
NASA Technical Memorandum 86438 NASA-TM-86438 19850022397

A New Taxonomy for Distributed

C9mputer Systems Based Upon

Operating System Structure

Edwin C. Foudriat

June 1985

NI\S/\
National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665

-',

i u· i, 'l" !1C!,i':"
.J L.. ,:..:: "u'-'

LANGLEY nES:::ARCH CENTER
LIBRARY. NASA

HA~.~2TO~, VIRGIfl!A

1111111111111111111111l1li1111111111111111111
NF00618

A New Taxonomy for Distributed Computer Systems Based Upon Operating
System Structure

by

Dr. Edwin C. Foudriat
Langley Research Center

Hampton, Va 23665

Abstract

The paper considers characteristics of the resource structure found
1n the operating system as a mechanism for classifying distributed
computer systems. Since the operating system resources, themselves,
are too diversified to provide a consistent classification, the author
examines the structure upon which resources are built and shared. 0/5
resources must run concurrently and determinately. The underlying
structure to accomplish this is the indivisibility or atomic activity
provided by the 0/5 kernel and data structure. The location and
control character of this indivisibility provides the taxonomy for
separating uniprocessors, computer networks, network computers (fully
distributed processing systems or decentralized computers) and
algorithm and/or data-control multiprocessors.

The taxonomy is important because it divides machines into a
classification that is relevant or important to the client (user of the
machine) and not the hardware architect. It also defines the character
of the kernel 0/5 structure needed for future computer systems. For
example, based upon the kernel analysis, it is apparent that computer
networks are easy to develop from uniprocessors in a value-added
fashion, but that true network computers are not yet available because
development by extending computer network operating systems is not
practical. The paper also discusses in detail what constitutes an
operating system for a fully distributed processor.

1

1 Introduction

There have been many promis~s made about the capabilities of
distributed computer systems--new featu~es like increased computing
power, greater reliability, more flexible user .environment--which will
usher in a new computing era. Papers and propo$als, espousing large
numbers of computers operating in parallel doing millions of operations
per second (MIPS), can be found throughout the literature [1, 2]. The
low-cost microprocessor and local area network technology have
stimulated many configuration and systems proposals .

•
More recently, a degree of realism has been injected on this

euphoric scene. For example, Allchin and McKendry state [3] "It is not
clear, however, that current techriology is able to realize these
advantages. Without advances in methodologies for constructing
distributed systems, we are faced with a situation in which we are
likely to see less, not more, improvements in these areas." Jensen
echos a similar theme in describing and justifying the ARCHONS project
[4 J •

The most popular form of distributed system found today is largely
an evolution or a simple adaptation of the uniprocessor technology
(centralized computer) with a value-added network system. To quote
Jensen [4], "A network normally is supplied with a so-called "network
operating system" which tends to be simply the collection of network
server utilities. Historically, it has been constrained to be a guest
of the local operating system." He then supports McKendry's arguments
with " Evolution is generally appropriate as a primary mode of computer
(and other) system developmenti but it should be performed with much
careful thought. Almost all work on "distributed" systems in general,
and "distributed"/network operating systems in particular, has been
evolutionary to an extreme ... most of the resource management concepts
have been simple adaptations of centralized ones, burdened by
inappropria~e and even counter-productive artifacts."

In this paper we examine the structure of distributed computer
systems bas~d upon the features that can be supported by the operating
system. Since almost all operating systems differ, we look for the
commonality which will allow classification--the character, scope and
location of the structure which supports the construction of the
operating·system resources. This, in turn, allows distinct. and
reasonable sepa~ability among distribut~d computer systems. It also
permits the establishment of classes as seen by the operating system
client or user. Since the operating system provides the shared
resources which the client uses to build useful problem solving
structures on the computer system, the taxonomy addresses fundamental
issues of interest to the client by dealing with the basic character of
the computer resources.

The taxonomy also addresses the problems concerning evolution and
better methodology noted above. It demonstrates why new methodologies
are needed, and why the present evolutionary nature of distributed
systems supports mostly loosely coupled networks. To accomplish these,
the paper first reviews present computer taxonomies. Based upon one

2

taxonomy, it considers operating system issues like communication
activity, latency of information, resource management, etc.,
illustrating problems of each as a mechanism for classification. The
paper then introduces the concept of indivisibility (atomic structure)
and where and how it is implemented for use by the operating system.
Based upon indivisible features, distributed systems are classified
into four categories: uniprocessors, computer networks, network
computers, and algorithmic-data control processors. The paper
concludes with some general observations resulting from the taxonomy.

2 Taxonomies for Distributed Systems

Various taxonomies exist for classifying distributed computers
systems; many are based upon topology, switching capability, etc.,[5].
Wittie examines network structure to look at features like delay,
connectivity, critical failure points, etc., [6]. Others have
classified distributed computers according to the layers, like the ISO
standard seven layer model [7]. Alternative to layering, one can
examine distributed computers based upon global issues like naming,
error control, etc. [8]. In the future, when concepts for these
global"qualities are better established, comparision between methods
for mechanization based upon issues and system performance will be
necessary [9].

Flynn [101, in his classification of computer architectures,
identified single- and multiple-instruction-stream,
multiple-data-stream (SIMD and MIMD, respectively) computers as those
in which single or multiple instruction sequences operate
simultaneously on different sets of data. A network of computers is an
MIMD computer built from independent, asynchronously executing, coupled
processing elements. This classification correlates more closely with
the type of problem which the distributed system can handle, so we will
look more closely at MIMD based taxonomies.

A review of some other computer-communication system classification
schemes is found in the IEEE Network Tutorial [111. Classifications
include functional view, designer's view, manager's view, etc. The
functional view is closest to the interests of this paper; it divides
systems into remote-access networks (RAN), value-added networks (VAN),
and mission-oriented networks (MON). However, the discriminating and
distinguishing characteristics of each are only briefly sketched.

Wittie and Van Tilborg [12] carry the functional classification of
MIMD machines further by defining three categories:

1. Computer networks -- independent computers somewhat
arbitrarily connected to each other. Generally, a common
network communication protocol connects "each" host to a
subnetwork of interhost communication facilities. Hence, the
computer network embodies the characteristics of the network
operating system. This category includes RAN and VAN groups,
above. Examples of computer networks include ARPANET [14],
CSNET [15], office automation systems [16], etc.

3

2. Multiprocessors The property that characterizes this type
of computer is the inclusion of a single physical address
space that can be directly accessed by all of the cpu's.
Usually, all of the cpu's use the same instruction set
architecture and execute the same operating system. Exa~ples
include CM* [17], X-TREE [18], FEM [19], etc.

3. Network computer -- a spedies of compact computer network
specialized to facilitate closer cooperation among processing
elements. A variety of interconnnection structures have been
proposed for network computers including cubes, hypercubes,
trees, rings, bus clusters, etc., in order to control this
closer cooperation [6]. A cohesive operating system joins the
nodes into a coordinated computing machine. The MON group,
above, fits best here.

The taxonomies above, classify computers physically by the
mechanization of their communications structure, primarily distance,
and hence, intuitively by the speed at which they are able to
communicate. This, in turn, implies their ability to coordinate their
activity so distributed computers should have the follOWing operational
features: {*}

1. comp~ter networks have local control, accessed resources,
loosely ~oupled, node autonomy;

2. multiprocessors have global control, transparent resources,
tightly coupled, no node autonomy;

3. network computers have local-global control, shared resources,
closely coupled, shared autonomy.

The taxonomy above, while generally clear in the large, does not
resolve many issues. First, all systems are divided based upon their
ability to communicate. Since communication rates are increasing
rapidly (optical rates of 2 Gbits/sec. are on the near horizon [20]),
a new network system with an optical, bus may really be faster than an
old shared-memory multiprocessor. Second, all of the definitive
adjectives above are relative. It is not clear that these features
automatically accrue as a result of just closer physical coupling.
Finally, some machines like CM* have shared "memory, but based on their
use, they exhibit properties more in keeping with compute~ 'networks.
Typically, even sha~ed memory systems allot a large segment of each
memory to a local processor. When large quantities of memory must be
shared between a number of computers, processing power falls off
rapidly. Thus, these machines must be as careful about placement of
data and programs as network systems. It becomes further clouded when

{*} Gligor [13] carries functional classification further by
considering multiprocesso~s. mu~tiprbces~ors With. local memory,
distributed storage, central (peripheral)netwbrks, (decentraliZed)
computer networks, and internetworking. This further detail does
not provide additional discrimination of the operational features.

4

the communications control features are examined, since systems in all
three categories use message passing. Hence, while these systems look
different to the builder or hardware architect, they look the same or
similar to the user.

Clearly then, it becomes difficult to separate MIMD systems based
upon the physical structure and speed of their communication system,
especially when related to the class of problems which each can solve.
The environment we wish to create in the network computer is distinctly
different from that of the computer network: it is characterized by a
multiplicity of resources, physical distribution, unity of control,
network transparency where desired, reliability through replication or
similarity of resources, and component autonomy. This according to
Enslow [21] is the Fully Distributed Processing System (FOPS); hence,
the goal of the FOPS, the client's view of Wittie's network computer
and Jensen's decentralized computer are synonomous.

3 Operating System Issues

Since the client's view of a computer is generally based upon the
resources provided to him by the operating system [22], it should be
interesting to examine the characteristics of distributed co~puters
based upon their operating system. As noted by Wittie [12], "Achieving
the goals of parallel computing, machine extensibility and
fault-tolerance now depends more upon the availability of suitable
operating systems than it does on the construction of network hardware,
... " He attributes this observation to Siework in 1975 [23]. Even
though the features of the operating system were recognized to be
critical to parallel computing in the mid 70's, they have still not
been satifactorily addressed. Joseph, et al. [24] in 1984 notes that
allowing a single user program to run distributedly on different
processors requires mechanisms not supported by operating systems.

Difficult practical and theoretical decisions concerning
decomposition, distribution, and synchronization of tasks; parallel
applications languages; communication system protocols; scheduling and
sharing of resources: concurrency control; detection and control of
deadlock and recovery from hardware and software failure exist for
distributed operating systems. While one could possibly separate
computational systems based upon some combinations of the above
factors, their distinguishing features might be more difficult to
discern than the taxonomy based upon physical coupling of communication
systems. To illustrate, we will examine a few of the factors in
greater detail.

One separating feature might be based upon decision making
techniques. Both Wittie [12] and Jensen [4] examine this issue, noting
that resource allocation is difficult for a number of reasons:

1. the network computer nodes do not know where to find a
particular resource;

5

2. the data structure for global management of resources becomes
too extensive to fit upon one machine;

3. the level of communication activity to share all information
would exceed the system capacity;

4. the communication delays playa substantial roll; by the time
the information gets to the proper node, it probably does not
reflect the true situation;

5. the failure of a network computer node must be handled in such
a manner that processing can continue;

6. the decision making system is much more complex in order to
compensate for factors 4 and 5.

Jensen dwells upon the sixth aspect of the problem in much greater
detail. In examining resource management, he comments [4]
"Unfortunately, operating systems as presently conceived are highly and
inherently central in several critical aspects. Perhaps most
importantly, they are based upon some very strong premise about time;
e.g., that communication delays due to physical dispersal within the
operating system are practically negligible with respect to the rate at
which the system state changes (note that the same effect can occur on
a single VLSIC/VHSIC chip). This leads to the presumption that it is
possible (and even cost effective) for all processes to share as
complete and coherent a view of the system as may be desired (e.g.,
that a single ordering of events can be established}." Jensen also
eludes to point 5, the failure problem, noting that both information
latency and failure are mainly considered (up to now) in the context of
shared memory systems.

Decision making is separated into logical and physical factors.
Jensen further states that logical decision making concepts are needed
for decentralized computing, implying that this is a primary reason why
"distributed" and network operating systems are so disparate. "He
proposes concepts like multilateral management noting that
decentralization must be founded upon it; "not for instance on the more
common theme of resource or functional partitioning." Hence, decisions
must be based at least upon "team" effort or even more decentralized
upon some form of partitioned competence or disparity of information
with the activity eventually converging to a single consensus decision.
"But the region of primary interest to us in the multidimensional space
of logical decentralization is where each global decision is made
multilaterally by a group of peers through negotiation, compromise and
consensus."

While the above concepts make nice philosophy, we do not feel that
all network computer operating system resource allocation must be based
upon concepts like group and consensus decisions; that is, we do not
feel that this activity constitutes a discriminator for taxonomy
purposes. We note that such schemes may create additional problems;
for example, "If you want nothing done, give it to a committee."
Hence, distributed systems will make some resource decisions based upon

6

limited, imperfect knowledge in an arbitrary and capricious manner,
uainq the philoaophy that sometimes it is better to do something,
hopefully useful, than just to talk about it. Therefore, decision
making while nice is not necessary for network computers. {*}

The fourth factor above, inaccurate and insufficient information, as
a distinguishing difference between decentralized and centralized or
network operating systems is harder to dispel. We present two
arguments which illustrate that this feature is not a discriminator
either~ First, on the surface the situation that a central operating
system can gather lots of useful and coherent information to make
perfect decisions, appears to be reasonable. Practically, they don't.
Optimal decisions on resource allocation are many times NP~hard and
operating systems can't take the time (like peer decisions) because
this would permit less useful work of the client to proceed. Hence,
they attempt to make reasonable and consistent. decisions to provide
correctness preservation for the resource and some useful brdering of
events that will allow the clients to proceed and the O/S to recover in
case of failure or error. Furthermore, optimization is goal related.
Changing the goals may change completely the decision making scheme
and~ hence, the information required by the operating system. Since
O/S functionality is usually decided long before the complete utility
of the computer, optimum goals are not known.

Second, with regard to the timeliness of information, both Jensen
and Wittie dwell upon the communication delay in the network as being a
large factor in differentiating distributed operating systems from
their centralized or network counterparts. (Jensen, however, notes
correctly that delay may be a factor in closely coupled systems like a
VHSIC chip.) To be precise, information delay and lack of singular
global ordering occur in all computer systems, including uniprocessors.
For example, disc access and resultant DMA to main memory takes
considerable time and may occur in an almost infinite variety of
ordering with respect to CPU instruction execution; the operation is
completely under control of the local backplane access, priority, and
structuring mechanisms. Delay that occurs during the completion of the
DMA event may cause operating system problems. For example, failure
may not be known to the operating system until it checks the status
register. This may cause it to abort previously made decisions.
Delays and ordering in any modern computer cannot be completely
controlled Qy the operating system. In fact, different backplanes
impose radically different timings with regard to information exchange
and orderings, yet the operating system provides a completely
consistent abstract view to the client. Hence, when examining the fine
detail, uniprocessors exhibit many characteristics equivalent to
distributed systems. In fact, what is a backplane but a communication
system between distributed (albeit, special purpose) processors.

{*} We do not mean to imply by these statements that negotiated
decision making is nb~ an important and fruitful topic for research
in distributed systems. We support and endorse Jensen's ARCHONS
program; we state only that the concept does not discriminate
between classes of distributed systems.

7

Although the primary goal of the operating system should be resource
management, we disagree with the previous referenced work [4, 12J "that
decentralized systems differ from centralized ones because of the
inherent communications delays or the logical features of decision
making. In fact, the primary distinction between computer network and
network computer operating systems is not anyone or a combination of
factors listed or discussed previously. However, we do agree with the
conclusion that they are distinct and with Jensen's [4] and McKendry's
[3] conclusion that evolutionary development from computer network to
network computer is inappropriate and ill advised. In fact, we ~
strengthen that argument to show that it is not practical and probably
not feasible.

4 Indivisibility Concept In Operating Systems.

As noted previously all operating systems must cope with the
ordering and delay problems. These problems may exist because the
resource is hardware related and not under control of the operating
system or software related, occurring because of the structure created
and used by the operating system. This problem is related to
concurrent processing, in that the CPU should do other useful work
until an event takes place. Coffman and Denning [22], ~n discussing
operating system theory, note:

1. the desire for efficient utilization of the equipment leads to
the widespread use of concurrency among the central machine
and its peripheral devices;

2. the desire to share information and communicate among the
existing programs; and

3. operating systems are thought of as a control program that
coordinates various concurrent activity.

To implement concurrency, the concept of processes or tasks have
been defined. In parallel processing, more than one process may be
observed between initiation and termination stage, and even in a
uniprocessor, more than one program may be progressing simultaneously.
For example, one program may be utilizing the CPU, a second suspended
awaiting an event, and a third running on an 1/0 channel. Hence, all
modern computers operate concurrently. To differentiate between
computer systems, we examine the mechanisms they use to control that
concurrency.

A process to run correctly must be determinate [22]; i.e., its
termination state must be a result of its initial state and inputs, not
a result of the speed or schedule under which it runs. In order to
accomplish determinacy, processes must employ indivisibility or
atomicity in its critical activities. Indivisibility, in the context
of the operating system, causes services to perform determinately. For
example, to guarantee correctness, an operating system handler may
block (synchronize) any entry which rewrites the device memory control
structure (memory mapped 1/0) until after the scheduled interrupt has

8

taken place and may then place the processor in an uninterruptable mode
until the handler completes some critical activity, like a check for
errors, resetting the I/O controller variables, etc. A software
service, like a queue or stack, may have data and code controlled
through mutual exclusion or synchronization structures to guarantee two
clients are not given the same data space.

Fundamentally, each O/S resource may require a unique form of
indivisibility, While the mechanization of indivisibility varies
widely among architectures and O/S implementation, its scope, the
location where its support is found and who controls progress is
identifiable, First, indivisibility is found in the
hardware-firmware-software that supports or underlies the operating
system, usually called the kernel. Also, it can be found as data
structure in the operating system itself. In addition to scope,
thread-of-control, the control characteristic of the indivisibility
implemented by the O/S and its kernel, is important. We will use the
scope and control character of this indivisibility to develop a new
taxonomy for distributed computer systems and show that it is a useful
tool in analyzing the capabilities exhibited by various computer
systems.

Before we discuss the indivisibility features incorporated in
operating systems, we need to consider the manner in which resources
can be viewed. We adopt Allchin's concept of abstract and concrete
[25] (closely related to Jensen's logical and physical [4]). Resources
maintain two views: abstract, the view presented to the client for his
request/response operations; and, concrete, the view more closely
related to the need to maintain the resource (more closely related to
the physical). The abstract view should provide a consistent, useful
service to the client, and the concrete view should control the
internal state of the resource to maintain consistency and recover from
failures. If a failure should occur, the client should understand the
cause of the failure (if related to his activity) and the resultant
state of the resource. Obviously, certain resources can present
differing views to differing classes of clients and be combined to
provide a higher level of service to clients.

5 Structures for Distributed Computers Related to Their Operating
Systems

In Figure 1, we show the four classes of distributed computer
systems we intend to consider. All four of the systems show
concurrency and indivisibility (atomic activity) and hence, should be
considered for inclusion in our taxonomy.

5.1 Uniprocessor

Figure la} illustrates the structure of the uniprocessor; while not
strictly considered a distributed system, it provides many features
which clients desire a computer to possess in present and future
machinery. For example, multi-user capability is supplied by an O/S

9

that is capable of regulating and sharing its resources so that each
user preceives that he has full control of the machine.

Let us examine the uniprocessor indivisibility characteristics.
First, at the physical level, architecture may support DMA, test and
set, interrupts, hardware exceptions, software traps, virtual memory
traps, etc. At the kernel level, support may exist for concurrent
process control including context switching, critical section control,
synchronization with P & V operations, etc. While the details of the
indivisible structure are not important, the scope and thread-of­
control characteristics provided for resource sharing are related to a
single CPU only. To state differently, a single processor deals with
indivisibility structures local to its environment. For example, only
one processor responds to interrupts. At the abstract resource level,
the uniprocessor provides for storage of information in the form of
files, starting and stopping tasks, etc. with certain characteristics
based upon indivisible data structures (e.g. file directory) created,
processed and stored at the operating system level. Thread-of-control
to deal with these resource structures is based in a single processor.
In both cases the system indivisibility is related to a single
processor activity only. Based upon this finding, we classify this
computer as a uniprocessor.

5.2 Computer Network

Figure 1b) illustrates the computer network system where the local
0/5 is augmented with a network in a valued-added fashion, as noted
above. These combine to form the basic network operating system.
Here, the client preceives himself to be connected to a single node but
with the capability to access other nodes.

Let us examine the computer network indivisibility characteristics.
Since resources like storage, hardware interrupts, etc. are tied to a
particular machine, local or single processor indivisibil~ty exists
similar to that of the uniprocessor. The network firmware provides
additional indivisibility through the transmittal or receipt of
information. While the nature of this information structure varies,
the physical structure is usually based upon a block of information
(I/Q buffers) and controlled similar to other 110 channel information
at the local level. No additional structure is added to the kernel to
support the communication system.

At the abstract resource level, the 0/5 provides a communications
resource in addition to all the resources provided by it as a
uniprocessor. These resources vary but recently standardization of
protocol structure [26] is being implemented to enable compatible
communication across a wide variety of machines. Protocols deal with
the message structure of the communications system.

The communications system may contain a number of interesting
thread-of-control features some of which provide indivisibility across
nodes. The characteristics of the routing system are particularly
interesting. In some networks routing is controlled locally with some

10

information for routing decisions supplied either locally or globally.
In others~ routing is strictly global e.g., controller-in-charge (IEEE
488)· [27]. The controller-in-charge is an example of non-local
indivisibility structure in that another CPU has access to and control
of information structures which influence the local machines progress
or scheduling of its resources. Globally supplied ~buting tables may
or may not exhibit non-local indivisibility depending upon how the
information supplied globally is synchronized with its local use.

Another interesting communications system structure handles the
acceptance and flow between machines. The acknowledge protocol has
non-local indivisibility; i.e., the acknowledge processing on one CPU
controls the utilization of resources (buffers) on another CPU.
Mechanisms to enable choking control or r~routing when buffers or
channels get overloaded are related examples [33].

Another example involving more than one computer and structures
other than the communication thread-of-control is the IPC structure for
remote procedure call (RPC) [29]. Here, RPC basically causes
processing to begin on another machine. Philosophically, locus of
control for the program progression is transferred to the new machine;
it is not normally shared between machines. Also, data sharing is
implemented on a call-by-value and call-by-value-return because there
is usually no way for the operating system to control the
indivisibility necessary to organize call~by-reference variable
con~rol. Hence, we would classify the RPC as a local indivisible
structure. Using a surrogate program [30] to implement the control
further divides the processing into local controls.on each machine.
However, the communication structure may still maintain non-local
indivisibility with its acknowledge and/or time-out structure.

Finally, consider the example of a distributed database [31]. Here
atomic activity based upon transaction indivisibility exists. Data
structures on different machines are clearly involved when locks are
obtained and maintained on all data accessed in the transaction; two
phase commit [31] involves structure and control across machines.
Hence, a distributed data base implemented by the operating system is
clearly a non-local indivisible activity. However, most distributed
databases are im~lemented at the client level [36].

With this clearer picture of what constitutes indivisibility
features,· we can return to consideration of the computer network. We
define the computer network to have local indivisibility structures for
all its resources except the communication system which has non-local
indivisibility. A computer network does not have distributed O/S
indivisibility structure for any acti.vity other than the communication
system.

It is precisely for this reason that network operating systems can
be created in an add-on fashion. In fact, they can have their
communication system indivisibility features incorporated in separate
computers like the Interface Message Processor (IMP) for ARPANET [7].

11

5.3 Network Computer

The next category of computer system is shown in Figure 1c). Here
the operating system is still local. However, it supports ~ client who
sees the system ~s an FDPS [21], network computer [12] or decentralized
computer [4].

Since our claim is t~at we can classify the computational system by
the indivisibility structure in the O/S and the kernel support, let us
examine the system structure for the network computer. While it would
be most desirable to do so by examining existing examples, Jensen [4]
comments "Presently, ARCHONS appears to be essentially alone in
stressing unif;cation at the operating system level The only
popular alter~ative to conventional centralized computers is computer
networks." Joseph, et ale [241 also cites the lack of available
commercial operating systems that distribute program parts. Thus, we
have to examine proposed syste~s.

We first note that, like the previous systems, local indivisibility
exists. Second, like the computer network, network control structures
must be present alt~ough they may be implemented differently. The
additional feature required for network computing is indivisibility
control structure at t~e ker~el and O/S level ~hich implements generic
distributed activity~ Such features, proposed by McKendry and Allchin
for CLOUDS [3, 25] and by Jensen for ARCHONS [4, 34], are based upon a
generic atomic trans~ction system.

In CLOUDS the basic structure is the object. It supports many
different kinds of concurrency control. It also supports atomic
transaction protocol such as Begin ~ction, ,Commit, Abort, and End
Action, and recovery based upon volatile and permanent storage. The
kernel provides the underlying data and procedure structures to support
transaction activity across the network. As a result, the network
communication handling must exLst at the O/S kernel level, a distinct
change from the computer network operating system. Fundamentally, the
object and action structure supports the construction of truly
distributed information resources.

Similar structure exists in ARCHONS;" this suggests that an
atomic transaction facility for use by the O/S ... " [4]. With such a
facility, resource structures that are truly distributed can' be
implemented and provided to the clients. The clients may preceive the
abstract resource as transparent, generic to the total system or as
existing over a group of processors which, by virtue of their physical
or logical information resources, are able to provide the service.
Both CLOUDS and ARCHONS are engaged in implementing the support for
distributed transactions at the kernel level.

Thus, in our taxonomy, network computers, decentralized computing
and the Fully Distributed Processing Systems are synonymous and
identified by the fact that their operating system kernel supports
control for distributed information. Hopefully, in the future,
hardware, software and firmware developers will find newer and better
methods fo~ implementing transaction and other indivisibility structure

12

across computer system networks so that the next generation of
computers can have more efficient distributed resources.

5.4 Multiprocessor -- Algorithm - Data-Coupled Computers

Figure ld) illustrates the final computer which we have called the
algorithmic or data coupled computer. This computer, like the
multiprocessor in Wittie's taxonomy, has many local cpu's operating in
parallel. However, by careful examination of the figure, we see that
it is structurally identical to the uniprocessor since both the
operating system and the client view it as a single system, albeit,
constructed somewhat differently from the uniprocessor. The operating
system may preceive the computer as having local support for a global
operating system plus a truly global operating system controlling the
resources. The client may preceive that certain processors do certain
kinds of processing substantially better than others, but he still
communicates with the O/S as an integrated set of resources. Note,
there is no distinction yet from a uniprocessor which may have a
central cpu, another cpu controlling the disk, another controlling the
terminal, etc., all connected to a backplane with shared memory, memory
mapped I/O, DMA, etc.

The distinction from a uniprocessor must be found in the
indivisibility provided in the system. Like the uniprocessor, local
indivisibility exists at each node and depending upon the type of
information exchange, communication system indivisibility. In
addition, algorithmic or data-control indivisible structures, based
upon the operations being performed or the manner in which the data is
supplied to the individual processors, is what gives the algorithmic
processor its unique characteristic. For example, the CDC Star
(actually an SIMD example) is a vector machine in that vector
operations can be executed. By specifying vector structures (address
and length) in calling a vector instruction, mutiple operations are
performed (e.g. vector addition) indivisibly upon the complete data
structures. Alternatively, a machine that implements correlation or
neighborhood processing, like the MPP [32] or FEM [19], respectively,
transfers data to its immediate neighbor processors in a prescribed
fashion between operations, again, in an indivisible fashion. Note, it
is this kind of indivisibility which differentiates the algorithm or
data-coupled computer from the computer architectures considered
previously. There are a great number and variety of algorithmic and/or
data-coupled processors; in fact, the client usually asks what equation
or math function does this one solve?

Hence, computers can be divided into four categories based upon the
indivisible nature of the information and control that exist at the
operating system level. These categories correlate closely with those
the client sees in the resources which he can control and by the
character of the problem he can solve most easily. They are:

1. Uniprocessors - local indivisibility

13

2. Computer networks - local and communication system
indivisibility

3. Network computers - local, communication and distributed
information indivisibility

4. Algorithmic or data-coupled computers - local, possibly
communication, and algorithm andlor data-control
indivisibility

6 Discussion and Observations Relating to OIS Indivisibility Computer
Classification Schemes.

First, in operating systems that support a particular
classification, it is usually feasible for the client to implement
additional control structures in order to use the machine in a manner
not supported by the operating system. For example, in a computer
network, transaction based protocol can be constructed to provide a
distributed database or an algorithmic processor by building proper
distribution and control structures. Most research on distributed
database management is of this form [35, 36]. This is certainly
practical if done on a limited basis. However, since it is client
built, it is difficult to integrate its control with other client-built
resources, especially if they must share information. Also, in many
programing systems, it is hard to build in the concurrency needed to
make the system run efficiently since concurrency is under control of
the operating system. In addition, if the client structure includes a
new physical resource, then additional difficulty exists in integrating
that resource in with the other operating system controlled resources.
Finally, it is nearly impossible to integrate the client-built resource
with other OIS resources.

Second, we note that the taxonomy deals only in a limited way with
physical or communications hardware. For example, indivisibility
structures in the computer network discussion have been related to some
physical structure, e.g., the controller-in-charge protocol. However,
this protocol could easily be developed using a shared memory computer
assuming some form of interrupt or notification system. Alternatively,
a shared memory system may be structured to perform like a computer
network with control based upon message passing but without some of the
formal standard header protocol. In different systems, indivisibility
structures can exist in either hardware, software or some combination.
To the client, different hardware structures may exhibit similar
resource characteristics. While the computer hardware architect
considers shared memory and networks distinctly different systems, the
client may be faced with the same programing problems. This also
implies that certain tasks might run like they were on a computer of a
different class depending upon the structure of the OIS resources that
they use.

Finally, we note that our indivisibility argument supports Jensen's
observation that evolution of the OIS from the computer network to the
decentralized computer is not practical. Distributed structure at the

14

0/5 kernel level is required to support transaction and concurrency.
This, in turn, requires a communication structure and other distributed
system support at the kernel like naming and location mechanisms. Such
a kernel structure is outlined by McKendry for CLbuDS. It seems
unlikely that a present operating system kernel and data systems
structure' can be augmented slnce the network computer system is
substantially different from the present network operating system
structure. In order to provide decentralized computing, FDPS, or the
network computer system, a totally new operating system development,
like CLOUDS or ARCHONS, is required.

7 Concluding Remarks

Operating system resources define the basic characteristic that
com~uting machines provide to their clients. While op~rating system
resources have a ~reat diversity; they all share the requirement for
concurrency and determinacy. There latter features are provided by the
indivisibility or atomicity structure provided by through the 0/5
kern~l and its thread-o~-control. By examinirig the scope and location
of these features, we can classify multi~rocesior systems into four
categories:

1. Uniprocessors

2. Computer Networks

3. Network Computers

4. Algo,rithm and/orData-control Computers

This classification is important since it support~ the client's view
of the computer system utility and not the hardware or system
developer's view. It particularly emphasizes the difficulty clients
have because of the inherent scope of the computer supplied resources.
The author anticipates that in the future more detailed examination
withiri each 'classification may better define the user's view of
particular c6~p4ter systems.

The taxonomy and ftsjustification also indicate the type of 0/5
. support structure needed for truly distributed processing systems. In
this'respect, the examination of the character of the indivisibility
structures for the network computer show 'that it is not practical to
construct such operating systems by extending pte sent computer network
operating systems.

Finally, further examination of indivisibility structure for each
class, and especially the network computer class should point the way
to new concepts in hardware, firmware, OIS kernel software and 0/5
languages that will provide better and more efficient structure for
future. computing machine~y;

15

8 References

1. Lampson, B. W.; Paul, M.; Siegert, H. J.: Distributed System
Architecture and Implementation, Springer-Verlag, Berlin, 1981

2. Elson, B. M.: "Intel Offers New Family of High-Speed Computers for
Scientific Applications," Aviation Week & Space Technology, March 4,
1985, pp. 81-83

3. Allchin, J. E.; McKendry, M~ S.: "Support for Objects and Actions
in Clouds: Status Report," Tech. Rpt. GIT-ICS-83/11, Georgia Inst. of
Tech., May 1983

4. Jensen, E. D.; Pleszkock, N.: "ArchOS: A Physically Disper~ed
Operating System," IEEE Distributed Processing Technical Committee
Newsletter, June 1984

5. Ibid 1, Ch. 5

6. Wittie, L. D.: "Communication Structure for Large Networks of
Microprocessors," IEEE Transactions on Computers, Vol. C-30, No.4,
April 1981, pp. 264-273

7. Tanenbaum, A. S.: Computer Networks, Prentice-Hall, Englewood
Cliffs, N.J. , 1981, Ch. 1

8. Ibid 1, Ch. 2

9. Bhargava, Bharat: "Performance Evaluation of the Optimistic
Approach to Distributed Database Systems and it Comparision to
Locking," Proc. of 3rd Int. Conference on Distributed Computing
Systems, Oct. 18-22, 1982, pp. 508-517

10. Flynn, M. J.: "Some Computer Organizations and Their
Effectiveness," IEEE Trans. on Computers, Sept. 1972, pp. 948-960

11. Wittie, L. D.; Van Tilborg, A. M.: "An Introduction to Network
Computers," Proc. of ACM82 Conference, Oct. 1982, pp. 199-206

12. Soi, I. M.; Aggarwal, K.K.: "A Review of Computer-Communication
Network Classification Schemes," Cbmputer Networks: A Tutorial, Eds. M.
Abrams & I.W. Cotton, IEEE Computer Society Press, Silver Springs, Md.,
1984

13. Gligor, V.: "Notes on Distributed Operating Systems," Un. of
Maryland Used for Course ENEE 748,. 1984

14. ~yer, ·T. H.; Vittal, J.J.: "Message Technology in the ARPANET,"
Proc. of IEEE National Telecommunication Conference '77, Dec. 1977

15. Comer, D.: "The Computer Science Research Network: A History and
Status Report," Comm. of ACM, Vol. 26, No. 10, Oct 1983, pp. 747-753

16

16. Schroeder, M. D.: Birrell, A. D.: Needham, R. M.: "Experience with
Grapevine: The Growth of a Distributed System," ACM Trans. on Computer
Systems, Vol. 2, No.1, Feb 1984, pp. 3-23

17. Swann, R. J.: et. al.: "The Implementation of the Cm*
Multi-microprocessor," AFIPS Conf. Proc., NCC 1977, pp. 645-655

18. Despain, A. M. Patterson, D. A.: "X-TREE: A Tree Structured
Multiprocessor Computer Architecture," Proc. Fifth Ann. Symp. on
Computer Architecture, 1978, pp. 144-151

19. Jordan, H.: "A Special Purpose Architecture for Finite Element
Analysis," Proc. 1978 Conf. on Parallel Processing, Aug. 1978, pp.
263-266

-
20. Kapron, F.P.: "Fiber-Optic System Tradeoffs," IEEE Spectrum, Vol.

22, No.3, March 1985, pp. 68-75

21. Enslow, P. H.: "What is a "Distributed" Data Processing System?,"
Computer, Vol. 11, Jan. 1978, pp. 13-21

22. Coffman, E. G.: Denning, P. J.: Operating Systems Theory,
Prentice-Hall, Englewood Cliffs, N.J., 1973

23. Siework, D. P.: "Process Coodination in Multimicroprocessor
Systems," Microarchitecture of Computer ~~ems, Eds. R.W. Hartenstein
& R. Zaks, North-Holland, 1975, pp. 1-8

24. Joseph, M.i Prasad, V. R.i Natarajan, N.: S Multiprocessor
Operating System, Prentice-Hall, Englewood Cliffs, N.J., 1984, ,pp.
50-51

25. Allchin, J. E.: "An Architecture for Reliable Decentralized
Systems," Ph. D. Dissertation, Tech. Rpt. GIT-ICS-83/23, Georgia Inst.
of Tech., Sept. 1983

26. Weir, D. F.: Holmblad, J. B.; Rothberg, A. C.: "An X.7S Based
Network Architecture," Computer Networks: ~ Tutorial, Eds. M. Abrams &
I.W. Cotton, IEEE Computer Society Press, Silver Springs, Md., 1984,
pp. 231-241

27. IEEE Standard Digital Interface For Programmable Instrumentation,
IEEE Std 488-1978, New York, 1978.

29. Birrell, A. 0.; Nelson, B. J.: "Implementing Remote Procedure
Calls," ACM Trans. on Computer Systems, Vol. 2, No.1, Feb. 1984, pp.
39-59

30. Brownbridge, D. R.; Marshall, L. F.: Randell, B: " The Newcastle
Connection or Unixes of the World Unite," Software Practice and
Experience, Vol. 12, No.2, Dec. 1982, pp. 1147-1162

17

31. Haerder, T.; Reuter, A.: "Principles of Transaction-Oriented
Database Recovery," Computing Surveys, Vol. 15, no. 4, Dec. 1983, pp.
289-317

32. Batcher, K.P.: "Design of a Massively Parallel Computer," IEEE
Trans. on Computers, Vol C-29, No.9, Sept. 1980, pp. 836-841

33. Ibid 7, Ch 8.

34. Jensen, E. D.; et. al.: "Reconfiguragble C(2)DDP System," Interim
Tech. Report for RADC, Carnegie-Mellon Un., Dec. 1984

35. Ellis, C. S.; Floyd, R. A.: "The ROE File System," Third Symp. on
Reliability in Distributed Software & Database Systems, IEEE Computer
Soc. Press, Oct. 17-19, 1983, pp. 175-181

36. Sp~ctor, A. Z.; et. al.: "Support for Distributed Transactions in
The TABS Prototype," Fourth Symp. on Reliability in Distributed
S6£tware & Database Systems, IEEE Computer Soc. Press, Oct. 15-17,
1984, pp. 186-206

18

Figure 1.- Computer System Structures

Q
\:V

a) Uniprocessor

'-__________ ~ ______ ~N=e~tworQkL_ ________ _L ______________ _+

b) Computer Network

Cli
Network

c) Network Computer

Global 0/5

~L-______________ ~~l~~~r~ ____________________ ~~

d) Multiprocessor - Algorithm - Data Control Computer

19

I 2. Government Accession No. 3. Recipient's Catalog No. 1. Report No.

NASA TM-86438
4. Title and Subtitle

A New Taxonomy for Distributed Computer Systems Based
Upon Operating System Structure

S. Report Date

.1lJnp 1 QR5
6. Performing Organization Code

505-37-03-01
7. Author(s) 8. Performing Organization Report No.

Edwin C. Foudriat
f----------------------------l 10. Work Unit No.

9. Performing Organization Name and Address

NASA Langley Research Center
Hampton, VA 23665

11. Contract or Grant No.

t----------------------------1 13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, DC 20546

1 S. Su pplementary Notes

16. Abstract

Tpr:hnir.al Memorandum
14. Sponsoring Agency Code

The paper considers characterisitcs of the resource structure found in the
operating system as a mechanism for classifying distributed computer systems. Since
the operating system resources, themselves, are too diversified to provide a con­
sistent classification, the author examines the structure upon which resources are
built and shared. O/S resources must run concurrently and determinately. The under­
lying structure to accomplish this is the indivisibility or atomic activity provided
by the O/S kernel and data structure. The location and control character of this
indivisibility provides the taxonomy for separating uniprocessors, computer networks,
network computers {fully distributed processing systems or decentralized computers}
and algorithm and/or data-control multiprocessors.

The taxonomy is important because it divides machines into a classification
that is relevant or important to the client {user of the machine} and not the
hardware architect. It also defines the character of the kernel O/S structure
needed for future computer systems. For example, based upon the kernel analysis,.
it is apparent that computer networks are easy to develop from uniprocessors in a
value-added fashion, but that true network computers are not yet available because
development by extending computer network operating systems is not practical. The
paper also discusses in detail what constitutes an operating system for a fully
distributed processor.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement

Distributed computers, Network Computers,
Computer Taxonomy, Operation Systems Unclassified - Unlimited

19. Security Classif. (of this report) 20. Security Classif. (of this page)

~Unclassified Unclassified

Subject Category 62

21. No. of Pages

20
22. Price

A02

N-305 For sale by the National Technical Information Service. Springfield. Virginia 22161

End of Document

