectures considered 
previously. There are a great number and variety of algorithmic and/or 
data-coupled processors; in fact, the client usually asks what equation 
or math function does this one solve? 

Hence, computers can be divided into four categories based upon the 
indivisible nature of the information and control that exist at the 
operating system level. These categories correlate closely with those 
the client sees in the resources which he can control and by the 
character of the problem he can solve most easily. They are: 

1. Uniprocessors - local indivisibility 
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2. Computer networks - local and communication system 
indivisibility 

3. Network computers - local, communication and distributed 
information indivisibility 

4. Algorithmic or data-coupled computers - local, possibly 
communication, and algorithm andlor data-control 
indivisibility 

6 Discussion and Observations Relating to OIS Indivisibility Computer 
Classification Schemes. 

First, in operating systems that support a particular 
classification, it is usually feasible for the client to implement 
additional control structures in order to use the machine in a manner 
not supported by the operating system. For example, in a computer 
network, transaction based protocol can be constructed to provide a 
distributed database or an algorithmic processor by building proper 
distribution and control structures. Most research on distributed 
database management is of this form [35, 36]. This is certainly 
practical if done on a limited basis. However, since it is client 
built, it is difficult to integrate its control with other client-built 
resources, especially if they must share information. Also, in many 
programing systems, it is hard to build in the concurrency needed to 
make the system run efficiently since concurrency is under control of 
the operating system. In addition, if the client structure includes a 
new physical resource, then additional difficulty exists in integrating 
that resource in with the other operating system controlled resources. 
Finally, it is nearly impossible to integrate the client-built resource 
with other OIS resources. 

Second, we note that the taxonomy deals only in a limited way with 
physical or communications hardware. For example, indivisibility 
structures in the computer network discussion have been related to some 
physical structure, e.g., the controller-in-charge protocol. However, 
this protocol could easily be developed using a shared memory computer 
assuming some form of interrupt or notification system. Alternatively, 
a shared memory system may be structured to perform like a computer 
network with control based upon message passing but without some of the 
formal standard header protocol. In different systems, indivisibility 
structures can exist in either hardware, software or some combination. 
To the client, different hardware structures may exhibit similar 
resource characteristics. While the computer hardware architect 
considers shared memory and networks distinctly different systems, the 
client may be faced with the same programing problems. This also 
implies that certain tasks might run like they were on a computer of a 
different class depending upon the structure of the OIS resources that 
they use. 

Finally, we note that our indivisibility argument supports Jensen's 
observation that evolution of the OIS from the computer network to the 
decentralized computer is not practical. Distributed structure at the 
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0/5 kernel level is required to support transaction and concurrency. 
This, in turn, requires a communication structure and other distributed 
system support at the kernel like naming and location mechanisms. Such 
a kernel structure is outlined by McKendry for CLbuDS. It seems 
unlikely that a present operating system kernel and data systems 
structure' can be augmented slnce the network computer system is 
substantially different from the present network operating system 
structure. In order to provide decentralized computing, FDPS, or the 
network computer system, a totally new operating system development, 
like CLOUDS or ARCHONS, is required. 

7 Concluding Remarks 

Operating system resources define the basic characteristic that 
com~uting machines provide to their clients. While op~rating system 
resources have a ~reat diversity; they all share the requirement for 
concurrency and determinacy. There latter features are provided by the 
indivisibility or atomicity structure provided by through the 0/5 
kern~l and its thread-o~-control. By examinirig the scope and location 
of these features, we can classify multi~rocesior systems into four 
categories: 

1. Uniprocessors 

2. Computer Networks 

3. Network Computers 

4. Algo,rithm and/orData-control Computers 

This classification is important since it support~ the client's view 
of the computer system utility and not the hardware or system 
developer's view. It particularly emphasizes the difficulty clients 
have because of the inherent scope of the computer supplied resources. 
The author anticipates that in the future more detailed examination 
withiri each 'classification may better define the user's view of 
particular c6~p4ter systems. 

The taxonomy and ftsjustification also indicate the type of 0/5 
. support structure needed for truly distributed processing systems. In 
this'respect, the examination of the character of the indivisibility 
structures for the network computer show 'that it is not practical to 
construct such operating systems by extending pte sent computer network 
operating systems. 

Finally, further examination of indivisibility structure for each 
class, and especially the network computer class should point the way 
to new concepts in hardware, firmware, OIS kernel software and 0/5 
languages that will provide better and more efficient structure for 
future. computing machine~y; 
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