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Abstract

An iterative method for solving nonsymmetric indefinite linear systems is

proposed. The method involves the successive use of a modified version of the

conjugate residual method. A numerical example is given to illustrate the

method.
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Introduction

In this paper we consider an iterative method for solving linear systems

of the form

Ax = f, (i.i)

where A is a nonsymmetric, indefinite matrix of order N. The main

application we have in mind is the numerical approximation of solutions to

elliptic partial differential equations. When A is symmetric, there exists

an effective iterative method for solving indefinite problems [4],[5] (see

also the references therein). We also refer to [2] and [6] for recent

progress in the development of iterative methods for solving nonsymmetric

systems. However, to my knowledge, no effective iterative methods for solving

nonsymmetric and indefinite systems have been developed. Most of the

iterative methods (especially Krylov subspace methods) are rigorously

applicable only when the symmetric part of A is positive definite [I].

There are many applications in which the symmetric part is indefinite and as

shown in [I], they may result from preconditionings. In this paper we

introduce a method which is applicable to indefinite problems and involve the

modification of Orthomin due to Vinsome [7]. It can be easily combined with

preconditioning techniques.

Section 2 presents the convergence property of the minimal residual method

for indefinite problems. It is the property which provides the underlying

motivation in the development of the proposed method. In Section 3, the use

of the method described in Section 2 in conjunction with Orthomin and a class

of problems for which our method is effective are discussed. A numerical

result is presented to illustrate our method in Section 4.



Throughout this paper, <.,.> stands for the inner product of _ and

Ixl denote the norm of the _-vector x.

2. The Parallel Residual Method

In this section we introduce a method which is applicable to indefinite

problems. To simplify the discussion we assume that A is nonsingular. In

regard to the singular case, see the remark at the end of Section 3. The

basic idea of the method is developed, using the minimal residual method

(MR). As will be seen, MR is the special case of Orthomin. The sequence of

approximate solutions to (I.I) is updated by

Xk+l = Xk + _k rk
, (2.1)

rk = f - A xk

where ek is chosen such that Irk+l [2 is minimized. If we write (2.1) in

terms of residuals {rk} , then

rk+l = rk - =k Ark (2.2)

From this, it is easy to see

_k = <rk'Ark> / <Ark'Ark> (2.3)

and

Irk+l 12 = Irk 12 - <rk,Ark>2 / IArk 12. (2.4)
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Obviously, the sequency {Irkl 2} is nonincreasing and hence, it converges to

a positive constant. From (2.2) and (2.4), this implies

Irk+1 - rkl2 = <rk,Ark >2 / IArk 12

converges to zero. Since {Irkl 2} is uniformly bounded and so is {IArkl2},

it follows that <rk,Ark> converges to zero. Moreover, if Irk+If = Irkl for

some k, then the same argument shows rk+ I -- rk. Hence, {rk} converges

monotonically to a vector rI which satisfies <rl,Arl> = 0.

From (2.3) and (2.4) we have

ICkrk 12 = (Irk 12 - Irk+112) Irkl2/IArk 12.

If A is nonsingular, then there exists a positive constant K such that

Irl2/IArl 2_< K for all r E _.

Hence I ICkrk 12 < K(Ir012 - Irl12) • It now follows from (2.1) that {xk}
k

converges to xI such that

rI = f - Ax I and <rl,Arl> = 0. (2.5)

If the symmetric part of A, say M; i.e.,

M = (A + AT)/2

or
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<x,Ax> = <x,Mx> for all x E _;

I
is positve definite, then r _ 0 which follows from the fact that

<rl,Arl> = 0. However, when M is indefinite, this may not be true, i.e.,

[rlI # 0. In other words, MR may fail to converge for indefinite problems.

The method described below makes use of the fact that the sequence {xk,rk}

converges to the pair (xl,r I) that satisfies (2.5).

We consider the following algorithm.

Algorithm PR (I)

i. Choose x0. Compute r0 = f - Ax0.

Set r0 = r0 - <r0,g>g.

2. Iterate: For k = 0,1,2,... until convergence DO:

Xk+l = Xk + °k _k (2.6a)

qk = A_k - <A_k'g> g (2.6b)

_k+l = _k - °k qk (2.6c)

ok = <_k,qk > / Iqk 12, (2.6d)

where g = rl/IrlI-'' and rI is the residual vector obtained from MR. It is

easily shown by induction that

<rk,g> = 0 for all k _ 0
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and

N

r k = r k - <rk,g> g.

The idea here is that in the second step (2.2) of MR, the residual vector

perpendicular to g; i.e., rk+ 1 is minimized in the least-squares sense.

Using the same arguments used in the proof of convergence of MR, one can show

~2

that {_k } converges monotonically to a vector r which satisfies

<_2,A_2> = 0 and <_2,g> = 0. (2.7)

_2
If r _ 0 (where a sufficient condition for this is that (2.7) implies

_2 _ 0 and also see the discussions in Section 3), then the algorithm (2,6)

yields the pair (x2,r 2) such that

r2 = f - Ax 2 (2.8)

and r2 is parallel to rI since r2 = <r2,g>g.

If si = <ri,g> for i = 1,2, then s2rl = slr2. From (2.5) and (2.8)

A(s 2 xI _ sI x2) = (s2 - sl)f ,

so that one can find a solution x to (I.I):

1
x = (s2 x - sI x2)/(s2 - Sl) (2.9)

A choice of the startup vector x0 in the algorithm (2.6) is given by
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1
x0 = x + cg, c _ 0. (2.10)

In this way, it can be shown that sI _ s2 in (2.9) if A is nonsingular.

Indeed, since <_k,g> = 0 in the algorithm PR (I),

<x2,g> = <x0,g> = <xl,g> + c.

If sI = s2, then _x I - x2) = 0, so that xI = x2, which contradicts the

above statement.

The algorithm (2.6) can be viewed as a method which finds the pair

(x2,r 2) whose second element r2 is parallel to rI where rI is the

residual vector obtained from MR. It also leads to the steepest descent

algorithm for minimizing

IA x - <Ax,g>g - fl2

over the vector x satisfying <x - x0,g> = 0.

If _2, the limit of {_k} is nonzero, then inductively one can consider

the further algorithm PR(2) in which (2.6b) is replaced as

qk = A_k - <A_k'gl>gl - <A_k'g2>g2"

These now lead to the successive algorithms {pR(i)}.
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Algorithm PR(i)

1. Choose xO. Computer r 0 = f - Ax O.
f

~ j}"l
Set r 0 -- r 0 - <ro,gj> gj..__

2. Iterate: For k = 0,1,2,--- until convergence DO;

Xk+l = Xk + ek rk (2.11a)

i

qk = A_k - j=1_ <A_k'gj> gj (2.11b)

rk+l = _k - _k qk (2.11c)

_k = <_k'qk > / lqk 12 (2.11d)

where gj = _J / ]_Jl, I ! J d i. {_J} is the sequence of orthogonal

vectors where _j+l is the limiting residual vector in (2.11c) of PR (j),

and PR(0) is identified with MR. For the first integer i such that

_i+l _ 0, the sequence of algorithms {pR(k)}k_ 0 is terminated. As will be

shown in Section 3, if (xk+l,r k+l) is the limiting pair of PR (k) for

0 < k < i, then a solution to (I.i) is given by

i i

x = (xi+I - I Sk Xk) / (I - I Sk ) (2.12)
k=l k=l

where $ = (_i,_2,--.,_i)T is the solution of the following system of linear

equation

C$ = b. (2.13)
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Here, C is an upper triangular matrix of order i with (k,%) - element

= <gk,r%>, k ! %' and bk = <gk,ri+l>, I ! k! i. Since ICk,kl =Ck,£

l_kl # 0 for 1 ! k ! i, det(C) # 0 and hence, (2.13) has a unique solution.

3. Orthomln and Parallel Residual Methods

In order to accelerate the convergence of MR one can consider the

following algorithm, so-called Orthomin [7].

Algorithm Orthomin (i)

I. Choose x0. Compute r0 = f - Ax0.

Set P0 = r0"

2. Iterate: For k = 0,1,2,... until convergence DO;

Xk+l = Xk + ek Pk (3.1a)

rk+1 = rk - _k APk (3.1b)

_k = <rk'APk> / IAPk [2 (3.1c)

i

Pk+l = rk+l - _ B_ Pl-j+I (3.1d)
j=l

• 2

_ = <Ark+l,A Pk_j+l > / IAPk_j+l (3.1e)

for I< j< i
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In (3.1d) and (3.1e), the direction vectors (Pk} are chosen so that the ATA

- orthogonality holds among vectors _Pj}k-i+l _ j _ k+l" For the special

case i = 0, Orthomin is identical to MR (the minimal residual method). The

case i = 1 is most attractive as far as the work and storage costs of

performing one loop are concerned and it is exactly the same as the conjugate

residual method when A is symmetric and positive definite. So, in the

following discussion we only consider Orthomin (i). However, all results

given in this section remain valid for the cases, i > i.

In Orthomin (i), (3.1d) and (3.1e) are simply written as

Pk+l = rk+l - 8k Pk

8k = <Ark+l,APk> / IAPk 12.

Note that for k > 1

<rk,APk> = <rk,Ar k - 8k_ 1 APk_I>

= <rk,Ark> ,

Since <rk,APk_l > = 0, and hence

ck = <rk,Ark> / IAPk 12.

Thus, the same arguments given in the proof of convergence of MR enable us to

show that the sequence {xk,rk} converges to a pair (xl,r I) which satisfies
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rI = f - AxI

(3.2)

<rl,Arl> = 0.

Adaption of the method described in Section 2 to Orthomin (I) for the

i
case, r _ 0 is as follows.

Algorithm PR (I)

I. Choose x0. Compute r0 = f - Ax 0.

Set _0 = r0 - <r0'g>g (3.3a)

P0 = r0

2. Iterate: For k = 0,1,2,... until convergence DO;

Xk+l = Xk + ak Pk (3.3b)

N

rk+l = _k - ak qk (3.3c)

ek = <rk'qk> / lqk 12 (3.3d)

Pk+1 = _k+1 - 8k Pk (3.3e)

qk+1 = (A_k+l - <A_k+l'g> g) - 8k qk (3.3f)

8k = <Ark+l,qk> / lqk 12, (3.3g)

where g = rl/Irl I. It is easy to show by induction that for k > 0
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N

rk = rk - <rk,g> g

and

qk = APk - <APk'g> g"

Successively, one can consider the sequence of algorithms {pR(i)}i> 0
in

which (3.3a) and (3.3f) are replaced by

i

r0 = ro - j=l_ <r0'gJ> gJ (3.3a')

i

qk+1 = (A_k+l - _ <A_k+l'gj> gj) - Bk qk' (3.3f')
j=l

respectively, where gj = _J/l_Jl. For j _ i, ~_ is the limiting residual

vector in (3.3c) of Algorithm PR(j-l). The sequence of vector {_} is

orthogonal and satisfies

<_J,A_J> = 0 for all j. (3.4)

By construction, the sequence of successive algorithms {PR (k)} yields the

pairs (xk,rk), k > i such that

rk= f - Axk

and
k-I k

k ~k

r = r + _ <rk,gj> gj = _ cj,k gj
j=i j=1

where ci,k. = <rk,gj>, 1 _ j _ k. Let i be the first integer such that
~i+l _
r = 0. Then
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i
i+l

r = _ bjgj
j=l

b. = <ri+l,gj> I < j < i.

If $ = ($I""'$i)T is the solution to the linear equation C $ = b, then

i
i+l k

r = _ _k r
k=l

or

i i
i+l k

A(x - _ _kx )= (I- _ Sk) f.
k=l k=l

Hence a solution to (I.i) is given by (2.12) and (2.13).

A choice of the startup vector x0 in PR(j) would be

x0 = xj + cjgj, c.3# 0. (3.5)

i

With this choice, one can show that I - [ _k # 0 in (2.12), using similar
k=1

agrument given in Section 2.

In the above method, the sequence of vectors {xk} and {gk} need to be

stored and the algorithm PR (k) requires 2kN multiplications and additions

besides the basic operations of Orthomin (I) to be performed in each loop.

Let us define the index of indefiniteness of the matrix A; say INDF(A).

If S is the set of vectors x satisfying <x,Ax> = 0, then INDF(A) is

defined as the maximum number of orthonormal vectors contained in S. Note

that S is not a linear subspace of _ in general. If the symmetric part

of A is positive deifnite, then S = {0} and INDF(A) = 0. If A is skew-
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symmetric, then S = _ and INDF(A) = N. In general, N > INDF(A) > the

number of nonpositive eigenvalues of M.

It is easy to see from (3.4) that the number of successive algorithms

{pR(k)}k> 0 required to obtain a solution of (1.1) is less than or equal to

INDF(A) + i. For example, when the symmetric part of A is positive

qdefinite, PR (0), which is identical to Orthomin (i) can yield a solution. A

result of these discussions is that the method described above is effective

only when INDF(A) is relatively small. The other possible applications of

our method are as follows. For the stiff problem, MR or Orthomin (I) may slow

down in the process of iterations; i.e., the convergence ratio %;

%k = Irk+112 / Irk 12 = 1 -<rk,Ark >2 / Irk 12 IAPk 12 (3.6)

becomes nearly I. In such a case, one can terminate Orthomin (I) with the

directional vector rI which gives the convergence ratio of nearly i and then

employ the algorithm PR(I) with g = rl/Ir1[. This may reduce the number of

computations required for convergence.

Remark. In principle, the method described above can be used for the case

when A is singular. In PR (j), j _ 0, if the sequence {lqkl} remains

uniformly bounded below, then the same convergence property as for A

nonsingular holds. However, the choice (3.5) of the startup vector x0 may

i

not ensure the validity of (2.12) (i.e., 1 - _ _k # 0). If {qk } converges
k=l

to the zero vector, then one must terminate PR (j), j > 0 according to a

stopping criterion: lqkl < s with small positive number E.
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4. A Numerical Example

To illustrate the method described in Sections 2 and 3, we consider the

equation

Uxx + (XU)x = g in (-I,i) (4.1)

with boundary condition u(±l) = 0, where _ > 0 and the function g is

x) -I < x < 1 is the solution to (4.1). It is easy tochosen so that cos(_ , _ _

show that if d denotes a linear operator on L2[-I,I]:

Offu= € u + (xu)
xx x

with

_(_/) = {u E L21 Ux, xxu € L2 and u(±l) = 0},

then for small €, _ is indefinite; i.e., there exists a function u g_

such that

_J_u,u>L2 = 0, u # 0.

Thus, for such an g, the discretization of the equation (4.1) may lead to an

indefinite system of linear equations. In this discussion, we are going to

use the Legendre-tau method [3] to approximate the solution to (4.1) (the

details of this method will be discussed in a forthcoming paper). The

approximate solution uN(x) to (4.1) is represented as

N

uN(x) = [ ak pk(x),
k=0

where {Pk}k> 0 are the Legendre polynomials on [-I,I]. These polynomials
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are orthogonal on L2[-I,1]. The (two) underlying ideas of the tau method for

solving (4.1) are (i) equating (4.1) in the sense that

_u N - g,X>L2 0 (4.2)

for all polynomials X of degree at most N-2, and (ii) imposing the boundary

condition on the approximate solution uN; i.e.,

uN(±l) = 0. (4.3)

Now (4.2) and (4.3) yield a system of linear equations of order N+I whose

coefficient matrix A is almost full. However, the matrix-vector product

Av can be performed effectively in 0(N) operations.

In our computations, the following preconditioning technique is used. For

example, the preconditioned Orthomin (I) is as follows.

Algorithm (4.4)

1. Choose x0. Compute r0 = f - Ax0.

Compute z0 = Q-I r0

Set P0 = z0"

2. Iterate for k = 0,I,--. until convergence DO:

Xk+l = Xk + Ck Pk

-I
Zk+1 = zk -c k Q APk
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_k = <Zk 'Q-I APk> / IQ-I APkI2

Pk+l = Zk+l - _k Pk

Bk <Q-I -I= AZk+l,Q APk> / IQ-I APe 12,

where Q is the matrix corresponding to the discretization of the equation

Uxx = g with u(±l) = 0, also using the Legendre-tau method. The operation

Q-I v can be performed in N multiplications and N additions. The inner

product in this algorithm is weighted so that for u = col(u0,...u N) and

v = col(v0,...VN),

I

<u,v> = f Ux(X) Vx(X) dx
-i

where
N N

u(x) = _ uk pk(x) and v(x)= _ vk pk(x) in [-i,I].
k=0 k=0

Consider the case € = .i and N = 32. The table below shows the

convergence history of our algorithms. Here Ik is the convergence ratio

defined by (3.6). We chose x0 = 0 as the startup vector for the algorithm

(4.4). It was terminated after six iterations. The criterion for the

termination is that 1 - Xk _ 5, × 10-3 • The preconditioned version of the

algorithm (3.3) was then applied with the startup vector chosen as described

in (3.5). It was also terminated after 13 iterations under the same criterion

as above. Finally, the algorithm PR (2) with the preconditioning did

converge, where the stopping criterion is that l_k 12 _< I. × 10-24. The
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approximate solution u32(x) to (4.1) is obtained by (2.12) and (2.13) in

which

=-199gl "

= .047
2

1 - _i - _2 = 2.943

and

u32(0) - i = .66 x 10-12 .

It should be noted that in the algorithm PR (2) the convergence ratios _%k }

were distributed on the interval [.008, .412]. All computations were

performed on a Control Data Corporation Cyber 170 Model 730 at NASA Langley

Research Center. The total CPU time was 1.907 sec., which includes the time

spent computing the Gauss quadratures on [-I,I].
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Table I.

Iteration (k) l_k 12 1 - %k

1 .546 x i0-I .144 × i0-I
-2

2 .727 x i0 .867

3 .102 x 10-2 .860
-3

4 .258 × I0 .747

5 .251 x 10 -3 .277 x 10-1

6 .251 x 10 -3 .968 x 10 .4

1 .317 × i0-I .158 x 10-1

2 .170 x i0-I .463

3 .963 x 10-2 .435

9 .138 × 10-3 .780

I0 .132 x 10-3 .455 x I0-I

II .128 × 10-3 .289 x i0-I

12 .127 × 10-3 .628 x 10-2

13 .127 x 10-3 .321 x 10-2

1 .105 x 10-2 .582

2 .124 x 10-4 .988

3 .208 x 10-5 .832

4 .958 x 10-7 .954

5 .263 x 10-7 .725

II .511 x 10-12 .743

12 .153 x 10-12 .701

13 .147 x 10-13 .904

28 .645 x 10-23 .756
-23

29 .208 x I0 .678
-24

30 .540 x I0 .740
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