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Abstract 

We present a unified treatment of explicit in time, two level, second 

order resolution, total variation dimin1shing, approximations to scalar 

conservation laws. The schemes are assumed only to have conservation form and 

incremental form. We introduce a modified flux and a v1scosity coeff1cient and 

obtain results in terms of the latter. The existence of a cell entropy 

inequa11ty 1S discussed and such an equality for all entropies is shown to 

imply that the scheme is an E scheme on monotone (actually more general) 

data, hence at most only first order accurate in general. Convergence for 

TVD-SOR schemes approximating convex or concave conqervation laws is shown by 

enforcing a single discrete entropy inequa11ty. 
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Introduction 

Recently there has been an enormous amount of activity related to the 

construction and analysis of finite difference approximations which 

approximate nonlinear hyperbolic systems of conservation laws and which are 

supposed to have the following properties: 

(1) Limit solutions which satisfy a geometric and/or analytic entropy 

condition. 

(2) A bound on the variation of the approximate solutions at least in the 

scalar and linear systems case. This bound is such as to imply the 

absence of spurious oscillations in the approximate solutions. 

(3) At least second-order accuracy in regions of smoothness, except for 

certain isolated points as described below. 

Some examples of the successful computational consequences of this 

activity can be found in the proceedings of the sixth AlAA Computational Fluid 

Dynamics Conference, and elsewhere see e.g., the bibliography in [21]. 

Some of the earliest work in the design of schemes having properties (2) 

and (3) above was done by Van Leer [27], [28]. There he introduced the 

concepts of flux limiters and higher order Riemann solvers. Recently Harten 

[10], [11] obtained conditions which he showed to be compatible with second

order accuracy, and which guarantee that a scalar one-dimensional scheme is 

TVD--total variation diminishing. He constructed a scheme having that 

property, and formally extended it to systems using a field-by-field limiter 

and Roe's decomposition [22]. 

We would also like to mention the work of Boris and Book [1] concerning 

FCT schemes. They also used flux limiters to suppress oscillations in their 

schemes. 
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Harten's construction in [10] was done first for a fully discrete, 

explicit in time approximation. P. Sweby [24] has investigated the properties 

of various limiters in this context. 

We shall use the term "high resolution scheme" to mean a formal extension 

to systems via a field-by-field decomposition of a scalar, higher than first-

order accurate, variation diminishing scheme. These schemes do not, in 

general satisfy the entropy condition e.g. expansion shocks exist as stable 

solutions of high resolution schemes based on Roe's (unmodified) scheme. In 

[20], Osher's decomposition and certain flux limiters were used to prove that 

limit solutions to a class of semi-discrete, time continuous high resolution 

schemes do satisfy the entropy condition for hyperbolic systems of 

conservation laws. Convergence of other classes of semi-discrete, time 

continuous, high resolution approximations to scalar convex conservation laws 

was proven in [19] and [20]. 

A systematic recipe for constructing semi-discrete high resolution schemes 

whose formal accuracy is higher than two (away from the isolated points) using 

a minimal band width, was presented in [21]. 

In the present paper we are considering two-level, (and for simplicity 

only), explicit finite difference approximations to a scalar conservative law 

having two properties: 

(1) Lax-Wendroff conservative form [15], and 

(2) Roe's incremental form [22]. 

In Section 1, we introduce a modified flux and a viscosity coefficient, 

both grid dependent quantities, with which we set up and advocate a third form 

of these schemes the viscosity form. 

presented in terms of this form. 

A sufficient TVD criterion is then 
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In Section 2 we consider schemes which have a 3-point stencil. In this 

case the modified flux coincides with the original (differential equation's) 

flux; accuracy is consequently limited to first-order. 

Thus, in Section 3, we consider wider stencils. A comprehensive framework 

of second-order resolution (SOR), total variation diminishing (TVD) schemes is 

presented. The viscous form of the scheme again plays a key role here. 

Two concrete examples for the construction of SOR-TVD schemes according to 

the above guidelines are detailed in section 4; both approaches use the 

viscous form of the underlying 3 point TVD schemes. Special attention is 

called to the second ("piecewise constant viscosity modification") recipe in 

Corollary (4.9), which results in an easily implemented and highly attractive 

two step formulation. 

These four sections comprised Part I. In our attempt at a unified 

treatment of this subject, we derived (and in some cases rederived) some 

notable conclusions: 

(i) Three point TVD schemes are, at most, first-order accurate. 

(ii) Accuracy at nonsonic critical points is limited to first-order. 

(iii) 

(iv) 

Our piecewise linear flux correction (Theorem 4.3) extends Harten's 

recipe [10], under a CFL of limitation 2/3, (Remark 4.9), in 

agreement with that found by Sweby in [24]. 

Our recipe for converting three point TVD schemes to five point SOR

TVD schemes seems quite general and attractive from both a 

computational and a theoretical point of view. The latter point of 

view will be used in Part II. 

The discussion concerning a cell entropy inequality begins in Section 5 

using the canonical Godunov scheme. Section 6 contains the heart of our 
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discussion. The grid dependent modified flux of Section 1 is extended to a 

modified flux function defined on the intervals connecting the grid values. 

The definition involves a piecewise linear function (i.e., the "double wing" 

seen in figures (6.4» and the remark made after the statement of Theorem 

(6.11), which takes into account the presence or absence of critical points. 

The schemes under consideration are then expressed as convex combinations 

of Riemann problem solvers, i.e., of Godunov type schemes, using the above 

modified flux functions. We obtain an entropy in cell inequality involving a 

familiar (integral) residual term. 

Section 7 discusses the significance of E fluxes (introduced in [18], 

c.f also [26]). We show that for ~ approximate entropy in cell inequality 

to be valid for all intervals, the underlying scheme must have an E flux 

hence be at most first-order accurate (Theorem (7.2». Conversely, the 

existence of an E flux implies the nonpositivity of the residual term 

mentioned above, hence implies a general cell entropy inequality. To obtain 

convergence for SOR schemes we give up the requirement that all discrete 

entropy inequalities be valid. This limits our convergence proof to convex 

(or concave) conservation laws, as in [19], [20]. 

In Section 8 we treat SOR-TVD schemes satisfying a single quadratic cell 

entropy inequality. Here we use the viscosity modification recipe of Section 

4. A cell entropy inequality follows by estimating the residual integral 

presented in Section 6. The rather delicate tuning of the modified flux so as 

to comply with the three criteria SOR, TVD, and entropy inequality, leads us 

to a wide class of explicit in time SOR-TVD schemes (again only for the convex 

or concave scalar case). 

The main convergence results are contained in Theorems 8.4 and 8.5 
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PART I. TOTAL VARIATION DIMINISHING SCHEMES 

1. The MOdified Flux and the Numerical Viscosity Coefficient 

We study two-step difference schemes of the form 

v (t+k) 

" 
H(v (t), ••• ,v (t); f,A), 

"-p ,,+p 

serving as consistent approximations to the scalar conservation law 

au + 2i = a at ax • 

Here, v (t) = v(x ,t) denotes the approximation value at the grid point 

" " 

(1.1) 

(1.2) 

(x = v~x,t), k = ~t, and ~x are respectively, the temporal and spatial mesh 
v 

size with fixed mesh ratio A = k/~x, and p a natural number. 

We postulate 

Assumption 1.1 

(i) The scheme (1.1) admits a conservative form in the sense of Lax-

Wendroff [15] 

H(v ,.··,v + ; f,A) 
v-p v p 

0.3) 

where hv+ 1fz stands for the Lipschitz continuous numerical flux 

h + 1{ = h(v +l'.··'v + ; f,A), 
"2 "-p " P 

consistent with the differential one 
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h(w,w, ••• ,w; f,A) f(w) • 

(ii) The scheme (1.1) can be also written in an incremental form 

H(v , ••• ,v ; f,A) v-p v+p 
+ 

= v + C 1 l:J.v 1 - C 1 l:J.v 1 . 
V v+ 12 v+ /z v- /z v- 12 ' 

where we use the standard notation 

v • 
v 

(1.4) 

Equating the right hand sides of (1.3) and (1.4), rearranging and dividing 

by A, we find 

1 + 1 -
h 1 + - C 1 l:J.v 1 = h 11 + - c 11 l:J.v 1/· v+ 12 A v+ 12 v+ 12 v- 2 A v- 2 v- 2 

(1.Sa) 

We term the equated grid dependent quantities in (l.Sa) as the modified flux 

associated with scheme (1.1): 

1 1 - 1 + 
= - [h 1 + h 1 + - C 1 l:J.v 1 + - C 1 l:J.v 1 ]. 2 v- 12 v+ 12 A v- /z v- 12 A v+ /z v+ /z 

As in [2S, Section 2], we now use the consistency relation 

(1.Sb) 

(1.6a) 
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to concludee that with a given modified flux, g , there is only ~ degree of 
v 

freedom in setting up the recipe of the difference scheme (1.1): this will be 

manifested in terms of the quantity, 

(1.6b) 

Indeed, by averaging (1.3) and (1.4) we find 

1 - + ) adding and subtracting - (C 1 AV 11 - C 1 Av 1 
2 v+ /z v+ 12 v- 12 v- /z on the right-hand 

side, we arrive at 

1 - + - + 
+ - [(C 1 + C 1 )AV 1 - (C 1 + C 1 )AV 1 ]. 2 v+ /z v+ /z v+ /z v- /z v- /z v- /z 

In view of (1.5b) and (1.6b), the scheme (1.1) is thus finally recast into its 

viscous form 

(1.7a) 

expressed in terms of the numerical viscosity coefficient [10,26] 

(1.7b) 
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Let TV[v(t)] = E Iv +l(t) - v (t)1 
" " " 

denote the total variation of the 

computed solution at time level t; the following lemma provides us with 

sufficient criterion for the scheme (1.1) to be total-variation diminishing 

(TVD), in the spirit of [10]. 

LEMMA 1.2 (Total-variation diminishing) 

The scheme (1.1) has a diminishing total-variation 

TV[V(t+k)] ~ TV[v(t)], 

provided its numerical viscosity coefficient Q,,+V2' satisfies 

(l.8) 

Proof. By averaging (1.6a) and (1.6b) we find 

(l.9) 

In view of these last relations, the inequalities (1.8) boil down to 

(l.10) 

and TVD follows along the lines of [10]. 
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2. Three-Point TVD Schemes 

In the case of 3-point schemes, p = 1, it was shown in [25; Lemma 2.1] 

that there exists one and only one incremental form (1.4), whose incremental 

coefficients are 

f - h 1 v+1 v+ /z 
fJ.v v+ 1/2 

(2.1) 

Inserted into 0.5b) we find that the modified flux in this case coincides 

with the original one, g - f v - v' and the scheme is therefore completely 

determined by its numerical viscosity coefficient, Qv+ 1;2 ' 

v (t+k) 
v vv(t) -l2 (fv+l - f v- 1) + -2

1 
[fJ.(Q 1/ fJ.v 1/ )]. - v- 2 v- 2 

(2.2) 

Abbreviating df 
a(w) = dw (w), the following notation will be used throughout 

(2.3) 

The TVD constraint (1.8) now reads 

(2.4) 

and the following list quotes the most frequently referred to schemes in this 
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3-point TVD category [6,7,16,22]: 

LF 
1, (Lax-Friedrichs scheme) (2.Sa) ~+ 1/2 = 

EO A 
vv+1 

~+ 1/2 = f la(v)ldv, (Engquist-Osher scheme) (2.5b) 
6v 1 v+ /z v 

v 

G A Max 
f + fv+l - 2f(v) v (Godunov scheme) (2.Sc) q,;;+ 1/2 = 

(v-v)" (v-vv+1) ~ 0 6vv+ 1;2 

(Roe-Murman scheme) (2.Sd) 

In fact, in the special case under consideration of 3-point schemes, condition 

(2.4) is necessary as well as sufficient for TVD, see [25, Corollary 2.3]. 

Hence, the following 3-point schemes are not TVD ones 

LW 
~+ 1/2 

0, 

(Lax-Wendroff scheme) 

(Forward-Euler scheme). 

A special significance is attached to the Lax-Wendroff scheme 

v (t+k) 
v 

(2.6a) 

(2.6b) 

(2.7) 

when seeking second-order accurate schemes, the further limitation placed on 

~+1f2 in the 3-point case, singles out the Lax-Wendroff choice, (2.6a). In 
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view of the above, we therefore conclude that 3-point TVD schemes are at most 

first-order accurate [10, 18, 25]. 

At this point we are widening our discussion to include schemes whose 

stencil occupies more than three points: the further freedom in setting up 

the modified flux in this case, would enable us to achieve higher (than 

one) degree of accuracy. 

3. Second-order Resolution Schemes 

We start by rewriting the modified flux, g , in terms of the correction 
v 

gv to the original one, 

(3.1) 

Inserted into (1.7a), our scheme now reads 

v (t+k) = v (t) - ~ [(f + 1. g ) - (f + 1. g ) ] 
V v 2 v+1 A v+1 v-I A v-I 

(3.2) 

where ~+V2 stands for the modified viscosity coefficient given by 

(3.3) 
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In other words, we rewrite our scheme w.r.t the original flux, f , 

" 
modifying 

the viscosity coefficient instead. 

Remark 3.1. The viscosity coefficient discussion in [10], corresponds to the 

modified one in (3.3); indeed, in the 3-point case treated in [25] where 

g = A(g - f ) = 0, it coincides with (regular) viscosity in (1.7b). 
\I " " 

Comparison of (3.2) and the Lax-Wendroff scheme (2.7) leads us to the 

following second-order accuracy requirement 

(3.4a) 

the deliberately vague notation of A2(a2)"+V2 on the right, stands for 

modulo first-order errors, i.e., 

(3.4b) 

Together with the TVD constraint (1.8), we finally arrive at a general 

description of second-order TVD schemes, which is summarized in the following 

LEMMA 3.2 (Second-order TVD schemes). 

Consider the difference scheme (1.1) written in its viscous form 

v (t+k) 

" 
(3.5a) 

with modified flux, g", and viscosity coefficient, ~+V2' given respectively 

by 
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(3.5b) 

2 2 gv + gv+l 
= A (a )v+ 1/2+ 

Avv+ 1/2 • 
(3.Sc) 

The scheme (3.5) is second-order TVD, provided the correction terms and 

on the right-hand side of (3.Sb-c) satisfy the following two 

requirements of 

(i) second-order accuracy: 

(3.6a) 

(ii) total-variation diminishing 

< = 
1. (3.6b) 

As we shall see below, one cannot satisfy both requirements (3.6a) and (3.6b) 

at the nonsonic critical grid values v where 
v Av 1/· Av + 1/ < ° '* a( v ), v- 2 v 2 v 

and, therefore, second-order accuracy must be given up at these values. 

Difference schemes with (formal) second-order accuracy at all but those 

critical grid values are classified as having second-order resolution, after 

Harten [10]: thanks to the TVD property, no new such first-order accurate 

critical grid values are added during the computation (since the scheme is 

monotonicity preserving [10,25]), and the overall second-order accuracy does 

not seem to be degraded in this case, at least in the Ll norm. 

There are various approaches to the construction of second-order 

resolution (abbreviated hereafter SaR) schemes, the main three of which are 
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the following: 

(i) The MUSCL approach [27,19], directly modifies the first-order 

numerical flux hv+ 1/2' using a Godunov-like solver for a limited slope 

piecewise linear grid data. 

(ii) The modified equation approach [10,11] directly modifies the 

flux f(v), based on considerations of the modified equation associated with 
v 

a first-order scheme, so that the limited modified flux constructed, 

guarantees second-order TVD resolution. 

(iii) The flux limiter approach [24] directly modifies the first-order 

incremental coefficients C~+1/2' using a class of flux limiters which 

preserve TVD and maintain second-order resolution; in particular, such flux 

limiters can be chosen to interpret MUSCL and modified flux-type schemes due 

to Van Leer, Roe, Harten, Chakravarthy, Osher and ot.hers, see [24]. 

All the above approaches can be entertained of course, within the general 

framework provided in Lemma 3.2. A common "limiting" feature shared by all of 

these approaches can be directly derived from the TVD constraints in that 

lemma: the grid values gv read in (3.5), are expected to form a first-order 

"smooth" grid function correction, at least at the generic noncritical zones; 

since is determined up to first-order perturbations, see (3.6a), 

we can absorb such a perturbation, ±flgv+ 112 I flv v+ 112 = O( I flv I v+ IJ
2 

), 

middle term of (3.6b), and the right-hand inequality now reads 

2( 2) 2 gv+1 < 1 
}.. a v+ 1/2 + flv 1 = , 

v+ h 

The left-hand inequality in (3.6b) gives us 

into the 

(3.7a) 
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We shift indices in the first and fourth inequalities in (3.7). The resulting 

inequalities boil down to the following inequality to be satisfied by TVD 

schemes: 

122 
-2 (±).a ± 1/ - ). (a ) ± 1/ ) < v 2 v 2 = (3.7c) 

Hence, g /!J.v ± 1/ must lie between the above two bounds, both determined up 
v v 2 

to first-order perturbations. In particular, in view of the second-order 

accuracy requirement in (3.6a), the sign of the parenthesis on the left of 

(3.7c) is determined by that of the first term, ±).av±I/z; if further, we are 

at a nonsonic value, a(v ) ~ 0, then this first term cannot be absorbed as a 
v 

first-order perturbation of the second one, and (3. 7c) requires the middle 

terms g /!J.v ±11 to be positive. This implies that the second-order accuracy 
v v 2 

must be given up at the nonsonic critical values 

!J.v 1/·!J.v +11 < 0 ~ a(v ), [25,20]. v- 2 v 2 v 

v 
v 

where 

We now describe two specific recipes which convert arbitrary 3-point TVD 

schemes into second-order resolution ones, in the spirit of the above 

guidelines. Indeed, although the reasoning may be different, the various 

"conversion" recipes including the two below, end up with difference schemes 

which bear close similarities to each other, as dictated by the framework 

provided in Lemma 3.2. 
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4. Two Recipes for the Construction of SOR-TVD Schemes 

We start by identifying a 3-point TVD scheme by its numerical viscosity 

coefficient ~+1j2= Q(f;vv,vv+1,A); it is considered here as a functional in 

the orig1na1 flux f(.) with the further dependence on the grid values 

vv' vv+1 and the mesh ratio In view of the necessity of the TVD 

constraint, (2.4), we may assume without loss of generality that the following 

functional inequality is obeyed: 

Z(w
2

) - z(w 1) 

w2 - wI 
(4.1) 

Thus, the TVD requirement (2.4) is reduced in this case to the CFL-1ike 

condition read in the right of (2.4) 

(4.2) 

Remark 4.1. The above description seems to exclude several difference 

schemes, where it is actually the inequality on the left of (2.4), 

A IMv+ 1/2 It:.vv+ 1/2 I ~ Qv+ liz (f), which leads to the CFL limitation, as in the 

LF 
case, for example, of Lax-Friedrichs scheme (2.5a) with, QV+1j2 = 1. Together 

with the TVD constraint (2.4), however, the Lax-Friedrichs scheme, for 

example, can be equivalently represented by a numerical viscosity coefficient 

~+ 1/2 = Max(1,A It:.fv+ 1f2 I I It:.vv+ 1/2 I) which fits into our above interpretation. 

In general, an expansion of Q(O;O,O,A) in powers of A is called for, but 

we shall not elaborate on that here. 

To construct an SOR-TVD scheme, the two first-order correction terms gv 

and are to be determined; see (3.5). Taking advantage of 
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relation (3.5c), we shall also make use of the further (first-order) 

SOR flexibility in determining the viscosity coefficient, Q,,+ 112 • 

Let us denote 

s = 1- (s 1 + s 1 ) 
" 2 ,,- 12 ,,+ 12 ' 

and, in view of (3.7c), set the flux correction to be 

s 
g" = ~Min ([Q,,± 1/2 (f) - ).2(a

2
>v± IJ

2 
1 • I~v,,± 1/

2
1). 

Here, the term is chosen so that 

(4.3a) 

(4.3b) 

(4.3c) 

with otherwise arbitrary first-order perturbation o(l~vl),,+1J2. The modified 

flux is then given by 

(4.3d) 

and we are considering the difference scheme whose viscous form is expressed 

in terms of that modified flux 

(4.3e) 

We have 
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THEOREM 4.2. 

The difference scheme (4.3) is SOR-TVD provided its viscosity coefficient, 

satisfies 

1 (4.4a) 

(4.4b) 

Remark. We note that the definition of in (4.3c) still allows the 

flexibility of (some limited amount of) first-order perturbation as long as 

remains nonnegative; the latter guarantees that the 

sign of agrees with 

Proof. The first condition, (4.4a) is nothing but the TVD requirement (3.6b); 

consult (l.8). Away from the critical values where 

second-order accuracy; consult (3.4), 

"" "" 
SOR g" + g,,+1 

Qv+ 1h - !1V,,+ 1/2 = 

s = 0, (4.4b) implies 

" 

Two concrete choices for SOR viscosity will now be discussed. 

As a building block for the first, we introduce the piecewise linear flux 

correction 
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~ 

flgv+ liz 
flv v+ 1f2 

~ 

(v - v ) + g 
v v 

(4.5a) 

and use the original 3-point viscosity functional, setting 

(4.5b) 

Lipschitz continuity of the viscosity functional implies(l) 

(4.6) 

and we end up with 

THEOREM 4.3. (Piecewise linear flux modification) 

The difference scheme (4.3), (4.5) is SOR-TVD under the CFL-like 

condition. (1) 

2 (4.7) 
2 + L • 

Proof. The SOR requirement in (4.4b) is fulfilled because of (4.6), whose 

right-hand side is of order O( I flv I) 1/; the TVD requirement on the left of 
v+ 2 

(4.4a) follows from (4.1), and we are left with the inequality on the right, 

requiring 

(1) To be precise, the constant L stands for the Lipschitz constant times 
the (assumed finite) maximal bound of the ratios 
IQ(g~~(·); vv'vv+], A)I/16g~/6v~~I. 
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Indeed, in view of (4.6) we have 

since and cannot have different signs by the choice of 

(4.3a), we also find 

~i,,+ Ih 
~v,,+ 1/2 

Max (li"l, li,,+I I) 
~ I~V,,+1/21 

The last two inequalities yield the crude bound 

QSOR < (f) L [ (f) 2( 2) ] (L) ( ) v+ 1/2 = ~+ 1/2 + 2" ~+ 1/2 -). a v+ 1/2 ~ 1 + 2" Q,,+ 1J2 f 

(4.8) 

(4.9a) 

s 

" 
in 

(4.9b) 

(4.10) 

and augmented with the assumed CFL-like condition (4.7), the TVD constraint 

(4.8) is now satisfied. 

Remark 4.4. With the primary examples of Engquist-Osher, Godunov and Roe-

Murman schemes in (2.5b - d), the Lipschitz constant L in (4.6) may be taken 

to be L = 1, and the CFL limit in (4.7) is found to equal (compare, e.g., 

[24, Section 3]) 

(4.11) 

(Taking into account the negative term 2 2 
-). (a ) ,,+ 1/2 which was ignored in the 

crude bound of (4.10), the CFL limit may be further improved to be 
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2 2 
2 + A (a )v+ 1;2 

3 .) ( 4.12) 

Remark 4.5. In the case of Lax-Friedrichs scheme, where violates 

(4.11), we may take L to be zero, leaving us with the original 3-point CFL 

limitation 

(4.13) 

Remark 4.6. Consider the special choice 

which is admissible in view of (2.4). The piecewise linear flux modification 

in Theorem 4.3, extends Harten's recipe [10], which was restricted to 

viscosity functions of the form Qv+1J
2

= Q(Alav+1hl); (hence, the Engquist

Osher and Godunov schemes, for example. were excluded from the discussion 

[10]) • 

We now turn to a second more attractive choice of SOR viscosity, inspired 

by Theorem 4.2 (see also [10, p. 368]). Here, we use a piecewise constant 

viscosity modification of the form 

which leads to 

flgv+ liz 
flv v+ 1J2 ' 

THEOREM 4.7. (Piecewise constant viscosity modification) 

(4.14) 

The difference scheme (4.3), (4.14) is SOR-TVD under the CFL-like 

condition 

(4.15) 
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Proof. The SOR requirement in (4.4b) is directly verified by the very 

definition of SOR 
q,;;+ liz in (4.14); the TVD requirement on the left of (4.4a) 

follows from (4.1), 

v - v 
,,+1 " 

+ 
l1g,,+ liz 
l1V,,+ IJ2 

and we are left with the inequality on the right, requiring 

QSOR11 < 1. 
v+ 2 = 

(4.16) 

(4.17) 

Indeed, the same estimate used in Theorem 4.3 before, see (4.9b), together 

with the definition of SOR 
Q,,+ 1/

2
, (4.14) gives us the pessimis tic bound: 

SOR 
~+ 1/2 < (4.18) 

and (4.17) follows in view of the assumed CFL-like condition (4.15). 

Remark 4.8. As before, by improving the crude bound of (4.18), the eFL-limit 

may be improved to be that of (4.12). 

We note that the piecewise constant viscosity modification involves linear 

corrections of the numerical flux f in (4.3d) and the viscosity coefficient 

" 
in (4.14); both are appearing linearly in the original 3-point scheme we are 

starting with; see (2.2). Hence, the resulting modification recipe does not 

change the underlying 3-point TVD code, but, rather, adds to it an 

antidiffusive term which boils down to 
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(4.19) 

To make our point more precise, we state as our final result of this first 

part, the following 

COROLLARY 4.9. (Piecewise constant viscosity modification - revisited). 

Consider the 3-point scheme 

(4.20a) 

and assume the TVD-like constraint, compare (2.4) 

f + f +1 - 2h + 11 A"" " 12 
lJ.v,,+ 112 

(4.20b) 

holds. Then the modified scheme 

[(
lJ.i,,+ 1;2 )- (lJ.lJ.

i

v
"- 112 )+ v (t+k) = H( vI' v , v +1; f, A) - lJ.v 11 + 

" "-,, " lJ.v,,+ 112 ,,+ 12 ,,- 112 

'" is SOR-TVD. Here, g" is the flux correction, given by 

(4.21b) 

where 

(4.21c) 
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Alternatively, we can rewrite (4.21a) in the conservative form 

Here h 1 
v+ h 

v , 
v v • fA) - [11 1 - 11 1 ] 

v+1 " v+ h v- 12 

is the numerical flux correction given by 

(4.22a) 

(4.22b) 

Remark 4.10. The Lax-Friedrichs scheme violates the CFL limitation (4.20b). 

Nonetheless, an "antidiffusive" modification follows in this case directly 

from the flux modification of Theorem 4.3, with numerical flux correction 

Remark 4 .11. The conservative form of scheme (4.22) is identical with the 

corrective type of Harten's artificial compression method [8,9], the 

difference lying, of course, in the exact details of the flux correction used. 

In particular, we have an operator splitting which could be easily implemented 

as a two-step predictor-corrector method [8, Section 6]. 
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PART II. ON A CBLL ENTROPY INEQUALITY 

5. Godunov's Scheme and its Cell Entropy Inequality 

An entropy pair (U,F) associated with the conservative model (1.2), 

cons is ts of convex ent ropy function, U(.), augmented with an ent ropy flux, 

F(.), such that U'f' = F'. The requirement of having an entropy inequality of 

the form 

~~ (u(x,t») + ~~ (u(x,t») ~ 0 (5.1) 

for all entropy pairs, singles out the unique physically relevant (weak) 

solution of (1.2), e.g., [13,14]. Accordingly, we are seeking conditions 

which guarantee that the difference scheme (1.1) will satisfy a cell entropy 

inequality of the form [12] 

(5.2a) 

here, F + 1/ = F( v +1'· •• , v + ; f, A) 
"2 "-q " q 

is a numerical entropy flux, assumed 

to be consistent with the differential one(l) 

F(w,w, ••• ,w; f,A) = F(w). (5.2b) 

If this holds for wide enough class of entropy functions, the cell entropy 

inequalities (5.2) will guarantee the uniqueness of limits of all converging 

(1) Both the differential and the numerical entropy fluxes are denoted by F; 
their distinction is made by the number of arguments. 
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subsequences of the total-variation bounded solutions, and there follows the 

convergence of the whole computed sequence to the unique physically relevant 

(weak) solution, e.g., [3, 12, 18, 23, 26]. 

As an example, we begin with the all important cell entropy inequality 

associated with Godunov's scheme: by averaging two Riemann solvers, one 

obtains Godunov's scheme whose numerical flux is given by [17,18] 

Assuming that the minimum on the right-hand side is attained at a (not 

G G 
necessarily unique) value, v,,+ 112 = v (v", v ,,+ l' f) , 

s,,+11 Min [s,,+11 f(v)] 
2 (v-v ). ( v-v ) < 0 2 

" ,,+1 

(5.4a) 

then the Godunov scheme 

v(t+k) (5.4b) 

boils down to 

G 
H (v l'v,v 1; f,A) ,,- " ,,+ v - A[f(v

G
+11 ) - f(v

G 
11 )]. 

" "2 "-2 
(5.4c) 

Integrating over a typical cell the differential entropy inequality (5.1), 

then Jensen's inequality yields the following well-known lemma, e.g., 

[3,18,26] • 
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LEMMA 5.1. (Cell entropy inequality of Godunov scheme.) 

Consider the Godunov scheme (5.4) satisfying the CFL condition. 

A Max If'(v)1 ~ 1. 
v 

(1) 

Then, the following cell entropy inequality holds 

for all entropy pairs (U,F). Equivalently, (S.5b) can be rewritten 

G 
v v+ liz 

- f U'(w)f'(w)dw. 
G 

v v- liz 

(5.5a) 

(5.5b) 

(5.Sc) 

As in [26], the cell entropy inequality associated with the Godunov scheme, 

will be used as a building block for studying such an inequality in 

conjunction with other TVD schemes. To this end, we shall make use of a 

modified flux function introduced below. 

(1) The maximum is taken over all values v varying between vv-l,vv' and 
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6. The Modified Flux Function 

While studying total-variation diminishing schemes, only the modified flux 

grid values, gv' played a role, see the TVD requirement (1.8); subsequently, 

a simple piecewise linear modified flux correction, gV+V2 (v), was introduced 

in (4.5a), in connection with the (first) recipe of SOR-TVD schemes. 

Regarding the question of a cell entropy inequality which we now consider, 

a more sophisticated construction of a modified flux function, is required: 

let g(v+ 1/2 )(v) denote its restriction to the 

I + 1/ = {v I (v-v )( v-v +1) < o}. v 2 v v = 

Iv+ 1/2 - interval, 

The piecewise linear function g (v+ 1/2 ) (v) 

connects the modified flux grid values and on both ends of the 

interval, through a constant numerical flux value, hV+¥2; it depends on two, 

yet to be determined parameters + - ± (s ,s ), s > 0, in the following fashion: 

Setting the intermediate values 

+ + + + _1_ 
(gv - hv+ liz ) vv+ 1/2 - vv+ 1/2 (s ) = v v + s 

(6.1a) 

- (s - ) 1 
(gv+1 - hv+ 1/2 ) , vv+ 1/2 - vv+ liz vv+1 --

s 
(6.1b) 

we define, depending on whether v ~ vv+1 or vv+1 ~ vv' v 

+ < v ~ 
+ g - s (v-v ) v v v+ liz v v v = 

g (v+ 1/2 ) ( v; + - ) + < 
v ~ vv+ 1/2 ~ s ,s = hv+ liz v vv+1 vv+ 1/2 = v 

gv+ 1 + s - ( v-v v+ 1 ) , v ~+ liz ~ v ~ v v+ 1 (6.1c) 
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v\l+I < v < v If = = \1+ 2 

v- 1 < v < v+ If v < v • \1+ h= = \1+ 2 ' \1+1 = \I 

+ g - s (v-v ) \I \I 

We have 

LEMMA 6.1. 

Assume the TVD condition, (1.8), holds 

A Ag\l+ 1/2 

AV\l+ liz 

+ < < v \1+ 1/2 = v = V \I • 

Then g( \1+ 1/2 ) (v; s + ,s -) given in (6.1) and satisfying 

is a well-defined piecewise linear function in the I\I+V
2 

interval. 

Verification. In view of (6.2a) we have, using (1.10), 

and the definition of in (1.5b) yields 

(6.ld) 

(6.2a) 

(6.2b) 

(6.3a) 
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(6.3b) 

Consider first the case where Vv ~ vv+1: then by (6.2b), v:+ 1/2 is located 

to the left of 

v 1 - v + 1 > AVv+ 1.'2 - 1 (C - + C + 1 )AV 1 = 0, 
v+ h v+ h = ,. Q 1 v+ 1/2 v+ /2 v+ /2 v+h 

and to the right of v , 
v 

- v = _1 - C+ If Av
v

+ If2 > o. 
v ).s + v+ 2 

± Taking into account the positivity of the incremental coefficients Cv+ liz ' 

the following graph of g(v+ l12 )(v; s+, s-) is obtained in this case; see 

Figure (6.4a). 

L-~----~--------------------------------r------T------------------~V 
v v 

= v + __ I_C+ Av 1 
v ). s + v+ 1/2 v+ Iz 

Figure 6.4a 
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A completely analogous situation occurs when vv+1 ~ vv' where the graph of 

g(v+ 112 )(v) k h f i (6 4b) ta es t e orm, see F gure • • 

= hv+ 1/2 
+ .!. c- Avv+ 112 gv = hv+ 1/2 + 

1 c+ 
Avv+ 1/2 v+l A v+ 1/2 I v+ 1/2 

v 

vv+l v 
v 

1 - + + _1_ c+ 
vv+ 112 = vv+1 --c 1 AVv+ 112 v - v Av v+ 1/2 - v+ /z v+ 112- v + v+l12 

AS AS 

Figure 6.4b 

Our next lemma is in the heart of the matter. 

LEMMA 6.2. 

Assume the TVD condition, compare (1.8), 

holds. Then we have 
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-1 
= v v - e A [h v+ Ih - g) 

v -
v 

(6.6a) 

-1 
e A[g -h 1/]' v v- 2 

(6.6b) 

Proof. (v± 1/2 ) + - e ' -1) We first note that according to Lemma 6.1, g (s = s = 1\ 

are well defined: (6.S)± yields 

A ~gv+ 1/2 

~vv+ Ih 

By definition we have, see (S.4c), 

G (v+ 1/2 ) (+ - -1 ) H [v v v·g s = s = eA v' v' v+ l' , 

a straightforward computation gives us, see (S.4a), 

while consistency implies 

and (6.6a) follows. Similar arguments apply for (6.6b). 

(6.7a) 

(6.7b) 

(6.7c) 
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Remark 6.3. Godunov"'s numerical flux is determined by the differential one, 

computed at the intermediate value 
G 

vv+ 1/
2

; see (5.4a). In our case, (6.7b), 

~ intermediate value between for later 

purposes, we shall choose in particular 

(6.8) 

Taking e = 1/2 in Lemma 6.2 and averaging (6.6a) and (6.6b), we finally 

arrive at 

THEOREM 6.4. 

Consider the difference scheme (1.1) given in its viscous form (1.7a) and 

satisfying the TVD condition 

< Q 11 =< 1/2. = v± 12 
(6.9) 

We then have 

G (v+ 1;'2) + 1 1 + H [v v v 0g (s = s- =-2')' 2:\.] • v' v' v+1' 1\ 

(6.10) 

In other words, we have shown that any TVD satisfying difference scheme, 

(1.7a), (6.9), is given as an average of two Godunov solvers, thus refining a 
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similar (convex) decomposition introduced in [26, Theorem 5.1]; the current 

decomposition differs however, in its use of a modified flux function, rather 

than using the original differential one. In fact, away from the critical 

extremum values v where t:.v 1 • t:.v 1 < 0, \I \1- 12 \1+ 12 = 
we can do even better: 

under appropriate TVD condition, any difference scheme coincides with one 

(rather than the average of two) Godunov solver. This is the content of our 

next 

THEOREM 6.5. 

Consider the difference scheme (1.1) given in its viscous form (1.7a) and 

satisfying the TVD condition 

A t:.g\l± liz 
t:.v \I± 1/2 

Then, in the neighborhood of noncritical values 

t:.v 1 • t:.v 1 > 0, \1- /z \1- 12 = 

v (t+k) \I 

we have 

V \I such that 

- 1 
= s = I)' A]. 

Remark 6.6. The modified flux function g(v) = g(v; s+,s-) 

(6.11) 

(6.l2a) 

appearing in 

(6.l2a), is uniquely defined in this case, composed of its restriction to the 

consecutive intervals see Figures (6.13), 

1 g(V-1f2 'tv; + - = ~), 1\1+ liz s = s V E 

+ - = ~) g(v; s = s (6.l2b) 
(\1+ 1/2 ) ( + - = ~), g v, s = s V E 1\1+ liz 



g(V; 

• 

+ - 1 
s = s = r) 

. • . • 
hV_~ 

vV_l 

g(v; - 1 s = s =-) 
A 

h~ 

-3S-

h~ . • . . 

. • 
v 

Vv vV+l 

Figure (6.13a) 

hv_~ 

. . .. .... 

~--~------------------------+---------------------~----------------+-~V 

Figure (6.13b) 

Verification of Theorem 6.S is straightforward: by (6.11) we may employ Lemma 

6.2 with e = 1 using (S.4c) and (6.7b) the result (6.12) 

follows. 
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We next use the cell entropy inequality associated with Godunov's scheme, 

see Lemma 5.1, to infer such an inequality for the difference schemes under 

consideration. We start with 

LEMMA 6.7. 

Consider the TVD scheme (1.7a), (6.9). Then for all entropy pairs 

(U, F) we have 

+ ). 

(6.14a) 

with a consistent numerical entropy flux given by 

F 1 = F ( v G 1 ) - U' (v G 1 ) • [h 1 - f (v 1 ) ] • 
\1+ 12 \1+ 12 \1+ 12 \1+ /z \1+ 12 (6.14b) 

Remark. Here, the intermediate Godunov value G 
v \1+ 1/2 may be taken as, see 

(6.8), 

(6.14c) 

g ( \1+ 1/2 ) (v·, s+ -- s- -- 2~) Proof. The maximal slope of h is 1/2 )., 
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I (v± 1/2 )' + - 1 I 2A Max g ( v; s = s = li) ~ 1. 

ve:lv+ 1f2 

Therefore, we may apply Lemma 5.1, obtaining, see (4.5c), 

v 
v 

< U(v ) - 2A f 
= v G 

vv- 1h 

G 

v v+ 112 (1/ ) , _ 1 ) 
~ U(v) - 2A f U'(v)g v+ 2 (v; s+ s = li dv. 

v 
v 

(6.15a) 

(6.15b) 

v v 
Adding and subtracting 2A[F(v) - F(vG 1/ )] = 2A f U' f' to the right-

v v- 2 G 

vv-1f2 
hand side of (6.15a), we find after integration by parts 

v 
v 

< U(v ) - 2A f 
= v G 

vv-Ih 

U'(g(V_ Ih )_ f)' - 2A[F(v ) - F(vG+ 1/ )] 
v v 2 

= U(v ) - 2A • U'(v) • (g(V-
I
/2 )(v) - f(v») 

v 

v=v v 

+ 2A 

v 
v 

G 
v=v 1/ v- 2 

(6.I6a) 
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In a similar manner, (6.1Sb) yields 

G 
( 1/) v=v,,+ 1/2 < U(v ) - 2A • U'(v) • (g ,,+ 2 (v) - f(v») - 2A[F(vG+ 1/ ) - F(v )] 

= " v=v" 2 " 

" 
G 

v,,+ 112 1 
+ 2). f U"[g("+ 12) - f]. (6.16b) 

v 

" 
By convexity, the average of the two terms on the left of (6.16a) and (6.16b), 

dominates the entropy value U( • ), computed at the average of the 

corresponding two Godunov solvers; invoking Theorem 6.4 we arrive at 

- All[F(V~_I12) + U'(v~_I12) • [gV-
I12 )(v~_II2) - f(V~_II2)J] 

v 

" 
G 

+ A 
1 v,,+ 112 1/ 

U"(g("- h)-f) + ). f U"(g("+ 2)_ f), (6.17) 
v 

" 
and the result (6.14) follows, noting that 

(6.7b). 

hI· 
,,:I: h ' see 

In the same way as the last lemma followed from Theorem 6.4, Theorem 6.5 

gives us 
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LEMMA 6.8. 

Consider the TVD scheme (1.7 a), (6.11) in the neighborhood of a non-

critical value v where t.v 1 • t.v 1 > O. Then for all entropy pairs 
v v- 12 v+ 12 = 

(U, F) we have 

+ A 

G 
v v+ liz (1/ ) _ 1 

+ A f u" ( v) [g v+ 2 (v; s + = S = I) - f ( v) ] d v • 
v v 

(6.18) 

Remark 6.9. The numerical entropy flux, Fv+11z' in (6.18) is determined by 

G 
Godunov"s intermediate value vv+ 1J

2
• It coincides with the one given in 

G G 1 
(6.14b) and (6.14c): indeed, vv+ 1/2 = vv+ 1/2 (6 = 12) is located in between 

and - - -1 
vv+1J

2 
(s = A ). The proof is omitted. 

The only difference in Lemma 6.8 is in the slopes, s±, involved in the 

last two integrals on the right of (6.18): at a non-critical value, they are 

twice then otherwise allowed by Lemma 6.7; see (6.14a). Making use of Is I v 

to distinguish between these two cases, see (4.3a), the corresponding two 

estimates can be unified as follows. 
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THEOREM 6.10. 

Consider the difference scheme (1.7a) satisfying the TVD condition 

Then, for all entropy pairs (U,F) we have 

G 

1 + Is I 
\I 

---::2"---;'- • (6.19) 

+" !Vv+lh "n(V> [g(v<-1t2 > (v; s+ _ S 

\I 

1 + Is I) ] 2A \I - f(v) dv, 

(6.20) 

with a consistent numerical entropy flux 

(6.20b) 

For later purposes, we shall prefer a slightly different version of inequality 

(6.20), where the last two integrals on the right are shifted over the I 1/ 
\1+ 2 

interval. We state 
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THEOREM 6.11. 

Consider the difference scheme (1.7a) satisfying the TVD condition 

Then for all entropy pairs (U,F) we have 

1 + Is I 
" ----::2""'-;"- • (6.21) 

+ J. ! Vv+l U"(V)l g(V+ % ) (V; s: 1 + Is) 
2).. 

1+ls+11\ ] 
s,,+l = 2),," 1- f(v) dv 

" 
(6.22a) 

with a consistent numerical entropy flux 

F 1 = F(v
G 

1 ) - U'" (v
G 

1 ) [h 1 - f (v
G 

1 )] ,,+ 12 ,,+ /z ,,+ /z ,,+ 12 ,,+ 12 

+ J. f :V+1 U"(v) [g(V+ 112 ) (v; s+ • s • 1 + !:V+l1 ) - f(V)]dV. 

v,,+ 1/2 

(6.22b) 
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Remark. Theorem 6.11 finally leads us to the modified flux function(l) we 

were looking for; its restriction to the IV+~2 -interval is given, according 

to (6.22a), by 

1 ( 1 + Is I 
= g(V+ /z) v; s: = -'""'"'2"""".....:..V-

Proof. We first note the identity 

v 
v+1 1 f UII(v)g(V+ /z )(v; 

G 
vv+ 1/2 

Indeed, of the two integrals on the left, the first depends only on 

second only on s2. Adding and subtracting 

A f :V+l Un(v) [g(V+ 112) (v; .+ 
vv+ liz 

= s 
l+ ls+1 l ) ] = 2"V - f(v) dv 

(6.23) 

(6.24) 

the 

to the right-hand side of (6.20a) and using (6.24), the theorem then follows. 

(1) To be precise, g(v) is double-valued in the critical neighborhood. 
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Remark 6.12. The two integrals appearing on the right of (6.22) are 

responsible for the unnaturally shifted estimates w.r.t. the v -grid 
v 

value. If, in the previous proof, we instead add and subtract 

G 
vV- 1/2 

U" ( v > [ g (V- Itl > (v; + I + I'v-II) ] A- I s = s = 2 - f(v) dv 
v v-I 

to the right-hand side of (6.2Da) and use (6.24), we end up with a reversed 

shifted form 

where 

+ s v-I 

F 1 - F(v
G 

1 ) - U'(v
G 

1 ) [h 1 - f (v
G 

1 )] v+ /2 - v+ /2 v+ h v+ /2 v+ /2 

- A-

G 

! vv+ 1fl U"(v>[ g (v+ liz >( v; • + 
v 

= s 

s 
v 

1 + Is I) ] 2A- v - f(v) dv, 

(6.25a) 

(6.25b) 

Averaging of (6.22) and (6.25) results in the symmetric entropy estimate of 

this type, 
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v +1 

U"(v) [g(V) I I - f(V)j dv + A f v 
V- 1/2 v v 

U"(v) [g(V)II - f(V)jdV. 
v+ 1/2 

(6.26) 

7. Necessity and Sufficiency of E-Fluxes 

Theorem 6.11 shows that a desired cell entropy inequality, (5.2a), follows 

provided the last integral on the right of (6.22a) is negative 

f U"(v) g(v+ 1/2 ) v; s + vv+1 [ ( 1 + Is I v s 1 +2!SV+l
1
)_ f(V)]dV ~ o. 

(7.1) 
v 

v 

The requirement of negativity for all convex entropy functions U, in this 

case, is equivalent to the requirement that g( v) I I will lie below or 
v+ 1/2 

above f(v), depending on whether Vv ~ vv+l or vv+l ~ vv; taking into 

account the piecewise linear form of g(v) I I in (6.23) and (6.4), this 
v+ liz 

requirement amounts to the following inequalities: 

(i) s + 1/ • [h + 1/ - f(v)] < 0, v 2 v 2 = 
(1) 

(1) It is sufficient to consider v lying in between 

and 
1 + I sV-H I 

2:\ ). 



(ii) (a) 

(b) 

-4S-

f(v) - g 1 + 
A Max v 

S 
lv-v) ~ 

+ v-v 
e: v v 

+ 2 C+ I~ I e: 1 + Is I v+ 1/2 v v+ 1/2 v v 

A Max 
I v-v v+11 ~ <+1 

f(v) - gv+1 

v-vv+1 

Is I v 
2 

Numerical fluxes satisfying condition (i) are called E fluxes after Osher 

[18]. Equivalently, the corresponding schemes are characterized as exactly 

those having more numerical viscosity than that of Godunov's scheme [26]. In 

terms of the modified viscosity coefficient Q 1 
-v+ 12 

inequality, (i) reads, consult (2.Sc), 

in (3.3), the first 

(E) 

Observe that two viscosity coefficients are comparable in the sense advocated 

in [26], provided that the ~ modified flux is used for the corresponding 

schemes; in the above E-condition, the original flux, f , was used in both v 

cases, see Remark 3.1. Regarding the CFL condition in the second inequality 

(11), it can be shifted to the more symmetric form in the spirit of Remark 

6.12, 
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lv-v) ~ e:~ 

± 
e: 

" 
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f(v) - g 

" v-v 
" 

1 + Is I 
" ~ --2"-':'-

With a similar shifting of the TVD condition (6.21), we arrive at 

THEOREM 7.1 (Tadmor [26, Theorem 5.1]). 

Consider an E-type TVD scheme (1.7a) such that 

(
1 + 

~+ 1/2 ~ Min 
Is I 
" 2 

and assume the following CFL condition holds 

h Max 
lv-v) ~ e:~ 

± e: = 
" 

f(v) - g 

" v-v 

" 

1 + Is I 
< ---=---"~ 2 

(CFL) 

(7.2) 

(7.3) 

Then, for all entropy pairs (U, F) the following cell entropy inequality is 

satisfied 

(7.4) 

Remark. We have preferred to center the TVD condition (7.2) and CFL condition 

(7.3) around the v -grid value. 

" 
Therefore, no specific reference was given 

as to the consistent numerical entropy flux, F,,+ 112 in (7.4): it may be 

chosen, throughout the computational grid, by (6.22b), (6.25b) or any convex 
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combination of the two. 

Proof. The only part which requires clarification is the validity of the TVD 

constraint, see (6.21), 

A Ag,,+ liz 
AVv+ 1/2 

Indeed, (3.1) and (2.5) yield 

A Ag,,+ II? 
AV,,+ 112 

< = 

since g /AV ± 1/ 
v v 2 

is positive by (3.7c), we find, as in (4.9b) 

'" '" '" 
Agv+ 1f2 g" + g,,+ 1 

AVv+ 1/2 AV,,+ 1/2 

Augmented with the E condition, (7.6) and (7.7) yield (7.5) 

A Ag,,+ II? 
AVv+ 1f2 

(7.5) 

(7.6) 

(7.7) 

Remark 7.2. It is the CFL-like condition (7.3) which throws some further 

light on the first-order accuracy limitation encountered with difference 

schemes satisfying all cell-wise entropy inequalities (5.2a). Indeed, in case 

AVv+ 1/2 > 0 (similarly AVv_ 1/2 < 0), then necessarily g" = f" + t g" will 

lie above (similarly below) f in contrast to the requirement induced by 
v 

(7.1); specifically, as v approaches v"' the CFL-like ratio on the left of 

(7.3) 
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f(v) - f(v ) g" 
----------,,~+ !--~-

v-v 

" 
A v-v 

" 
(7.8) 

will diverge unless the correction vanishes. In this case, the modified 

flux is reduced to the differential one f , 

" 
and we are back in the 

standard first-order accurate E-schemes, subject to the familiar 

f(v) - f(v ) 

" v - v 

" 
1 

~2· (7.9) 

In particular, according to (7.9), the usual half CFL number is sufficient in 

this case, in agreement with [26] 

A Max If'(v)1 
I v-v I ~ I L\v ± 1/ I 

,,- " 2 

1 
~ "2. (7.10) 

Of course, (7.9) offers a more delicate alternative. Note that unlike the TVD 

constraint (1.8), some further information regarding the flux behavior in 

between the grid values, is always required for a cell entropy inequality to 

hold. 

Next we show that the E condition is, in a sense described below, 

necessary for a cell entropy inequality, thus complementing the sufficiency of 

Theorem 7.1. To this end, we subtract v (t) 

" 
from both sides of (1.1) and 

(1.3), divide by k = L\t and take the limit L\t '" 0, obtaining the 

semidiscrete approximation 

dv" 1 
- + - (h 1 - hI) d t L\x ,,+ 12 ,,- /z o· , (7.lla) 

here, the time derivative is understood in the distribution sense, and the 
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numerical flux is still allowed to depend on the mesh size, ~x, 

h +1/ = h(v +l'ooo,v + ; f,A 4- 0, ~x). v Z v-p v p 
(7.11b) 

The corresponding cell entropy inequality will read 

ddUt [v" (t)] + Ax
1 

(F ) v Ll v+ lJz - Fv_ l/Z 
o· , (7.1Za) 

here, (U, F) is any consistent numerical entropy pair 

F(w,w,ooo,w; f,A 4- 0, ~x) = F(w) _ fW U' f'. (7.1Zb) 

In stating our next theorem, the terminology of separated data will be used: 

we shall say that the data are separated if all relevant grid values involved 

in the scheme's stencil, are separated w.r.t., say, the separating interval 

Ij+lJz; that is, we either have 

v. k 
J 

1,ooo,p. (7.13a) 

or 

> k 1,ooo,p. (7.13b) 

A monotone profile is, of course, the canonical example of separated data: 

any two consecutive grid values may serve as a separating interval in this 

case. 

Equipped with this terminology, we may now turn to 
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THEOREM 7.3. (E-flux is necessary for cell entropy inequality). 

Consider the semi-discrete approximation (7.11) and assume the cell 

entropy inequality (7.12) holds for all consistent numerical entropy pairs 

(U, F). 

Then the numerical flux, h, is an E-flux in any separating interval. 

Proof. Introducing the consistent numerical entropy flux 

then the following equality [18, Section 3] holds 

V 
"IU 1 1 ,,+1 
a [ (t)] + - [F - F ] f U" ( ) [h f ( )]d IT v" b.x -,.,+ 1h -v- 1h = b.x v w v+ IJ2 - w w. 

" 
Subtracting (7.12a) from (7.14b) we find, after multiplication by b.x 

v 
V 

U"(w) [h 1/ - £(w) ldw + (H 1/ - H 11) 
v+ 2 v+ 2 ,,- 12 < = 

0; 

(7.14a) 

(7.14b) 

(7.15) 
" 

here, Hv+ Ih 

with zero 

stands for the difference which is consistent 

H(w,w, ••• ,w; f,A + 0, b.x) = F(w) - F(w) = O. (7.16a) 

Consider a (2p+I)-grid-values stencil separated by, say, the Ij+1J2 interval; 

we shall extend it to all grid points, defining 

k = p+1, p+2,· ••• (7.16b) 



Let v be any value in between 

-51-

and and apply (7.15) with 
v 

Kruz'kov's choice for entropy function: U(w) = Iw - vi: for all but the 

v = j index, the first term in the left of (7.15) vanishes and we end up v 

with 

~ ... ~ H = 0, 
co 

~ ... < H = 0, = -00 

v = j+1, j+2, ••• , (7.17a) 

v j-1, j-2, •••• (7.17b) 

Here, the equalities H = 0 
±CO 

on the right of (7.17) follow from the 

consistency (7.16a) and the definition of our extension in (7.16b). 

Complemented with (7.15)j , which in this case reads 

o(w - v)[h'+lf - f(w)]dw + (H.+1f - H. If ) 
J 2 J 2 J- 2 

(7.18) 

we find, for all v in I j + 1/2 ' 

H. If - Hj If __ < o. 
J- 2 + 2 

That is, h, is an E-flux over the I j +V2 interval as asserted. 

Next we have to confront the limitation of E schemes being at most 

first-order accurate [18]: indeed, according to the E-condition, their 

modified numerical viscosity is bounded away from that of the Lax-Wendroff 

scheme, hence (3.4) fails. Moreover, being an E-flux in separating intervals 

alone, still meets the limitation of first-order accuracy. The proof follows 

along the lines of [18]. 
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8. Second-Order Resolution and a Cell Entropy Inequality 

In light of our discussion in the last section, we are seeking cell 

entropy inequalities for SOR-TVD schemes, only for special entropy pairs: 
2 

specifically, we shall consider the pair U(v) = ~ , F(v) = t wf'(w)dw. In 

the genuinely nonlinear case where f is, say, strictly convex, all (convex) 

entropy inequalities (and therefore convergence to the unique solution) then 

follows in the limit; see [14,5]. 

We start with 3-point E-type upwind schemes: upwinding simply means that 

we difference in the "streamwise" direction. In particular, considering the 

characteristic direction, we require either or to vanish 

depending on whether f'(v) is positive or negative throughout the 1 1 -
v+ 12 

interval; in either of these two nonsonic cases, the sum of the incremental 

coefficients c~+ 112 equals their difference in absolute value, i.e., 

(8.1a) 

This is, of course, nothing but a restatement of the well-known fact that away 

from sonic values, all upwind schemes coincide with Roe-Murman's (2.5d). 

The SOR-TVD schemes to be considered are then constructed according to the 

piecewise constant viscosity modification of Theorem 4.7, where the viscosity 

coefficient used is given by 

QSOR Q 1/ (f) + 
v+ liz = v+ 2 

(8.1b) 

Here g is the flux correction, see (4.21b), 
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(S.lc) 

with second-order resolution condition requiring 

(S.ld) 

with a first-order perturbation O( I ~vl) v+ 1/2 ' which is yet to be precisely 

determined. Unless otherwise stated, the following CFL-like condition will be 

assumed 

(8.le) 

In particular, the above use of the piecewise viscosity modification from 

Theorem 4.7 is justified, since (4.15) holds. 

estimate (4.9b) 

~gv+ liz 
~vv+ liz 

yields the TVD requirement (6.21) 

A ~gv± liz 
~vv± 1J2 

Furthermore, the essential 
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so that Theorem 6.11 applies.(l) According to this result, the desired cell 

entropy inequality holds for the above quadratic entropy provided 

V,,+l[ ( + 1/)( + f g" 2 v; s 

" V 

" 
is nonpositive. 

1 + Is) 
2A 

We first study the critical case, stating 

(8.2) 

Lemma 8.1. Consider the critical case lsi = I s I = 0 (that is , ",,+1 -
both v" and v,,+l are critical grid values), and assume the following CFL 

condition holds 

A Max If'(v)1 < 1/2. 
lv-v) ~ I ~v "2:1/21 = 

We then have 

v,,+l [ (,,+1/2) ( + f g v; s 

" V 

" 

1 + Is) 

2A 

(8.3) 

Proof. We appeal to the conservative form of the modified scheme, quoted in 

(4.22): by assumption s" and therefore g" vanish, and hence 

h,,+1/2 = ~[g"+l - s,,+1/2Ig,,+11]; since s,,+1/2 agrees with the sign of 

g,,+l' we conclude that the numerical flux correction h,,+1/2 vanishes in this 

(1) In fact, twice the CFL limit (8.1e) can be used away from critical 
neighborhoods where ISv l • Isv+ll F O. 
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case. Thus, we are left with the original E-flux we have started with. By 

Theorem 7.1 therefore, all entropy weighted integrals in (7.1) and in 

particular (8.4) are non-positive, provided the CFL condition (7.3) holds: 

the latter follows in view of (8.3) noting that, the modified flux corrections 

and vanish - consult Remark 7.2. 

Next we turn to the noncritical case ISvl + ISv+11 ~ 1: calculating the 

area below the piecewise linear "double- wing" form of 

see figure (6.4), we obtain 

(V+1 [g(V+ 1(2 ) (v; + 1 + Is I 1+ 18+1 1 ) ] v 
= ZV - f(v) dv s = sv+1 v Z). 

v 

= flvv+ 1f2 h 
+ 2ql 

2 [C+ 12 
v+ liz + Is I v+ 1Iz v 

z (c~ 1f2 )2] (Avv+ 1f2 )2 
vv+1 

+ 1 + ISv+11 
- .r f(v) dv; (8.5a) 

v 
v 

inserting the value of hv+1/z from (1.7b) and (3.1), 

we find 
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,,+1 l+\S \) 1 
2X - f(v) dv 

v 
- I ,,+1 f(v)dv 

v 

" 

(8.Sb) 

In the next proposition, we estimate from above the last brackets on the right 

of (8.Sb). The somewhat technical proof is postponed to the end of this 

section. 

Proposition 8.2. The following estimate holds 

(8.6) 

In view of (8.Sb) and Proposition 8.2, we can now complement Lemma 8.1 with 
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Lemma 8.3. Consider the noncritical case Is", + Is v+l l > 1 (that is, 

either is a noncritical value). We then have 

1 + Is I v 
2). 

(I1v + If ) 2 [ 2). < v 2 ET + 
= 2). (11 v ) 2 v+ 1/2 

v+ liz 

Is) + ISv+11 
2 

(8.7a) 

Here , ETv+ liz stands for the error in the trapezoidal rule, applied over the 

Iv+ liz -interval 

(8.7b) 

To ensure the integral in the left is nonpositive, hence to guarantee a 

cell entropy inequality in this noncritical case, we would therefore like to 

choose ).2(a
2

)v+1/2 which dominates the first two terms inside the right 

brackets of (8.7a). 

We claim that such a choice admissible by the second-order resolution 

condition (8.1d)--is indeed available in all nonsonic intervals: according to 

the upwinding property (8.1a), 
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and by a standard error estimate [4, Section 2 1 

ET 1 ",+ 12 

It is here that we use the first-order flexibility in defining 

previously noticed in Theorem 4.2. We choose 

Max I f"(v) I. 
1",+ 112 

Unifying the critical and noncritical cases, we arrive at 

Max If"(v)l. 
1",+ 112 

(8.8a) 

(8.8b) 

(8.9) 

In order to comply with the inequality on the right of (8.1d), we set in 

(8.1c) 

(8.10a) 

In terms of the numerical flux modification 

h,,+ 1/2 = 21 [IVg" + IVg"+l I IV IV I] v v v - S v+ 112 g",+ 1 - g", ' 
(8.10b) 

the resulting scheme then reads: 
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v 
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and we summarize what we have shown in 

(S.lOc) 

THEOREM S.4. Let be an upwind E-type viscosity coefficient, 

and assume the following CFL condition holds 

A • Maxlf'(v)1 ~ 1/3. 

Then the difference scheme (S.9), (S.lO) satisfies 

(!) Total variation diminishing. 

(ii) Second Order resolution. 

(iii) The cell entropy inequality: (I) 

! v2(t+k) < 1 2() ( ) 
2 v = '2 v v t - A F v+ liz - F v+ liz • 

(S.ll) 

Remark S.5. As argued in Theorem 4.2, the scheme has formal second order 

accuracy in all intervals such that do not vanish. According 

to (S.lOa) therefore, all nonsonic noncritical intervals such that 

(1) The numerical entropy flux is given in (6.22b). 
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Illv + If I 
- :>.. v 2 

3 Max I f"(v) I 

I v+ 1/2 

~ 0, 

are included; in view of the CFL condition (8.11), the first difference on the 

right exceeds 2:>.. lav+V2 1/3, and the last inequality is valid provided that 

21 Illv 1/ I • Max If"(v) I 
v+ 2 

Iv+ liz 
< (8.12) 
= 

In other words, scheme (8.9), (8.10) is second order accurate at all 

noncritical neighborhoods satisfying (8.12). Observe that increasing 

results in a similar increase of the modified viscosity 

coefficient, ~+1/z in (3.4a). 

Remark 8.6. The additional viscosity added is directly related to the amount 
2 

of ~ entropy loss across shock discontinuities which is precisely 

This should indicate the possible generalizations to other 

entropy pairs; moreover, it seems to imply that second order resolution is the 

maximum possible for cell entropy satisfying schemes, the entropy loss being 

cubic [14]. 

As a special case, let us consider now the genuinely nonlinear model 

where f is, say, strictly convex. We distinguish the possibilities 

(i) The shock case. o. Since the trapezoidal error in 

(8.8b) as negative in this case, the admissible choice 

,2(a2 ) _ ,21a 12 = 
1\ v+ 1/2 - 1\ v+ V2 will make the integral (8.7a) non-

positive, as required. 
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(ii) The rarefaction case. L'1vv+ 1/
2
> O. As expected, this is the more 

delicate case because the sign of the trapezoidal error is now reversed to be 

positive, which will be compensated for by additional dissipation as before. 

To summarize, we choose 

in which case we have 

Max [f"(v)] 

Iv+ 1/2 

(B.13) 

THEOREM B.S. (The convergence of SOR-TVD schemes). Assume f is strictly 

convex, ~+ 1/2 (f) is an upwind E-type viscosity and the CFL condition (B. 11) 

holds. Then the difference scheme (B.13) (B.10) satisfies 

(i) Total variation diminishing; 

(22) Second Order resolution where: 

1 + I I -2 (L'1V + 1/) Max [f"(v)] =< a . v 2 v+1/2 ' I 
v+ 1/2 

(iii) A consistent quadratic cell entropy inequality; 

and, as a consequence of (i) and (iii), 

(iv) Convergence to the unique physically relevant solution. 

Remark B.6. The above mentioned quadratic cell entropy inequality is due to 

the related inequality of Theorem 6.11. If (the nonshifted form of) Theorem 

6.10 is used instead, the same cell entropy inequality follows, this time with 

added dissipation compensating the rectangular rule error rather than the 
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trapezoidal one. Details are omitted. Recently, Osher [19] has considered 

SOR-TVD semidiscrete approximations to the genuinely nonlinear model (1.2). 

Convergence was then guaranteed with more dissipation added at shocks, rather 

than at the expected rarefactions. Indeed, the estimates used in [19] 

correspond to that quoted in our Theorem 6.10, and the dissipation unnaturally 

yet necessarily was added at shocks can be therefore attributed to the 

reversed sign of the rectangular rule error. We also note that in the cases 

studied in [19], [20] and in the last two theorems, formal second order 

accuracy had to be given up at strong jumps, which were measured w.r.t. the 

amount of convexity, Max [fll(v)]. 

1,,+ 1;2 

Remark B.7. One can obtain similar results by starting with 3-point TVD 

schemes which are not necessarily of upwind type. For example, choosing the 

modified Lax-Friedrichs schemes where see [26], one can 

repeat the above arguments and conclude similar convergence results. Details 

are omitted. 

We close this section with 

Proof of proposition B.2. The flux correction 

summing (B.14)" and (B.14),,+1 we find 

in (B.1c) satisfies 

(B.14) 

" 

(B.15) 
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We recall the definition of the viscosity coefficient in (8.16) 

(8.16) 

Finally, we examine the incremental coefficients C~+ 1/2 in (1.9): utilizing 

( 3.1) we have 

Consequently, the following equality holds 

1 - Is I 
-:--:---.--'''-r (C + 1 ) 2 = 
1 + Is I ,,+ i2 

" 

Aa 1 ,,+ 12 
(8.17a) 

(8.17b) 

Indeed, if Is I = 1, then both sides vanish; if otherwise s and therefore 

" " "" g" vanish, then 

"" 
Ag,,+ liz 
AV,,+ liz 

vanishes as well, so that in view of (8.17a) equality holds in (8.17b). 

Similar arguments yield 

(8.17c) 

In view of the TVD constraint (1.8) we also have 
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[ 
~ 1 ]2 < Q (f) + \1+ /z • 

= \1+ 1/2 t:.v 1 
\1+ /z 

(8.17d) 

Adding (8.17b), (8.17e), and (8.17d) we arrive at 

2 + 2 2 - 2 
1 + Is I (C\I+ 112 ) + 

1 + I s\l+11 
(C \1+ 1/2 ) 

\I 

S ['\,+ lh (f) + t:.g\l+ 1/2 r + (2 - Is", - 1 s \1+1 I) Q~+ 1/2 (f). (8.18) 
t:.v \1+ 1/2 

The inequalities (8.15), (8.16) together with (8.18) amount to the desired 

inequality (8.6): if Is I IS\l+1 1 = 1, the derived upper bound reads 
\I 

2 2 2 t:.g\l+ 1/2 
[- I + 2Qv+ lh (f) + 

t:.g\l+ 112 ] . Q\I+ 112 (f) - A (a )\1+ liz + 
t:.v \1+ 1/2 t:.v\I+ liz 

where in view of (8.14) together with the CFL condition (8.1e), the last 
\I 

brackets on the right are indeed nonpositive 

~ 

+ t:.g\l+ liz 
t:.v\l+ 112 
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As before, the last brackets on the right are nonpositi ve, while the sum of 

the preceeding three terms does not exceed the asserted value 

1 2 2 2 
~ 2 [QV+ 1/2(f)-).(a)V+ 1/2]; 

~ ~ 

finally, although not specifically referred to, gv = gv+l 0 in the 

critical case, ISvl = ISv+ll = 0, yielding 
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