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1. Summary

An analytical procedure has been used to predict the noise transmission

into the cabin of a twin-engine G/A aircraft. The basic concept of the theo-

retical model is that of modal superposition wherein the acoustic modes in

the cabin and the structural modes of the sidewall panels are accounted for.

This model was then used to optimize the sidewall acoustic treatment to re-

duce the interior A-weighted noise level to an average value of about 85 dBA.

The noise input pressure due to propeller blade passage harmonics and to

turbulent surface flow is expressed in the form of a propagating random pres-

sure field. The surface pressure noise spectral levels were selected utiliz-

ing experimental flight data and empirical predictions° The cabin interior is

approximated as a rectangular enclosure° The sidewalls of the aircraft are

modeled by several discretely stiffened panel units° The windows are treated

as individual plexiglass panels. The finite element strip method and transfer

matrix techniques are used to calculate the natural frequencies and normal

modes of the stiffened panels. The modes and frequencies of the window pan-

els are calculated utilizing closed form solutions° The additional noise

losses due to multilayered sidewall treatments composed of acoustic blankets,

septum, air spaces and trim, are estimated by the impedance transfer method.

The add-on treatments considered in this optimization study include alu-

minum honeycomb panels, constrained layer damping tape, porous acoustic blank-

ets, acoustic foams, septum barriers and limp trim panels which are isolated

from the vibration of the main sidewall structure. To reduce the average

noise level in the cabin from about 102 dBA (untreated) to 85 dBA (optimized),

the added weight of the noise control treatment is about 2% of the total gross

take-off weight of the aircraft°
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2. Introduction
\

The main emphasisof the presentstudy is to optimizeinteriornoise in

a typicaltwin-engineG/A aircraft utilizingexistinganalyticalmethodsand

add-on treatments. The details of the analyticalnoise transmissionmodel

employedare given in [1]. The basic conceptof this model is that of modal

analysiswherein the acousticmodes in the cabin and the structuralmodes of

the sidewallare accountedfor° The geometryof the aircraftcabin (Fig. 1)

used for this study suggeststhat the interioracoustic space may be treated

as a rectangularenclosure. Such an idealizationof the cabin allows for

simple representationof the acousticmodes° However, if the acousticmodes

were known for the actual shape of the cabin, the modal decompositionof the

acousticcavity would still be valid, but the numericalproceduresused to

estimate the noise transmissionwould be more involved. The sidewallsof the

aircraft are modeled by severaldiscretelystiffenedpanel units° The double

wall windows are representedby equivalentsingle sheet flat plexiglasspan-

els. The frames are included in the structuralmodel either as discrete

stiffeningelementsof the skin-stringerpanels or as flexibleelastic bound-

aries° The normalmodes and naturalfrequenciesof the stiffenedpanels are

obtained utilizingthe finite element strip [2,3] and transfermatrix [4,5]

methods. The effect of aircraft pressurizationis includedwhen calculating

the naturalfrequenciesof the sidewallpanels°

The exterior surfacepressuresacting on the sidewallsof the aircraft

are representedby a random convectingpressurefield. The noise spectral

levels at severallocationsare determinedfrom experimentalflight data.

Due to the limitedamount of flight data available,the surfacepressurein-

tensity is distributedover the sidewallof the aircraftaccordingto empiri-

-2-



cal propeller noise input predictions [6]. Furthermore, the convection trace

velocities are estimated in approximation from ground and taxi tests given in

[7,8].

The noise attenuation due to add-on treatments which are not attached

directly to the structure are calculated using existing methods based on

acoustic impedance transfer [9,10]. The multilayered add-on treatments in-

clude porous acoustic blankets, thin septum barriers, acoustic foams and

soft trim panels which are isolated from the vibration of the main sidewall

structure. Then, the total noise losses are obtained by combining the con-

tributions from treatments which are directly attached to the skin (honey-

comb panels and damping tape) and those treatments which are not attached to

the skin (acoustic blankets, foams, septa, trim). The numerical calculations

are repeated for several different values of the surface densities of the

add-ontreatments. Engineering judgment is exercised to limit the number of

treatment combinations and the values of the add-on surface densities. Then,

several treatments which are capable of reducing cabin noise to an acceptable

level are selected. The one which gives the least added weight is taken as

the optimized sidewall treatment.

-3-



3o Analytical Model

The basic concept of the analytical model used to calculate noise trans-

mission into the aircraft cabin is that of modal analysis. This approach has

been used for manynoise transmission related problems [1,3,5,11-16]. Modal

analysis seemsto be an attractive and efficient method to be used for the

study of low frequency noise transmission into the cabin of a propeller driven

aircraft.

3.1 Acoustic Model

The interior space of the twin-engine aircraft shown in Fig. 1 is approx-

imated by a rectangular enclosure occupying a volume V = abd. It is assumed

that the main contribution to the cabin noise is due to the airborne noise

transmitted by the sidewalls at z : O, d (shown by crossed lines in Fig.

2), and that the remaining surfaces are acoustically rigid (noise transmission

through these surfaces is assumed to be small). Such an assumption seems to

be justified due to the very stiff floor and ceiling construction and their

greater distance from the propeller tips (Fig. 1). Furthermore, noise enter-

ing through the windshield and forward and aft bulkheads is also assumed to

be negligible when compared to the noise transmitted through the sidewalls.

The contribution to noise losses due to interior absorption (treated walls

and ceiling, seats, passengers, carpeting) is included in the analytical mo-

del as an "equivalent" acoustic damping.

The solution for the acoustic pressure, p, inside the enclosure has been

developed in the form of the spectral density Sp(x,y,z,_) [1,5]. The sound

pressure levels in the cabin are then obtained from

SPL(x,y,z,m) : 10 log {Sp(x,y,z,m)Am/p_} (1)
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where Amis the selected bandwidth and PO is the reference pressure (Po = 2.9

x 10-9 psi, PO = 20uN/m2)° The interior noise levels given by Eqo 1 corres-

pond to the noise transmitted by a single stiffened panel unit or window unit

located at either z = 0 or z : d. The total noise transmitted by all the pan-

el units composing the entire sidewall is determined by superposition of the

sound pressure contributions from all the flexible panels. Such a superposi-

tion is only valid if the response of each panel unit is taken to be independ-

ent.

3°2 Structural Model

The sidewalls of the baseline aircraft shown in Fig. 1 are composed of

an external skin which is stiffened by frames and several single- and double-

wall window units. The structural modelselected for the present study is

shown in Fig. 3 where the sidewall is segmented into four stiffened skin-

stringer panels, two single panels, and six windows. The amount of noise

transmitted through other surfaces of the sidewall is assumed to be small.

Such a segmentation offers significant advantages for noise transmission path

identification and computational simplification. Such an idealization seems

to be justified for this type of aircraft construction due to the very stiff

boundary conditions provided by the frames. The treated aircraft interior

includes porous blankets for thermal and acoustic insulation, septum barriers

and trim panels. The solution forthe acoustic pressure given in Eq. 1 is a

function of the response of each of the panel units shown in Fig° 3. Assum-

ing that the acoustic blankets, septum barriers and trim panels have no direct

effect on the vibration of the elastic panels, the response of these panels due

to propeller noise and turbulent boundary layer inputs can be developed in a

straightforward fashion utilizing a modal expansion procedure [1,5]. The solu-
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tion is ultimately expressed in the form of the spectral density of the panel

deflection response S_(x,y,_) where the superscript i indicates the i-th panel

unit shown in Fig. 3. To complete the solution for panel deflections and sub-

sequently for the cabin noise pressure, the natural frequencies and normal

modes of the flexible panels need to be known.

3.3 Natural Frequencies and Normal Modes of Sidewall Panels

3.3.1 Single panels

In addition to the stiffened panel units (Nos. 9,10,11 and 12), the air-

craft sidewall contains two single panels (Nos. 4 and 6) and six windows (Nos:

1,2,3,5,7 and 8)° The port side pilot window (No. I) is a single sheet curved

panel while all other windows are of double wall construction. In the present

study, the double wall windows are replaced with single sheet flat panels

which are taken to be simply supported on all four edges. Furthermore, the

slightly irregular window shapes are approximated by rectangular panels. The

elastic aluminum panels Nos. 4 and 6 are also assumed to be simply supported

on all four edges. Then, the natural frequencies are calculated from

fmn = ½ {D_2(m2/L_+ n2/L_)l_h+ (Nxm2/L_+ Nyn2/L_)/p-h}½ (2)

where D.is plate stiffnessand Nx and Ny are the in-planeforce resultants

arising from pressurizationof the cabin° For a cylindricalfuselage,the

in-planeforces can be expressedas

NX = ApR/2 (3)

Ny : ApR (4)

where Ap is the pressure differential and R is the radius of the fuselage.

From Fig. 1, it can be seen that the curvature of the aircraft selected in

this study changes along the periphery. Thus, the in-plane loads are calcu-

lated from Eqs. 3 and 4 in approximation by selecting an average value for
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the radius R. The normal modes for these simply supported panels are

Xmn(X,y) = sin {(m_/Lx)(x-a0)} sin {(n_/L,(y-b0)} (5)J

where a0 and b0 are the distancesfrom the x and y axes, respectively,to the

panel location.

3.3.2 Discretelystiffenedpanels

Here we seek the naturalfrequenciesand normalmodes of two-dimensional

panels which are discretelystiffenedby frames (Noso 9,10,11and 12) as shown

in Fig. 3. The framesare thin wall membersof an open cross-sectionas shown

in Fig. 4. The Type 1 frame is the main stiffeningring of the fuselagecon-

structiono The cross-sectionalshape of this frame (givenin Fig. 4) is an

idealizationof a complexconfigurationwherein the straps are composedof

two layerswhich vary nonuniformlyalong the peripheryand extend only over

a portionof the ring. The geometricand sectionpropertiesof these con-

structionswere calculatedby dividingthe cross-sectionalshape into a num-

ber of sub-elementsand then using the generaltheory of thin-walledopen

sections[17,18]. These resultsare presentedin Table 1.

The naturalfrequencies,fmn' and normalmodes, Xmn, of these stiffened

panels vmre determinedby using the finite elementstrip [2,3] and/or trans-

fer matrix [1,4,5]methods° The finite elementstrip method could provide

computationaladvantagesover the transfermatrix approachfor those cases

where the number of panel bays is large, the distancesbetweenthe stiffen-

ing elements are uneven and the stiffnessof the frames is large. A detailed

descriptionof the transfermatrix procedurecan be found in [4]o A brief

descriptionof the finite elementstrip method will now be given.

The finite elementstrip method developedin [2] has been used very ef-

ficientlyto analyzetwo dimensionalstructuresfor which the modal solutions
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can be prescribed in one direction. This method has been extended for noise

transmission applications through curved skin-stringer panels [3]. The skin-

stringer panels shown in Fig. 3 are assumed to be simply supported along the i

frames at y = bo and y = b0 + Ly, The eigenfunctions _nCy) of the panel cor-

responding to the y-coordinate are taken to be beam functions which satisfy

the given boundary conditions at the frames. The skin-stringer panel is di-

vided _nto a number of flat strip elements. Each stringer (frame) is taken

as an element which is compatible with the bounding strip element of the plate.

Then, following the procedure presented in [2,3], the stiffness (Kmn) and mass

(Mmn) matrices of the strip element are determined. To estimate the stiff-

ness and mass matrices of each stringer, an existing theory which deals with

an average thin-walled member of an open cross-section [17,18] is used.

Point 0 indicates a position through which moment and shear loads are trans-

ferred between the skin and stiffener. For the constructions shown in Fig°

4, point 0 is taken as the mid-point of the total contact between the skin

and the flanges of the stiffener° Furthermore, the reference co-ordinates

(x,z) are taken through this point. The symbol C'denotes the location of the

centroid. Assuming that the shear strains on the x-z plane are negligible

and that the plane sections remain normal to the middle surface after deforma-

tion, the expressions for the strain and kinetic energy of the stiffener can

be determined [3]. Defining the nodal displacement matrix {a n} as a base vec-

tor, the total energy (strain + kinetic) of a skin-stringer panel can be ex-

pressed as

E = ½ Z ({_n}T[Kn]{_n} + _2{_n}T[Mn]{_n}) (6)
n=l

where Kn and Mn are the banded stiffness and mass matrices, res-
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pectively, r is the total number of modes along the y-coordinate and the super-

script T indicates matrix transposition, These global matrices are constructed

using the nodal stiffness and nodal mass matrices of the panel strip elements

and stringers [3]. Minimizing the total energy E with respect to the nodal

displacements {am} by setting BE/B{am} = O, we obtain the characteristic equa-

tion

[Km] - m2[Mm] = 0 (7)

The eigenvalues of this equation are the natural frequencies and the eigenvec-

tors are the corresponding normal modes Xmnof the skin-stringer panel. The

solutions to Eq. 7 are obtained using standard available computer codes for

eigenvalue problems.

3.4 External Pressure Field

The external surface pressure acting on the aircraft is propeller noise

due to the blade passage harmonics and turbulent boundary layer. The cross-

spectral density of the input pressure is assumed to be separable in the di-

rection of propagation and that perpendicular to it and is given as

i_/V x i_n/Vy
= sj( ) e e (8)

where Sj(m) is the power spectral density for the j-th panel unit, _ = x2 -

n = Y2 - Yl are the spatial separations, and Vx and Vy are the trace ve-xI ,

locities corresponding to the x- and y-directions, respectively: The expres-

sion given in Eqo 8 is limited to spatially non-decaying convecting sound

pressure fields. The sound pressure levels characterized by the spectral

density Sj(m) are taken to be uniformly distributed over each panel surface,
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but varying in a step-wise fashion from one panel to another. These spectral

densities are obtained from the exterior surface pressure data measured in

flight. In addition, the empirical prediction of surface noise due to pro-

peller blade passage harmonics are utilized to distribute the noise intensi-

ties over the aircraft fuselage [6]o Subsonic trace velocities corresponding

to the propeller rotation tip speed were taken for the vertical direction y,

and sonic trace velocities were assumed for the longitudinal direction x

{normal to the propeller rotation plane)° The values of Vy = 510 ft/sec and

Vx = 1100 ft/sec were used for all numerical computations.

The exterior sound pressure levels acting on Panel NOo1 are shown in

Fig. 5. The base level of about 99 dB is mainly due to surface flow result-

ing from the turbulent boundary layer. The turbulent boundary layer noise is

taken to be fully correlated and uniformly distributed over the panel surface.

These results correspond to cruise conditions at an altitude of 15,000 ft.

The input noise levels for the twelve panel units shown in Fig. 3 are given

in Table 2 where the SPL {sound pressure levels) at each blade passage har-

monic and the base levels are given. The base levels are selected to repre-

sent turbulent boundary layer pressure for each panel units. These results

are then converted to spectral densities Si utilizing a 2°5 Hz bandwidth°



4. Noise Attenuation Due to Add-On Treatments

The analytical model described in Section 3 predicts noise transmission

for the baseline aircraft without add-on treatments. The add-on treatments

can be divided into two basic categories. In the first case, the treatments

are attached directly to the skin (honeycomb panels, damping tapes, nonload

carrying mass) and have a marked influence on the structural dynamic char-

acteristics of the panels of which the aircraft sidewall is constructed.

The noise attenuation due to these treatments is estimated in the same fash-

ion as that described in Sec. 3, but the natural frequencies, normal modes

and generalized mass are calculated by including the effect of the add-on

treatment. In the second case, the treatments are not attached directly tO

the skin (acoustic blankets, foams, septum barriers, trim panels) and it is

assumed they have no significant influence on the vibration of the sidewall

panels. The noise attenuation of these treatments is calculated by a separate

procedure described in Sec. 4.2.

4.1 Noise Losses Due to HoneycombPanel and Damping Tape Treatments

Additional stiffening can be achieved by attaching honeycomb panels to

the interior walls of the aircraft as shown in the sketch below:

h

t 2 hc
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The transverse stiffness of the treated panel (elastic skin + honeycomb +

facing) can be obtained from

E1 E2 t I t 2 h_
Dh = (9)

(Elt I + E2t2)( 1 _ u2)

where hcis the distance between the facing centroids, _ is Poisson's ratio

of the facings (Ul=V2=u), E1, E2 and t 1, t 2 are the effective moduli and

thicknesses of the skin panel and honeycomb facing, respectively. Due to

the practical difficulties of attaching a two-face honeycomb panel to a

curved surface, a honeycomb construction with only one facing is considered

in this study. After the attachment of this honeycomb panel to the aircraft

skin, the skin panel acts as a facing to the honeycomb construction.

Due to the significant increase in the total treated panel stiffness

(aluminum panel + honeycomb panel), the modal frequencies of these panels

shift to higher frequency values° The stiffening effect is included by re-

placing the plate stiffness D in Eq. 2 by the combined stiffness Dh given

in Eq. 9 when calculating the modal frequencies for single panels which are

simply supported on all edges° The increase in surface density due to honey-

comb treatment is accounted for by replacing the _h value in Eq. 2 by a val-

ue corresponding to that of a treated panel° The natural frequencies and

normal modes of the skin-stringer panels stiffened by honeycomb panels are

calculated following the procedures presented in Seco 3.3.2 but with the

panel stiffness and surface density adjusted according to the amount of hon-

eycomb treatment°

The additional noise losses due to honeycomb treatment are obtained by

subtracting the sound pressure levels of the treated case from that of the
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untreated. The interior sound pressure levels in both of these cases are

calculated according to the procedures described in Sec. 3.

Predicting the actual noise losses that will result from damping treat-

ments in a particular system is a difficult task° The greatest uncertainty

is usually in estimating the damping of a structure as a function of frequen-

cy. In the present study, a constrained layer damping tape that is especially

effective for low frequencies and low temperatures is considered. The modal

structural damping coefficient of a panel treated with constrained layer damp-

ing tape is taken as

_mn : (Sp + ST)(m11/_mn) (10)

where Sp is the damping coefficient corresponding to a skin-stringer panel,

_T is the additional damping due to damping tape treatment and mmnare the

modal frequencies. Experimental data [19] indicate values for Sp on the

order of 0o01 - 0.015 for untreated skin-stringer panels and 0.02 - 0.03 for

panels stiffened with honeycomb panels. The damping coefficient ST is cal-

culated using the procedures of constrained layer damping presented in Ref.

20. Typical values for ST are 0°025 for one layer treatment and 0.05 for

two layer treatment. Whendamping tape is added to a panel surface, the

mass of the panel increases, without an appreciable increase in the panel

stiffness. Thus, the modal frequencies of the treated panels tend to shift

to the lower frequency values. This effect is accounted for by replacing

the surface density and generalized mass of the panels by ones corresponding

to the damping tape treatment. The effect on noise transmission due to the

addition of damping tape is estimated from the analytical model given in Sec.

3.
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To estimate the noise attenuation due to an increase in stiffness, mass

and damping, the analytical noise transmission prediction model described in

Sec. 3 is used. However, it is useful to establish simple guidelines for a

preliminary estimation of the noise attenuation due to add-on treatments which

are directly attached to the aircraft skin." The sound pressure spectral den-

sity inside the cabin for each structural mode is proportional to

Sp _ S(_) o A (11)
_ + 4_n_n_2 ] cM2mn[(_n _2)z

where S(m) = the input spectral density, Mmn: generalized mass, mmn: natur-

al frequencies, _mn : modal damping coefficients, Ac: acoustic terms. The

sound pressure levels in the cabin are calculated from

_TL : 10 log(Sp_/p O) (12)

where A_ : bandwidth, PO = reference pressure° Then, the change in the sound

pressure levels can be estimated from

_U.sT
ASPL : 10 log(_p/p) (13)

T pres-
U = pressurespectraldensityfor the untreatedstructure,Sp =where Sp

sure spectraldensity for the treated structure.

At the resonanceof each structuralmode, Eq. 11 reducesto

S(mmn)
Sp _ 2 2 4 o Ac (14)

4MmnCmnmmn

For the frequencies away from the resonance condition,

Sp u s(m) . Ac (15)M2 m4mn
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Then, from Eqs. 13-15,

MT T T 2

_ r mn_mnmn_2ATL at resonance _ 10 log _MmnCmnm_nj
(16)

I m 2ATL off resonance @10 log (M n/Mmn) (17)

where the superscript T indicates a treated case. For the orthogonal panel

modes considered in this study, the generalized mass is Mmn= mpLxLy/4 where

mp is the panel mass per unit area, and Lx,Ly are the panel dimensions. From

Eqs. 10, 16 and 17

[ _ (mTp(¢p+ CT)mTlmTn)2ATL at resonance T 10 log (18)
mpCpmllmmn

_/mp 2ATL off resonance _ 10 log (m ) (19)

In obtaining Eqso 18 and 19, it was assumed that the mode shapes of the pan-

els are the same for both treated and untreated cases. The effect of acous-

tic modal resonances are not included° Furthermore, ATL is calculated at and

off resonance and the contributions from other modes at that frequency are

not included (i.eo, the modes are not summed). Thus, these equations should

be viewed as approximate guidelines for estimating the additional noise re-

duction due to add-on treatments attached directly to the skin.

4°2 Additional Noise Losses Due to Acoustic Blankets, Acoustic Foams,
Septum Barriers and Trim Panels

The added transmission losses ATL have been calculated for the multi-

layered wall construction shown in Fig. 6. Following the procedure presented

in [1, 9-11], the ATL at an incident plane wave angle eI is obtained from

-15-



2

(Pl/P2)untreated I (20)ATL(m,e1) = 10 log l(pl/P2).... (Pn_l/Pn)treated

where Pn_l/Pn are the pressure ratios across the boundaries between adjacent

media and the pressure ratio across the media themselves as shown in Fig. 6o

Acoustic plane waves are incident on the exterior of the sidewall with an

angle eI and transmitted according to the various impedances present for each

different layer. The interior of the medium is assumed to extend to infinity

with an acoustic termination impedance pc. Numerical results were obtained

for treatments composed of up to nine layers, including the elastic skin-

stringer panel° The treatment layers are composed of acoustic blankets or

acoustic foams and septum barriers. The impedances for the acoustic blank-

ets were calculated from the relations given in [ 9] while for the acoustic

foams empirical expressions were used [10,21]o In the latter case, the pro-

pagation constant through a porous layer is expressed as

X = _ + i# (21)

where the empiricalrelationssuggestedin [10] for _ and B are

= (u/c) [O.18g(pm/2=R1)-O'595] (22)

B = (u/c) [1 + 0.978(pm/2=R1)-O°700] (23)

where c is the speed of sound in the gas of the porous material,p is the

density of the gas and R1 is the flow resistivityof the porous material.

In general,the ratio pm/2_R1 for porous materialsis limited to (0.01

pm/2_R1 _ 1)o However, Bies and Hansen [21] have recently extended the em-

pirical relations for _ and B to values of pm/2_R1 much less than

-16-



0.01. Thus, a closed cell foam could exhibit the behavior of a semi-rigid

material resulting in a much higher flow resistivity R1 than that of the

commonly used acoustic blankets. Under such conditions, a significant a-

mount of noise attenuation might be realized even for the low frequency

range where the noise intensity due to propeller blade passage harmonics is

the highest. However, the data on such foam materials is limited and more

theoretical and experimental work is needed on this subject°

The interior noise levels in a completely treated cabin are calculated

from

SPL(x,y,z,_) Itreated: SPL(x,y,z,_)luntreated - ATLI(_)- ATL2(_)

(24)

where ATL1 are the noise losses due to treatmentswhich are directlyattached

to the aircraft skin and ATL2 are the additionalnoise losses due to all

other treatmentsincludingthe absorptioneffectsin the cabin.
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5. Interior Noise Optimization

The procedures described in previous sections are used to optimize the

cabin noise in a twin engine G/A aircraft to an average overall A-weighted

level of about 85 dBA° To achieve this goal, the following add-on treatments

were selected: lightweight aluminum honeycomb panels, constrained layer damp-

ing tapes, porous acoustic blankets, thin layers of septum barriers, acoustic
L

foams, and limp trim panels which are isolated from the vibration of the main

sidewall structure. In the optimization procedure, an interior point in the

cabin, located in the propeller plane at about ear level and eight inches from

the sidewall, was selected. The interior noise was estimated at this point for

various add-on treatment conditions. The noise transmitted by each panel unit

(Fig. 3) was calculated for each add-on treatment and for combinations of these

treatments. Numerical computations were performed using a narrow band analysis

for a bandwidth of Af : 2 Hz and frequency range from 0 - 1122 Hz. The optimi-

zation criteria were based on the A-weighted one-third octave noise levels

which were calculated from the narrow band results. A more detailed descrip-

tion of the optimization procedure is given in Ref. I°
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6o Numerical Results

6.1 Modes and Frequencies

6.1.1 Baseline and HoneycombStiffened Panels

The normal modes and natural frequencies were obtained using the finite

element strip method and the transfer matrix procedures described in Section

3°3. The frequencies of the windows were determined using Eqo 2° The modes

6f these panels are the sine modes corresponding to simple support boundary

conditions. The stiffened panel and frame geometries are shown in Figs. 3

and 4. The skin of all the aluminum panels has a thickness of 0°063 inches

while the windows (each sheet) are made from 0.25 inch thick plexiglasso The

geometric and material properties of the stiffeners and panels are given in

Tables 1 and 3, respectively. Utilizing these data, the natural frequencies

and normal modes were calculated for all the panels shown in Fig. 3 for both

treated and untreated cases°

The natural frequencies corresponding to baseline panels are given in

Table 4. Due to the large number of natural frequencies for the selected fre-

quency range (1122 Hz), only the first six modal frequencies are included in

this table. The frequencies and modes for the stiffened panels (Nos. 9, 10,

11 and 12) were calculated utilizing the finite element strip method. Simple

support boundary conditions were assumed at the extreme edges of all the pan-

els. Several typical mode shapes for the stiffened panel unit No. II are

shown in Fig. 7 .

The natural frequencies and normal modes of the sidewall panels stiffen-

ed with honeycomb panels were calculated using Eqs. 2 and 9 for single panels

(NOSo4 and 6) and the transfer matrix method for skin-stringer panels (Nos.

g, 10, 11 and 12). The structural dynamic characteristics of the treated
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skin-stringer panels were estimated from Eq. 9 and the stiffener properties

are given in Table 1o The natural frequencies of the sidewall panels treated

with honeycomb panels are presented in Table 5. The typical mode shapes

of a treated skin-stringer panel are shown in Fig° 8o Due to a large increase

in the structural stiffness, the modal frequencies shift to higher frequency

values when compared to the results given for the baseline panels. The larg-

est increase in modal frequency is for single panels which are supported by

very stiff frames (panel Nos. 4 and 6)° For the skin-stringer panels, the

dynamic interaction between the stiffeners and treated skin (aluminum skin +

honeycomb) is more complex. The addition of honeycomb increases the stiff-

ness of the skin to a value which is near that of the stiffness of the inter-

mediate stiffener° In this case, the skin-stringer panel tends to behave as

a single panel unit rather than as a discretely stiffened panel° A signifi-

cant amount of deflection is observed at the intermediate stiffeners and the

supporting elastic boundaries° Thus, increasing the stiffness of the honey-

comb treatment does not increase the modal frequencies of the skin-stringer

panels by the same magnitude as that observed for single panel units°

6olo2 Damping Tape and Mass Addition

Whendamping tape is added to the panel surface, the mass of the panel

increases, without an appreciable increase in the panel stiffness. A similar

effect is observed when a non-load carrying mass is added to the elastic pan-

elo Thus, the modal frequencies shift to lower frequency values° For single

panels, this frequency shift can be adjusted through the surface density ph

as given in Eqo 2. For skin-stringer panels, mass is added to the skin pan-

els, with no mass added to the stringers° Thus, the modal frequencies need

to be estimated using either the finite element strip or transfer matrix meth-
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thods. However, it was observed that reasonable approximations can be obtained

by scaling the frequencies according to

fT _ m/_mT (25)mn _ fmn

where fmn are the modal frequencies in Hz, m is the mass per unit area of

the panel and the superscript T indicates a treated condition° The surface

density of a typical damping tape is about 0.25 Ib/ft 2, while the surface

density of an aircraft skin panel is 0.911b/ft 2. Thus, the surface density

of the aircraft skin would increase by about 30% and 60%with one and two

layers of damping tape added, respectively° It should be noted that such

an increase in surface density corresponds only to the skin and not to the

entire aircraft sidewall which is composed of skin, stiffeners, frames, straps,

windows, etc. The average surface density of the entire sidewall is about

2°8 Ib/ft2o The natural frequencies calculated by the transfer matrix meth-

od are shown in Table 6 for several mass add-on treatments° These results

correspond to unpressurized two, three and four span skin-stringer panels

which are typical of the sidewall construction shown in Fig° 3. The frequen-

cies given in Table 6 correspond to the first spanwise bending mode (n = I)

and the first three frequency bands of the streamwise modes. With increas-

ing added weight, more modal frequencies will fall within the selected fre-

quency range.

6°2 Noise Transmission Into the Aircraft

6.2.1 Baseline Aircraft: Theory and Experiment

The aircraft selected in the present study is a twin engine pressurized

G/A aircraft, as shown in Fig. 1. This aircraft has a take-off gross weight

of about 11,200 Ibs (5,080 kg), and cruises at an airspeed of 348 mph (559
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km/hr) at an altitude of 18,000 ft (286 m). The two turboprop engines are

rated at 820 hp with 1591 rpm at 100% power. The propeller is three-bladed

with a diameter of 8°83 ft. The cabin provides seats for pilot, co-pilot

and five passengers. The flight tests for the baseline aircraft run at al-

titudes of 16,000 ft and 29,000 ft indicate that the A-weighted overall in-

terior noise level varies in the cabin in the range of about 4 dBA and 8 dBA,

respectively. These results correspond to MaximumContinuous Power and a

96%rpm setting. The highest interior noise levels occur in the vicinity

of the propeller rotation plane. Furthermore, the highest A-weighted noise

levels are in the frequency range of about 100 - 400 Hz.

The baseline aircraft to which the analytical noise transmission model

is applied [1] is assumed to be an aircraft similar to the one described but

with no interior treatments, although seats were left intact during the tests.

The interior sound pressure levels are calculated at x : 78 in, y = 36 in, and

z : 8 in (Fig. 3). The exterior sound pressure inputs corresponding to the

flight conditions described in Sec. 3.4 are used. The one-third octave A-

weighted interior noise levels are given in Fig. 9. The sound pressure lev-

els presented in this report are relative values. A direct comparison be-

tween theory and the experiment is presented in Fig. 9. As can be observed

from these results, the agreement between theory and experiment is rela-

tively good. Theory seems to predict higher noise levels by about 9 dBA

at the second blade passage harmonic frequency, 150 Hzo The limitations of

the analytical model with regard to the uniform noise pressure distributions

and to the independent responses of each panel unit are that it could overes-

timate the transmitted noise levels at some frequencies. Furthermore, for un-

treated cabins, the sound that is radiated out through the vibration of the

sidewall panels might be significant. In the present model, only the panels
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through which noise is being transmitted are taken to be flexible. The re-

sults tend to indicate that interior noise in the untreated aircraft is domi-

nated by the noise transmitted through panel NOSo4,9,10 and Ii. The highest

noise levels are at the second and third blade passage harmonic (fundamental

blade passage harmonic = 75 Hz). The results given in Fig. 9 correspond to

a structural modal damping _p = 0°02 and acoustic modal damping in the cabin

_0= 0.03. The acoustic modal damping in the interior is estimated from _ij

= _O(mlO/mij) where _0 is the equivalent prescribed damping coefficient of

the lowest acoustic mode and mij are the modal acoustic frequencies corres-

ponding to the x and y coordinates, respectively (Fig. 3).

6.2°2 Treated Aircraft: Theory and Experiment

The interior noise levels corresponding to light and heavy add-on treat-

ments are calculated and then measured in flight. The flight conditions are

the same as those described in Sec. 6o2.1. The light treatment is composed

of two-inch thick AA fiberglass blankets. The theoretical results were ob-

tained by first calculating the noise transmission into the bare fuselage

(baseline structure) and then adding the ATL correction due to the fiberglass

treatment. To account for the fiberglass treatment, the acoustic damping in

the cabin was increased to _0 = 0.05. The ATL correction was obtained util-

izing the impedance transfer method described in Sec. 4.2. The theoretical

and experimental interior noise levels for the aircraft treated with two-inch

thick fiberglass blankets are given in Fig. 10. As can be seen from these

results, the agreement between theory and experiment is relatively good. The

main contribution to noise attenuation due to fiberglass blanket treatment is

seen at higher frequencies (above 300 Hz).

The interior noise levels for an aircraft treated with a heavy sound-
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proofing package are given in Fig° 11. A typical cross-section of the multi-

layered treatment and the distribution of the treatment over the sidewall are

shown in Figs. 12 and 13, respectively. These results indicate a reasonably

good agreement between theory and experiment. The additional noise losses

ATL due to the treatments shown in Figs. 12 and 13 were calculated using the

impedance transfer method [9]. These add-on treatments seem to be very ef-

fective in reducing the cabin noise for frequencies above 300 Hzo However,

for frequencies below 300 Hz these multilayered treatments do not seem to

provide the required amount of noise attenuation.

The amount of noise transmitted through the windows is relatively high

for this aircraft. These estimates are based on a simple single sheet plexi-

glass analytical model. If the absorption in the cabin is very low Cbase-

line structure), the sound coming through the window reverberates in the in-

terior and the transmitted noise levels are almost the same at some distant

position from the window as they are at the window. However, with a large

amount of interior absorption in a treated cabin, the sound transmitted

through the window is absorbed before it can travel any significant distance.

In obtaining the theoretical results shown in Fig. 11, such an effect was

estimated only in approximation. Experimental results tend to indicate

that the increase in noise reduction due to interior absorption for the win-

dow units is about 1, 2, 3, 3, 4, 5, 6, 7, 1land 14 dB at the one-third

octave center frequencies 125, 160, 200, 250, 315, 400, 500, 630, 800 and

1000 Hz, respectively. At frequencies below 125 Hz, the effect of absorp-

tion on noise transmission seems to be negligible° However, these values

should be viewed as approximate and based on limited experimental data.

The contribution to cabin noise by all the windows is shown in Fig. 14.
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These results indicate that in a treated cabin, the noise transmitted through

windows is significant for frequencies above 300 Hz. Thus, additional add-on

treatment of the metallic panels might not result in a substantial improvement

in the interior noise environment for frequencies above 300 Hz.

6.3 Sidewall Treatment with Honeycomb Panels

To estimate the effect of panel stiffening, the transmitted noise was

calculated for several add-on treatments composed of honeycomb constructions.

Numerical results were obtained for EI = E2 = 10o0 x 106 psi, _ = 0.3, t I =

0.063 in, hc: 0.25 in, t 2 = 0.016 in, O°03_in and 0.063 in. The one-third

octave A-weighted noise levels transmitted through the entire sidewall both

with and without the honeycomb treatments are shown in Fig. 15. About 6 - 8

dBA additional noise reduction is achieved at the first three propeller blade

passage harmonics with a light honeycomb treatment (t 2 = 0.16 in, add-on sur-

face density € 0.25 Ib/ft2). The gains at frequencies above 400 Hz are rela-

tively small. Furthermore, increasing the stiffness of the honeycomb panels

from t 2 : 0.016 in. to t 2 : 0.032 in. and t 2 = 0.063 in. results in only moder-

ate gains in noise reduction when compared to those shown in Fig. 15. The

largest amount of noise reduction due to honeycomb treatment was achieved

for the single panel units (NOSo4 and 6) which are supported with very heavy

gage frames. The modal frequencies for these individual panels were calcu-

lated assuming elastic supports along the frames and rigid supports at the

boundaries normal to the frames. The noise transmission through the skin-

stringer panels (NOSo9, I0, 11 and 12) treated with honeycomb do not follow

the same guidelines as those of the individual panels° These differences

can be attributed to the different mode shapes of these panels as described
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in Sec, 6o1.1. By adding a layer of damping tape to the honeycomb panels, an

additional 1 - 3 dBA noise reduction is achieved° The results presented indi-

cate that the combination of honeycomb and damping tape treatments could pro-

vide about 7 - 8 dBA additional noise reduction in the frequency range of 70

- 300 Hz.

6.4 Sidewall Treatment with Mass and Damping Tape

The constraining damping tapes chosen in this study are composed of alu-

minum foil, synthetic rubber adhesive and liner. Predicting the actual noise

reduction that will result from damping in a particular system is difficult°

Thus, it is necessary to estimate the noise transmission for the treated and

untreated panels. Several layers of damping tape can be used to achieve the

proper damping requirements° The addition of damping tape also increases the

surface density of the sidewall panels. The result is a higher generalized

mass but lower natural vibration frequencies° Furthermore, the experiments

on noise transmission for propeller driven aircraft indicate that a signifi-

cant amount of the noise is transmitted not by resonance but by forced res-

ponseo At the off resonance frequencies, damping tape treatment merely acts

as added mass° Since the surface density of the untreated aircraft sidewall

is large when compared to the surface density of the damping tape, adding one

layer of damping tape would have only a small efect on noise reduction of

these off resonance frequencies. However, if one of the propeller blade pas-

sage harmonics coincides with the modal frequency of a panel, damping treat-

ment would be highly beneficial to noise reduction.

Two layers of damping tape ( 0.25 Ib/ft 2 for one layer ) and non-

load carrying mass have been added to all the metallic panel surfaces shown

in Fig. 3. The add-on treatment surface densities are 1 Ib/ft 2 and 2 Ib/ft 2.

i
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Due to these treatments, the natural frequencies of the sidewall panels are

reduced. The first three modal frequencies for both treated and untreated pan-

els are given in Table 7. It can be observed from these results that when 2

Ib/ft 2 mass is added to the aircraft skin, the panel frequencies are reduced

to approximately one-half the untreated values. The damping of the untreated

and treated panels was taken to be 1%and 5%of the critical damping, respec-

tively. The noise levels transmitted_hrough the entire sidewall (including

windows) are shown in Fig. 16 with and without add-on treatments° About 6 -

8 dBA of noise reduction is achieved at the second and third blade passage

harmonics. However, the noise levels increased by 5 - 13 dBA at the first

blade passage harmonic. This is due to the fact that the fundamental modal

frequencies of several of the sidewall panels are in the close vicinity of

the first propeller blade passage harmonic. For the untreated panels, most

of the fundamental frequencies are in the range of the second blade passage

harmonic. As can be observed from Fig. 16, adding a large amount of mass to

the aircraft skin does not produce the required noise attenuation in the low

frequency range. Furthermore, for frequencies above 400 Hz, the amount of

noise transmitted through windows is about the same as that transmitted

through treated panels° Thus, only small gains in noise reduction are re-

alized for frequencies above 400 Hz with mass add-on treatments°

6.5 Additional Noise Losses Due to Acoustic Blankets, Foams,
Septum Barriers and Trim Panels

The additional noise losses aTL are calculated for a variety of multi-

layered treatments using the procedures described in Seco 4.2 and Refo 1o

Numerical results were obtained for the following data: n : 0°04, cI = 1054

ft/sec, c2 = c4 = c6 = c8 : c10 : 1102 ft/sec, Dx = 1o7 x 105 Ibm-ft2/sec 2,

= m_ft2/sec 2 bm/ft 3, ....Dy 1.728 x 106 Ib ' Pl : 0.043 1 P2 P4 P6 P8 PlO
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= 0.068 Ibm/ft 3, Pm= 0.864 Ibm/ft 3, pf = 21.55 Ibm/ft 3, K2 = K4 = K6 = K8 =

2117 lb/ft 2.

The spaces denoted by d2, d4, d6 and d8 are filled with acoustic porous

blankets (AA or B type) or acoustic foams. The acoustic foams with closed

cells could have larger values of the flow resistivity coefficient R1 than

do those of the acoustic blankets. The surface density _1 denotes th e total

average surface density of the sidewall which includes the aircraft skin,

frames, straps, windows, etc. The surface densities _3' u5 and _7 correspond

to the various septum barriers which separate the different layers of acoustic

blankets or acoustic foams° The surface density _9 denotes a trim panel which

is assumed to be isolated from the vibrations of the main aircraft structure°

The effect on noise losses due to different locations of the septum bar-

riers is illustrated in Figs. 17 and 18. It can be observed that significant

gains can be achieved by locating the acoustic barrier at a greater distance

from the exterior elastic panel° It should be noted that the added weight

does not change when the septum is placed at a different position° For the

frequency range 125 - 350 Hz, the additional noise losses could range from

0 - 10 dB and 4 - 15 dB for medium weight (0°358 Ib/ft 2) and heavy weight

(11b/ft 2) septum barriers, respectively° The ATL is plotted in Fig. 19 for

multi-layered septum combinations. For comparison, the results of a single

layer barrier placed at the trim panel location are included in this figure°

These results indicate that in the frequency range of 50 - 500 Hz, the mul-

ti-layered treatment is not beneficial to noise transmission control. This

is mainly due to the double wall resonances of the multi-layered construc-

tion. Theeffect of different trim panel surface densities on ATL is shown

in Fig. 20° These results indicate that a heavy trim panel is only benefi-

cial for frequencies above 160 Hz. The additional noise losses corresponding
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to different cavity depths, very light septum barriers and light trim are

shown in Fig. 21. The total cavity depth is taken to be d = d2 + d4 + d6 +

where d2 = d4 = d6 : d8. A significant amount of noise attenuation can bed8

realized for deep cavities. Furthermore, as the distance between the elastic

panel and the trim panel increases, the double wall resonance frequency de-

creases [10]. The maximumpossible distance d for the aircraft considered

in this study is about 4 inches. Typical distances between the exterior pan-

el and the trim panel of this aircraft range from about 2 inches to 3.2 inches°

Thus, by increasing the treated space to 4 inches or more, an addition 3-5

dBA noise reduction might be achieved in the frequency range of 100 - 400 HZo

The additional noise losses achieved by acoustic blankets and acoustic

foams are shown in Fig. 22 for different values of the flow resistivity coef-

ficient R1. The flow resistivity of acoustic blankets ranges up to about 4.5

x 104 mks ryal/m. The results given in Fig. 22 for Rl'S larger than 4.5 x

104 mks ryal/m correspond to semi-rigid materials. A closed cell acoustic

foam could exhibit noise transmission characteristics similar to those of

semi-rigid material. As can be observed from these results, significant

noise transmission losses can be obtained using materials with a large value

of flow resistivity° However, the experimental data needed to estimate the

acoustic properties of these materials is limited. Furthermore, for large

values of R1 the ratio p_/2_R 1 would exceed the limiting range of the appli-

cability of this theory (Sec. 4.2). Thus, the results presented in Fig. 22

should be viewed as preliminary guidelines. The effect on ATL of a multi-

layered treatment composed of materials with different flow resistivities

is illustrated in Fig. 23. By placing the lighter materials near the elastic

panel and the heavier materials near the trim panel, additional noise losses

can be achieved for the same amount of added weight.
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6.6 Noise Optimization

The interior noise in the cabin of the aircraft shown in Fig. 1 was

optimized utilizing a procedure similar to the one presented in Refo 1. The

noise transmitted by each baseline panel was estimated first. Then, the noise

losses due to various combinations of add-on treatments (described in Secso

6.3 - 6.5) were calculated° The treatment or combination of treatments which

reduce the spatial average cabin noise levels to about 85 dBA for the least

amount of added weight was taken as the best treatment for the sidewall° To

reduce the transmitted noise levels to 85 dBA, the treatment package includes

lightweight aluminum honeycomb panels, constrained layer damping tapes, acous-

tic blankets, thin layers of impervious septa and a limp trim panel which was

isolated from the vibration of the sidewall structure. Since acoustic and

thermal data of the foam materials for aircraft applications are limited,

they are not included in the final add-on treatment package°

The results of the optimization study for individual panels are given

in Figs. 24 - 29 and for the entire sidewall in Fig. 30° Since the amount

of add-on treatments varies from one panel unit to another, the surface den-

sities given in Fig. 30 for the sidewall are average values° The main con-

tribution to the noise reduction shown in Figs° 24 - 30 comes from honeycomb

stiffening in the low frequency range up to about 300 Hz, and acoustic ab-

sorption and limp trim panels for frequencies above 300 Hz. Honeycomb treat-

ments are especially effective for individual panels (Nos. 4 and 6) supported

by heavy frames° The function of the trim is to reduce noise as it enters

directly via the airborne path through the porous acoustic blankets and to

absorb the noise as it reflects off the interior surfaces° If the trim is

very stiff, hard and impervious, strong double wall resonances are induced

between the skin panels and the trim resulting in negative noise attenuation

at that particular frequency° In addition, the cabin will reverberate with

low values of noise absorption and at high interior noise levels. Unisolated,
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these panels vibrate with the frames producing a loudspeaker effect. The

present study indicates that soft trim panels which are isolated from the

vibrations of the frames could provide positive noise attenuation in the cri-

tical frequency range of 70 - 300 Hz where the propeller noise inputs are

highest. These panels can be isolated by placing foam or rubber material be-

tween the frames and the trim panel. It was found that the heaviest trim pan-

els are in the region of the propeller plane. The surface densities of the

trim panels range from about 0.1 Ib/ft 2 to 1.0 Ib/ft 2.

The treatment sequence for skin-stringer panels (Nos. 9, i0, 11 and 12)

is similar to that for single panels {Nos. 4 and 6), but heavier honeycomb

treatment and heavier trim are selected for panel Nos. 9, 10 and 11. Panel

No. 12 is composed of seven unequal bays and it is partially shielded by the

wing. The treatment package for this panel is relatively'light as shown in

Fig. 29°

The amount of treatment added on to different regions of the aircraft

is given in Fig. 31o The total added weight to the aircraft is about 220 Ibs.

The maximumtakeoff gross weight of this aircraft is 11,200 Ibs. Thus, the

weight of the add-on treatment is about 2% of the takeoff gross weight. A

typical distribution of the surface density of the add-on treatment is pre-

sented in Fig. 32 at several locations on the sidewall. As can be observed

from these results, the heaviest treatment is in the region of the propeller

plane° It is assumed that in this case the propeller rotation is from below

(port side). At the starboard side, it is recommended that heavier treat-

ment be implemented for Panel Nos. 4 and 6 and the ceiling area in the vi-

cinity of the propeller rotation plane. The final configuration of the op-

timized treatment is given in Fig. 31. These results show the relative con-

tribution of different treatments for each region of the aircraft. A compar-
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ison on noise transmitted through the baseline structure and that through a

sidewall treated with two different add-on packages is presented in Fig. 33.

The optimized treatment gives an additional 3 - 7 dBA noise reduction over

the heavy package in the frequency range of 70 - 300 Hz. The basic composi-

tion of the heavy treatment is the multi-layer construction shown in Figs.

12 and 13. The weight added to the aircraft by the heavy and optimized treat-

ments is about 290 Ibs and 220 Ibs, respectively°
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7. Conclusions

An analytical model has been used to predict the noise transmission in-

to a twin engine G/A aircraft under flight conditions. A relatively good

agreement has been reached between theoretical predictions and experimental

measurements for baseline, light and heavy treatment conditions. The average

calculated noise levels of about 102 dBA in the untreated aircraft have been

reduced to the optimized level of 85 dBA. The required noise reduction has

been achieved mainly in the low frequency range of 70 - 300 Hz. The first

three blade passage harmonics of this aircraft are in this frequency range.

The required noise reduction to achieve the selected optimization goal

has been obtained by treatments which include lightweight aluminum honeycomb

panels, constrained layer damping tapes, porous acoustic blankets, thin and

impervious septum barriers and limp trim panels which are isolated from the

vibration of the main sidewall structure. Due to the non-uniform distribu-

tion of the propeller noise pressure and the different structural dynamic

characteristics of the sidewall panels, the amount and type of treatment

varies from one panel unit to another. The total added weight to the air-

craft is about 220 Ibs which is about 2% of the total take-off gross weight.

The single most effective treatment in the low frequency region is stiffen-

ing with honeycomb panels°

The theoretical predictions tend to indicate that a treatment composed

of several layers of heavy septum (lead vinyl) which are separated by porous

acoustic blankets does not provide proper noise attenuation in the low fre-

quency range of 70 - 300 Hz where the propeller noise inputs are the highest.

However, such a treatment is very effective for frequencies above 300 Hz.

The small amount of noise attenuation in the low frequency region can be at-
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tributed to the multiple double wall resonances resulting from the multi-lay-

ered treatments. Semi-rigid acoustic materials with a large value of flow \

resistivity could provide a significant amount of noise reduction even in the

low frequency range. However, the experimental data on the acoustic proper-

ties of these materials are limited. Adding a large amount of non-load carry-!

ing mass to the aircraft skfn has a positive effect on noise reduction at the

second and third blade passage harmonic frequencies, but increases noise trans-

mission at the first blade passage harmonic.

The amount of noise transmitted through the Windows is relatively high

for this aircraft° These estimates are based on a simple single sheet plexi-

glass analytical model. Most of the window units are double wall (exterior

curved) plexiglass constructions. Depending on the structural dynamic char-

acteristics of both sheets and the distance between the inner and outer units,

strong double wall resonances could be induced resulting in high transmitted

noise levels° To reduce these noise levels to acceptable limits, a new de-

sign for the double wall window might need to be implemented. Such a new

window could include one or several of the following features: a partial

vacuum between the two panes, a floating inner pane which is isolated from

the vibration of the main structure, significantly different dynamic char-

acteristics of the two panes, more than two plexiglass sheets, or a sandwich

panel type construction with a transparent viscoelastic layer.
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Table 1. Material and Geometric Properties of Stiffeners

AS EsXlO-6 IX Iy Ixy cX Cy • C x 102 CWS PS
Stiffener

• 2 . 4 4 4 . 4 6 b/in3in psi in in in in in in in 1

Type 1 0.828 10.5 0.222 0.737 -0.157 -1.079 0.181 0.625 0.547 0.1

Type 2 0.579 10.5 0.111 0.368 -0.055 -0.640 0.061 0.298 0.048 0.1

.!

"_ Type 3 0.370 10.5 0.037 0.244 0.012 -0.857 0.278 0.143 0.025 0.1



Table 2. Input Noise Levels

Blade Passage Panel Unit Number

Harmonics Sound Pressure Levels, dB

Hz I 2&3 4 5 6 7&8 9 I0 II 12

75 132 134 134 134 130 130 131 134 128 128

150 130 128 125 130 127 125 130 126 127 125

225 124 127 123 127 125 120 120 125 126 120

300 119 124 122 124 121 118 119 124 124 118

375 117 123 121 122 118 116 117 123 122 116
I

450 116 121 120 120 117 115 116 121 121 115
I

525 114 120 118 118 115 III 114 120 119 114

600 112 118 116 116 113 II0 112 118 117 112

675 110 116 114 114 111 109 II0 116 115 Ii0

750 108 114 112 112 104 108 108 114 113 108

825 106 II0 108 108 107 106 108 110 110 106

900 104 108 107 107 106 106 107 108 108 106

975 104 105 106 105 106 105 106 106 106 105

1050 104 103 106 104 106 104 105 105 106 105

Base 99 103 106 106 104 101 100 103 106 100



Table 3. Material and Geometric Properties of Panels
i

Panel ExlO-6 t I _ LX Ly a b
Unit o o

Number psi in Ib/in 3 in in in in

1 0.56 0.25 0.044 15.00 14.40 7.50 29.00 0.3

2 0.56 0.25 0.044 13.75 13.15 37.00 29.00 0.3

3 0.56 0.25 0.044 13.75 13.13 60.00 29.00 0.3

4 10.5 0.063 0.100 9.00 18.00 78.00 27.00 0.3

5 0.56 0.25 0.044 13.75 13.13 88.00 29.00 0.3

6 10.5 0.063 0.100 11.54 18.00 104.00 27.00 0.3

, 7 0.56 0.25 0.044 13.75 11.80 117.00 29.00 0.3

' 8 0.56 0.25 0.044 13.75 II.00 140.00 24.00 0.3

9 10.5 0.063 0.100 32.00 26.50 0.00 0.00 . 0.3

10 10.5 0.063 0.100 27.00 26.50 32.00 0.00 0.3

11 10.5 0.063 0.100 45.00 26.50 59.00 0.00 0.3

12 10.5 0.063 0.100 65.00 26.50 104.00 0.00 0.3



Table 4. Natural Frequencies of Sidewall Panels (Baseline)

Panel Frequencies
Unit Hz

I 114, 222, 246, 352, 400, 534, 665

2&3 171, 352, 363, 540, 659, 843, 1092

4 167, 245, 360, 420, 488, 509, 693

5 182, 362: 402, 579, 664, 748, 927

6 126, 204, 265, 315, 440, 456, 492

7&8 201, 380, 468, 646, 687, 845, 1074
I

o
l 9 143, 157, 179, 196, 232, 237, 278

' i0 166, 170, 196, 212, 217, 254, 278

ii 134, 171, 231, 225, 271, 292, 293

12 139, 188, 241, 262, 320, 337, 348



Table 5. Natural Frequencies for Panels Stiffened with Honeycomb (t 2 = 0.016 in)

Panel Frequencies
Unit Hz

4 547, 803, 1177, ....

6 449, 730, 948, 1122, 1192, - -

9 211, 250, 260, 314, 341, 485, 565

I0 232, 270, 286, 345, 430, 533, 622

II 198, 235, 244, 245, 368, 456, 531

12 205, 244, 252, 305, 374, 470, 548
l

I



Table 6. Natural Frequencies of Stiffened Sidewall Panels Treated
with Damping Tape

Number of Frequencies, Hz

Spans
Added Surface Density, Ib/ft 2

L II

0 0.25 0.5 1.0

123, 156 III, 140 I01, 128 89, 111

2 239, 298 230, 284 220, 264 205, 248

312, 350 302, 340 246, 330 283, 317

117, 138, 159 106, 122, 142 96, 113, 126 85, 47, 112

3 236, 265, 301 222, 252, 285 215, 240, 270 202, 219, 248

i 311, 343, 350 301, 331, 340 242, 321, 331 283, 304, 318

i 136, 148, 172, 191 123, 134, 155, 173 112, 122, 141, 161 I00, 108. 124, 138

4 250, 280, 247, 314 241, 270, 286, 248 233, 261, 275, 284 220, 243, 257, 262

317, 363, 377, 400 309, 352, 363, 384 301, 342, 353, 372 292, 327, 334, 355
i



Table 7. Natural Frequencies of Sidewall Panels Treated with
Mass Addition

m

Frequencies, Hz
Panel
Unit Untreated Treated

Number
0 Ib/ft 2 1 Ib/ft 2 2 Ib/ft 2

P" L

4 167, 245, 360 116, 169, 248 94, 138, 202

6 126, 204, 265 87, 141, 183 70, 114, 149

9 143, 157, 179 103, 113, 183 79, 87, 99

I0 166, 170, 196 120, 122, 141 91, 94, 108

II 134, 171, 231 96, 123, 166 74, 94, 124

' 12 139, 188, 241 100, 136, 174 •76, 104, 133
(..,a
i



Fig. 1 Twin-engine aircraft used in noise transmission study
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Fig. 7 Node shapes of a skin-stringer panel (panel unit no. 11)
(n = I, modes 1-6, baseline)
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APPENDIXA

List of Symbols

As = stringer cross-sectional area

Ac = acoustic terms

a- = cabin dimensions

ao,b 0 = distances from x and y axes, respectively, to panel location

b = cabin dimension

C = Saint-Venant constant of uniform torsion

C' = centroid (Fig. 4)

Cws : warping constant of stringer cross-section

Cy,Cz = distances defined in Fig. 4

c = speed of sound

Cl, .... ,c10 = speed of sound in regions 1, .... ,10, respectively

D = elastic panel stiffness, = Eh3/[12(1 - u2)]

Dh = stiffness of honeycomb panel

Dx,Dy = bending rigidities of skin-stringer panels

d : cabin dimension, also total cavity depth

d2,d4,d6,d 8 : distance between different layers of acoustic treatment

E = total energy (strain + kinetic)

Es = elastic modulus of the stringer

E1,E2 = elastic moduli of the skin and honeycomb panels

f : natural frequencies, Hzmn

H = frequency response function of the panelmn

h = thickness of elastic panel

hc = honeycomb core thickness

= stringer cross-section polar moments of inertia and product
Ix'ly'Ixy of inertia, respectively, about the x and y axes
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i,j,m,n = indices

K : stiffness matrix of strip elementmn

Kn : banded stiffness matrix

K2,K4,K6,K 8 : compressibility ratios in regions 2, 4, 6 and 8, respectively

Lx,Ly : longitudinal and transverse dimensions of a panel, respectively

Mmn = mass matrix of strip element, also generalized mass

Mn : banded mass matrix

mp = panel mass per unit area

NR : noise reduction

Nx,NY = in-plane force resultants

p : acoustic pressure

PO = reference acoustic pressure

Pt = transmitted pressure

Pr = reflected pressure

R = average radius of the cabin

R1 : flow resistivity of the porous material

S = input spectral density

Su = spectral density of untreated structureP

ST = spectral density of treated structureP

Spi : spectral density of acoustic pressure

Sw = deflection response spectral density of the panel

S_ = cross-spectral density of pressureJ

Sj = spectral density of external pressure for the j-th panel

SPL = sound pressure levels

tl,t 2 = thicknesses of skin and honeycomb panel facing, respectively
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V = volume of airplane cabin

Vy,Vx = convection velocities of propeller noise corresponding todirection along propeller rotation and perpendicular to it,
respectively

x,y,z = spatial coordinates

Xmn : structural modes

= real parts of propagation constant

= imaginary part of propagation constant

Ap = pressure differential

A_ = frequency bandwidth

ATL : additional noise transmission losses

an : nodal displacement matrix

_p : structural damping coefficient

_mn : structural modal damping coefficients

_T = damping tape coefficient

e1, .... ,el0 = incidence angles for different media

n = loss factor of the sidewall

= acoustic propagation constant

_i,_3,_5,_7,_9 : surface densities of elastic panel, septum barriers and trim
panel, respectively

= Poisson's ratio

_0 : acoustic damping coefficient

_ij : acoustic modal damping coefficients

p = air density

PI' .... 'Pl0 = air densities for regions 1, .... ,10, respectively

p : material density of the panel

Pm = densityof acousticblankets

pf = densityof acousticfibers
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Ps = materialdensity of stringer

= angular frequency

_.. = acousticmodal frequencies
IJ

mmn = structuralmodal frequencies
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